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Abstract—Electromigration (EM) becomes one of the most
challenging reliability issues for current and future ICs in 10-nm
technology and below. In this article, a novel method is proposed
for the EM hydrostatic stress analysis on 2-D multibranch
interconnect trees, which is the foundation of the EM reliability
assessment for large-scale on-chip interconnect networks, such
as on-chip power grid networks. The proposed method, which
is based on an eigenfunction technique, could efficiently calcu-
late the hydrostatic stress evolution for multibranch interconnect
trees stressed with different current densities and nonuniformly
distributed thermal effects. The proposed method solves the par-
tial differential equations of transient EM stress more efficiently
since it does not require any discretization either spatially or tem-
porally, which is in contrast to numerical methods, such as the
finite difference method and finite element method. The accuracy
of the proposed transient analysis approach is validated against
the analytical solution and commercial tools. The convergence
of the proposed method is demonstrated by numerical experi-
ments on practical power/ground networks, showing that only
a small number of eigenfunction terms are necessary for the
accurate solution. Thanks to its analytical nature, the proposed
method is also utilized in efficient EM analysis techniques, such
as searching for the void nucleation time by a modified bisection
algorithm. The numerical results show that the proposed method
is 10X-100X faster than the finite difference method and scales
better for larger interconnect trees.
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I. INTRODUCTION

LECTROMIGRATION (EM) reliability is one of the

major concerns for the nanometer-integrated chips. The
lifetime of the back end of the copper interconnects in nanome-
ter chips are effectively reduced by EM. It is predicted by the
international technology roadmap for semiconductors (ITRSs)
that the lifetime of wires due to EM will decrease by half
for each new technology node. This deterioration of EM reli-
ability is caused by constantly increasing current density and
shrinking wire line cross sections as the technology scaling
down. EM reliability will become even worse as the technol-
ogy scales down to 10 nm and below. Although many measures
are taken to enhance the EM reliability of copper wire in the
manufacturing process, it is also required to consider the chal-
lenging EM problem in the design phase, as the verification
and optimization of EM lifetime in the design of chips helps
to improve the reliability.

Traditionally, Black’s equation [1] and Blench limit [2] are
employed to predict the mean time to failure (MTTF) due to EM.
These methods statistically calculate the MTTF and immortality
of the individual branches characterized by current densities and
temperature. However, these methods are subject to criticism
due to their empirical nature and lack of consideration of residual
stress [3], such as thermal and mechanical stress, which can
significantly affect the time to failure of the interconnects.
Furthermore, these methods are based on the statistical EM
time-to-failure data for a single wire. In contrast, the practical
on-chip interconnect networks consist of interconnect trees
representing continuously connected, highly conductive metal
wires within the same level of metalization and terminated by
diffusion barriers. Studies show that the stress evolution in each
individual wire of a interconnect tree is not independent [4]
because the metal atoms migrate across the wire boundaries
and EM takes place in the whole interconnect tree [4]. In
order to consider these effects, physics-based EM analysis
methods for the through silicon via (TSV) [5] and power/ground
networks [4], [6], [7] have been proposed. These methods are
based on the EM model proposed by Korhonen et al. [8], which
model the EM as diffusion-like partial differential equations
(PDEs) describing the kinetics of hydrostatic stress evolution
on interconnect trees.
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For all those methods based on Korhonen’s model, solv-
ing the coupled PDEs of hydrostatic stress is a fundamental
step. The complexity of the transient solution of hydrostatic
stress on the general interconnect tree makes the EM reliability
assessment quite a challenging problem. The requirements of
accuracy and efficiency to this solution are usually conflict-
ing due to the large size of on-chip interconnect networks.
As a result, the existing methods compromise either accu-
racy or efficiency. In order to ensure the efficiency of the EM
analysis for large multibranch interconnect trees, a compact
physics-based EM model was proposed by Huang et al. [4]
and Sukharev et al. [6]. These methods mainly focus on the
steady-state solution of hydrostatic stress instead of transient
hydrostatic stress. Thus, these methods cannot provide the
accurate time evolution of the hydrostatic stress, which ulti-
mately determines EM failures, such as void nucleation and
void growth, for multibranch interconnect trees.

Accurate analytical solutions were also proposed for specific
interconnect trees. The first analytical solution was given in
the original work of Korhonen et al. [8], describing the hydro-
static stress evolution on a single wire. Although this solution
provides insights into the EM, it only works for a single wire,
the simplest interconnect structure. Recent studies [9], [10]
proposed analytical modeling to provide exact expressions
describing the hydrostatic stress evolution in several typical
interconnect trees, namely, the straight-line 3-terminal wires,
the T-shaped 4-terminal wires, and the cross-shaped 5-terminal
wires. Although the proposed model was extended by con-
sidering temperature and segment length effects [10], these
methods still only work for a few specific wire structures due
to the difficulty in obtaining the exact analytical solution. In
order to extend the analytical approach to analyze the tran-
sient hydrostatic stress evolution for large-scale power/ground
networks, Wang et al. [11] proposed a method utilizing the
integral transform technique to solve 1-D Korhonen’s equa-
tions for multisegment wires of a straight metal line, which
is a common routing structure of power/ground networks.
However, this method still cannot solve the general tree
structure of 2-D interconnect trees.

Numerical methods, on the other hand, are usually general
enough to provide a numerical solution of transient hydrostatic
stress for general interconnect trees, considering the nonuni-
form residual stress as well as the time-varying thermal and
current density effects. However, numerical methods are com-
putationally intensive for full-chip EM analysis. Finite element
analysis (FEA)-based method [5] can only solve small struc-
tures such as one TSV because of the expensive computational
cost. Finite difference methods (FDM) [7], [12] are still too
time consuming for full-chip EM reliability assessment. In
order to improve the efficiency, Chatterjee et al. [13] proposed
a finite difference-based linear time-invariant (LTI) system for-
mulation and reduction of the resulting system matrices to
speed up the time-domain simulation based on the matrix
exponential method. This method was further improved by
Chatterjee et al. [14] using optimized variable-step backward
differentiation formulas (BDFs) to solve the LTI system. A
Krylov subspace-based reduction technique was applied in
the frequency domain to reduce the original system matri-
ces for efficient time-domain solutions and the solution of the
finite difference method in the time domain is then accelerated
by model order reduction (MOR) [15]. Although accelerated,
these finite difference-based methods still require the dis-
cretization, both spatially and temporally. The discretization

not only causes numeric errors but also constrains the simu-
lation of hydrostatic stress evolution in a step-by-step manner
(usually small steps).

The analytical solutions have advantages over numerical
approaches, despite the limited interconnect structure they can
solve. Compared to the numerical methods, the advantages of
analytical solutions are as follows.

1) Korhonen’s equations are solved more efficiently since
analytical solutions do not require any discretization,
which will reduce the number of unknown variables
significantly.

2) Analytical solutions avoid integrating the transient stress
over time with small time steps to get an accurate solu-
tion. In contrast, it can compute the stress for a specific
time directly.

3) Analytical solutions facilitate more efficient EM analy-
sis techniques, such as searching for the void nucleation
time by the bisection method or Newton’s method [4],
which is available only if analytical solutions are
provided.

This article proposes a fast physics-based EM analysis method
for full-chip EM assessment. By providing an eigenfunction-
based solution to the transient hydrostatic stress evolution, the
proposed method could check the EM reliability accurately
and efficiently. The main contributions of this article are as
follows.

1) An eigenfunction-based solution is proposed in this
article to calculate the transient hydrostatic stress for
general 2-D multibranch interconnect trees. It is worth
mentioning that previous analytical solutions for single
wire [8] and multisegment wire [11] are special cases
and could be derived from the proposed solution, which
is shown in detail in Section V-B. The proposed method
could accommodate both prevoiding and post-voiding
boundary conditions and calculate the hydrostatic stress
in both phases to reveal the full dynamics of the stress
evolution. Moreover, the proposed method could accom-
modate nonuniform thermal and current effects as well
as arbitrary residual stress distribution.

2) The convergence of the proposed method is demon-
strated by numerical experiments on practical
power/ground networks. The experimental results
show that only a small number of eigenfunction
terms are necessary for sufficient accuracy, despite the
conservative large number of eigenfunctions terms used
in [11], [16]. As a matter of fact, the convergence of the
proposed eigenfunction-based solution is related to the
frequency spectrum of the current densities on wires.
The numerical experiments on practical power/ground
networks show that the convergence of the proposed
method is guaranteed due to the limited frequency
distribution of the current densities, which has also
been argued for the MOR method [15]. Concerning the
terms of the model, the proposed method illustrates a
similar characteristic to the MOR methods.

3) The efficiency of the proposed method is demonstrated
by solving large interconnect trees. Due to its low com-
plexity, the proposed method is faster than the numerical
methods for large interconnect trees. The experimental
results show that the proposed method is 10X-100X
faster than the original FDM proposed in [12].

4) A modified bisection algorithm based on the proposed
semi-analytical solution is proposed to find the
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nucleation time t,c quickly for full-chip power/ground
networks, which demonstrates that the proposed method
can solve the same problems as the numerical meth-
ods do, but with the advantage of analytical solutions.
Although the numerical methods such as FDM could
be accelerated by the MOR method [15], the proposed
method has the benefits of an analytical solution. The
experimental results on IBM benchmarks show that the
proposed method is efficient enough for full-chip EM
assessment, without losing accuracy.

The remainder of this article is organized as follows. In
Section II, the physics-based model of EM is reviewed, where
the structure of the interconnect tree and initial-boundary
value problem (IBVP) for EM is illustrated. The skeleton
of the eigenfunction-based solution for transient analysis of
hydrostatic stress evolution in the void nucleation phase is
proposed in Section III. Section IV presents the key tech-
niques to find eigenvalues and eigenfunctions by solving
Sturm—Liouville equations. The eigenfunctions-based analyt-
ical solution to the transient hydrostatic stress is assembled
in Section V. The experimental results are presented in
Section VI to show the accuracy, convergence, and efficiency
of the proposed method. Finally, we draw the conclusion.
Some preliminary results of this article were presented in [16].
We extend it with the second contribution and the fourth con-
tribution, more numerical results and comparisons, and more
technical details.

II. REVIEW OF PHYSICS-BASED EM MODELING

EM is the migration of metal atoms due to the momen-
tum exchange between electrical field-driven electrons and
metal atoms in a metal line. The momentum exchange between
atoms and the conducting electrons results in metal depletion
at the cathode and a corresponding metal accumulation at the
anode ends of the metal wire. When a metal wire is embedded
into rigid confinement, which is the case for copper dual-
damascene structure, the wire volume changes induced by the
atom depletion and accumulation due to migration create ten-
sion at the cathode end and compression at the anode end of
the wire. The lasting electrical load increases these stresses,
as well as the stress gradient along the metal wire. The stress
generated inside the embedded metal wire is the prime cause
of the void and hillock formation at the opposite ends of the
wire. The void nucleation time could be obtained when stress
reaches the critical value o and extracted kinetics of the void
volume evolution governs the evolution of wire resistance.
Degradation of the electrical resistance of the interconnect seg-
ment due to the void growth can be derived from the solution
of kinetics equation describing the time evolution of stress
in the interconnect segments [8], [17]. Since the thin layers
of refractive metals form diffusion barriers for copper (Cu)
atoms preventing them from diffusion into interlayer (ILD)
and intermetal dielectrics (IMDs), as shown by Fig. 1, the
EM occurs primarily on the interconnect tree, which is a con-
tinuously connected, highly conductive metal with one layer
of metalization, terminated by diffusion barriers, as illustrated
by Fig. 2. As a general interconnect tree, the wires on the tree
could have different widths and different diffusivity caused by
nonuniform thermal distribution.

For a single wire segment, the hydrostatic stress evolution
o (x, 1) could be described as the diffusion-like equation (1),
which was proposed by Korhonen et al. [8] to model the void
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Fig. 1. Layers of Cu interconnects.
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Fig. 2. Interconnect tree structure.

nucleation and kinetics of void size evolution

do (x, 1) _ i do (x, 1)
ot _8x[K< ox +g>} M

where k = [(D,BS2)/(kpT)] is the diffusivity of stress,
G = [(Eq*)/2] is the EM driving force, and D, is
the effective atomic diffusion coefficient, defined as D, =
Do exp(—[E,/kpT]). Here, Dy is the pre-exponential factor, E,
is the activation energy, B is the effective bulk elasticity modu-
lus, €2 is the atomic lattice volume, kg is Boltzmann’s constant,
T is temperature, E is the electric field, ¢* is the effective
charge, x is the coordinate along the wire, and ¢ is time. From
Ohm’s law, the electric field E could be replaced by the prod-
uct of resistivity p and current density j, i.e., E = pj. The
effective charge ¢* = |Z*|e is a known quantity, where e is the
elementary charge and Z = |Z*| is the effective charge num-
ber. As a result, the EM driving force G could be calculated
as a function of current density G = (eZ/Q)p.

For an interconnect tree, the hydrostatic stress evolution
o(x,t) could be described by the “extended Korhonen’s
model” (EKM) proposed in [7] and [13]. In this model, the
EM degradation of an interconnect tree is evaluated as a whole
because atoms diffuse across branch boundaries at junction
nodes on the interconnect tree. For junction nodes on the tree,
the boundary conditions (2) represent the facts that the hydro-
static stress should be continuous and the atom flux should be
conserved to 0

Uijl (x = Xi, t) = Gljz (x = Xi, t)
aO'l'j
Xi:WijJa’ij(xi’ 1= Xi:WZjK,‘j a i

where ij represents the branches connected to junction node i,
wij is the cross section area of branch #j, k;; is the diffusivity
of branch ij, oji(x, ) is stress distribution on branch ij, and
Ja,ij(x, 1) is the atom flux on branch ij.

For nodes at blocking boundaries of the interconnect tree,
the atom diffusion is blocked because the metal lines are con-
fined. Therefore, the atom flux at the block boundary is 0,
reflected by the boundary condition

+ gij) =0 (2

ax xX=x¢ i gfj) =0 ©

do
Ja0j(xe, ) = kgj| —

where £ is the node at the blocking boundary.
Under the effect of EM-induced driving force, the hydro-
static stress will build up as tensile stress (i.e., positive stress)
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or compressive stress (i.e., negative stress). As long as the ten-
sile stress exceeds the critical stress o, the void nucleates.
After the void nucleation, the wire comes to the void growth
phase, in which the void would enlarge in size as a result
of the atom depletion caused by current density. In the void
growth phase, the tensile hydrostatic stress on the void nucle-
ation will be effectively released, which usually leads to the
hydrostatic stress created in the void nucleation phase release
all over the interconnect tree. Besides the change of hydro-
static stress, the wire resistance starts to increase over time in
the void growth phase, which usually leads to current density
redistribution [18].

From kinetics of the EM-induced void described above, it
is clear that the accurate solution to the PDEs (1) is crucial
for EM reliability assessment.

III. TRANSIENT ANALYSIS OF HYDROSTATIC STRESS
EVOLUTION IN VOID NUCLEATION PHASE

The hydrostatic stress evolution on a interconnect tree
could be described by a group of coupled PDEs, which is
a typical IBVP. The proposed method first transforms this
IBVP into a homogeneous problem and utilize the “sepa-
ration of variables” technique to solve it. It then computes
the eigenvalues and eigenfunctions numerically. Next, the
coefficients of eigenfunctions are determined by initial con-
ditions. Finally, transient hydrostatic stress is calculated as a
linear combination of eigenfunctions.

A. Steady-State Hydrostatic Stress Distribution and
Transformation to Homogeneous Transient Problem

To solve coupled Korhonen’s equations for the interconnect
tree, the governing equation (1), as well as the coupled
boundary conditions (2) and (3), should be transformed to
homogeneous ones to leverage the use of the separation of
variables technique.

Korhonen’s equations (1) and boundary conditions (2)
and (3) could be transformed into homogeneous ones by sub-
tracting the transient stress distribution o (x, f) by the steady-
state stress distribution o (x, 00). The transformed hydrostatic
stress & (x, t) is then defined by

o(x,t) =0o(x,00) —o(x,t). 4)

To facilitate this transformation, the steady-state hydrostatic
stress distribution o (x, co0) has to be figured out first. The
steady-state stress problem has already been solved in previous
works [4], [19]. We hereby shortly review the steady-state
stress analysis for convenience. For any branch ij on the
interconnect tree, the stress distribution comes to a steady state
when it stops changing with time, i.e., ([d0;;(x, 00)]/9?) = 0.
Substituting this to Korhonen’s equation (1), the atom flux
is found to be constant in a steady state and this constant
has to be zero according to boundary conditions (3), which is
shown by

d0;i(x, 00)
dax

From (5), it is clear that the steady-state stress is linearly dis-
tributed on branch ij and satisfies equation (6). In addition,
the steady stress is subject to atom conservation equation (7).
As a result, the steady-state stress o (x, o0) could be solved
explicitly from

Ja,ij(x, 00) = Kij( + gij) =const=0. (5)

Z O','j(x]', OO) + (Iij(xi, 00)

B . l,‘j . W,‘j = 0. (7)

ij
Using the transformation equation (4) and zero atom flux
equation (5) for steady state, Korhonen’s equation is trans-
formed into homogeneous IBVP, which is described by
governing equations (8) and boundary conditions

963 (x, 1) 3%63i(x, 1)
T T ®
&,-jl (x = Xi, t) = a'ijz(x = Xj, t)
88,-]-(x, 1)

Wi - g =0 )
Xi: Y Y 9x s i

64 (x, t
Ll (10)

ox x=xy

where n; is the “normal direction” of boundary i on branch ij,
which is +1 for right end and —1 for left end of the branch.
Meanwhile, the initial conditions are transformed to (11)

(1)

(x,0) =0(x,00) —o(x,0) =0o(x,0) —or

where o7 is the initial residual stress.

B. Solving the Transient Problem by Separation of Variables

Since being transformed to homogeneous equations, the
initial-boundary value problem (8)—(11) is ready for separa-
tion of variables. The solution &;j(x, #) for branch ij of the
interconnect tree is assumed to be separated into two parts: 1)
¥ij(x) and 2) I'(¢), as shown by

Gij(x, 1) = ii(x) - T (@). (12)

Substituting (12) into (8), the PDEs could be separated into
two ordinary differential equations (ODEs) as follows:

kg Py _ 1 arw 03
Viix) ax2  T@) o

where A is the eigenvalue. Note here that all branches should
share the same eigenvalue A. As a matter of fact, the eigen-
values consist of an infinite series 0 < A <Ay <--- <A, <
---. For each eigenvalue, there are two equations to solve: one
transient equation (14) with respect to temporal function I"(¢)
and another equation (15) with respect to spatial distribution

Pij(x)

dr ()

2 _
— Tl =0 (14)
92 iim A2
SVim® |\ Ay =0, (15)

2
ox Kjj

The general solutions to (14) and (15) are well known
as (16) and (17), respectively

T(1) = Cp - e 0! (16)

Vi m(X) = Aji i si (’\’” +B hom (17)
ij,m X) = ij,m sinj| ——x ij,m cos| —x|.
Kij /Kij

Therefore, the general solution to problem (8) is the linear
combination of I'(?) - ¥;j,»(x), which is shown by

oo
~ _ 12
Gi(x, 1) =Y Ce™ " P m(x)

m=1

(18)
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where the eigenvalues A, and coefficients Aj; ;,, Bjj m, and Cy,
are to be determined by boundary conditions and initial condi-
tions. Finally, the original transient hydrostatic stress o (x, f) is
obtained as (19) as long as the eigenvalues A, and eigenvalues
Ym(x) being decided

o(x, 1) =0o(x,00) —a(x,1)

= o(x,00) = ¥ Cre P ().

m=1

19)

IV. SOLVING STURM-LIOUVILLE EQUATIONS FOR
EIGENVALUES AND EIGENFUNCTIONS

Equation (15), which decide the eigenvalues and eigenfunc-
tions, are well known as the Sturm-Liouville problem. For
branch ij on the interconnect tree, the governing equation of
the Sturm-Liouville problem could be rewritten as

PYiim)
- 92 = wlj,nlwij(x)
A
Wijm = —: (20)
ij

where wjj, is a short notation of frequency on branch ij.
Substituting separated solution (12) to boundary conditions (9)
and (10), the boundary conditions of the Sturm-Liouville
problem could be obtained as

Yij1m (X = X)) = Yijy m(x = x;)

a ..
Z wij - KUM nj =0 Q1)
i a‘x X=X;
8 .
Kng =0 (22)
a'x X=Xy

where wj; is the cross section area of branch ij. These BCs
suggest the eigenfunctions ¥,,(x) should be continuous and
obey the Kirchhoff law on interconnect nodes.

In order to obtain the eigenvalues A, and eigenfunctions
Ym(x), we have to solve the Sturm-Liouville problem on
interconnect trees.

A. Eigenvalues

The eigenvalues A, are key parameters for the solution.
However, it is not trivial to determine the eigenvalues for
general interconnect trees, in contrast to the simple case of
multisegment wires described in [11]. As a matter of fact, the
eigenvalues for interconnect trees could only be determined
numerically by searching for those eigenvalues satisfying the
general solution (17) and boundary conditions (21), (22).

The basic idea is to substitute general solutions (17) to
boundary conditions (21), (22) and find the eigenvalues A,
that result in nontrivial solution of eigenfunctions. Utilizing
the fact the eigenfunctions are continuous on boundaries of
branch (21), we assume the eigenfunctions’ values on the both
ends of the branch ij as ¥; = Vi m(xi) and ¥jm = ¥j m(x)).
Given those values, the coefficients A;; ,, and Bj; , of the eigen-
function on branch ij is immediately determined by solving the
following equations:

Ipi,m = Aij,m Sin(wij,m-xi) + Bij,m cos (U)ij,m-xi)

Yim = Aijm sin(a)lj,mxj) + Bij,m cos (a)lj,mxj). 23)

Based on these eigenfunctions, the derivatives on both ends
of branch ij could be calculated as following equation:

[ VUijm(Xi) i| _ _Wij,m(xi)
_ [ @imcot(ymly) —wimesc(wymly)
—wijm cs¢(@ijmlij)  wijm cOt(wijmlij

1pi,m
‘ [ w,»,m]'

Equation (24) is called “edge equations,” where ViJ;; »,(x;) and
Vi;m(x;) are the inward gradients of eigenfunction v;; ,, (x)
on branch ends x; and x;, respectively, and /;; is the length of
branch ij.

Substituting the edge equations (24) to the BCs (21)
and (22), the boundary conditions then lead to constraints of
the eigenfunction values ¥; , on ends of branches, which are
represented by

(24)

KGw) -¥* =0 (25)

where matrix K(A,,) consists of combinations of coefficients
of edge equations, which depend on eigenvalues A,,, and ¥* =
(V1ms Y2ms -y ¢n,m]T is the vector of eigenfunction values
on nodes of the interconnect tree.

There are nontrivial solutions of eigenfunction that satisfy
the boundary conditions only if the determinant of K(},,) (K
for short) matrix is 0, i.e., det(K(}1,)) = 0, because any K
matrix with det(K(A,,)) # 0 implies ¥* = 0, which results in
a trivial solution of eigenfunction v ,,(x) = O for all branch ij.
Therefore, those A, for which det(K(A,,)) = 0 are the eigen-
values that result in nontrivial solution of eigenfunction. As a
result, the eigenvalues are determined by solving

det(K (Am)) = 0. (26)

Unfortunately, (26) is a complex transcendental equation,
which is hard to solve. The elements of K matrix consist
of transcendental functions of eigenvalues, such as cot(wl;)
and csc(wljj). Substituting these transcendental functions into
a determinant of matrix K makes (26) very hard to solve
directly, if not impossible. In order to overcome this diffi-
culty, the Wittrick—Williams algorithm (W-W algorithm) [20]
is utilized to search for eigenvalues.

The W-W algorithm is based on the following equation:

N(u) =y No(w) + s(K* (w)) 27
ij

where N(u) is the number of eigenvalues not exceeding w,
No(w) is the number of eigenvalues not exceeding p with the
Dirichlet boundary conditions, K (i) is the upper triangular
matrix of K(u) matrix using the Gaussian elimination, and
s(K®(w)) is the number of negative leading diagonal elements
of K2(w). Here, No(n) is calculated as the branches are all
decoupled by setting the Dirichlet BCs on both ends of the
branch.

There are two key numbers to calculate in the W-W algo-
rithm: 1) Np(un) and 2) s(KA(,u)). No(n) could be easily
calculated by imposing the Dirichlet boundary conditions to
both ends of the branch ij, i.e., ¥;(x = x;) = ¥;;(x = xj) = 0.
For each branch i#j, the number of eigenvalues in [0, ;] under
these Dirichlet BCs is calculated by

ijlij
No(u) = {%J (28)
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where |-| denotes the greatest integer not exceeding the value
in the brackets and [;; is the length of branch ij.

Comparing to calculation of No(u), s(K®(u)) is much
harder to compute because the K(u) matrix has to be fac-
torized to its upper triangular matrix K () by the Gaussian
elimination. Since the K matrix becomes huge for large
interconnect trees, LU factorization of the K matrix could be
the bottleneck of the whole W-W algorithm. In order to accel-
erate the computation of s(K”(w)), we exploit the sparsity
of the K matrix. For a interconnect tree with n nodes, the
K = K(u) matrix is an n x n matrix. However, the nonzero
elements of the K matrix are less than 4 x n. Therefore, the
K matrix is a sparse matrix for which the sparse LU fac-
torization methods have been proposed to perform the sparse
Gaussian elimination to obtain upper triangular matrix K (11).
Moreover, the reverse Cuthill-Mckee (RCM) algorithm [21] is
utilized to reorder the K matrix so that no fill-ins happens in
the sparse LU factorization, which guaranteed the efficiency.

Based on N(u) calculated for any given interval [0, u], the
eigenvalues could easily be confined within intervals by bisec-
tion. When the intervals containing the eigenvalues approach
to punctuations, the eigenvalues are localized and determined.
Instead of some specific eigenvalues, all top M eigenvalues A,
m=1,2,..., M are required to solve Korhonen’s equations.
Therefore, it is inefficient to search for eigenvalues one by
one, as the normal bisection method does. In contrast, a cus-
tomized bisection algorithm (Algorithm 1) is proposed to find
all top M eigenvalues in one round, which reduces the unnec-
essary trial evaluations of N(u) when searching eigenvalues
individually. The proposed algorithm (Algorithm 1) includes
two stages: the u is exponentially increased in first stage until
at least M eigenvalues are included in interval [0, x]. In the
second stage, the bisection is utilized to find all the eigenvalues
from A; to Ay

It is worth noticing that there is a trivial eigenvalue Ao =
0 for BCs (9) and (10) in the void nucleation phase. It is
easy to verify that the constant distribution v;j0(x) = const
is the corresponding eigenfunction for this eigenvalue. As a
matter of fact, this special eigenvalue implies that the average
hydrostatic stress on the interconnect tree remains unchanged
in the void nucleation phase.

B. Multiplicity of Eigenvalues

For general 2-D interconnect trees, there might be some
multifold eigenvalues. In another word, some adjacent eigen-
values are exactly the same. For example, there may exist
eigenvalues Aj;r1 = Ajz2 = --- = Ajyk. In this case, the
multifold eigenvalue has multiplicity of k.

For an eigenvalue with multiplicity &, there will be k linear-
independent eigenfunctions. The multiplicity of eigenvalues
depends on the topology of the interconnect tree. For instance,
it has been proven that all eigenvalues are singlefold (sim-
ple) for straight line, illustrated by Fig. 3(a), which is a tree
with special topology. In order to investigate and illustrate the
multiplicity of the eigenvalues, we study some interconnect
trees with typical structures, such as T-shape trees [Fig. 3(b)]
and cross shape trees [Fig. 3(c)] [9].

For example, there are twofold eigenvalues (7t /20), (37 /21),
(57 /20), (7mx/2l), --- for the T-shape tree illustrated by
Fig. 3(b), where [ is the branch length. For those twofold
eigenvalues A, = ([(2m — 1) - w]/2]), we could find an eigen-
function V1 2(x, ) = cos([((2m — 1) - w)/2l]x) on the line

Algorithm 1: Customized Bisection Algorithm to Find All
Top M Eigenvalues

Input: The number of eigenvalues M to calculate and the accuracy
requirement €.
Output: [y, Ao, -+, Ayl
Initialize the trial eigenvalue p to an arbitrary value Aq;
while N(u) < M do
n=2u;
end
Associate the N(u) to interval ro = ([0, n], 0, N(w));
Initialize the intervals to check as queue R = {rp};
while R # ¢ do
Pop the first interval r from R, i.e. r = pop(R);
Denote r = ([14p, ttel, N(ip), N(ie)) where py, is the start point
and pe is the end point of interval r;
if N(up) > M then
Drop interval r. Continue;
else if N(ip) = N(ite) then
Drop interval r. Continue;
else if (. — pup < € then
for i = N(up) : N(ue) do
i = (up + 1e)/2;
end
Finish processing interval r. Continue;
else
Calculate N(uy,) for middle point py;, = (p + pe)/2 of
interval r;
Append both interval r; = ([ttp, jum], N(p), N(um)) and
rr = ([tm, tel, N(tm), N(e)) to queue R;

end

end

1 0 3 4

L 0

1 3
2
2
(a) (b) (c)
Fig. 3. Interconnect trees with typical structures. (a) Straight line. (b) 7-

shape. (c) Cross shape.

(a) (b)

Fig. 4. Eigenfunction ¥ 3(x, An) (a) and ¥ 2(x, Apy) (b) for eigenvalue
Am = (7/2]) on T-shape tree.

1,0, 2, which has zero value on node 0. Similarly, we can
find an eigenfunction 1 3(x, A,,,) = cos(([(2m — 1) - w]/2D)x)
on the line 1, 0, 3. By setting eigenfunction on the other part
to 0, we can extend the eigenfunctions to the entire tree,
as illustrated by Fig. 4. As we can see from Fig. 4, eigen-
functions ¥y 2(x, A;,) and ¥y 3(x, A,,) are linearly independent
since Y1 2(x, Am) # 0, Y1 3(x, Ay) = 0 on branch 0,2 and
Y1,20x, Am) =0, ¥1.3(x, Ap) # 0on branch 0, 3. Although lin-
early independent, these two eigenfunctions are not orthogonal
to each other, i.e., [; Y12 Y13 # 0.
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Note that having multifold eigenvalues for some
interconnect trees does not mean all eigenvalues are
multifold on this tree. The eigenvalues of T-shape tree with
Neumann’s BCs are actually (;r/2]), (/l), 3 /2]), 2r /D),
(5m /2D, Br /D, (Tm/2l), ..., with twofold and singlefold
eigenvalues interleaving with each other. For the cross-shape
tree as illustrated by Fig. 3(c), we could find threefold
eigenvalues using the same approach described above. Here,
we illustrate and analyze the multiplicity of the eigenvalues
by constructing analytical eigenfunctions. However, the
multiplicity of eigenvalues for general interconnect trees are
certainly depending on the topology and parameters of the
tree. Therefore, the corresponding eigenfunctions should be
calculated numerically instead. See Section IV-C for this.

Despite the multiplicity of the eigenvalues, the proposed
algorithm (Algorithm 1) could still be utilized to find all of
the eigenvalues. In practice, the multifold eigenvalues could
be detected in an arbitrarily short interval containing more
than one eigenvalues. In this process, Algorithm 1 shows its
stability concerning numerical truncation errors.

Although the eigenfunctions for multifold eigenvalues could
not be solved analytically for a general interconnect tree,
investigations to the linear-independent eigenfunctions in this
section could enlighten the numerical solution of the orthonor-
mal eigenfunctions corresponding to multifold eigenvalues for
interconnect trees.

C. Eigenfunctions

Once the eigenvalues are figured out, the corresponding
eigenfunctions could be then calculated by solving PDEs (20)
with given A,. The general solution ¥;(x) on branch ij to
the PDE is given by (23). The unknown A;; and B;; could be
obtained by solving (29) if the eigenfunction values on each
end of the branch are known

w,‘j’m(x,') _ sin(wij,mxi Cos a),‘j’mx,‘) A,‘j (29)
Viim(x5) |~ | sin(wym) cos(wymy) || Bi |
Substituting the eigenfunction values v;,; = Vij,m(x;) on
node i and v, = V¥;j,m(x;) on node j to (29), the eigenfunction
¥ij,m(x) on branch ij could be represented as
sin(wjj,m(xj — x))

sin (a),'j,ml,'j)

sin(wij,m(x — x7))
sin (e ml;)
(30)

Ipij,m (x) = Ipi,m

j,m

As a result, the task to calculate eigenfunctions v, (x)
is equivalent to calculating eigenfunction values ¥* =
(Vims Y2.ms -y wn,m]T on each node of the interconnect tree.
The eigenfunction values ¥* on nodes of the tree could be
solved from linear equations (25). Because det(K(A;)) = O,
the eigenfunction values ¥* on nodes could only be uniquely
determined with respect to some prescribed elements. In con-
trast to the method proposed in [16], the multiplicity of the
eigenvalues and eigenfunctions is considered here, which indi-
cates there could be multiple linear-independent ¥* obtained
by solving equation (25). Without losing generality, we assume
that eigenvalue A, has multiplicity of k, (k = 1,2,...).
From following Theorem 1, we expect exactly k nonzero
solutions for equation K(A,) - ¥* = 0 since there are k
linear-independent eigenfunctions for eigenvalue A,.
Theorem 1: The eigenfunctions ¥(x), Y2(x), ..., ¥r(x)
are linearly independent if and only if ¥}, ¥5,..., ¥/ are

(a) (b)

Fig. 5. Eigenfunction (a) and the orthogonalized eigenfunction (b) for
eigenvalue A, = (;r/20) on T-shape tree.

linearly independent, where v is the vector of eigenfunction
¥i(x)’s values on nodes of the tree (i = 1,2, ..., k).

Therefore, the rank of nullspace of K(},,) is k and the basis
of its nullspace is the nontrivial solution of K(,) - ¥* = 0.
In order to find the nullspace of K(A,) stably, a sparse OR
factorization method proposed in [22] is used as the following
equation:

K(Am) = Ko - Kg. (31)

There are k zero diagonal elements in upper triangular matrix
K and the corresponding column vectors of Ky form the basis
of the nullspace of K(A,,). Therefore, those column vectors of
Ko are the nonzero solutions ¥ (i = 1,...,k) for K(A,,) -
¥* = 0. Substituting these ¥ to (30), the eigenfunctions for
eigenvalue A,, are determined.

Since Kgp is an orthogonal matrix from the QR factor-
ization, solutions v (i = 1,...,k) are orthogonal to each
other. However, the eigenfunctions corresponding to . are
not orthogonal to each other. This fact could be illustrated by
the linear-independent eigenfunctions for eigenvalue (7/2[) on
the T-shape tree shown by Fig. 4. The inner product of these
eigenfunctions is not zero, which indicates the eigenfunctions
are not orthogonal to each other.

Nevertheless, the orthogonal eigenfunctions are desired
because it is easier to represent other solution functions
by the orthogonal eigenfunctions. Therefore, the modified
Gram—Schmidt process is utilized to orthogonalize the linear-
independent eigenfunctions for the same multifold eigenvalue.
For example, orthogonalized eigenfunctions for the T-shape
interconnect tree are shown in Fig. 5.

For those eigenfunctions corresponding to different eigen-
values, it has already been proven that the eigenfunctions for
different eigenvalues are orthogonal to each other. Therefore,
eigenfunctions ¥,,(x), m = 1,2,..., calculated by the
proposed method are orthonormal basic solutions of the
Sturm—Liouville equations (20).

V. SEMI-ANALYTICAL SOLUTION OF THE TRANSIENT
HYDROSTATIC STRESS

Although the eigenvalues and eigenfunctions are calculated
numerically as shown in the previous section, the transient
hydrostatic stress could be represented by an analytical solu-
tion in terms of eigenvalues and eigenfunctions.

A. Coefficients of Basic Solution to Satisfy Initial Conditions

Since the eigenvalues A, and eigenfunctions ¥, (x) are
determined, the solution (18) as a linear combination of basic
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solutions I'(?) - ¥j m(x) are to be specified in terms of the
coefficients C,,. The coefficients C, would be solved by
setting the solution (18) to satisfy the initial conditions, as
shown by

Go(0) =6(x,t=0) =Y Cutijm).

m=1

(32)

Since the eigenfunctions are orthogonal to each other, which
means inner product of eigenfunctions (Y, (X) - ¥, () =
Z[j wijf;ﬁ’ Vijmy (X) - Yijm, (X)dx = 0 for eigenvalues A, #
Amy, the coefficients C,, could be obtained by calculating
the inner product of each eigenfunctions ¥,,(x) to the initial
conditions 6¢(x), as shown by

(Y@ - G000)  Xywii [y Vigm() - Go(x)dx )
" (Y)Y ) Siwi [TV, dx
Here, the norm of eigenfunctions (¥, (x) - ¥, (x)) could be
calculated analytically as the following equation:

(Ui X) - Y (0))

Xj
=i [ Vawie= T,
i i ij
( (viz+vi2)
X

sin® (i, mlij) ij.m

|:w,-j,ml,j — sin(w,-j,mlij) COS(wij,ml,'j) :|
2

* *
1’01',mwj,m

m[sin(a}g,mlg) — a),‘j’ml,'j COS(a),‘j’mlij)]
iy,mtiy JP,m

(34)

Generally the inner product of eigenfunctions and initial
stress distribution (v, (x) - 69(x)) could be calculated numer-
ically by the fast Fourier transform. However, if a stress
distribution f(x) on the interconnect tree is a piecewise linear
(PWL) function that satisfies the boundary conditions, then its
inner product to eigenfunctions could be computed as (35).
Note that the initial stress distribution 6¢(x) = o (x, 00) — o7
happens to be such a PWL function. Therefore, the inner prod-
uct of eigenfunctions and initial stress distribution could also
be calculated analytically

W) - f @) = 3 = ([fix) — fixn)]
ij wij,mlif

X [Wijm (i) = Yigm(5)])-
(35)

B. Special Cases of Analytical Hydrostatic Stress Solution

Although parameters A, and ¥, (x) are decided numerically,
the proposed eigenfunction-based solution still has character-
istics of analytical solution. In some special cases, where the
eigenvalues and eigenfunctions are known analytically, such
as a single wire [8] and multisegment wire [11], the proposed
method becomes natural to the known analytical solutions.

For the single wire case, the eigenvalues and eigenfunction
with Neumann’s BCs (i.e., BCs in the void nucleation phase)
are already known as

Am mi

Wy = —= = —,

JK ]
mit
Ym(x) = cos(wpmx) = cos(Tx)

m=0,1,2,...

(36)

and the closed form expression of hydrostatic stress given
by [8] is known as

o(x,t) =or+Gl

N =
~ =

o COS(Q’H_#)O 7K(2n+1)2n2t
—4 ——— =5 ¢ 2 (37)
—0 2n+ 1w

where [ is the length of wire and or is the initial residual
stress. The analytical solution of transient stress could also be

transformed to summation of series as the following equation:

o(x, 1) =0(x,00) —o(x,1)

o0 4gl (2;1 + l)ij _k (2;,+]2)2,Z2t
= Z ) COoS ] e [
=0 2n+ 1)“m

=" Cuthm@)e ™" (38)
m=1

where steady-state stress o (x, o0) = o7 + GI([1/2] — [x/I]) is
a linear function along the wire.

It could be proven that the proposed method results in
exactly the same transient solution by showing that the same
eigenvalues wy,, eigenfunctions ¥,,(x), and coefficients C,,
could be obtained by the proposed method. From (23), the
eigenfunction values on each end of the wire is obtained as

Yom | _ | sin(wy,0)  cos(wy,0) [[A] A
en] = [y e ][5] =53]

Vim sin(wm!)
where Yo,m = Ym(x = 0), Y1,m = Ym(x = [), and matrix
K — 0

U= | sin(wml)  cos(wpl)
the wire are obtained as (40) by taking the derivatives

Vom | — cos(w;;0) sin(w;;0) -K A
Vim | — " cos(wnl) — —sin(wul) |~ 27| B
(40)

. The gradients on each end of

-1 0

cos(oml)  — sin(w,l) | Trom (40),
it could be seen that the nontrivial eigenfunction exists (i.e.,
A # 0 or B # 0) iff. det(K;) = 0. Calculating det(K;) =
wm Sin(wyl), it is clear that the eigenvalue is either wyp = 0 or
wy, = (mmr/l), which agrees with the known eigenvalues. Let
us also show how the W-W algorithm is applied to figure out
the eigenvalues numerically in this case. For any trial value
that sin(ul) # 0, the K(u) matrix could be built by (24) as
follows:

where matrix Ky = wy,

cot(ul)

—csc(ul)
K(w) = 'U“|: —csc(ul) i|

cot(ul) 4D

Factorizing the K(w) matrix manually by LU, the upper
triangular matrix K (1) is obtained as the following equation:

KA () = M[cot(,ul) — csc(ul)]

0 — tan(ul) (42)

Note that cot(ul) and tan(u/) must have the same sign.
Therefore, sign count s(K”(x)) = 1 and eigenvalue number
in [0, u] is N(u) = |ul/m | + 1, which implies eigenvalues as
wm = (mm /l) plus one zero eigenvalue wy = 0.
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Fig. 6. (a) Eigenvalues A;; and (b) eigenfunctions v (x) for a single wire

with length L = 1.

To figure out the eigenfunctions, the eigenvalues w, =
(mm /I) and Neumann’s BCs could be substituted to (40) and
it is clear that A = 0 and B = 1 is the normalized solu-
tion. Therefore, eigenfunctions are ¥,,(x) = cos(w,x) =
cos([mm /l]x), which also agree with the known analytical
eigenfunctions.

The coefficients C,, could be figured out from the Fourier
series of the transformed initial condition 6¢(x) = o (x, 00) —
or = GL([1/2] — [x/1]), shown by the following equation:

6‘0()() — Z 4GL

—_— X). 43
. ot 1)2n2¢2n+1( ) (43)
n=0
Therefore, the coefficients C,, are calculated as follows:
_|4GL/m*n?), m=2n+1
Cm - { O, m= 27’1 (44)

which are eaxctly the same as those in the known analytical
solution (36).

The numerical results of eigenvalues and eigenfunctions are
shown in Fig. 6(a) and (b). Compared to the analytical solu-
tion, the numerical solution given by the proposed method
is quite accurate, with a relative error less than 107°. The
numerical results also show that the W-W algorithm is quite
robust despite the K matrix becomes almost singular when p
approaches wy,.

For the multisegment case in [11], the eigenvalues and
eigenfunctions are the same as those of the single wire because
the segments are assumed to have identical width and diffu-
sivity . The main difference is the steady-state stress is a
piecewise linear function distributed on the segments instead
of a simple linear function for the single wire. The inte-
grated transform technique proposed in [11] leads to exactly
the same C,, when the C,, is calculated by (35) and (34) to
satisfy the piecewise linear-distributed ICs. As a result, the
proposed method is equivalent to the integrated transform-
based method [11] in the special case of a multisegment
wire.

C. Nonuniform Current Density, Nonuniform Thermal Effect,
and Nonideal Rectangular Wires Due to Lithography

The proposed method is able to accommodate the nonuni-
form current density and thermal effect. The nonuniform
current density situation is illustrated by Fig. 7(a). The current
densities on the left and right branches are different because
of the different wire widths. This case has already been han-
dled in (21) and (33) by considering different wire width w;;.
The nonuniform thermal distribution situation is illustrated by

T, T Ta T Ts Te
|r—L'|] — === ==
4 =] = =

Jo— . )  e—7 re—— r——7 [V [ —

(a) (b)

Fig. 7.
distribution.

(a) Nonuniform current densities. (b) Nonuniform thermal

2 J2

Fig. 8.  Wires with irregular shape due to the lithography process [23].
(a) Short wire. (b) Long wire.

Fig. 7(b). In order to find out the transient hydrostatic stress
in this case, one idea is to divide the wire into segments
so that each segment has the same temperature. Because the
diffusivity « is a function of the temperature 7, each seg-
ment on the wire has varying diffusivity «;;. This case has
already been handled in the proposed method by considering
the nonuniform diffusivity «;;.

Due to the lithography process, the fabricated wires do not
have the ideal 2-D rectangular shapes, as illustrated in Fig. 8.
The proposed method is not able to precisely solve the hydro-
static stress for those irregular wires. To mitigate this problem,
one idea is to approximate the current densities on irregular
wires. Note that the irregularity occurs mainly on ends of the
wire and it causes larger distortion on short wires than on
long wires, as shown in Fig. 8. In order to calculate the stress
on short wires by the proposed method, the wire is divided
into different regions to approximate the current densities in
irregular-shaped regions [see Fig. 8(a)]. The average current
densities in each region are used as the approximation. As a
result, the corrected current densities j; and j3 in Fig. 8(a)
become larger than j, because lithography variations narrow
down the wire at the ends. After the current density correc-
tion, the proposed method can be utilized to solve the stress
distribution. For the long wire, the proposed method can be
applied directly to calculate the hydrostatic stress because the
shape variations have a little impact on the stress distribution.

It is noticed in [19] that the current crowding effect also
has a less significant impact on longer wires, which confirms
that it is reasonable to approximate hydrostatic stress with
the proposed method for long wires. For the shorter wires that
have totally different shapes from rectangle due to lithography,
a new model is required to accurately calculate the hydrostatic
stress, which will be studied in the future. It is also worth
noticing that short wire is less concerned for EM because of
the Blench limit effects [19].

VI. NUMERICAL RESULTS AND DISCUSSION

A. Accuracy of the Eigenfunction-Based Transient
Hydrostatic Stress Analysis Method

In order to validate the accuracy of the proposed method, the
experimental results of transient hydrostatic stress evolution
in the void nucleation phase are compared with the analyti-
cal solutions in [9]. Since only typical interconnect structures,
including three terminals, four terminals, and five terminal
junctions are analyzed in [9], we compare the transient solu-
tions of the proposed method to those from [9] for these wire
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Fig. 9. (a) T-shape interconnect tree with branch length 2 x 10~ m and current densities j; =4x 1010 A/mz,jz =2x1010 A/m?, and j3 =1x 1010 A/m? and (b)
hydrostatic stress evolution on it. (c) Cross-shape interconnect tree with branch length 2 x 10~ m and current densities Jj1=4x 1010 A/mz,jz =2x1010 A/m?,
j3=—2Xx 1010 A/m2, and Jja=1x 1019 A/m?2 and (d) hydrostatic stress evolution on it.
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Fig. 10.  (a) Transient hydrostatic stress on layer 3 of IBMPG2 at time
t=1.7 x 107 s and (b) transient hydrostatic stress of a specific interconnect
tree on this layer calculated by the proposed method.

structures. Fig. 9 shows the structures of interconnect, current
density, and the transient hydrostatic stress evolution in the
void nucleation phase.

In both cases, the proposed method is accurate enough com-
pared to the results of the analytical solution or COMSOL
simulation, with max error 0.2%. As a matter of fact, the
accuracy of the proposed method depends on the number of
eigenfunctions used to represent the transient solution. The
more eigenfunctions used, the more accurate the solution is.
The sufficient number of eigenfunctions depends on the spa-
tial variance of current density. This topic will be discussed
in Section VI-B.

Note that our method could compute transient stress evo-
lution for arbitrarily complex interconnect trees beyond these
typical structures. In order to demonstrate this, the transient

stress for the benchmark IBMPG?2 [24] is calculated by the
proposed method. The transient stress on layer 3 at time
t = 1.7 x 107 s is shown in Fig. 10(a). The transient stress
on a specific interconnect tree on this layer is also shown in
Fig. 10(b), where the results of FDM and our method are
illustrated.

In order to evaluate the approximation of stress on the wires
with irregular shape due to the lithography process, the exper-
imental results of transient and steady hydrostatic stress for
a short irregular wire, shown in Fig. 8(a), and long irregular
wire, shown in Fig. 8(b), are compared in Fig. 11. COMSOL is
used to model and solve the hydrostatic stress on the irregular
wires. For the short irregular wire, the stress distributions are
reasonably approximated by the proposed method with cur-
rent density correction, shown by “proposed w/j correction”
plot in Fig. 11(a). The average relative error of stress distribu-
tions on the short wire is 9.4%. For the long irregular wire, the
stress distributions are properly approximated by the proposed
method, even without correcting the current densities, shown
by “proposed w/o j correction” plot in Fig. 11(b). The average
relative error of stress distributions on the long wire is 7.0%.

B. Convergency of the Eigenfunction-Based Transient
Hydrostatic Stress Analysis Method

Although the transient stress solution is theoretically an infi-
nite series as shown by (18), only the first M items are used
in practice to compute the solution as long as it is accurate
enough. Despite the quite conservative M = 200 is adopted in
previous works [11], [16], the item number M is not neces-
sarily large. In fact, the experiments on practical interconnect
trees in IBM power/ground benchmarks show that the item
number around 20-30 is enough for an accurate solution.
The appropriate item number M is determined by frequency
domain analysis as follows.

Since the transient stress solution is a linear combination of
eigenfunctions v, (x) with coefficients C,,, small coefficients
with little effect could be truncated out. From (32) and (11),
we can see the coefficients C,, are decided by the frequency
distribution of the steady-state stress o (x, 0c0). Therefore, the
frequency spectrum of the steady-state stress is analyzed to
understand how many eigenfunctions are necessary for enough
accuracy. The steady-state stress and its frequency spectrum
on an interconnect of the IBMPG4 benchmark are shown
in Fig. 12. This interconnect tree has 174 branches and the
steady-state stress o (x, 00) is calculated according to the
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Fig. 11. Hydrostatic stress on: (a) short irregular wire and (b) long irregular
wire.

voltage distribution as shown in [19]. Although the accu-
rate solution could be guaranteed with eigenfunction number
M = 174, the frequency spectrum of o (x, 00) in Fig. 12(b)
shows M = 20-30 is enough to capture the major components
of the eigenfunction. In order to prove this, a different number
of eigenfunctions are used to represent the steady-state stress
on the interconnect of the IBMPG4 benchmark. Fig. 13(a)
shows the representation of steady-state stress with M = 5,
10, 25 eigenfunctions. As we can see, the eigenfunction-
based solution converges quickly. With M = 25, the error to
exact stress decreases to 3.72%. Correspondingly, the transient
stress calculated by 25 eigenfunctions is also good enough.
Fig. 13(b) shows the transient stress o (x,f) at t = 1 X 1013
calculated by M = 25 eigenfunctions. As we can see, the tran-
sient solution calculated by 25 eigenfunctions agrees well with
the result of FDM.

C. Efficiency of the Eigenfunction-Based Transient
Hydrostatic Stress Analysis Method

In order to demonstrate the efficiency of the proposed
method, a multibranch interconnect tree of n consecutive
T-junctions is proposed as the test case for performance, as
shown by Fig. 14. Note that there are 2n + 1 branches on the
testing interconnect trees. We then compare the performance
of the proposed method and FDM [12] with an increasing
number of n to show the efficiency. The proposed method and
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Fig. 12. (a) Steady-state stress o (x, o0) and (b) its frequency specturm on
an interconnect of the IBMPG4 benchmark.
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Fig. 13. (a) Steady-state stress o (x, o0) and (b) transient stress o (x, ) on
an interconnect of IBMPG4 benchmark are represented by different number
of eigenfunctions.

the FDM are both implemented in C++ and tested on a Linux
server with 2 x 16 core 3.3-GHz CPU and 128-GB memory.
Both methods solve the transient hydrostatic solution for time
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n
AN

Fig. 14. n T-junctions interconnect structure.

TABLE I
RUNTIME COMPARISON OF THE PROPOSED METHOD AND FDM

The Proposed Method (sec) FDM(sec)
n teig tcoef to tiotal tan tfdm
20 0.099 | 0.016 | 0.0076 | 0.123 0.63 0.32
50 0.152 | 0.026 | 0.0094 | 0.187 1.30 1.61
100 0.485 | 0.062 | 0.0180 | 0.566 2.89 7.20
200 0.960 | 0.137 | 0.0358 1.133 5.21 44.5
500 2.372 | 0.407 | 0.1356 | 20915 14.6 298.4
700 2406 | 0.692 | 0.1632 | 3.262 17.8 611.5
900 3.171 | 0919 | 0.1926 | 4.283 23.8 1114.5
1000 5.423 | 0.832 | 0.1723 | 6.428 25.8 1443.9
1200 4340 | 1.822 | 0.2757 | 6.439 36.8 2080.4
1500 5.856 | 1.837 | 0.3442 | 8.123 44.1 3525.4
1700 6.713 | 2.242 | 0.3516 | 9.307 48.5 5581.6
1900 6.981 2.346 | 0.3489 | 9.676 50.3 8053.1
2000 10.53 | 2.056 | 0.3579 12.95 51.4 15651.2
10000 49.71 13.83 | 2.5851 66.13 236.7 NA
50000 231.2 | 56.86 | 11.024 | 299.1 1393.6 NA
100000 | 441.8 141.7 | 26984 | 610.5 | 2969.9 NA

t =2x 107 s. The proposed method is set to analyze the tran-
sient solution with the number of eigenfunctions being 200,
which is conservative to ensure sufficient accuracy. For FDM,
the interconnect trees are discretized to ten grids per branch
spatially and time step Af =2 x 10° s to run the simulation.
For the sake of performance comparison, our method is also
set to solve for the stress distribution on the ten grid points on
each branch, which is not necessary for practical EM analysis
where only stresses on junction nodes are of interest.

In addition, we also tested the time costs of the three major
steps of the proposed method: 1) calculate the eigenvalues
and eigenfunctions with given boundary conditions; 2) cal-
culate the coefficients of eigenfunctions with given current
density and initial stress distribution; and 3) compute the
transient hydrostatic solution distribution at time ¢ using the
eigenfunctions. In the simulation, the eigenvalues and eigen-
functions need to be calculated only once no matter how
many transient hydrostatic stresses to solve. Moreover, as long
as the current density distribution remains the same, it is
not necessary to calculate the coefficients of eigenfunctions
again. As a result, the only repetitive computational cost left
is that of computing the transient hydrostatic stress as the
linear combination of eigenfunctions, which is significantly
cheaper.

Table I shows the time costs of the proposed method and
FDM for varying n T-junctions. Here, ftqy is the time cost
of FDM according to above-mentioned discretization schema.
feigs tcoef, and f, are the time costs of the three steps of
the proposed method, namely, eigenvalues and eigenfunctions
calculation, coefficients calculation, and transient stress calcu-
lation, respectively. In addition to the time cost f, of direct
calculation of stress at r = 2 x 107 s, we also present the

n x10*

Fig. 15. Histogram of the branch number of IBMPG6.
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Fig. 16. Time costs of three steps of the proposed method with varying n.

time cost f, of calculating the transient stresses for all time
steps At,2At,3At, ..., 100At. Note that calculating for all
time steps is also for the sake of comparison to FDM. In con-
trast to FDM, our method could just skip the time points at
which the hydrostatic stress is irrelevant to EM failure in prac-
tical EM analysis. See the next section for more discussion on
this. As we can see from Table I, the proposed method is
10X-100X times faster than FDM.

Moreover, the proposed method scales well for larger
interconnect trees, which facilitates its practical use for large
full-chip networks. Actually, the interconnect trees in practical
power/ground networks are not very big because only wires
on the same metal layer can form an interconnect tree. Fig. 15
shows the histogram of the branch number of IBMPG6 P/G
networks. It could be seen the largest interconnect tree has
less than 1000 branches and the majority of the interconnect
trees are relatively small (<1000 branches). Therefore, repet-
itive T-junction trees are intentionally made quite large, with
the branch number up to 200 000, to show the scalability of the
proposed method. The FDM fails to solve the stress for a huge
n larger than 10 000, while the proposed method can handle the
large trees with n up to 100 000. Note that only sparse LU fac-
torization of the K matrix is required in the proposed method.
Since the sparsity pattern of the K matrix is fully exploited,
the proposed method has linear complexity in computing the
eigenfunctions by LU factorization. Fig. 16 shows the time
costs of the three parts of the proposed method for varying n
T-junctions. All the computational costs of three steps increase
linearly with the size of the interconnect tree, which means the
proposed method scales well for large interconnect trees.
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Algorithm 2: Bisection Algorithm to Decide the fyy,¢
Based on Solution (19)

Input: Interconnects T on P/G networks and Korhonen’s equations with
ICs and BCs for these interconnect trees.
Output: Void nucleation time f;¢
Initialize the trial eigenvalue p to an arbitrary value Aq;
while N(u) < M do
n=2u;
end
Associate the N(u) to interval rg = ([0, ], 0, N(w));
Initialize the intervals to check as queue R = {rp};
while R # ( do
Pop the first interval r from R, i.e. r = pop(R);
Denote r = ([up, tel, N(up), N(iee)) where py, is the start point
and pe is the end point of interval r;
if N(up) > M then
Drop interval r. Continue;
else if N(iup) = N(ite) then
Drop interval r. Continue;
else if jio — ), < € then
for i = N(up):N(iee) do
Ai = (up + He) /25
end
Finish processing interval r. Continue;
else
Calculate N(y,) for middle point p,;, = (up + te)/2 of
interval r;
Append both interval r; = ([up, ml, N(up), N(im)) and
rr = ([tm» tel, N(m), N(e)) to queue R;
end
end

D. Analytical Solution-Based Bisection Algorithm for
Full-Chip Nucleation Time Determination

Since the proposed method avoids discretization either spa-
tially or temporally, it can skip the calculation of hydrostatic
stress on any location or at any time if this stress is irrelevant
to the EM failure. In contrast, FDM [12], as well as its accel-
erated version [15], have to calculate all stress distribution at
all time steps because discretized hydrostatic stresses on the
interconnect tree are coupled together.

Moreover, the proposed method provides the analytical
solution of the hydrostatic stress, although eigenvalues and
eigenfunctions have to be determined numerically. Therefore,
we can take advantage of the analytical solution to facili-
tate efficient algorithms. For example, the effective algorithms
proposed in [4] to find out the void nucleation time fy,¢, such
as the bisection method or Newton’s method, could still be
utilized with our method, but more accurate since transient
hydrostatic stress is provided instead of steady-state stress.

Here, we propose a bisection algorithm (Algorithm 2) based
on our semi-analytical solution to decide ty,c for P/G networks.
Thanks to the proposed closed-form solution (19) of the tran-
sient hydrostatic stress, we could determine the void nucleation
time fpy for power/ground networks using this equation solv-
ing technique instead of checking in a step-by-step manner.
Note that the eigenvalues 2,, eigenfunctions y,(x), and
coefficients C,, have to be calculated beforehand to use the
solution (19). Since ICs and BCs remain unchanged in the
void nucleation phase, it needs to calculate these parameters
only once to obtain #,c, which is time efficient.

Table II shows the experimental results of the void nucleation
time for full-chip IBMPG benchmarks. Both algorithms are
implemented in C++ and tested on a Linux server with 2 x 16
core 3.3-GHz CPU and 128-GB memory. Note the FDM-
based algorithm has to check fy,c in a step-by-step manner

TABLE II
RUNTIME COMPARISON OF THE PROPOSED ALGORITHM 2 AND FDM TO
CALCULATE VOID NUCLEATION TIME

Power Grid Void Nuc(leation Time Runtime (sec)
y1s)

Name #Trees 1;;2; FDM Proposed FDM | Proposed
IBMPG2 462 192 0.56 0.56 196 82
IBMPG3 8189 965 422 4.20 2191 754
IBMPG4 9641 571 2.88 2.78 1676 581
IBMPG5 1982 281 1.62 1.60 1800 558
IBMPG6 | 10246 968 6.91 6.96 7054 2081

while the eigenfunction-based algorithm utilizes bisection. The
experimental results show that the eigenfunction-based bisection
algorithm is about three (2.96) times faster than FDM on average.
In Table II, “#Trees” is the number of interconnect trees and
“max #seg” is the maximum branch number of interconnect
trees. Although the number of interconnect trees is large in these
benchmarks, the size of the interconnect tree (i.e., the number
of branches) is relatively small. This makes the speedup in
this experiment is not as significant as those shown in Table I.
Nevertheless, the benefits of the proposed analytical solution
are still demonstrated by the experiment results.

VII. CONCLUSION

In this article, an accurate transient analysis method is
proposed for the hydrostatic stress evolution on general 2-D
multibranch interconnect trees to facilitate fast full-chip EM
assessment. The proposed method is based on the technique
of eigenfunction and could solve Korhonen’s equation for
multibranch interconnect trees stressed with different current
densities and nonuniformly distributed thermal effects. The
proposed method can also accommodate the pre-existing resid-
ual stresses coming from thermal or other stress sources. The
proposed method is consistent with the previous analytical
solutions for a single wire and 1-D multisegment wires. The
transient hydrostatic stress evolution could be calculated accu-
rately by the proposed method so that the void nucleation
could be simulated precisely. Our numerical results show that
the proposed method is 10X-100X faster than the finite dif-
ference method and scales better for larger interconnect trees.
The benefits of the analytical solution also make the proposed
method more friendly to EM optimization than numerical
methods.

In future work, the proposed method would be extended to
accommodate the time-varying current densities and thermal
effect. In addition, more irregular shapes and impacts due to
lithography can be a topic for future investigation.
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