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Abstract

Structural variants compose the majority of human genetic variation, but are dif-
ficult to assess using current genomic sequencing technologies. Optical mapping
technologies, which measure the size of chromosomal fragments between labeled
markers, offer an alternative approach. As these technologies mature towards be-
coming clinical tools, there is a need to develop an approach for determining the
optimal strategy for sampling biological material in order to detect a variant at
some threshold. Here we develop an optimization approach using a simple, yet
realistic, model of the genomic mapping process using a hyper-geometric distri-
bution and probabilistic concentration inequalities. Our approach is both compu-
tationally and analytically tractable and includes a novel approach to getting tail
bounds of hyper-geometric distribution. We show that if a genomic mapping tech-
nology can sample most of the chromosomal fragments within a sample, compar-
atively little biological material is needed to detect a variant at high confidence.

1 Introduction

Structural variants (SV), insertions, deletions, trans-locations, copy number variants, are by far the
most common types of human genetic variation (Chaisson et al., 2015). They have been linked
to large number of heritable disorders (Hurles et al., 2008). Technology to assay the presence or
absence of these variants has steadily improved in ease and resolution (Huddleston and Eichler,
2016; Audano et al., 2019). Whole genome shotgun DNA sequencing (WGS) can detect small
variants (less than 10bp) readily and can detect some classes of large SV. This approach, however,
is inferential and often struggles to capture copy number variation in gene families or to correctly
estimate the size of insertions. An alternative approach, genomic mapping (such as the technology of
BioNano Genomics), addresses the deficiencies of WGS by providing linkage and size information
from ordered fragments of chromosomes spanning tens to hundreds of kilobases. In contrast to
WGS, genomic mapping approaches directly observe SV, rather than inferring the existence of a SV
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Table 1: Nonrandom Quantities
Notation Definition
Number of cells in the first urn (copies of each type of long sequences).
Number of sequences sampled from the first urn.
Number of sequences sampled from third urn.
Approximated length of long sequence.
Approximated length of short sequence.
Threshold on detectability of target sequences.
Length of fragment of interest.
Approximated ratio between lengths of long and short sequences.
Minimum number of target sequences we want in the detection machine.
Minimum confidence in achieving the goal.
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from patterns of mismatch in WGS data. In the near future, these genome mapping technologies are
expected to be used for clinical diagnosis of SV known to be associated with genetic disorders.

In a clinical setting, the cells or tissues needed for analysis may be hard to obtain, which poses
several important statistical questions: what is the minimum amount of starting material necessary
to have some confidence of detecting a target fragment? What is the optimal sampling strategy for
the primary and derived material throughout the process? How best to model the technical errors—
such as failure to digest at a site—during the processing of the data as these errors can lead to false
positives and negatives? As is often the case, answering these questions motivated an exploration
and expansion of the statistical machinery used to model this biological process. Specifically, we
established a relationship between the tail bounds of the binomial and hyper-geometric distributions.

2 Statistical Model

In this section, we abstract our sampling procedure into an “urn sampling” model. As DNA is
processed through the optical mapping procedure, we imagine the material passing through a series
of urns. Assume we have 46 different types of long sequences (i.e. chromosomes), each type has
n copies (i.e. n cells), so we have 46n long sequences in total. We assume only one type of long
sequences contains the target sequence, or the fragment of interest. The basic idea of our sampling
model is shown in Figure 1. The notations introduced below are summarized in Table 1.

The first urn contains our original biological material, total of 46n long sequences out of which n
of them contain the target sequence. At the first stage, we sample K sequences without replacement
from the first urn, and put them in the second urn. The second urn will therefore contain a random
number X of target sequences. All of the K long sequences in second urn are cut at random locations
according to a Poisson process and placed into the third urn. The third urn will therefore contain
a random number of U sequences out of which W are target sequences. The content of the third

Figure 1: Urn demonstration of sampling procedure

Sample K out of 46n Cut the sequences Sample R out of U
Detection
machine
46n long sequences K long sequences U short sequences R short sequences

Three urn demonstration of the algorithm. The first urn contains raw biological materials. The
second urn contains materials sampled from the first urn. The third urn contains materials from the
second urn that are cut into shorter segments. Content of the third urn is sampled and assayed in the
detection machine.



Table 2: Random Quantities and Their Expectations

Notation Distribution Expectation
X H(46n, n, K) %
Ui P Oi(c) i«
" Zile Ber(q:(U;)) W
Y |UW H(U,W,R) ;

urn models the biological material prepared for assay in a detection machine. Finally, we sample R
smaller sequences without replacement out of the third urn and put them into a detection machine.
There will be a random number Y of target sequences processed by the detection machine, and the
goal is to assure that for some pre-specified values (Q and p, we have the probability of Y > Q) is
at least p. Throughout the experiment, the variables (n, K, R) are in our control and we will find
the conditions on them to achieve our goal. Throughout this paper, we call the long sequence in the
second urn which contains the fragment of interest as “target sequence”.

Next we state the following biological assumptions:

1. The length of target sequence is f.

2. The lengths of long sequences in the first urn are approximately L, here L > max(f,T).
3. Short sequences in the third urn have lengths approximately /, and we have ¢ ~ %
We proceed by describing the probabilistic parts of our model. The distributions and their expecta-
tions are summarized in Table 2. There are X target sequences in the second urn. It is straightfor-
ward to see X ~ H(46n,n, K), a hyper-geometric distribution with 46n samples and n samples of

interest and K as sampling size. Hence E[X] = ££.

LetU; (v = 1, 2, .., K) denotes the number of cuts on ¢-th long sequence in the second urn. Combine
with the third assumption above, we assume that U; follows a Poisson distribution with mean c.
Note that U; cuts divide the sequence into (U; + 1) shorter sub-sequences. Consequently, U =

Zfil (U; + 1) is the total number of short sequences in the third urn, and (U — K) follows Poisson
distribution with mean cK.

Write W as the number of the sequences in the third urn that contain the target sequence. The
distribution of W is more complicated than that of X. Assuming X > 0, we have at least 1

target sequence contained in the second urn. We have W = Zfil B;, where fix X, {B;}:X, are

independent Bernoulli random variables. Condition on {U;}£ |, the probability of success g; of
random variable B; satisfies

> 2(tits)Yi — (tats)Vi if T > f,
q:(U; { (D

= tg otherwise,
respectively. Here ¢ = %, to = %Tfﬂc, t3 =1— % The proof is found in Section 4.1.

Finally, condition on U and W, the number of target sequences in the detection machine Y follows
a hyper-geometric distribution with parameters U, W and R.

2.1 Analytical Results

In this section, we present the analytical results of our statistical modeling. Mathematically, our goal
can be written as

P(Y > Q) > p, for pre-specified Q) and p. )
Now we consider the quantity R;,.,, such that with pre-fixed quantities py, U and W
P(YZQ|U7VV3R2Rlow)zp0 (3)

Note here Y|U, W ~ H(U, W, R). We will find R),,, as a function of U, W, p, from a concentration
inequality on hyper-geometric distribution.



In section 4.2, we developed the relationship between the tail bounds of binomial distribution and
that of hyper-geometric distribution. Specifically, consider the following random variables with
parameters A, B, C"

1. h~ H(A, B, C), a hyper-geometric distributed random variable.
2. B, ~ Bin(C, &) and B, ~ Bin(A - C, ).
We proved that under some regularity conditions, the following relations are true

(Ba < ), “)
(By < B —ux), 4)

The conditions needed and detailed proof are presented in section 4.2.

In section 3, the numerical calculations implied that for large C, (5) is a better bound, otherwise we
may want to use (4). From the relationship above we immediately know a tail bound on binomial
distribution can also be used as the tail bound for hyper-geometric distribution.

Throughout this paper, we assume the conditions needed for (4) and (5) are always met. Therefore
we may use large deviation bounds from Arratia and Gordon (1989) at the following two binomial
distributions: Bin(R, ) and Bin(U — R, ¥7) to find Ry in (3).

From now on we write Rjo = Riow (U, W, pg). Note that U and W are typically unknown. There-
fore, Ry, itself is still a random quantlty and we need to further find a upper bound for R;,,,

dependmg on n and K, this is denoted by Riow. With large probability, sampling Riow sequences
in the third urn is enough to guarantee sampling no less than R,,,, samples.

It is fairly straightforward to see R;,,, increases with W and decreases with U. Now we fix () and py,
and write U,,;, and W,,, as the probabilistic upper/lower bounds for U and W, respectively. From

(4) and (5) we can find R;,,, directly from tail bounds on Bin(R, %) and Bin(U,, — R, %)

In particular, the steps needed to determine Rigy fora given K and n are summarized here:

1. Use lemma 2 on binomial distributions Bin(K, 55) and Bin(46n — K, =) to find lower
bound X;,,, of X. Here X;,,, depends only on n, K and p; so that: P(X > X)) > p1.

2. Set X := Xj,,, from step 1. Note that W is the summation of X;,,, independent Bernoulli
trials. Hence from lemma 2 we can find lower bound W;,,, of W depending only on n,
K, L, f, T, ¢, p1,p2 so that P(W > Wi,y | X > Xjow) = p2. Consequently P(W >
VVlow) > pip2-

3. Use inequality from lemma 1 to find U,;, and Uj,,, depending only on c, K, ps so that:
P(U > Ujow) > p3 and P(U < Uyp) > ps.

4. Use lemma 2 on binomial distributions Bin(R, Vgl—u":) and Bin(Uy,, — R, Wlw) to find
Rlou) so that:

P(Rlow Z Rlow) Z P(U S UupaW Z VVlow)
ZP(USUup)+P(WZMOw)_1
=ps +pip2 — L.

Note that we need to ensure the needed sample size R is not larger than the available number of
short sequences U. To this end, both ]%low and Uj,,, are deterministic functions of given constants
and we can add numerical constraint on Rlow to force it smaller than Uj,,,. A key observation from
our numerical result is, as K gets larger, U, and Uj,,, will be more concentrated around the mean
cK + K, while R;,,, will be much smaller than U;,,,. Therefore, we need to find a lower bound
Konin on K to ensure Ujpy, > Rlow.



Finally, given that we choose K and Riow as our sampling sizes at two stages, respectively. The
following relations are true:

P(YZQ) ZP(YZQaRZRlowaUzR)
Z Po - P(Rlow > Rlow; U Z Rlow)

> Po - [P(Rlow > Rlow) + P(U > leow) -1

> po(2p3 + p1p2 — 2). (6)

It suffices to set the desired probability p equal to the right-hand-side of (6). The exact selection of
{p:i}?_, can be found in Section 4.3. As discussed in section 4.3, the range of K is [K i, 45n],
while not every K in this range is feasible, a straightforward monotone analysis shows that as long
as K is larger than a certain threshold, the solution Rlow always exists.

2.2 Optimal Sampling Strategy

In this section, we discuss how to use the formulas derived in section 2.1 to find the optimal values of
n and K for any given p and Q. Specifically, assume there is a user-specified cost function f(n, K)
over number of samples n and the sampling size from first urn. In this paper we assume f(-, ) is an
monotone increasing function of both n and K.

The proposed procedure is summarized here:

1. Solve for {p;}3_, such that p = po(2ps + p1p2 — 2).

2. For fixed n, we calculate K,,,;,.

3. For any fixed n and K such that K > K,,;,, we calculate Rzow.
4. Return: (n, K, Rlow)-

The implementation details are discussed in section 4. In reality the amount of biological materials
is limited, hence there is an upper bound on n and there are only finite number of (n, K Rlow) to
consider. We do not need to consider any R > Riow as that would lead to sub-optimal design.
However, for fixed n, we do need to consider K > K,,;,, because larger K might lead to smaller
Rlow and a more efficient solution.

Assume we have a cost function C' (K, R) that increases with K and R. We only have finitely many
(n, K, Rjou) to consider and a brute force search among all the possible triples will yield the optimal
(n, K, Ry ) minimizing the cost function.

Due to technology limits, we may have certain constraints on sampling percentages: for example,
we can only sample 80% in the first stage, and 50% from the second stage. We can still use the brute
force search only considering the cases that do satisfy these extra constraints.

3 Numerical Results and Conclusions

For our numerical results, the calculations were based on biologically reasonable parameters: L =
250000000, f = 50000, T" = 75000, ¢ = 60, p = 0.95, @ = 20.

In Figure 2, we plot our original calculation results from Algorithm 1 together with the results
without using any concentration inequalities (we get the tail points by the inverse of cumulative
distribution functions, which is applicable for relatively small n); both of them have the similar
patterns. From original calculation results we can find two “kinks” for each fixed n. This is because
when K is small, we will need to sample almost everything from the second stage, which will force

us to choose the correspond Bin(U,, — R, Vg’::) for Y as the binomial bounds. Then as K gets

larger but not big enough, we will use Bin(R, VE%‘;“) for both stages. Finally K will get close to

Wio
Uup

45n which again forces to use Bin(U,, — R, ) at the first sampling stage.

In Figure 3 we plot the simulation results together with population expectation results. Here the
simulation means of each n and fixed K we create large amount of X, W and U. Then for each



Figure 2: Results on approximation
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Figure 3: Results on simulation
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Plot of simulation results and population expectation results, here n ranges from 100 to 600.



Table 3: Minimization of Cost Function

Constraint 1  Constraint 2 n K R % Ufw
100% 50% 100 4048 123696 97.71% 49.86%
80% 20% 300 9868 120365 T71.51% 19.93%
50% 100% 500 2168 131001 9.43%  98.41%
50% 50% 500 4918 150542 21.38% 49.96%
20% 80% 600 2968 144549 10.75%  79.4%

simulation trial, we use a brute force search to find the smallest R that can gives us (2). Note
this simulation is an “averaging” approach while our algorithm is more like a tolerance interval
approach, thus they are not comparable and we put them into two separate figures. The population
expectation results means we replace W and U directly by their expectations, and again brute force
search for the smallest R. From Figure 3 we can see as K gets larger, these two results will be very
close, which implies for large K, we can approximately use expectations of U and W to conduct
the calculation.

Table 3, provides examples the minimization results based on a linear cost function. C'(K, R) =
aK + bR under various constraints. In particular we use ¢ = 60, b = 1 and various sampling
percentage constraints on both sampling stages.

We have also applied our algorithm to other choices of (). The lessons learned are similar to what
we have shown here. In the supporting materials we provide the Matlab code that can be used to
calculate optimal sampling strategy with different parameters.

In conclusion, we have developed an optimization approach for estimating the amount of material
needed for genomic mapping based on a simple, yet realistic, model of the process that uses a
novel result regarding the tail bounds of the hyper-geometric distribution. Our approach is both
computationally and analytically tractable and We show that if a genomic mapping technology can
sample most of the chromosomal fragments within a sample, comparatively little biological material
is needed to detect a variant at high confidence.

4 Appendix

4.1 Proof of Equation (1)

Proof. There are X copies of the target fragments in the second urn. Some of the fragments of
interest might not survive during the cutting process, therefore we have W < X. Define {4;}:*
as the event that the i-th target fragment survives (i.e. being intact after cutting procedure) and is
placed in the third urn. Given that we have U; cuts on the i-th target sequence, the locations of these
U; cuts are then uniformly distributed, therefore p(A;) = (1 — f/L)Y:.

Next, in order for the target fragment to be usable by the detector, it has to be longer than 7. If T <
f, the sequences that contain the target fragment are always longer than 7, then ¢;(U;) = p(4;).
Otherwise we estimate ¢; from a lower bound using the probability of an event A; U F;, where E;
is the event of not having cuts within 7" — f on either one or the other side of the target sequence

(see Figure 4). Recall that t; = %, ty = L7L27Tf+f, t3=1— % Then by inclusion and exclusion

p(E; | A))=2(t1)V" — (t2)Y and consequently
¢i(Ui) = p(Ai)p(E; | Ai) = 2(tats)"" — (tats)"".

Figure 4: Demonstration of cutting
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DNA sequence with target fragment. The f zone and at least one of the A zones should have no cuts
to provide a valid target sequence.
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4.2 Hyper-geometric Distribution and Binomial Bounds

In this section, we discuss the relationship between the tail bounds of binomial distribution and that
of hyper-geometric distribution.

For fixed positive integer x, consider the following two inequalities

P(H =) < P(By = ), @)
P(H=2z) < P(By =B —1x), (8)
The above two inequalities can be simplified as:
(5-5)
< rt(l-neTe ©)
(5)
and o
(Q:) S TB—:D(]_ _ T)A—B—C-‘y—x’ (10)

(3)
respectively. Note that if (7) is true for all ' < x¢, then (4) is true for x = x¢, similarly for (8).
Now we discuss the following properties for (9) and (10).
Property 1. For fixed B, A, Cy, and x < Bgo, if (9) and (10) are true for C' = CY, then they are
also true for any C' such that Cy < C' < A — B.

A-Cy
Proof. We use mathematical induction on C. Given that (B;’) < r%(1 — r)% =% Now for

(2)

(o) c (
C = Cy+1, we want % < r®(1—r)%+1=2 Ttsuffices to have

B

e
® =@ U

which only requires x < %. Similarly we can prove this property for (9). O

Property 2. For fixed B, A and C'. If (9) and (10) are true for some fixed z = k < BTP, then they
are also true for any x such that z < k.

Proof of Property 2 is almost the same as that of Property 1, hence we omit it here.
Property 3. Assume the following inequalities are true for some constants A, and Bjoy,
BC 3 2 3 34
A B-29)  (3-29) (3-2)C
x>5, ®(Ay) >0, (B—Q)C>B(2Q+1), A>3B+CG(Byw) >0,

where g = g—‘é and
D(A) =(C—1)log(A) + (C —z)log(A—B—1)—Clog(A—1)— (C —x —1)log(A — B)
+log(A—C)—log(A—B—C+ux),
G(B)=(x—1)log(B+1)+ (C —x)log(A—B—-1)—xlogB — (C —x —1)log(A — B)
+log(l1+ B —x) —log(A— B—C+ux).

Then for fixed B, x and C, if (9) is true for A = A,,), it is also true for A < A,,p; for fixed A, x
and C, if (9) is true for B = By, then it is also true for B > Bjoy,.

A-C
Proof. Again we use (backward) mathematical induction on A. Given ("E;)”) <r*(1—7r)°" We
B

A—1-C
need ((ﬁg>) < (527)*(1 — 5E5)9 7. It suffices to show
(Agi;c) B x B C—x A x B z—C (g:i)
(“z") (5)

the inequality above is equivalent to ®(A) > 0. Take first order derivative of ®(A) with respect to

A we have:
B(A4) = C Cc-1 1 C—-—z-1 C—x 1

A1 A "A-¢ A-B "A-B-1 A-B-C+z




If ®'(A) < 0for A < A,,, the result is proved by using the monotonicity of ®(A) and the assump-
tion that ®(A,,) > 0. Now we will prove ®'(A) < 0. It suffices to show:
— B3C? + B3C — B*C® + B*C*z — B’Cx + B°C — BC® + BC®z + BC* — BCx
+ A(3B*C? — 3B*C + 2BC? — 2BC?z + 2BCx — 2BC + C%*x — Cz?) (11)
+ A%(=3BC? + 3BC — C?%z + C2? — 2Cx + 2% + z) + A3(2Cx — 2* —2) < 0.
The fist line of (11) is obviously negative by noting the following facts
B%2C?%z < B%C®, B?C < B%*Cz, B3C < B3C? BC?:+ BC?< BC?+ BCxz.
For the rest lines, we use the following relations:

Az? + Az + AC2? < 3AB?*C + 2BCQm, C?z+2BCzx < 2ACx, -z < 0,
where the last inequality follows by assumption 24 > 2B + C. For the rest parts, we want 22.A2% +
3AB +2BC? + 3B?C < 3ABC. 1t suffices to show

3A

(8 -29)A23B+20+ .,

which is equivalent to

3 2 3 34
A> B+ C+ =,
(3—29) (3 —2g) (3-9g) C

this follows directly from the assumptions. Thus the first part of Property 3 is proved.

( A-C

Now we prove the second part. From mathematical reduction on B, we want %*)1) <( %)x(l_

B+1
%)C_x. It suffices to have
(5115) «Btleg Btlio. Any Bec (5-5)
(Bil) oA A B A B

which is equivalent to G(B) > 0. Similarly as before, we want this function increases with B >
By, from which we only need to check G(Bjo,) > 0 and this follows from our assumption.
Consider the first order derivative of G(B):

G'(B) = 1 +C’—1‘—1_ C—x +x—1_£+ 1 '
1+B-x A—-B A-B-1 1+4B B A-B-C+z
Then G'(B) < 0 requires

- B3C —-1)(C —2z) + B*C*(x —2) — BC(x — 1) + BC*(z — 1) = 3Bz + B(z — 1)z
— BO(x — 1)z + B*x* + B2 C(2 + 22 — 2°) + A*(1 — x)z

+ A% [(z— 1)z +3B(z — )z + C(z — D)z + (1 — z)2?]

+ A(=3B*(z — 1)z — C(x — 1)z — 2BC(x — 1)z + 2B(z — 1)*z + (z — 1)2?) < 0.

(12)
We can expand the first line of (12) and write it as:

— B3C? + B*(22 +1)C — 22B® + B*C*r — 2B*C? — BCz + BC + BC?x — BC? — 3Bz
+ Bz? — Bx — BC2? + BCx + B?2?,
we want to show the above line is non-positive. Note that
—BCxz+BC <0, BC?:—-2B?C?<0, —BC?<0
—Br<0, —-3B%x+Bz?><0, —BCz?>+ BCx<0, B?t?>-2:B3<0.
Finally we only need —B3C? + B3(2z + 1)C + B?C?x < 0, which follows from our assumption:
(B—=xz)C > B(2x+1).
From x > 5 we immediately get: 2 + 2z — 22 < 0, hence B2C(2 + 2z — %) < 0. For the second
and third terms at the second line of (12) we show:
Al —z)z+ (x — D2z +3B(x — D2z +C(z — Dz + (1 —x)z* <0,
it suffices to have A — 3B — C' > 0, which is our assumption. It is fairly straightforward to prove
the last line of (12) is non-negative, hence we omit it here. O



Property 4. Assume the following inequalities are true for constants Ay, and Bjoq,
®(Ayp) >0, Azx > B+ax+ 2Bz, G(Bjw) >0,
where
P(A)=(A—B—-CH+axz—1)log(A—1—-—B)+ (A—C)log(A) — (A—C —1)log(A—1)
—(A—B—-C+x)log(A— B) +1log(A — B) —log(A),
G(B)=(B—x)log(B+1)+(A—B—-C—-1+42x)log(A—1—-B)— (B —xz)log(B)
—(A-B-C+xz—1)log(A— B).
Then for fixed B, x and C, if (10) is true for A = Ay, it is also true for A < Ay, for fixed A, x
and C, if (10) is true for B = By, then it is also true for B > Bjgy,.

Proof. Same as before we use (backward) mathematical induction on A. For A = A, we want:
‘gg_)l < (S) ( B )B—z(A —1- B)A—B—C—&-m—l,rz—B(l _ r)—A+B+C—m
(‘5 T () A1 A-1
which is equivalent to ®(A,,;,) > 0. Similarly as the proof of Property 3, it suffices to show
:C+1—A+A—C—1+A—B—C+x—1_A—B—C+x—1 A(A-B-1) <0
A-1 A A—-B-1 A-B (A-1)(A-B) = 7
forany A < A, that satisfies the assumptions. It suffices to have B + B?+BC+B*C+A(—B—

2BC — z) + A%z < 0, this only needs B + 1 < A, which is obviously true according to our
assumptions. Similarly for the second part we need for B = B!

)

d'(A) + log

c c

(‘L) < Q(B + l)BJrlfx(A —1- B)AfoCJra:flra:fB(l o T)fAJrBJrsz
A — (A A A ’

(B+1) (B)

and it suffices to have G(B) > 0 for any B > By, that satisfies the assumptions. Again we prove

the monotonicity of G(B):

 ~B-C+A+z—1 -B-Ct+Ata—

1
"(B —log(—B+A—1)+1log(A—B
G'(B) 1B “B1A_1 og(—B + ) + log( )
B—x B-=x
— —— —log(B) +log(B+1) >
St g~ los(B) +log(B+1) >0,

it suffices to show B + B2 + BC + B2C — BA — Az — 2BAx + A%z > 0, which can be proved
by using our assumption Ax > B + x 4+ 2Bxz. Thus the second part is proved. O

4.3 Implementation Details
In this section we discuss the implementation details of optimal sampling strategy in section 2.
The following quantities should be specified/calculated beforehand:

1. Specify the values of L, f, T, p, @, n, ¢ according to the particular application.

2. Select pg = /p, 3p3 — 2 = /p and p1 = p2 := ,/p3 so that the right-hand-side of (6)
becomes p.

3. Compute: t; = %, ty = Lf_T;rf, t3 = 1 — % and set Q1 = 26”1’387?6"2’3, v =

Q1 — Q?. Here @ and v are the expected value and variance of Bernoulli Ber(q;(U;))
random variable.

Also we write h(-, -) as the relative entropy function defined in Arratia and Gordon (1989).

4.3.1 Calculating lower bound on K

We need to find the lower bound K,,;, of K such that with large probability we have at least )
target sequences in the third urn. Equivalently, we want R > (. To this end, we assume the
cutting process in urn 2 does not break any target sequences and we take everything out from urn
3. Therefore, we only need to make sure X is larger than ) with high probability. In section 3, we
solved both (4) and (5) to get different lower bounds for K, similarly with different lower bounds
on K we will have different lower bounds for downstream quantities like X, U etc.
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4.3.2 Calculating lower bound on R

Algorithm 1 can be used to calculate Rlou) with pre-fixed n and K. Please note that we use tail
bounds of binomial distribution to approximate that of hyper-geometric distribution in step 1, 2 and
step 4. Here step 1 and 2 only requires property 1 and 2 in section 4.2, while for step 4 we also
need property 3 and 4, because we need the relations in (4) and (5) to be true with W > W,,,, and
U < U,y as well. For each fixed n, the range of K is relatively small, thus for each input n we
can simply try all the possible K and calculate the corresponding smallest R (use R;,,, to denote it)
that achieves our goal. To make our algorithm more efficient, we can first find the smallest K that
can give us a lower tail that is larger than @) (any smaller & will not be feasible, see our supporting
codes for details), call this K,,;,. For each K from K,,;, to 45n, we use Algorithm 1 to find R;,,,.

Algorithm 1 Computing Riow from fixed n and K

1: Apply lemma2to B, ~ Bin(K, 1) and B, ~ Bin(46n—K, ;-). Solve the following system:

t 1 1
—log(1 —p1) = Kh(3z +1— =, 1— 2

)
and set X0, = 456 — t. Similarly we can solve for X;uq,. Set Xjo = max(Xjow, , Xiows )-

2: Now fix X to be X;,,. Solve the following system

—log(1 — p2) = Xiowh( +1-0Q1,1-Q1),

Xlow

and set W = Q1 * X0 — t.

3: Calculate the p3 lower and upper bounds for U from lemma 1.

4: Apply lemma 2 to B, ~ Bin(R, %==) and By ~ Bin(Uyy, — R, =), and solve for Riou,
from the following system ' ’

TWlow/Uup —t= Qv

t Wo'w WO’LU
—509(1—2?0):”1(14'1— L

Uup Uup

),

5: Set Ry = r and output (n, K, Rlow).

4.4 Lemmas

To make this paper self-contained, we list the lemmas used in our calculation in this section. Detailed
proof can be found in relevant references.
Lemma 1. (Bounds on Poisson distribution. See Short (2013)) For U defined in section 2 and
p € (0,1), we have

o~'(p)®

U§CK+K+@_1(p)\/cK+T7 (13)

U>cK+ K —+/—2cKlIn(1 — p), (14)
all with probability at least p.

Lemma 2. (Large deviation bound on binomial distribution. See Arratia and Gordon (1989)) Let
X =3"" X, here {X;}™ are i.i.d. Bernoulli trials with probability of success equal to p. Assume
p < a < 1 for constant a. Use h to denote the relative entropy (defined in Arratia and Gordon
(1989)) between a and p. Then

P[X > am] < e ™.

This bound is relatively tighter than Chernoff bounds with small p.
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