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ABSTRACT. We study interior LP-regularity theory, also known as Calderon-Zygmund
theory, of the equation

oghi= [ ata) MIZIED =D iy — 1.0, e e o).
We prove that for s € (0,1), t € [s,2s], p € [2,00), K an elliptic, symmetric, and K(-,y)
is uniformly Hélder continuous, the solution u belongs to Hfosc_t’p(Q) aslong as 2s—t < 1
’ *

and f € (Héb” (Q))

The increase in differentiability and integrability is independent of the Holder coefficient
of K. For example, in the event that f € L, , we can deduce that the solution u € H-5 P
for any ¢ € (0, s] as long as 2s — § < 1. This regularity result is different from its classical
analogue for divergence-form equations div(KVu) = f where a C7-Holder continuous
coefficient K only allows solutions in H'*7. In fact, the regularity estimates we prove
are another manifestation of the differential stability effects of nonlocal equations of the
above that are observed by many authors — only that in our case we do not get a “small”
differentiability improvement, but all the way up to min{2s — ¢, 1}.

The proof argues by comparison with the (much simpler) equation

25—t

T p(2)dz = (g,p), Ve CFR").

(L) = | K(2,2)(=A)%u(z) (=A)

diag ™" -
and showing that as long as K is Holder continuous and s,t¢,2s —t € (0,1) then the

t .
“commutator” Lu — L, oU behaves like a lower order operator.
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1. INTRODUCTION AND STATEMENT OF MAIN RESULTS

In this article, we develop the Calderon-Zygmund theory for a popular nonlocal equation

(1.1) qu=f,
where 2 C R™ is an open set, s € (0, 1), and the operator £, is formally given by
u(z) — u(y)
p =PV | 2K ————="y.
Qu($) /Q ($7y) |x_y|n+28 Y

The “coefficient of £§,” is K : R" xR™ — R, and it is assumed to be measurable, symmetric,
and bounded. Moreover we assume K to be bounded from below on the diagonal by a
positive number, inf, K(z,z) > 0, which corresponds to ellipticity.

In the event that K = 1 and 2 = R", the operator L, corresponds to the well-known
fractional Laplacian operator (—A)®.

The main objective of this paper is to address the question of regularity of such a solution
u relative to the data f.

Before we state our main theorem, Theorem [I.2] we need some definitions. We say that K
satisfies a uniform Holder continuity assumption if there exists « € (0,1), A > 0 such that

(1.2) sup |[K(z,y) — K(z,2)] < Az —y|% for 2,y € R™.
z€R™

For given positive numbers A\, A and « € (0,1), define the class of elliptic coefficients
1
K(a,\,A) = {K c K(x,y) = K(y,x), i%f K(z,z) > N\ || K|z~ < Xand satisfies l) :
xeR"™

We also need to introduce relevant differential operators as well as function spaces. Let F
denote the Fourier transform. For s > 0 the fractional Laplacian (—A)2 is defined as the
operator that for f in the Schwartz class acts as multiplier with symbol ¢|{]®

(13) F((=A)20)(©) = ele FF(©).

The Riesz potential I* = (—A)73 is the inverse of the fractional Laplacian, i.e. the
multiplier operator with symbol (c|£[*)7!,

(1.4 F(IA)E) = 1 1 FF©).
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This operator makes sense (for f a function in the Schwartz class) if 0 < s < n, because
|€|7* is then locally integrable. In the definitions the constant ¢ depends on n and s and
plays no deeper role in the theory that we consider.

Next we will introduce two types of fractional Sobolev spaces that we need to state the
main result: Bessel potential spaces H®P and Besov spaces W*P. For 1 < p < oo, the
Bessel potential spaces H*P(R™) are defined as follows: f € H®P(R") if f € LP(R™) and
(—A)zf € LP(R"). The associated norm is

1 N zm@ny = [ logeny + (= D)% fllLogen.

The Besov spaces W*P(Q), for s € (0,1), are induced by the semi-norm (called Sobolev-
Slobodeckij or Gagliardo norm)

“““”m::(l;Qligiilﬁﬁfdxﬁoi,

o =yl

and ||+ lwer) = || | Lo + [-lwer() serves as a norm. For p = 2, W*?(R") = H**(R"), for
p < 2 we have W*?(R") C H*P(R") and for p > 2 we have H*P(R") C W*P?(R"). These
spaces are particular examples of the more general Triebel-Lizorkin spaces and Fpsp(]R”) =
W=P(R") and F;,(R") = H*P(R"), see [33].

For u € W*%(Q), we define the map L§, by
. o= [ [ o UL IO )=o),

|z =yl

for any ¢ € W#2(Q). Tt is not difficult to show that if K € L®(Q x ), then for any
u € W2(Q), Liu € (WH2(Q))*.

We now define precisely what we mean by a solution to our equation of interest, (L.1).

Definition 1.1. Let s € (0,1) and ¢ € [s,2s). Suppose that fi, fo € L*(R"). We say
u € W*%(Q) is a distributional solution of

2s

(1.6) Su=(=A)"T fi+fo inQ
for some ; C Q if for any ¢ € C°(€), it holds that

(Lu, p) = ﬁFAfywm+/LmMm
Rn

n

If ©2 is bounded or 2 = R", the notion of solution introduced in Definition [1.1] coincides
with the classical notion of weak solution. Moreover, for {2 = R™ and for any bounded open
subset Oy, given fi, fo € L*(R™), a solution to exists with additional assumption on
u. For example, a minimizer of the energy

g(u) = %<£E§”u7u> — . fl (—A) QSgtud‘Z’ — . f2 udx
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over {u € H**(R") : w =0 on R"\ Q} exists and is a solution to (1.6 in the sense of
Definition [I.1]

We also notice that (1.6)) is often thought as the nonlocal (fractional) analogue of the weak
formulation of the elliptic differential equation

(1.7) div(A(-)Vau) = divh + g.

The question of regularity of weak solutions u to in relation to the regularity of data
(the coefficient A, the right-hand sides h and g) is decades old. One line of regularity theory
is the Calderon-Zygmund regularity theory where higher integrability of the gradient Vu
of the solution w is sought in relation to higher integrability of A and g. The now well-
known W1P-theory proves that for a possibly rough coefficient A(z) but with small mean
oscillation, for any 1 < p < oo, if h € L} and g is, say, smooth, then Vu € Lj (R")
[24]. Another line of regularity focuses on the differentiability of Vu and this is intimately
related to the smoothness of the coefficient A(z) in . In fact, the W?2P-theory states
that if A is Lipschitz continuous, and g € L7 (R™), say h is smooth, then the weak solution

loc

u of (1.7) is twice differentiable and D*u € L} | [20, Theorem 9.11]E|

loc?

The main objective of this paper is to prove regularity results of the above type for distri-
butional solutions u of nonlocal equations such as . Although the conditions we put
are different, the spirit of the results is similar in the sense that we are looking for higher
differentiability in the fractional Sobolev scale and higher integrability of the solution u as
a function of data f; and f5 in ([1.6). The following theorem states the main result of the

paper.

Theorem 1.2. Let s € (0,1) and s < t < min{2s,1}. If for 2 < q < o0, fi1,f2 €
LYQ) N LA (R™), and u € W**(Q) is a distributional solution of

25—t
(Lou, p) = fil=A)"2pdz+ | fapdr Ve e CX(),
R7 R”
for some 21 C ) in the sense of Definition with L, corresponding to K € K(a, A\, A)
for some given o € (0,1) and X\, A > 0, then for any W*?-extension @ of u to R™ we have

(=A)2a € LY (Q) and for any ' CC Q, we have

loc

2
[(=A)2 | pagy < C (\IUwam) + > I fill o) + HfiHm(Rn)) -
i=1
The constant C' depends only on s, t, q, a, X\, A, Q, and .

We used the notation A CC B when A and B are open and the closure of A is a compact
subset of B. In this work we focus on the case ¢ > 2, t > s. This corresponds to the natural
setting of variational solutions (which by construction already belong to W*?2). We believe

!Observe that the statement of [20, Theorem 9.11] is in non-divergence form with bounded order co-
efficients. To transform a divergence form equation to an nondivergence form equation with bounded
coeflicients, the original coefficients should be Lipschitz.
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it requires only minor conceptional changes to treat very weak solutions which a priori lie
in W54 for suitable 5 < s or ¢ < 2 — but adapting the already technical argument to very
weak solutions would even further blur the conceptional elegance and simplicity of our
approach. We will, therefore, postpone that to a future work.

Let us highlight some corollaries of Theorem that might appear in applications. For
the proofs we refer to Section [7}

Corollary 1.3. Let s € (0,1) and s < t < min{l,2s}). If for ¢ > 2, f € L),
u € W*2(Q) is a distributional solution of

( ?zum):/gfwdx, Vi € C°(92),

with Lfy corresponding to K € K(a, A\, A) for some given a € (0,1) and A\, A > 0. Then for
any W*2-extension @ of u to R", (=A)za € L% (), and for any ' CC Q we have

loc
. N
[(=2)2@ oy < C (1 fllza) + ll@flwe2@n) -
In particular, if v =t — 4 >0 then u € C ().

Corollary 1.4. Let s € (0,1) and s < t < min{l,2s}. For any open set Q@ C R",
2 < q < oo the following holds.

If f € (H*759(Q))* and u € W**(Q) is a distributional solution of
(Lau, ) = (f,9) Ve e CZ(Q)
in the sense of Deﬁmtion with Lf, corresponding to K € K(a, A\, \) for some given « €
(0,1) and A\, A > 0. Then for any W*2-extension @ of u to R" we have (—A)za € LL (Q)
and for any Q) CC Q we have
I(=8)¥il oy < € (lullw2() + 1l grevr oy )

The constant C' depends only s, t, q, a, A\, A, Q, and Q.

We can also change the metric in Corollary via a diffeomorphism (a setup suggested
by M. Fall in [16])

Corollary 1.5. Let s € (0,1) and p > 2. Let Q,Qy CC R™ be two open sets and ¢ : 2 —
Oy a CY-diffeomorphism for some « > 0 with strictly positive Jacobian det(D®) > 0.
Assume that f € (H*757(Q))* and u € W*2(Q) is a distributional solution of

(u(z) — u®)(e(@) — oY) _ N
/Q/Q 1B (2) — By =(f,¢) Vp e Ox(Q),

Then the conclusions of Corollary[1.4] still hold true.
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Corollary 1.6. Let s € (0,1) andp > 2. Let Q@ CC R" be a smoothly bounded set, and let
0 CC Q be open. Assume that u € WS’2(Q) satisﬁes

) o / [ Ui = S el = o) o,

|$ _ |n+25

for any ¢ € C°(Qy), where L, corresponds to K € K(a, A\, A) for some given o € (0,1)
and N\, A > 0. Then if for s < to < min{2s,1}, f € WtOP(Q) then for any s < t < tg,
Wt’p(Q), and for any 0y C  we have the estimate

loc
[U]th(ﬂl) <C ([f]wtoyp(g) + [U]Wsﬂ(ﬂ)) + HUHLQ(Q)

We observe that Corollary is to some extent an analogue of the local W?P-theory for
divergence-form equations such as . However, there is one major difference: while the
higher fractional differentiability of solutions for local equations of the form (1.7)) is closely
related to the smoothness of the coefficient A, for nonlocal equations of the form (1.6)) it
is only loosely related to the smoothness of the coefficient K.

Namely, for local equations, if div(AVu) € LP and A € C?, then u € W;? for any
s<l4+aand 2—5— % > —%. That is, the increase in differentiability of the solution
depends on the relative smoothness of the coefficient, the a-Hdélder continuity of A. This is,
however, not so much an effect that highlights the differences of “nonlocal vs local”, but it
is rather a structural feature of the nonlocal equation as in Definition [I.1] More precisely,
denote by V® := VI~ the Riesz- fractional gradient and by div, := div /'™ the Riesz-
fractional divergence, [42], [37, 43| 40]. Consider the nonlocal equation div,(AV*u) =
f € LP. The improvement in differentiability of a solution u heavily depends on the
differentiability of A — indeed there is a one-to-one correspondence relationship between
solutions for equations of type div(AVu) and div,(AV,u), cf. [4I]. Compare also the
discussion after Theorem L7

In the case of solutions to the nonlocal equation as in Definition [I.1] the increase on
differentiability of u is independent of the measure of Holder continuity of the coefficient
K. In other words, as long as K is Holder continuous of any order av € (0, 1), the solution
can be proved to be differentiable up to the order of min{1, 2s}.

This presents one of the distinctions of our work from that of the regularity result obtained
in [1()] (which considers L?-regularity). In [10], the almost optimal regularity of solution

1)) corresponding to f; = 0, and fy € L? _(R") is obtained under the assumption that
K € CS(R” x R™). Using this smoothness assumption on K, which allows the application
of the “difference quotient” method of proving higher differentiability, in [I0] the solution
w is shown to belong to H> ¢ 2(R”) for any € > 0.

loc

For right-hand sides in L? we get similar differentiability results to [10], but at most up to
differential order 1. However, we merely assume K to be C*-Holder continuous for some
a > 0 possibly much smaller than s, and K only needs to be be positive on the diagonal.
An example for a kernel that belongs to K(a, A, A) but does not fit the framework given
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in [10] is K (z,y) = % + 10%(sinz + sin y)% Observe that for small A > 0,

K could be negative off the diagonal {x = y}.

Optimal local elliptic regularity theory for weak solutions to the Dirichlet problem asso-
ciated with the fractional Laplacian is also investigated in [3] by extending the nonlocal
equation to be posed in R" via a careful cutoff analysis and using optimal regularity esti-
mates for nonlocal equations posed in the whole space. Similar results are also obtained
in [23, 22] by methods from pseudodifferential theory for equations that involve fractional
Laplacian or its pseudodifferential generalizations which corresponds to K that is transla-
tion invariant and C°.

Let us also mention the recent work [30], where nonlocal equations of the type are
studied for translation invariant coefficients, K(x,y) = K(x — y). In this work, without
imposing any smoothness assumption on K (x — y), and using a real-analytic perturbation
argument pioneered in [§] and expanded in [7] to obtain W!P-estimates, it was shown that

if fi € L) (R™), and f> € Ll’;z”’ (R™), then any weak solution u to (1.6]) is in H,)?(R™). This
result in [30] concerns only the higher integrability of (—A)2u, whereas, in comparison, our
work presents results on both higher differentiability and higher integrability of (—A)2u
for solutions of nonlocal equations corresponding to coefficients that are not necessarily

translation invariant. Cf. also [31].

We should also mention that for “strong solutions” of nonlocal equations of the type (L5, +
vZ)u = f corresponding to translation invariant coefficients, K(x,y) = K(z—y), and vy > 0
the optimal regularity theory of f € LP(R") = u € H*?(R™) is obtained in [15]. Similar
to the previous paper discussed, the result in [I5] requires no smoothness assumption on
K (x —y) and relies on a priori mean-oscillation estimates and maximal function theorem.

Other types of improved regularity results have also been observed for weak solution of

nonlocal equations of type with coefficients K (z,y) that are just measurable, elliptic

and bounded from above. What is called a self-improvement property of such solutions,

which was first obtained in [25] via a generalized Gehring lemma, states that for f; € H***
2n

and fo € L** a weak solution v € H*?(R") is in fact in W *?*°(R"). While the
improvement in integrability of the solutions is expected, the incremental improvement
in differentiability without requiring any smoothness assumption on the coefficient K is
unique to nonlocal equations of this type. Intuitively, one can see why such improvement

can be possible. In fact, that for any s1,s9 € (0,1) with s; + s5 = 2s we have

1 L
(Lonu, o) <||K| '“ Jut@) = w@)P ) LOIEAY
R™ % SO Lo N N |n+51p Yy n n |l’ — |n+52P Y

That is, there is a possibility that one can distribute derivatives freely on test functions or
the solution. This is clearly false for the local case unless s; = so = 1.

/ A(@)0at Oap L 1Al o l[ull ov 191l g2 -
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The self-improving property of nonlocal equations have also been demonstrated via other
approaches: via functional analytic approach in [I] and via comparison and commutator
estimates in [38]. This kind of J-differential flexibility of nonlocal equations has also been
observed and crucially used in the regularity theory of geometric equations [36], 4]. For non-
translation invariant kernels K (x,y), under a different Holder continuity assumption, Fall
proved in [I6] Schauder estimates. There he also observed that the gain Holder regularity
below the differential order 1 is independent of the Hdélder regularity of the kernel and
starts to depend on the Holder continuity of the kernel for differential orders above 1. We
will treat the question of differentiability above 1 in the Sobolev-space context in a future
work [17].

Although the setup of the equation is different, Brasco-Lindgren [5, [6] have obtained a
higher regularity results for solutions of the fractional p-Laplacian. They developed a
discrete differentiation scheme that was successfully used to obtain a higher differentiation
result which essentially says if the right hand side is differentiable then the solution will have
improved differentiability as well. The equation they studied, the fractional p-Laplacian,

amounts to having the kernel K(x,y) = % in our setting, and the regularity
of this kernel improves as the solution improves in regularity, which is a situation quite

different from ours.

Finally, we comment on our strategy of proving Theorem Our argument relies on
comparing the leading order operator in (1.1)), £3. with that of the simpler operator L;;ta p
defined as

(1.9) (Liiagts0) = | K(2,2)(=A)2u(z) (=A)7% o(2) dz,

R”
for all ¢ € C°(R") and s <t < 1. To facilitate comparison of the operators, let us define
the difference function

DS,t(ua 90) = <£I?£"u7 90> - F<L2;izgu7 §0>

Here T' is the constant (depending on s, ¢, and n) such that D, (u, ) = 0 for all u and ¢
admissible whenever the coefficient K is a constant map. In this sense, Ds;(u, ) can be
seen as a commutator [[T, K]u¢ which is the main intuition in what follows. Indeed we
obtain in Theorem a quantitative estimate for D, that shows that in the case of Holder
continuous K, the commutator is of lower order. Intuitively, the operator D ;(u, ) gives
us the mechanism to ’transfer derivatives’ to K which along the way reduces the number
of derivatives on u and ¢. The commutator estimate we state in Theorem is similar
in spirit to the Coifman-Rochberg-Weiss commutator [T, K|(f) where T is a Calderon-
Zygmund operator. If K is Holder continuous of order «, then [T, K](f) can be estimated
by a Riesz potential I7f of f (i.e. a fractional antiderivative) — this is exactly what we
obtain for our commutator D;; in Theorem . While such a quantitative estimate is
almost obvious for the Coifman-Rochberg-Weiss commutator it is already involved for our
situation. Observe, however that a consequence of the famous work [9] Coifman, Rochberg,
Weiss is that the operator f — [T, K](f) is a compact operator for K in VMO, [45]. This
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suggests that with some work there could be a version of our theorem for K in VMO (in
a suitable sense yet to be defined).

Let us remark that after the completion of this work, Simon Nowak [32] obtained some
higher differentiability and integrability under merely VMO-assumptions on the kernel K —
for ¢ € [s,ty) where ty depends on s and p, and in general is strictly smaller that min{2s, 1}.

Once we identify Dy (u, ¢) as a lower-order operator, we can essentially read the regularity
theory for the operator in Theorem from the regularity theory of equations of the type

(1.10) (Liigtis ©) = /9@0 Vo € C°(RY),

which is relatively easy to handle. Notice that ((1.10) is a distributional formulation of the
s—t

elliptic equation (—A)*z" (K (z,z)(—=A)zu) = g. Thus, formally, (T.10) is equivalent to

(—A)su(z) = ———I%"g(x),

and thus one expects the estimate

1

A2l ey < e
I(=A)ull L) < inf, K(z,z)

17257 g o e

In particular, if g € L?(R") for some ¢ € (1,00) with p := ;=745 € (1,00), then by
Sobolev embedding [*~'g € LP(R"); that is, if u solves (1.10) and g € L%(R"), then
u € HJP(R™) which is the optimal regularity result we expect.

loc

The precise argument is based on a duality argument and a bit tedious, but in the end we
obtain the following result in Section [4]

[SIES

Theorem 1.7. Let s € (0,1) and t € (0,2s). Assume that for some q € (1,00), (—A)
LIY(R™) is a distributional solution to

u €

25—t

w(=A) T o= A(A)T o+ | e VoeCT(Q).
Rn Rn

SIS

K(z)(-4)

R

Here K : R" — R is a positive, measurable, and bounded from above and below, i.e.
AM'<K(()<A ae xcR™

Then for any € CC Q CC R™, p € (1,00), if fi, fo € LY(R™) N LP(RQ), then (—A)2u €
LP(Q) with

t t
[(=A)z2ull oy S [ fille@) + L f2lle@) + [ fillLany + [[(=2) 2wl Lagen).
Let us remark that Theorem [I.7] holds with minor modifications for s > 1, for simplicity

we restrict it to the realm we are working in. It might seem surprising at first that in
Theorem there is no assumption on the kernel being continuous or belonging to VMO
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— and still we are able to obtain LP-estimates for any p > 1 if the right-hand side of the
equation is good enough. For classical divergence form equations,

(1.11) div(KVu) = f

if K is only bounded measurable, the best one can hope for is an W?**-type estimate (if
f is nice enough) — this is known as a Meyers-type estimate, [28, 29]. To emphasize the
role the type of equation we are studying plays on the regularity result, the reason that we
get a (seemingly) better result in Theorem is not because of the fractional order, but

rather of the fact that V and div are non-elliptic operators, while (—A)% is invertible.

An argument such as the one described before Theorem does not work for solutions
to , because we cannot invert the div-operator (and indeed for merely bounded
measurable kernels only Meyers’ 2 + e-estimate remains true). So in Theorem we make
crucial use of the fact that the equation involved is structurally substantially different from
(and for our purposes: simpler than) (1.11]) — even if s = 1.

As we discussed earlier, a more proper ‘nonlocal analogue’ of the equation (1.11)) (in the
sense that it has generally comparable regularity properties as (1.11))) is

(1.12) divy, [KV'u] = f

where we recall that V! denotes the Riesz-fractional gradient VI~ and dive,_, = div 1257,
Indeed, if K is merely bounded, measurable then for solutions to only Meyers-type
estimates are known, |2, Section 9]; and one needs K in VMO to conclude LP-estimates,
[40]. See also [42, [43].

Let us remark on previous arguments that inspired this work: for regularity theory via an
harmonic analysis approach in the local case with an elliptic matrix A, g instead of the
scalar A see [24]. This was applied to nonlocal equations different from in [40]. Com-
mutator operator similar to Dy, have also been proved to be very useful in the harmonic
analysis of harmonic-type maps between manifolds [36] and nonlocal equations arising in
topological calculus of variations, [4].

The remainder of this work is as follows: in Section [3]we prove the commutator estimate for
Dy,. This essentially reduces the desired Calderon-Zygmund theory to that of the theory of
a weighted fractional Laplacian which we treat in Section [4] where the proof of Theorem
Since we only obtain local estimates, we will repeatedly employ cutoff arguments that are
obtained in Section [f] In Section [6] the proof of the main result Theorem is presented.
And finally, the corollaries of Theorem [I.2] are proved Section [7}

2. PRELIMINARIES AND NOTATION

Some notation and convention we will use throughout the paper. Domains of integrals are
always open sets. We use the symbol CC to say compactly contained, e.g. €; CC 2y if
) is compact and Q; C €.
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Constants change from line to line, and generally depend on the dimension. We will
make frequent use of <, 2 and =, which denotes inequalities with multiplicative constants
(depending on non-essential data). For example we say A < B if for some constant C' > 0
we have A < CB.

We work with fractional Laplacians, Sobolev spaces, and related operators. Below we in-
troduce the notation but refer the interested reader to surveys, e.g. [14],[19], or monographs
[34]. We will use many techniques from harmonic analysis, such as Sobolev inequalities,
embeddings etc. — these are all well-known in the abstract framework of Triebel-Lizorkin or
Besov-space theory — see e.g. in [2I]. Generally we like to refer to [33] for the identification
of Triebel-Lizorkin and Besov-spaces with the “usual” function spaces. While we try to
make as little as possible use of such abstract arguments sometimes they are unavoidable.

For s € (0,2) the fractional Laplacian (—A)z, defined in (I.3)) via Fourier transform, has
a useful integral representation. Namely, for a function f in the Schwartz class

(~A)if(z)=c Lﬂy)

where the integral is defined in the principal value sense, although we do not explicitly
state it. For the Riesz potential defined in (1.4)), for s € (0,n), we have the representation

s fw)
() i) = P —c [
e |7 —y["e
for a function f in the Schwartz class. The constants ¢ are different in each definition, they
only play an analytic role when considering stability s — 1%, s — 27 or s — 0*. Below
we will choose it to be ¢ = 2.

dy,
R" |l'— y

dy

For functions f and g in the Schwartz class, the L?-inner product of (—A)2 f(z) and g(z)
can be represented as, for s € (0, 2),

|z — y|"ts

see e.g. [35], Proposition 2.36.] or [I4]. We also use the Leibniz’s rule for fractional Lapla-
cian frequently: for u,v € W*2(R"™), one can easily show using the integral formulation of
the fractional Laplacian that

(uv) = u(—A)3v + v(—A)iu— /

for almost all x € R™. See e.g. [3, Proposition 1.5|, [I1, Appendix A], [I2]. Fractional
Laplacians and gradients are related via Riesz transforms and Riesz potentials. The Riesz
transform, R = (R4,...,R,) := VI, has the Fourier symbol cié—|, and a potential repre-
sentation

(u(x) — uly))(v(z) - v(y))dy

|z =yl

Nlo

(2:2) (=4)

=y

Rf(x) = /R B p) gy,

n o —yln
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Riesz transforms are most prominent examples of Calderon-Zygmund operators and are
LP-bounded. That is, for 1 < p < oo, there exists a constant C' = C'(n,p) > 0 such that

IRflle < C|flle, forall fe LP.

The now classical LP-regularity theory for linear second-order PDEs is called Calderon-
Zygmund theory because it (secretly or explicitly) relies on estimates of Calderon-Zygmund-
operators (in most of the cases: the Riesz transforms).

We will frequently use Sobolev inequalities for Riesz potential.

Proposition 2.1 (Sobolev inequalities). Suppose that s € (0,n) and p € (1,00). Then,

(a) if sp < n, then there exists a constant C = C(s,p,n) > 0 such that

(23) 171, 2, o < Cllgllivganyfor any g € LP(RY)
In addition, if Q@ C R™ is bounded, then corresponding to any q € [1, nﬁ’;p], there is

a constant C' = C(s,p,n, ) > 0 such that
(2.4) 19|y < CllgllLr@ny  for any g € LP(R™).

(b) If sp > n and Q C R" is bounded domain, then for any q € [1,00), and r € [1,2),
there exists a constant C'= C(s,p,n,Q) > 0 such that

(2.5) 19l o) < C (gl o@ny + 9]l Lr@ny) -

Proof. The proof of (2.3]) can be found in [44]. (2.4)) follows easily from (£2.3). As for ([2.5]),
observe that for any ¢ € (1,00) there exists some 6 € (r,2) such that % > g. Observe

n—s6
that # < p so that we have the interpolation inequality

9lle@ny S llglle@n) + 119l r@ry
By (2.4) we have
||159||LQ(Q) S ||g||L9(R") S ||g||LP(R") + ||g||LT(R")-
O

We also need the following characterization of the dual space of the function spaces H*P(R")
and H*P(R™). The homogeneous space H*?(R") is the set of tempered distributions u such
that (—A)*2u € LP(R"), with the semi-norm [|(—A)*/%ul|1».

By definition, T' € (H*?(R™))", the dual space of H*P(R™), if T is linear on ¢ € C>°(R")
and

TTell < A (llellzon + 1(=2)2@llo@n) Vo € CZ(R™).
The operator norm of T, ||T||, is defined to be the infimum of all such A. Similarly,
T e (H”’(R")) , if T is linear on ¢ € C°(R™) and

Tlell < All(=2) 2@l r@ey Vo € CZ(R).
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Proposition 2.2. (Dual Spaces)
(1) If T € (H**(R™))", then there exists g1, g, € L (R"),

911l 2o @y + 92l o ey = I T]]
such that

T[¥] :/gl(—A)Swdx—i-/gggodx Vo € C(R™).
(2) If T € <H57P(R”))*, then there exists g € LY (R"),

9ll ey = I
such that
Tly] = / o(=A)ipdr Vi e CE(RY).

Proof. Let T € (H*P(R™))". Denoting (£) := /1 + |£|2, using the equivalence of the norms
(cf. |44, Chapter V§3])
1 1lzogeny + 1(=2)% fllny and  (|F (€ F ()l on

we have

T()] < ITINIF () F(@))llze,  for all g € C(R™).
We then introduce the linear function 7 : L?(R") — R defined by
T(v) = T(FH({) " F(v))).
Then from the estimate for 7', we have that |T'(v)| < ||T||||v||z» for all v € LP(R™). By the
characterization of the dual of L? spaces we have uy € L” (R") such that

T(v) = /n uo(z)v(z)dz, for all v e LP(R™).

Define now g = F~'({€)*F(up)). Then g € H*"(R") and for any ¢ € S, the Schwartz
space, we have by applying Plancherel’s theorem repeatedly that

(9:0) = (F(&)* F(uo)), F'(Fep)) = ({€)"F (un), Fp)
= (Fluo), (€)°(F¢))
= (uo, FH((6)*(F)) = T(F (&) (Fp))) = T(y)

We next characterize g further. Using [44, Lemma 2 of Chapter 5, §3|, that describes the
relationship between Riesz and Bessel potentials, there exists a pair of finite measures v
and A; so that

9 =F " ((&)"F(uo)) = vs % ug + F (| F (s * uo))
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Define g, = v, * 4y and g, = A, * uo. Then both g, and g, are in L” (R™). Moreover, by
applying Plancherel’s theorem again

T(p) = (g.0) = {91, 0) + (F €[ F(g2)), ) = {91, 0) + (92, F (| F(9)))

as desired.

As for the second part, observe that since H%¢(R") ~ F75(R") we have that (H*9(R™))* ~
F_5(R™) (|18, Remark 5.14]). Since I° is an isomorphism from F_5(R") to F) , = L,
see [33, §2.6, Proposition 2, p. 95|, we find that for any (H*?(R"))* there must be g €
Lq/(Rn> with “g“Lq'(R") ~ ||T||(HS#1(]R”))* such that (—=A)2glp] = T[e], that is T[p] =
Jan(=D)2g 0. 0
Let us also mention two technical results that we will employ frequently. They fall under

the notion of “cutoff argument”, and the techniques are mainly based on estimating nonlocal
quantities for functions with disjoint support.

Lemma 2.3. Let )y CC Qy CC R, and u,v € H**(R™) with u = v in Qy, s € [0,1).

Then for any p € (1,00) we have
(=) 2ull oy S [1(=4)70

|zo(0) + ||tl| Lo @) + [[0]| o @e).-

Proof. Let n € C2°(£22) with n = 1 in a neighborhood of ;.

We have
u=nv+(1—-nu.
Then
Xoy (—A)Fu = xo, (=A) (o) + xa, ((4)7(1 - n)u),
and by the usual disjoint support argument

O O LB N e
By Young’s inequality for convolutions we ConcludeN
e (=A)5(1 = n)u) = S [lull o).
And thus in particular,
Ixay ((=2)%(1 = n)u) oo < llullogen)-

Now we use commutator notation [T, m|(f) = T (mf) — mTf,

s

(=A)2 () = n(=A)2v + [(=4)%, n](v).
Since s € (0,1) we can use the Coifman-McIntosh-Meyer commutator estimate, e.g. in

the formulation in [26, Theorem 6.1.] or the Leibniz rule, |26, Theorem 7.1.], and conclude
that

(=22, 7 ()o@ < Mnluip [1ollogen.
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This concludes the proof. O

Proposition 2.4. Suppose that n1,m2 € CP(R™), and ne = 1 in the neighborhood of the
support of my. Suppose that p € (1,00), 7 € (0,2) and

r>

S1ifr<1 andr>—2 S 1ifr>1
n+71p n+p

Then we have the following estimates which holds for any ¥ € C°(R™) with suppy C {x :
m(z) =1}

(a) There exists a constant C' > 0 such that

(2.6) 11 = 12)(=2)% (1 = ) I™) | gy < ClY N ot oy
(b) For any bounded set ¥ CC R", there exists a constant C = C(X) such that
(2.7) I(=2)% (1 =) ") [l (sy < CIOI Lt geny-

In either case the constant C' may depend on r,T,p,n, and on ny, 02, X, but not on 1.

Proof. We prove part (b) first. Fix a large ball B CC R" that compactly contains 3.
Since (—A)z [Tt = 1), it follows from Leibniz’s rule for fractional Laplacian, (2.2)), that for
r € R",

(—A)F (1 — ) T79) (2)
—[(=A)E (1 — )] (@) + (1 —m) (x) + /
—_——

=0

(m(z) —m) ") — I"Y(y))

n |z — y|™ T

Y

since the support of 1 —n; and ¢ do not intersect. The right-hand side can be rewritten as

(—A)E (1= )7 (2)
= (A () + e /

(m(x) —m()ITP(x) — 1Y (y)) dy

B |z — y|tT
+C/ (m(z) —m(y)I(x) — I"Y(y)) dy
R™\ B |z — y|m T '

We will estimate each term in the right-hand side. We begin with the first one. To that
end, since 1, € C2(R™), (=A)2n; € L¥(R"™). Moreover, in view of Proposition , for
any 1 <r < 12

n—1p’
(2.8) ||IT¢HLT’(E) N ||¢HLP’(R")'
Notice also that since we assumed =~ - > 1, we have n > 7p’. Thus we have

(=) I sy S 1M oy

For the second term, we use, see e.g. [39, Proposition 6.6.], that for any o < 1,

u(z) —u)] < |z = y|* (M(=2)2u(z) + M(=A)%u(y)),
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where M denotes the Hardy-Littlewood maximal function. Then, applying this inequality
for w = I71, by the Lipschitz continuity of 7, for any x € ¥ (observe that also B is
bounded) for any a € (0, min{r, 1}) with 1 + a — 7 > 0, we get

/ (m(x) —m@y) (@) — I (y))

|z — y|" T

dy

5 C/B ‘x o y‘1+a777n (MIT*O[w(JI) _i_MITfaw(y)) dy
SC (MIT () + 1T (MITY) (2)),

where C' depends only on |9 ||Lip, @, 25, t, diam (B), and diam (X). If 7 <1, 1+a—7>0

is equivalent to o > 0. In that case, whenever 1 <r’ < =& ,p, we can choose a above so that

r < #ga)p" If 7 > 1, we need to choose a > 7—1 > 0, so whenever 1 <r’ < n”Tp;, we can

find an « satisfying this condition so that 1 <r’ < #ﬁ/a)p,. Now to estimate the L" norm
(@) -m @) U@ 17y

of the map = — [, P w) dy we estimate the norms of M™% (z) and

o= (MIT~*y) (z) separately. To that end, using maximal function theorem first and
then Proposition [2.1 we have

IMI G gy S IMITG g SN0y
Ln—(—a)p’ (%) L - (R

n—(T—a)p

| S 191 2o ey -
Also, using Proposition [2.1] first and then maximal function we have

HIHWT (MIT*&T?) HLT’(E) N HMIT?awHLP’(]R") N ”IT?o{wHLP'(Rn) S HT/}HLPL(RH)

n+(Tnfa)p’)
191 ot @ny S Nl gny-  In summary, we have shown

where p/, = < p'. Finally notice that since 1 is compactly supported, we have

err [ QDD I,

< U

L' ()

It remains to estimate for x € X,

/ (m(z) = m(y) TP(x) = I"P(y))
Rn\ B

|z — y| T

dy

5/ I"[Y](z) + [I7[¥](y) dy
R\ B 1+ [y

S 1) + (17|91 Loe mm\5) -

The first term we have already estimated, (2.8). For the second term, observe that by the
integral representation of I” and the support of 1, we have

TVl e @z S 191l @ny S 191 1o emy-
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Thus, for any 1 </ < -2

n—rp’’

o [ 00DV - Io0)
R\ B

|z — y|mtT

dy

Sl e gy
L (Rn)

This concludes the proof of part (b).
Next we prove part (a). As before, we split as
(=2)% (L= m)I")
—(~AE(L—m)) I+ (1 _mWJrC/ (m() =m)IY() = I"Y(y)) dy

|- —y[tT

n

=0
Observe that by the disjoint support of ¢ and 1 — 1y,

I =) I Y|z S Il or@my S 101 ey

Moreover, (—A)2(1 —n;) = (=A)2n; € L' N L®(R") since 7, € C°(R"). Consequently,
for any 7’ € [1, o0,

1L =7m2) (=A)2 (L =m)) TPl o gy S NN 1 oy

On the other hand, for x € supp (1 — 72) and y € supp () we have n;(z) = 0 and
|z —y| 2 1+ |z|. Thus,

(1 —m(2)) /n (771(-%) - 771<y))(17w(37) —I"Y(y))

‘.CL' _ y‘nJr‘r

dy

St - m)l (1@l [ rvmi)

- 1 _ ”
~1 |zt | m2(2)| [l @n)
< 1

1 [z 11l 2o ey

The right-hand side is now integrable for any " > 1, and ({2.6)) is established.

3. A COMMUTATOR ESTIMATE

As we described in the introduction, the crucial idea of this work is to compare the two
differential operators: L. defined by, for s € (0, 1),

(3.1) (L3, ) = / [ Kw) (ux) — uy) ((2) = oW) 4 0

|z — |+
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and Lfl’i’;g defined by, for ¢ € [s,2s), to the operator

25—t

u(z) (~A)7= p(2) dz,

ol

(3.2) (L

diag

up) = [ K(z2)(=4)

R
for u and ¢ in appropriate spaces. Observe that if K is constant, then the two operators
are the same up to a multiplicative constant. Indeed, for t € [s, 2s)

[ [ v ) = o f

|z =yl

25—t

(—A)qugpdx:C/ (—A)zu(—A)"z pda.

n

N+

n

The first equality follows from the characterization of the fractional Laplacian, (2.1)) and
Fubini’s theorem. The second “integration by parts” equality follows from the Fourier
transform characterization of fractional Laplacian, (1.3)) and Plancherel’s theorem.

In this section, we prove a fundamental estimate for D, ,(u, ¢), introduced as,
(33) Ds,t(ua 90) = <L2;tagu’ Q0> - F<£ISR"U“7 90>

that establishes the difference L5, — FLZ%tagU is a lower order differential operator when
K is bounded and uniformly Hoélder continuous. In (3.3)), I' is the universal constant that
ensures that D;,(u, ) = 0 whenever K is a constant kernel,

This allows us to obtain estimates for the operator in (3.1]) from estimates for the operator
(3.2)), for which corresponding estimates are relatively easy to obtain as we will see in
Section [l The main theorem of this section is the following.

Theorem 3.1. Let s € (0,1), t € (0,1) such that 2s —t € (0,1). Suppose also that « €
(0,1) and A > 0 are given. Then, there exist constants o9 € (0,a] and T' =T'(n,s,t) € R
such that the following holds. Let K = K(x,y) € C(a, A), where

Cla, A) ={K :R"xR" -5 R:|K(z,y)| <A, and (1.2)) is satisfied}
Then for all o € (0,00) and all € € (0, %) there exists a constant C = C(A, 0,¢) such that,

t—e 25—t

| Ds.1(u, ©)| SC/ 175[(=A) 7 ul(2) [(=8) 77 ¢l (x) de

n

and

t 2s—t—e¢

| Ds(u, )| < C/ 1775(=A)zul(x) [(=A) = ¢l (z) do

n

for alluw € H*?(R™) and any ¢ € C°(R™). The constant o € (0, a] depends on s and t in
the following way: for any 0 > 0, if

se(0,1-0), te(0,1-0), 25—t e (,1—0)

then oy can be chosen dependent only on 6 and o (but not further depending on s and t).

Observe that K(a, A, A) C C(a, max{A, %}), so Theorem is applicable in our situation.
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3.1. Some preliminary estimates. In this subsection we present some preliminary es-
timates that will be used in the proof of Theorem

First we observe that the exponent of the Holder continuity of K can be chosen to be very
small, namely

Lemma 3.2. Let 0 < a < B and A > 0 then there exists N’ > 0 such that whenever
K € C(B,A) then K € C(a, )

This is an easy exercise which we leave to the reader.
Secondly we recall a quite useful application of the fundamental theorem of calculus.

Lemma 3.3. For any r € R, there exists a constant C' = C(r) such that the following
holds. Let a,b € R"\{0} with |a — b| < min{|a|, |b|}. Then for any o € [0,1] we have

[la” = [bI"] < C'la = b]” min {a]"~, [o""} .

Proof. We may assume that r # 0 otherwise the inequality it trivial.

If |a — b| < min{lal, |b|}, then |a| =~ |b| (with a uniform constant), that is
min {|a]""7, 0]} ~ |a|""°.

Also for any o € [0, 1] we have

ja = bl < la—b|7|al"~".
Using the above inequality, to complete the proof it suffices to show that

llal” = [o"| < la— o] o]~

To that end, dividing by |b|", the above is equivalent to showing

al b a b
ol Tlell [~ {1el ol
Observe that since |a| ~ |b], there are uniform constants 0 < Ry < 1 < Ry < oo such that
both & and g are in A := Br,(0)\Bg, (0). So, the problem is now reduced to showing

b
o] |6
u|" = o] < C |lu—v] Vu,ve A.

Since A is an annulus, for any u, v € A there exists a curve v C A with v(0) = u, y(1) = v,
|| & |u — v| — with constants depending only on r; and 75 (and thus uniform). Set

n(t) == |y ()",
Then, the fundamental theorem of calculus implies

[lul® = o] < sup |7/ (#)] < YOy (O] < Ju—wvl.
te(0,1]

r

~Y

The following Lemma was essentially proven in [36, Proposition 6.3.].
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Lemma 3.4. Let m € (0,n), a € (0,1), and X\, A > 0 are given. Then for any 5 such that
a < f <min{m+ a,1}

and any K € C(a, A) we have

K (2,y) — K(2,2)] |lo —2["7" = |y = 2["7"| S le—y|” (Jx — 2[" TP 4 |y — zmFe7mm).

Proof. We first observe that we can estimate the difference |K(z,y) — K(z,2)| in three
different ways
|z — 2|+ |y — 2|
(3.4) [K(z,y) = K(z,2)| S § v =yl + |o — 2|
[z —y|* + |y — 2|

The first one can be obtained by adding and subtracting K (z, 2) :

|K(z,y) — K(z,2)| < [K(z,y) — K(z,2)| + |K(2,2) = K(2,2)| S |y — 2" + & — 2[*.
The second and third forms are obtained in similar ways as

|K(z,y) — K(z,2)| <[K(2,y) — K(z,2)| + |K(z,2) — K(z,2)| + | K (2, 2) — K(z, 2)]

Sl —y|* + 2z — 2|7,

and

K (2, y) — K(z,2)| <[K(z,y) = K(y,9)| + |[K(y,y) — K(y, 2)| + [K(y, 2) = K(2,2)]

Sl —yl* +2ly — 2[*,
The entire expression |K(z,y) — K(z,2)| ||z — 2™ — |y — 2| "| can now be estimated
by considering these three cases. To that end, first, if [z —y| < 3|z —z| or [z —y| < 3|y — 2|
then
v =z~ fy — =],
and thus by the mean value theorem, Lemma [3.3]
|z — 2" = |y — 2" 7| S o =yl o — 2"

So we take the first option in the estimate for K and have under our assumptions on
x,y,z (since f <1
K () = K2, )] [l = A" = by = 27| S fogllo—al ™" S Jamy P o—afrre i

Second, if |# —y| > 1|z — z| and |z — y| > 3|y — z| and |z — z| < |y — 2|, we have
|l = 27" = |y — 2" 7"| Sl — 27"
In this case we choose the second estimate for the estimate of K and obtain (since
g€ (a,m+ ),
K (2,y) = K(z,2)] [le = 2" =y = 2" 7" Sl —y|* o — 2" 7" + o — 2[*7"

Sl =yl |z — z|orm=om,
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Finally, if |x — y| > %]z — z| and |z — y| > 4|y — 2| but |z — 2| > |y — z|, we have by a
symmetric argument
K (2,y) = K(2,2)] [lo = 2" = |y — 2" 7" Sl =yl |y — 2|77
U
Lemma 3.5. Let \, A > 0 be given. Suppose also that s,t € (0,1) with 2s —t € (0,1) in
the following form: assume that for some 6 € (0,1),
(3.5) se€(0,1-0), te(0,1-6), 2s—tec(0,1—0).

Then there erists ag = () such that for any o € (0,a0), € € (0,%), and K € C(a, A)
the following holds. Fori,j = 1,2 set

M; (21, 2) = / / K (2, 9) — K (25, 2)| |85 (2, 9, 21, )| dr dy.

where

(|.T _ Zl’t—a—n _ |y _ let—a—n) (|I _ Z2|25—t—n _ |y _ 22|23—t—n)

fii(l‘,y, 21722> = ‘x_y‘n+2s ’

(’Z’ _ let—n _ ’y _ zllt—n) (|ZB _ ZQ‘Qs—t—s—n _ ’y _ 22|2s—t—e—n)

|z —y| e

ks (T, y, 21, 29) i=

Then for any f,g € C°(R™),

/ f(21) g(22) M (21, 20)dz1dze < C(A, 9)/ I°7¢| fl(x) |g|(x) dz, 4,5 =1, 2.
n JRn R

Proof. We prove the lemma by taking

.
(3.6) a0 = 15 min{6,1 — 6}.

To that end, assume that a < ap, ¢ < § from now on. We will only consider the case of
M7,; the estimate of the other M7 is analogous. To simplify notation we write £ := K{
and M® := My,.

We begin writing M€(z1, 22)

) <Y / / — K (22 )| (2.9, 2, )] v dy
o;N

7]1

Z J 2’172’2

,j=1
where the regions of integration are given by

O1=A{(z,y) : |z =yl S minflz — 21|, |y — 21[}}
Oy ={(z,y) : [z = 21| S min{ly — 2], [ — y[}}
Os = {(z,y) : ly — 1] S min{le — =z, [ — y[}}
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and
Pr={(z,y) : |z —y| S min{|z — 2o, [y — 2[}}
Po={(2,y) : |z — 22| S min{ly — 2|, |z — y[}}
Py ={(z,y) : ly — 22| S min{|z — 2, [z — y|}}

Then we have

/n - f(z1) g(z2) M (21, 20)dz1dzy = Z/ . f(21) g(22) I (21, 22)d 21 d 2.
i,j "R

We will estimate the integral that involves each of these terms.

J(1>1) (1>2)7 6(1’3) and J€(271):

€ 9 €

Estimating terms involving

We begin by noting that for (z,y) € Oy, from Lemma by taking r =t — e —n for €
small, for any 0 < o <1 and any (z,y)

Hi’? —a| T -y - Zl’hsf”‘ Sle—yl” (Jz =z "+ |y —z|7").

Moreiover; from Lemmaby taking m = 2s—t, a < ay, for any f < 2s—t+a < 1—% <1
and (z,y

K (2,y) — K(22,20)] (o — 277" = |y — 2|70
Ll e T ]
Combining the above two inequalities we obtain that for 0 < e < g, for any 8 < 25—t +a,
any o € [0,1] and any (z,y) € O,
|K($’ y) - K(227 2,’2)' |K€($, Y, 21, ZQ)l
(3.7) <z —y[ 2 (o — | ey — [0

X (’JI _ Z2‘2S—t+a—5—n 4 ‘y . Z2|2s—t+a—6—n)

Now for (x,y) € Oy NPy, (3.7) reduces to
K (z,y) — K(22, 22)| |52, y, 21, 22)| S |2 = yPFo727" | — o000 g — y|memon

after noting that in this case |x — z1| & |y — 21| and |z — 23| = |y — 25]. In view of ([3.5)) and
(3.6)), we can choose § slightly smaller than 2s — ¢t + o and o slightly smaller than ¢t — ¢
and still ensure 8+ 0 > 2s+a —e¢ > 20 > 0. For each z,

/ \:c _ y‘ﬁﬂrﬂsfn dy 5 |x _ zl\"*H% |:€ _ zz‘ﬁf2s+t7%
{le—y|<Smin{|e—z1|,|z—=22]}}

and therefore,

/ / K (2,y) — K (22 )| |52y, 21, 22) | d dy < / 2= 2|3 |z — 2[§ " da
O1NP;

n
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From this we conclude that

J[ 3091z fe) g(ealdndzn £ [ 15410 12 gl (0) da

n

= [ 1@ ol @) do

where the last “integration by parts™equality follows by an application of Plancherel’s
theorem.

For (z,y) € O1 N Pa, (3.7) reduces to
K (2,y) = K (2, 22)| [, y, 21, 22)| S |2 =yl T 777" o — 707070 o — o7

for our choice of f# < 1, 0 € (0,t —¢). In view of (3.5) and (3.6, in fact we choose
f:=2s—t+a/2>60>ato get the estimate that

K (z,y) — K (22, 2)| (2,9, 21, 22)| S |x — y|7 T2 o — 20|27 o — 250

If o is close enough to ¢ — ¢ and since € < /2, we can integrate
/ |z —y|7 T e — |2 p =TTy S o — |2 e — |
lz—y|<lo—z]

Arguing in the previous case, we obtain

[ 109z e gt § [ 1) Pl do

= [ U@ gl do
For (z,y) € O1NP; or (z,y) € O NPy and (3.7)) reduces to
K (2,y) — K (22, 20)| |[K(2,y, 21, 22)| S | = y|7F0725 7" |y — gm0y — 2y oo

As before we choose 8 := 2s — t + «/2 (which is greater than «) to obtain that when
(z,y) € 01N Py

/ o= g7y — 2ol F g T S Jy = 3y - a

|z—y|Sly—=21]

from which, we have

[ 19 me) sedad s [ M@ )@= [ 1)y

R2m R R™

For (z,y) € Oy NPy, we have

/ ’.% — y|o—t+a/2—n |y _ 22’%—71 ‘y o zl|t—a—a—ndx S ’Z/ . ZQ’U_H_a_n |y _ Z]_‘t_e_o._n
lz—y|Sly—22]

From this it follows that

/ / (21, 22) F(21)g () dadzy < / 1577 1) 177 g (y) diy,
R2n R"
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and integration by parts leads to the same estimate.

Estimating JE(Q’Z) :

On the one hand, for (z,y) € Oy NPy, we have (since |z — z2|* < |y — 22]%),
[K(2,y) = K(22,22)| S o = 22| + [y — 2[" S |y — 2|

On the other hand, |y — z;|™! < |z — 2|7 and |y — 25| ' < |x — 257!, and thus

|:E - Zl|t—s—n |$ N 22|23—t—n

|z — g+

’fs(‘rawale?) 5

This leads to
|K(z,y) — K(22, 2)| |ke(, y, 21, 20)]

Slx o Zl|t—s—n |:E . z2|2s—t—n |y . Z2|a |JJ . y|—23—n

Slx . Zl|t—s—n |:13 . 22|25—t—n |:13 . y|a—25—n’
where in the last step we used that |z — y| ~ |y — 2.

In view of (3.5)) and (3.6)), « — 2s < a — 20 < 0, and we observe that

/ o -y dy < /  — g2 dy
{y:(z,y)€02nP2} {y:|lz—y|Z2max{|z—z1|,|z—22|}}

< min {]:1: — zl\o"%, |z — 22\0"28}

§’$ . leg,t ’x o 22’%+t725.

As a consequence for each x
/ K (2,y) = K (22, 22)| |k (@, y, 21, 20)|dy S |w = 21 ]2 7" | — 202"
{y:(z,y)€02NP2}
That is, in this particular case
[ e eeada < [ 1@ 1) do
R2n Rn
= [ @) alt) do

Estimating 5(2’3) :

Since by (3.5)) and (3.6)) %<0—%«9<t—5, 3 <0 <2s—tande < g, we have for any
(x,y) € Oy N P; that

|K (2, y) — K (22, 2) ke (@, y, 21, 22)| Slo— 21" |y — 207" o — 20| |z — y| 77"

§|JI . Zl|%—n |y . 22|%—n |ZE . y|2$—t—%+t—e—%+a—2s—n

el — 2|5 |y — 2|8 T r —yl3TE"
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Thus in this case, we have that

[ 9 megadada s [ 1@ (1) () = [ 1771510 ol@)
R2n n B
where we use the semigroup property of the Riesz potential.

Estimating JEU

Here we get for any f < 1, f < 2s —t+ « (in view of (3.5)) and (3.6) o < 0 < 1—(2s—1)),
for any (z,y) € O3 NPy

K (2,y) = K (2, 22)| [K=(2,y, 21, 22)| Sly — 20| 777" o — 2| T2 777 g — 72

<ly — 21|37 |z — o] g — y|PHIE s 2
Taking f:=2s —t + %a the above inequality simplifies to
—E&—n

K (2,y) = K (22, 22)| [ (2,9, 21, 22)| Sly = 213 7" o — 237" — g5

Since € < g, integrating we find that

[ 0 mregtadnda £ [ BB @E e = [ 1@ gl d
R2n R R™

Estimating J,5(3’2) :

By (3.5) and ,%<0—1i00<t—5, and § < 0 < 2s —t. Thus, for (z,y) € O3 NP,

K (2,y) — K (22, 20)| |[Ke(,y, 21, 22)| Sy — 217757 |2 — 20>y — 2] — y| 257"

~ly — 2|7 o — BTy
Sly— 21|37 |2 — 2|5 o — y|a_23_”+t_5—2?a+2s—t
g nF o — ] — gl

As before, we can now estimate as

/ JO2) (21, 20) f(21)g () drdzs < / 157215 | f|(2) I3 gl (x) = / 1°7%| (&) g (&) e
R27 R

n

Finally we estimate JE(S’?’) :

For (z,y) € O3 NP3, we have that

|K (2, y) — K (22, 2)| |6(,y, 21, 22)| Sly — 21" |y — 2o/ 7 "2 — 2|z — y| 77"

%|y - Zl|t—€—n |y . z2|25—t—n |ZE . y|a—25—n
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Observe that from (3.5) and (3.6]), we have o < 20 < 25, § <0 <tand § <0 < 2s — 1.
Moreover, for any y

/ |l’ _ y|a—25—ndx 5/ |ZE _ y|a—2s—ndx
{z:(2,y)€OsNPs} {z:fe—y|Zmax{ly—z1],ly—22[}}

1|O¢—28’ |y _ 22|oc—25}
%—25+t‘

Smin {|y — 2
<ly —z1|> "y — 2|

Combining the previous two inequalities we have,
/ K (2, y) — K (22, 20)| ke (2,9, 21, 2) [ do S |y — 21277 |y — 20/ 27"
{:E (.’E y)EOgﬂPg}
This implies in this case

/ JE(33)(21,ZQ)f(zl)g(ZQ)dzldzgS,/ Igelfl(y)lglgl(y)dyz/ 175 f1(2) gl (=) doe
R2n R

This completes the proof of Lemma |3.5] 0

n

Lemma 3.6. Set for s € (0,1) and t € (0,2s) with 2s —t € (0,1),

(12 = 2"~y = a™") (o = 5" — Iy = z**)
|.CL' _ |n+25

Ko(,y, 21, 22) :=

then there exists a constant ¢ = c(s,t) such that

f( / / / f 2’1 22)/%'0@ Y, 21,22)d21 dzo dxdy
n n n Rn
holds for any f € LP(R™), p € (1,00) and g € C>(R") N LY (R™).

Proof. Assume first that f, g € C2°(R"™). Using the definitions of fractional Laplacian and
Riesz potential via Fourier transform we have

2s

[ t@ga) iz =c [ (COFIDE ) d:
In view of we thus find
fa) // (I'f(x) = I"fy)) (I**'g(x) = I*'g(y)) de dy.

Rn |z — y|nt2s

which holds for any f,g € C®°(R"). By density, it also holds for f € LP(RY) if e.g.
g € HY' (R™).

Recall that the Riesz potential is given by an explicit integral formula, and thus for almost
every x and y in R”

[tf(ﬂf) - [tf(y) = C/n (|21 - x’tfn — |21 — 3/|t7n) f(21) dz,
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and
IQS_tg(I) o I2s—tg(y) — O/ (|22 . les—t—n . |22 o y|25—t—n) 9(22> d22

Again these formulas hold at first for f,g € C°(R") but by density they still hold for
almost every x and y for our f and g. This proves the above formula. O

3.2. Proof of the commutator estimate. We are now ready to present the proof of the
commutator estimate given in Theorem [3.1]

Proof of Theorem[3.1. Assume first that u, € C°(R™). Fix, s € (0,1), and ¢t € (0,1)
such that 0 < 2s — ¢ < 1. Using the inverse relationship between the fractional Laplacian
and the Riesz potential, for every x € R", we have that

wz)=C [ |z — 2" (=A)2u(z) dz,
Rn
and

7 @(22) dzo.

o) =C [ fo—zfn(-a)
Plugging in these equations in (L%.u, ¢) and interchanging the integrals we obtain that

<£@u”»:i/nHWKX%y%U@)_Y@D;ﬂﬁg_w@»dx@’

_ﬁ/ //i K (@) (=8)2u(z1) (=A)F o(z2)ro(w,y, 21, 22) dzndzada dy
n n n JRn

where
(lw =2 =y —21|'"™) (Jz — 277" — [y — 2[*7"™")

|z —y[rt?

ko(Z,y, 21, 29) :=

is as defined in Lemma Notice that the constant C? depends only on s, t, and n.
Let us remark that this is related to the Calderon-Zygmund operator treated recently in
[46]. Since u,p € CX(R"), f(z1) = K(z1,21)(—A)2u(z) and g(z3) = (—=A)72 p(2)
belong to LP(R") for any p € [1, 00|, moreover g belongs to H'*(R™) for any p € (1,00).

Consequently, by Lemma |3.6},

25—t

(Ligt:9) = | K(2.2) (=A)2u(z) (-4) % p(2)d>

L e

Thus for the choice of the constant I' = C?, we have

Ds7t(u ER”U’J QO Lflztag >

(3.8)
//// (x,y, 21, 22)dz1dzs dx dy

25—t

u(z1) (—A) "2 p(20)ko(2, Y, 21, 22) dz1dzedx dy.

ol
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where

B(w,y, 21,20) = (K(w,y) = K(21,21)) (=) 2u(z1) (-4)

2s—t
2 p(22)ko(T,y, 21, 22).

By the definition of the Riesz potential I? and the fact that 7 = ((—A)%)_l for any
o € (0,n), we have for any =,y € R" and any ¢ < 2s — ¢,

/ (=) p(20) (Jo = 27" = |y = 2*7") dzs

25—t 25—t

T p(r) - I*TH(-A)

—c ([2s—t(_A)

2s—t—¢ 25—t

() = P (=0) 5 ()

2s—t—e
262/ (—A) 2t ('0(22) (|JZ . Z2|2s—t+a—n . |y . Zz|2s—t+a—n) dZQ

=c1 (¢(@) — ¢(y))
= (Izs—t—&‘(_A)

where ¢y will depend on €. By Fubini’s theorem we can thus rewrite the representation

(3.8) for Ds+(u, ) into

Ds,t(ua@—c/ / / / q)s(xayazlazQ)dIdydzleZa

2s—t—e

where O (x,y, 21, 20) = (K(x,y) — K(z1,21)) (—A)%u(zl) (—A) 2 @(z9)ke(x,y, 21, 22) and

(|.T _ Z1|t—n _ ‘y _ Z1|t—n) <|.T _ Z2|25—t—5—n _ ‘y _ Z2|25—t—6—n>

’Qf _y’n+23

/fa(xa Y, 21, Z2) =

We can now estimate the latter to obtain that

2s—t—e

Daatuel S [ [ M)l [(-8) 7 plaa) Mo, 2)dnden

where
ME(ZDZQ) - / |K(I,y) - K(Zl721)| |’fs(xay,21,Z2)| dx dy
n Rn

Now in view of Lemma (when this M* correspond to M7, of the lemma) we have for
small enough a, ¢ < /3, and K € C(a, A)

2s—t—e

| Dst(u, @) 5/ I |(=A)2ul(@) [(=A) 77 () da.

n

The other estimate follows the same way by reversing the role of u and ¢ from the beginning
and we conclude under the assumption that v € C°(R").

In the case that u € H*?(R™), but still ¢ € C°(R™), take let u, € C(R™)

k
||Uk — UHHt,p(Rn) ﬂ) 0.
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Observe that since ¢ € C2°(R") and 2s — 1 < t we have

i G = [ [ (a8 OO o) 4,

|z —y|"
_ / K (u(z) - Téyj) y(rom =0 4y = Lo,
Similarly,
Jim (g e) = | K(z2) (28)bu(=) (-8) 7 p(=)dz

R
Combining the above we see that

lim Dsﬂg(uk, (,0) = Ds,t(u7 @)
k—o0

Moreover, we have already shown that

2s—t—e

Daslur. )] / 1T A) () |(—4) T gl () da
~ | A () 17N (=) (o) do

Again, from the H"P-convergence of u; (and using once again that ¢ € C°(R") is fixed so
that

2s—t—e

[17751(=A) 2 ol | o (gn) < 00,

we find
. o—¢ 25s—t—¢
llglsupms,t(uk?wﬂ S M= A)zul () I7F|(=A) 2 | (x) da
—00
This concludes the proof of Theorem [3.1] - O

4. CALDERON-ZYGMUND THEORY FOR WEIGHTED FRACTIONAL LAPLACE: PROOF OF
THEOREM [L.7]

First, we prove the following intermediate result. Let us stress that the results in this

section can be extended to s > 1 with only minor modifications, but since this is not a

focus of this work we do not pursue this direction here.

Proposition 4.1. Let s € (0,1) and t € (0,2s). Assume that for some q € (1,00),

(=A)zu € LY(R") is a distributional solution to
% 25—t 2s—t

K(2)(=A)2u(z) (=A) > p(2)dz = Rnfl(z)(_A) ?

Here K : R™ — R is a positive, measurable, and bounded from above and below, i.e.

AT<K((E) <A ae xvcR™

p(2)dz+ [ fa(2) p(2)dz Yo € CZ(Q).
R™ Rn
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Then for any Q0 CC Qy CCQCR™, p>gq, andr € (1, p) such that

np
r>——— if2s—t <1, and r >
n+(2s—t)p / n+p

if2s —t>1

if f1, f2 € LYR™) N LP(Q) then (—A)zu € LP() with the estimate

2
t t
1) =82l S D0 (Ifillrws) + 1fillon) + 1(=2)2ullry) + I1(=A)2u] Lon)-
j=1

We delay the proof of the proposition. First we use the proposition to prove the optimal
regularity of solutions to the weighted fractional equation.

Proof of Theorem[1.7]. If p < g, there is nothing to prove. So, we assume p > ¢. We will
use Proposition to iterate the estimate on successive subdomains. Assume first that
2s —t < 1. Let Q; =, and p; = p. We introduce successive subdomains

A=, ccQcc---Q,cc

and successive positive numbers
np;
n+ (2s —t)p;
in such a way that for some L, p;, = ¢. It is not difficult to see that such a finite L exists
depending on p, ¢, n, s and t. By Proposition [4.1] in each step we have

P1 =D, Pit1 € [q,p;) With piy >

[\

1 1 i
I(=A)2ullriy S (Ifill@ + I fillLa@n) + 1(=A)2ullLo@n) + (= A)2ul| riss o).

7j=1
Iterating the above inequality L number of times we get that

2

t t t
I(=2)2ullzo@y S D (Iillzay + 1 fill aeny) + 1(=2) 2l zagrn) + 1(=2)7ul| zage,
Jj=1

from which the desired inequality follows. If 2s —t¢ > 1, then an obvious modification of
the above iteration lead to the inequality. U

We can now prove Proposition

Proof of Proposition[{.1 To prove (4.1) we use a duality argument and show that

2
t t t
A )/R (=A)2wpdr D (Ifillzr@ + 1 fillza@n) HI(=A)2u] o HI (= A) 20 1 (gy)-
c é>0 1 n i1
] pr <1 !
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Using the ellipticity of K, it suffices to show that for any ¢ € C>(£2;),

2
1 _ t
_— K(z)(—A)zuydz < fi + || f; n
(42) [T oy e (2) (=4) ;(H il + il agny)
t t
+1(=8)2ullLa@n) + [[(=A)2ullr(0,) -
To simplify notation, we will write (25 = (.
Let ni,m2 € C°(2), m = 1 in a neighborhood of ©; and 7, = 1 in a neighborhood of
supp ;. Set

p=m (1),
which is now an admissible test function for the equation. Then using the inverse relation-

ship between (—A)*z" and 127!, we have the identity
2s—t 25—t s— 2s—t s—
Y= (=0)T otm(=A)"T (L—m)* "+ (L—m)(=A) = (L—m) ™",

from which it follows that

JRCIEN

[SIES

updez =1+ 11+ 111

where

25—t

[ /R K(2) (=A)bu (—A) 5 o de,
1o [ KGym-a)
I1] = - K(2) (1 —n9)(—=A) (1= n)I* ") da.

Now using the equation, since ¢ is a valid test function, we have that

25—t

u(—A)"z

VIS

(1= m)I* ") dz, and

25—t

u(—A)"z

[SIES

I= K(2) (—A)%u(—A)ZS;godz = fl(—A)%goder fapdz.
RTL RTL R7l
The right-hand side can now be rewritten using the identity between ¢ and v as
I'=15—1,— I
where
L= | f[iv+ fapdz
R”
L= [ mh (-8) (1= m) ) d:
[3 Z:/ (]_ — 772) f1 (—A) 232_t ((1 — ’171) ]25—7&1/)) dz.
Clearly,

/R S dz S fullee) 190 o -
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Sobolev embedding, Proposition [2.1], together with the fact that ¢ is compactly supported
implies

e dzSiblee 1" o @) S I fellzec@ 190 -

That is,
L] S (llew) + 1 f2llze@) 11910 )
Notice that by our choice of r,

np : np/
r> 1< :
n+(2s—t)p n—(2s —t)p

and therefore, Proposition [2.4]is applicable.

To estimate I, we apply Proposition part (b)with (7,7,p)pea = (2s — t,p,p), and
obtain that

1| S 1 o) 191 v )
Moreover, again apply Proposition part (b), and estimate || as

(IS (1(=A)2ullr @ |9 2o )

For the remaining cases 11 and I3, we apply again Proposition part (a) to estimate as
3] S 1l ¥ 2 ey

and )
LI S ([(=A)2ul| Loy [[€]] o @ny-
This was the last estimate needed for (4.2)), and we can conclude the proof. O

We finish the section by proving regularity result for weighted fractional elliptic equa-
tion when the coefficient K is Holder continuous. In this case, we can “differentiate the
equation”, which leads to estimates of the following form.

Proposition 4.2. Let s€ (0,1) andt € [s,2s). Assume that for some q € (1,00) (=A)zu €
LA(R™) is a distributional solution to

K(2)(=A)2u(—A) T pdz= | fi (—A)QZ"fgde/fwdz Vo € C(9).
Rn

R”
Assume that K is positive, measurable, and bounded from above and below, i.e.

A< K(z)<A ae zeR™
and K is moreover uniformly Hélder continuous, i.e. for some ~y € (0,1],
K(z)- K
o K@) = K1)
z,y,R" |LE - y|"/

Then for any B < min{y,2s —t}, and any Q' CC Q CC R"
t+8 : 8
[(=A) = ul[ oy < C(EL A, 5,¢,p,q) <||(—A)2U||Lq(Rn) + 1 f2llzage) + ||(—A)2f1||Lq(Rn)> ~

<A.
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Proof. Let Q3 C R™ be open such that Q' CC Qy CC €. To prove the proposition, we will
show that for any ¢ € C°(Qy),

13) [ o) u-a)fwds S (-8 sulan + 1 fllzae) + 1 -8 fillsan) 191y
which by duality implies that (—A)#u e L1(Y), with
H(_A)#UHLQ(QQ) S H(_A)%UHLZZ(]R“) + 1f2ll o) + H(_A)gfIHLq(R")-
To establish observe
/H(A)EU(A)% dz = /n(A)éu (—a)s (K (Il(zp)) dz =T +11
where

_ 1 _ 1
I:= K(—A)%u(—A)g <K,1,/J> dzand IT ::/ (—A)%u[(—A)g,K] <_¢> dz
R n
where we used commutator notation
B

8 8 8
[(=A)z, fl(g9) = (=A)z2(fg) — f(=A)zg.
Now since K is v-Holder continuous we can apply Coifman-McIntosh-Meyer estimate, e.g. as in
[26, Theorem 6.1.|, combined with Sobolev inequality to obtain

t _ 1 t
IT S 1(=8) sl gogery (Kl |y S -850l 1 oy

For I, we argue similar to the proof of Proposition . To that end, let n € C°(2),n=11in a
neighborhood of €29. Then, splitting I using 1 we get that,

I=] K()(-A)2u(-A)*T (nﬂs—t—ﬁ (;{;w)) dz

R"

+ | K(2)(-A)u(-A)"T ((1 ) <Il(¢>) dz

R

We now use the equation and nI?~*=# (%1/}) as a valid test function to conclude that

I=[ h=a)% (nﬂs—t—ﬁ (;{w» dz + /R f (nﬁs—t—ﬁ (;w» dz

+ [ K(z)(~A)su(-A)"T <(1 — )28 <Il(¢)> dz

Rn
=L +1r+13

where
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The term I; can be estimates using we can estimate with the help of (2.7)) and (2.6)), in the same
way we estimated I of the proof of Proposition which imply

B
1] S (=D)2 fillLagny 19| o -
By Sobolev inequality, Proposition part (b),

2| < [ f2ll agay 1] o -
Similarly by Proposition part (a), we can estimate I3 as

1 S bl -2 (0= (10))

Lo ")

Now observe that 1 — n and ¢ have disjoint support, so that we can argue similarly to (2.6) to

obtain
1
(%))

25—t S—t— 1
o (a-nr ()| S Il + (0 nea)
L' (R™)
Observe that 1 € C2°(2) and 1 —n = 0 in a neighborhood of Q. If 8 = 0 this implies

(1= -a)% (o) @) =0

If B > 0 we use that for y € Qs and = € supp (1 — n) we have |y — z| = 1 + |z|, and estimate

(a-neaE (o)) @] s [ 0™ vl

(0wt ()

We conclude that

(SIS

Lo (&)

[N])ey

[Nisy

and thus

S AVl ey S 1 e
L4 (Rn)

25—t S—t— ].
o= (a-we= (o)) S 1l
L4 (R™)
This establishes (4.3) and that concludes the proof of the proposition. O

5. LOCAL TO GLOBAL EQUATION

The main idea for the proof of Theorem is to use Theorem to compare the equation
of Theorem with an easier equation to which we can apply Theorem and Propo-
sition 1.2l This works well on a local scale and the improvement of differentiability and
integrability is each time incremental. So we apply this strategy repeatedly, which means
that we repeatedly need to use cutoff arguments to restrict our equation to the set where we
already have shown some improvement for differentiability and integrability. We describe
this cutoff argument in this section. The next theorem states that if for a given 2, CC €,
u solves the equation

qu=F, in Qq,
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then u can be extended in R™ in a controlled way. Namely, the extension v solves an
equation of the form

Lgnv =G, inR"
and the norm of v is controlled by u, and the norm of data G is controlled by the norms
u and F. To be precise, we have the following.

Theorem 5.1. Let Qs CC Q) CC Q C R” be open sets. Take s € (0,1), t € [s,1) and
p,q € [2,00), 7 € (0,1) (if n =1 additionally, T < s) satisfying the following conditions:

1 1 1 1 t 1 1 1-2 t
(5.1) —2——1, and = > - —— and —2———8+,
q p n q p n q p n
1 1 1-2 t
(5.2) i i _THhl-esHt
q P n
and
(5.3) 25— 1<

Suppose that K € L®(R™ x R"). For any u € H*2(R") such that (—=A)zu € LP()
satisfies for some fi, fo € L1(R™) the equation

(Lou,p) = | fi(=A)2pdz+ | fap,dz Vo e CX().
Rn Rn
Then there exist v € H®? N H*?(R™), suppv C Qi, such that v = v in Qy and g1, 92 €
LY(R™) such that

(5.4) Cvg) = [ al-0Vipdst [ pods WoeCRR.
Moreover,

(5.5) [Vl t2@ny + [[(=A) 20| o@ny S llullgs2@ny + [[(=A)2ul|Lr(0y),
and

t
(5.6) lgillawn) + lg2llza@ny S I fillo@ny + | f2lloa@ny + [[ull oo @ny + [ (=A) 2wl o),

Additionally, for any 8 € (0,1) such that

(5.7) 2s—1+p8<7 and t+2>2—7—1+25+ﬁ,
q b

we have, whenever the right-hand side is finite,

]
(5:8) 1(=8)2g1l|o@y S 1fillzor@ny + [lul

Above, g1 and go and v are independent of q and B, in the sense that if we apply the
statement above to fi, fo € L9 N L? then there is one set of functions g1, ga, v Satisfying
the equations and the estimates in LY and L%.

t
mo2@e) + |[(=A)2ul[zrq,)-
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We split the proof of Theorem into several steps.

The first step is a cutoff argument, essentially replacing u with nu for a suitable cutoff
function 7.

Lemma 5.2. Under the assumptions of Theorem let Qy CC Q CC Q. Then there
exist w € H**(R™) N HYP(R™) with suppw C 4y, w = u in a neighborhood of s, and
91,92 € LY(R™) such that

(5.9) (Cow, o) = / g1 (~A)spdz + / pod: Ve Ve ().

n

such that (5.5) (with v replaced by w), (5.6), and (5.8) hold.

Proof. Let Qcc 52171 CccC Qq with Qy CC Q, and let n € C*° (), n=11in Ql,l'
Set w := nu, From Poincaré inequality and Sobolev embedding, we find that (5.5)) holds.

Moreover, for any ¢ € C°(Q2), we have that

] _ (w(z) —w(y)) (px) — o(y))
( Qw,@—/Q/QK(x,y) dx dy

|z — y|nt2s
= /Q /Q K(z,y) (u(z) = Tgfy_));fiﬁ) =) 4 gy
(1 —ny)uly) p(x)
i /Q\QM /Q K(QJ, y) |$ — y|n+2$ dx dy.

Now, to show ([5.9)) holds, we set g, := f1 and g9 := fo + go where

ho) = xale) [ wGeg BRI AT g,

O\, |z — y[n 2

To obtain the estimate (5.6) we only need to estimate g». Observe that for any y €
supp (1 —n) and x € Q2 we have |x — y| 2 ¢+ |y|. Consequently,

AP / ()] (e + [z — y) ™2 dy < Jlull 2.
xeR™ JQ

Since Q is bounded and supp g» C Q we find g, € L' N L*>*(R™), in particular

92l zo@n) S |lwll L2 mny-

This concludes the proof of Lemma [5.2 U

In the second step we increase the domain of integration of (5.9) from € to R™.
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Lemma 5.3. Under the assumption of Theorem let Q, cC Q CC Q. Then there
exist w € H**(R™) N H*?(R™) with suppw C Qy, w = u in a neighborhood of s, and
hi, he € LYR™) such that

G10) (G = [

such that (5.5)) holds with v replaced by w. Moreover, (5.6) and (5.8)) with hy, he instead
of g1, g2, respectively.

hl(—A);godz+/ haopdz Yo Ve CF(Q).

n

Proof. Take w, g1, g» from Lemma and let ¢ € CSO(Q)
) w(x) —w(y)) (p(x) —»(y))
<£R"w7w> :/ R K(Iay) ( )

’.27 _ y’n+23

:/Q/QK@?y) (w(z) —wy)) (0l) — o), o

dy dx

|z — g+
(5.11)
(w(z) —w(y)) (plz) — oly))
+ Q/Rn\Q/QK(Ly) |z — y[ri2s dy dx
(w(z) —w(y)) (pz) — ()
" /n\Q R\ Kle.y) |z — y|n s Ay dr

The third term in right-hand side of (5.11)) vanishes because of suppw C @ CC Q.
Moreover, since suppw C ;3 CC Q and suppe C Q CC €, the second term in (5.11])
becomes

[ [ sy @D ) =),
RmM\Q JQ

- ey ey oo () v K(zy)
_/Rn\g/@K( W s W /nso(y) (y)xg(y)/R o g 4Ty

lz —y n\Q |z —

Now the conclusion of the lemma is satisfied if we set hy := ¢g; and hy := go + ftg, where

ha(y) = w(y) xa(y) /Rn\g % da.

To see this, first, we obtain ((5.10)) from , and the above observations. In
addition, estimates and (5.8) hold from Lemma since w did not change and
hy = ¢,. In order to prove for gy, go replaced by hy, hs we only need an estimate for
hs, which we obtain by arguing in similar fashion as in the proof of Lemma . Since
dist (Q, R™\Q) > 0, for all points z € R"\Q and y € Q we have |z —y| > 1 + |z|, and thus

)l Slutlxa) [

- Wd%' ~ lw(y)| xa(y)-

Thus,
(5.12) 1h2ll Loy S Nlwll Lo
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Finally, since w € H*P(R™) with compact support, in view of (5.1]) and Sobolev inequality,
Proposition [2.1} we have

(5.13) w0l oy S I1(=2)7w]|ogen).
We conclude that h, satisfies the estimates with go replaced by hs in view of -
and . This concludes the proof of Lemma

In the last step of the proof, we increase the domain of the test functions in ((5.10]) from Q
to R™. This is where the the main influence of the conditions on p, ¢, 7 etc. come into play.

Proof of Theorem[5.1. Take w, hq, hy from Lemma [5.3] so that (5.10)) holds.

Let n € C°(Q), n=1in Q, and set v := gw. Since we know from from Lemmathat w
satisfies the estimates (5.5)) (with v replaced by w), consequently in view of Poincaré and
Sobolev inequality, so does v.

Fix any ¢ € C2°(R™). Observe that

(v(x) —v(y) V(@) —v(y) =(n(z)w(x) —n(ywy)) (V) —b(y))
Z(w(ﬂf) w(y)) (n(z)(z) —nly)v(y))
+ (w(z) — w(y)) (n(x) —n(y)) b(y))

)
+ (n(z) = n(y)) wiy) (Y(=) — &(y)).
We can now use the map i) € C°(€2) as a test function for (5.10)), and obtain
(5.14) (Lgnv, ) =1+ 11+ 111

where

I::/ hy (—A);(m/})dx%—/ ho ) dx

11 ::/n [ K (w(a:)—w(?@)_(?;(ﬁi; W)Y ;o

Using the commutator notation [T, m|(g) = T(mg) — mTg, we can rewrite the first term
of I as

:/n nhy (_A);wdw_/n[(_A)E,W](M)wd:c.
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In the last step we used an integration by parts, we can justify by approximation as follows:
since 7 € (0,1) we can use the Coifman-McIntosh-Meyer commutator estimate, e.g. in
the formulation in |26, Theorem 6.1.], and have

II(=2)%, nl(ha)llony S IInlleip 1hal|acen)-
Also, by Leibniz formula (2.2]) (or Sobolev embedding) for any 8 > 0,

8
[(=A)2 (nh1) [ Loy S Pl paeny,
whenever the right-hand side is finite. So if we set
gt :=nhy and g} = —[(=A)7,5(h) and g2 :=nh,

we have shown that

= [ deayiviz+ [ @+ @

and g1, g1, g5 satisfy (5.8), (5.6) because hy, hy satisfies those equations.

Similar to the argument in (5.11]), by the support of w and 7, we have for the remaining

terms of (5.14))

P / [ Ko (w(x) — w(f;))_(zﬁ)%— nw)ew) dy
+ /n s K(z,y) (ntz) ~ n<yyl)l_0(;/,)n(+qfs(m) ~ ) dz dy

:/Q Q K(r.y) (w(z) —w(y)) (n(x) —n(y))v(y))

dx d
|z —y|+ee o

+/Q Kr.y) (n(z) = n(y))w(y) (v(z) —P(y)) drdy

’.27 _ ’n+23

//n\ﬂ (z,y) + K(y,x)) ‘( y)n (‘T)szz(sw dx dy

+ /Q /n\Ql(K(y,x) — K(z,y)) 1) wly) (W) = $ () dx dy.

|z — g+
We set
K(z,y) + K(y,z)
95(y) :==xqw(y) n(y) / . dx
R7\Q |.17 |
K(x w(y) K(y, z)n(y) w(y)
ga(x) = = Xrm\oy (¢ / |x _ |n+25 dy + xzm0, (% [ |x — y|ntes dy
K(z,y) K(y, )

95(y) === 2xaW)n(y) w(y) / dz

R\, |z —y

D e+ 2 0n() () [

Rm\Qy ‘iL‘ _ y‘n+23
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Then

IT+II1=1I +III, + s U(y)gs(y) dy + s V() g (x)dx + s U(y) g3 (y)dy

where
" ::/Q [ Ko (w(x)—w(gr;)_(zﬁﬁ; 1)V 4y and
- [ [ e <n<:c>—n(zﬁ)zjgﬁn(ﬁfm—wy)) i

As in the steps before,
193 Lany + (195 Laceny S N(=A)2w]| o ny,

As for g}, by the distance of z € R"\Q, and y € Q we have |z — y| > ¢+ |z|, and thus

1 1

4 - -
l92(2)| S W ||w||L1(Q) S 1+ [z ||wHLP(R")'

Since is integrable to any power, we find that

1
T 725

g2l zo(ny S Nl zegeny ||(—A)§w||Lp(Rn) + [lwll 2@y
That is g3, g4, g5 satisfy (5.6 because w satisfies (5.5)).

Next we estimate 11;.

/Q Q K(r.y) (w(z) —w(y)) (n(z) —ny))v(y)

|z — g+

dz dy = s U(y) g5(y) dy

for

dz.

95(y) = xe () | K(@y) (w(x) - Fi(y_))y ‘(L(;Z) —1(y))

Now we have, see e.g. [39, Proposition 6.6.], for any a < 1,
w(z) —w(y)| S e —y* (M(=A)7w(z) + M(=A)2w(y)),

where M denotes the Hardy-Littlewood maximal function. Using this, the Lipschitz con-
tinuity of 7 and the definition of the Riesz potential 1%™172% we find for any o € (25 —1,1)

195] < xa, (M(=2)2w + X, 1M (xo,M(=A)2w))

Observe that t > s > 2s — 1. In particular in view of (5.1)) we can choose o < ¢ such that

n n
t——>a——,
p q

and from Sobolev embedding (observe that €2y is bounded) we obtain

t
1951 Laeny S [[(—=A)2w]| po(rny.-
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That is, we have shown that
I, = / gotpdr,
and ¢S satisfies because w satisfies (5.5)).

The last term it remains to estimate is I11;. Set

T[] ;:/Q /Q K (x,y) (n() = n(y)w(y) (4() = ()

dx d
|x_y|n+23 xray

Clearly T is a linear operator acting on ¢ € C°(R™). Moreover, as above, for any a €
(2s—1,1),

ITWI S [ lw] (M(=2)2¢ + 17772 (xq,(~A)24)) de.
Q1
Under the assumption (5.3) we can take o < 7, and have
[ICAY X IS ([CAV EXT e
[ n—(T—a)q (Rn)

We repeat this argument for T[(—A)gdz]. If 2s — 14 < 7, we can choose a € (25 —1,1),
a > 0, such that a+p < 7, (observe that since ¢’ < 2, 7—max{2s—1,0}—f < o is certainly
satisfied if n > 2, 7 € (0,1). If n = 1, the condition 7 < s implies 7 — max{2s — 1,0} < %
as well),

a+tp

I(=A)= 9l

[ n—(r—a—pB)q’ (Rn)

8
IT[(=A)2¢]| < [[wll
If for g >0 (5.7) is satisfied, then

[

In particular for § = 0, in view of (5.2]),

ng
Lnt(T—a=Pa(Q)

S lw|| e @y

(5.15) T S llwlzreren 11(=2) 20| Lo n)-
and if (5.7)) is satisfied we also have

B T
(5.16) T(=A)2 9] S llwll e @y (=) 29[| Lo n)-

(5.15) implies that T is a linear bounded operator on H™? (R™). By the characterization
of dual spaces, Proposition we find g € L9(R") such that

I =Tl = / 9l(=A)2 ¢ dx

and

||9I||L4(R") S ||w||HtvP(]Rn).
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If (5.7) is satisfied, (5.16]) implies that ¢ — T[(— A)21] is a still linear bounded operator
on H™? (R™). From the characterization of dual spaces, Proposition we thus find
g7,3 € LI(R™) such that

T+8
/ AN

”97,,3||L‘1(R") S ||"LUHHt,p(Rn).

This implies that (—A)g g1 = g7.3, and we have consequently the estimate needed for ([5.8)

[N]he

VT8 )ds = | gral-A)ivds,

and

8
1(=2)2 g1l o) S llwllzrer ).

That is, g satisfies and (5.8).
In view ((5.14) for

91 = g1 + 91
and
92:=0y+ g3 +95+ g2+ 95+
we have shown holds, and g1, g» satisfy the estimate and . We have already

observed that w and v satisfy the estimate ([5.5]), so the proof of Theorem is completed.
O

6. THE REGULARITY THEORY: PROOF OF THEOREM

In this section we prove the main result of the paper, Theorem The argument of the
proof is based on iterating the following incremental higher integrability result for a priori
known smooth enough solution.

Theorem 6.1. Fix s € (0,1), t € [s,2s), t < 1. For given o € (0,1), \,A > 0, let
K € K(a, \,A). Suppose also that for any 2 < p < oo, u € H**(R™) N H*P(R™) N H-*(R"™)
with suppu C 0 CC R™ is a solution to

(6.1) (o) = [ f(=A) 5 pdz + / fopdz Yo e CR(RY).
Rn n

Then there exists € > 0 such that if r € [p,p+ &) and fi, fo» € L"(R™) N LP(R™), then

2
t
1(=A)2u] e S i@ + 1 fillzege + [(—A) 20| ogn.
=1

t+

In addition, if B € [0,€], (=A)5fi € LP(R"), and fi, fs € LP(RY), then (—A)F u €
L7 (R™) and for any Q@ CC R™ we have the estimate

loc

t+8

s ‘
[(=A) 2 ul|zr) S [(=A)2 fille@ny + | f1llzo@ny + || foll o@ny + (=) 21| Lo @ny.
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Here, € > 0 is uniform in the following sense: & depends only on o and the number
0 € (0,1) which is such that

1
0 <s,t,2s—t<1—0, and 2§p<§.

Proof. First we observe that in view of Theorem [3.1]and (6.1]) we have for any ¢ € C>°(R")

K(z, z)(—A)%u (—=A) 52 pdz —/ fi(—= 252 t(pdx +/ fopdx — Dg 4 (u, 9)
(6.2) R 2.7“;‘@"
= [ RA A F pdot [ fapdo—Duitup)

where Dy ;(u, ) is as defined in (3.3) and where we have taken without loss of generality
that the constant I' = 1 in Theorem Now we observe that the map 7" defined as

Tl¢] := Dsy(u, @)

is linear in ¢ € C>°(R"). Choose o = 8¢ from Theorem [3.1} for ¢ small enough so that
"W e (1,00) for all p € 2, 5]

n+op’

From Theorem [3.1] and Sobolev embedding, Proposition we have the estimate for any
peloel

75 [ 1-8)ul(o) fa—f|<—A>23‘z“Zo|<x> &

SI=A)2ul o 1779 (=A) 7

s—t—

t 2
SI=A) 20 oy [(A) 7= o
Ln+(v e)p( ny

t e 25—t—f
=[(=2)2ull o 1777 (=2) 7= 4|

L7L+(o s)p ( )

> 0l g

t 2s
SI(=A)2ul aggny |(—A) 57 o o
Ln+<o 6)p (Rn)

Here o and e can be chosen to depend only on #, and since p < 5 we can make that choice

so that
n

—Q—(:+/28)p’ > 1 and Sobolev embedding is applicable with a uniform constant.

*

That is, T" belongs to 2 S T (R™) | for any 5 € [0,¢]. By classification of the

/ / np
i : np _ __mp P
dual spaces, Proposition , and since <n+(o_5)p,> = e Ve find g5 € Ln=-5r (R")

(6.3) lgsl

and

1
Lﬁ(ﬂgn) SJ ||<_A)2u”LP(R”)7

2s—t—

Tl = [ g5 (-8)"F i
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That is, (6.2) becomes for any 3 € [0, €]

25—t

2 pdz = /n ((—A)gfl —i—gg) (—A)%;Bgodx—k/n fopdx

K(z, z)(—A)%u (—A)

Rn

for all p € C°(R").

For 5 = 0 we obtain from (6.3)) and Theorem [1.7| that for any Q CC R", r € [p L }, we

> n—op

have
2

t t
I(=A)2ullroy D (Ifillr@e + 1 fill o@m) + 1(=A)2ul| o an).
i=1
Observe that we can find & such that "2 > p+ ¢ for all p € [2, ].

n—op —

For § € [0, ¢] from (6.3) and Proposition for any

t+8

2
t+8 B t
1(=2) F ull o) S N(=2)7 fillo@ny + Y I filloeny + 1(=2)2ullogen).
i=1
This concludes the proof of Theorem [6.1] O

Iterating Theorem [6.1] and Theorem [5.1] leads to the proof of Theorem [I.2] namely

Theorem 6.2. Fiz s € (0,1), t € [s,25), t < 1. For given a € (0,1), \,A > 0, let
K e K(a,\,A). Let ¥ cC Q" cC Q C R" be two open sets. Assume that u € W*2(Q)
satisfies the equation

2s

(64 o) = [ R8T pde+ [ fupde Vo e C@).

If f1, f» € LY(Q) N LA(R™), q € [2,00), then (—A)%u € LY(SY) and we have

2
t
[(=A)2ul|paen < O L, Q" s,t,p,q) <||U||ws2(m +) M fill o + ||f¢||L2<R")> '
=1

Proof. Fix 6 € (0, 1) such that

1
(6.5) t<1-1060, 100 < s <1—100, 100<28_t<1_109’2SQ<W'

We also fix € = £(6,y) from Theorem (6.1} and w.lLo.g. € < ;-2

Step 0: Rewriting the equation Take some cutoff function n € C°(2) with n = 1 in a
neighborhood of 2"

f1(—A)232_t90d33:/ nfl(—A)Qsz_tgoder/ (1—n)fi(—A)*T pda
R R™

n

2s 2s—t

z/Rnnfl(—A)Z’twde/n Xar(=A)"=

(1 =n)f1) pdz.
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Now observe that by the disjoint support of yg» and 1 —n we have
25—t
Ixr (=A)72 (L =n)f1) Iz S [ f1llz2cen

For o € [s,t] we set
fro=17(nf)
and
fo = xorfo - xer (=) T (L= 1) fy)
then we have for all ¢ € C(Q"),

/Q / O 1 ) [ Co R ) WO B SN / fop de.

‘.Z' _ y‘n+23 R"

45

Moreover fo € LI(R™) N L*(R") and since t —s < 1 —s < 1 — @ we have by Sobolev

embedding, Proposition 2.1}

2 f)lleeny < CONINAN, e S Ifill o
If n > 2 we also have
(6.6) 1= 0 ey < CONfill, g S Infillze

so that for n > 2 we have found fl,g, fg € LN L*(R") such that (6.4]) holds for ¢ replaced

with ¢ and fi, fo replaced with fl,a, fa.

If n = 1 we need a slight adaptation to have (if ¢ is close to one and s is close to

zero): Let gy € C°(R™) with 2 = 1 in a neighborhood of ©”. Then we set

fro =1 (nf1)
and 3
foo = Fotxor (=) (L= m) I (n11)) )
By the disjoint support we then get the same estimates as before.

In conclusion, for any o € [s,t] we have fi,, fo, € L* N LY(R") and

60 [ [ 5= =D gray [ fa(-8)*Fpdot [ fospds,

|z — g2
for any ¢ € C°(Q").
Let L € N a number which we shall define later, and choose nested open sets
(6.8) O =Qy, cc...ccQccQccq.

Step 1: First improvement

1 1 4
(6.9) — = max{§—ﬁ,0}
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then (5.1) and (5.2) are satisfied in view of (6.5)).

1
(6.10) Py = min{ie, s—t}
) 1
(6.11) p1 = min{2 + 5 ¢}
We claim that
sth1 El
[(=8)72 ullLri0) + [(=8) 2 ul| L1 02)
(6.12) 2
D (Mfillzz@ey + 1 fill o) + Nl mezgny.
i=1

We apply Theorem [5.1|for § = ¢ = 7 = s, p = 2 and the equation to 1’ with o = s.
Then (j5.3)) is satlsﬁed since s < 1. We also choose ¢ := q1 € (2,q] then (5.1 and . are
satisfied in view of .

Observe that fi,, fa, € L9N L*(R") C L®(R"), so from Theorem we obtain v; €
H*%(R"™), suppv; CC

vy =u in a neighborhood of €2y
and for any ¢ € C°(R")

C

Kap GO e
(6.13) m SR vy

:/ 9175(—A);g0d1}+/ g2,8¢dx7

for some gy, go € L7 (R") with the estimate

91,5l Lor @y + 92,5 ]| Ln ey S Z 1 fill 2y + [ fill ageny) + [lul
i=1

HS,Q(Rn)

and

1(=A)2 0] 2@ny S Nlull o)
and in view of (5.8), for any 0 < a < min{6,t — s} we have (for 3 := a) that is
satisfied
H(—A)%Ql,oHL?(Rn) S ||f1||L2(Rn) + ||UHHS’2(Rn)-
In view of Theorem (applied to # := s and the equation ) we have the estimate

[\

(= A) 7 01| o1 27y Z gill o1 @y + 1193l L2m)) + [1(=A) 701 L2
=1

2
D (illze@ey + 1 fill Loqemy) + [l

=1

HS,Q(RTL) .
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Moreover, since we applied Theorem to the equation (6.13]), we have

s+81

I(=4A)"=

2
il S (Hillze@e + L fill Lagny) + [lul

=1

HS,Q(R’VL) .

Since u = vy in a neighborhood of €2, by Lemma we find that this implies

2
(6.14) I(=2)2ull o @) S D (Mill oy + 1 fillLo@n) + lul o2 @)
=1
and
+8 2
s+61
(6.15) 1(=A) " |2 S (Ifill 2@y + 1 fill ogn) + lullzzs2 -
=1

47

In order to obtain (6.12]) we need to have an LP'-estimate in (6.15)). For this we repeat this
argument for the equation (6.7) with o = s + 1 (this is only necessary if ¢t > s, otherwise
(6.14)

).

51 = 0 and we are done with

We apply Theorem [5.1/for 5 =s,t =s+ f, and 7 = s — 31, p = 2, § := q, to (6.7]) with
o = s+ fi. Again (5.3) is satisfied, since s+ 81 < s+t —s=1¢ < 1. (5.1)), and (5.2)
are satisfied in view of (6.5). Then Theorem ! 5.1/ implies the existence of vy € H¥H1:2(R"),

supp vy CC
vo = u in a neighborhood of €2,

and for all p € C*(R")
/n ) K(z.9) (v2(2) — va(y)) ((2) = 0(y)) dy

|z —y["*?

(6.16)

s+81

= / Grs16,(—A) 2 pdr + / 92,544, de,

for some g1 514, 92,545 € LT (R™) with the estimate

2
91,548 | @) + 19208 21 @y S Y (Ifill ey + 1 fill cony) + el o2y
=1

and (with the additional help of (6.15 m

s+8

I(=4) =

valz2@ny S Z 1 fill 2y + [ fill ageny) + llull 2 ny-

Applying Theorem (for t := s+ B and the equation (6.16)), observe that e does not

change) we have

s+8

2
1(=2) "= vl ooy S (Ifill 2y + 1 fill o) + [lul
=1

HS,Q(RTL) .
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By Lemma [2.3] since u = vy in a neighborhood of €2, we find
2

ullLery) S Z I fill c2@ny + N fill Laeny) + Nl o2 @ny-

Together, and ((6.14)) imply (6.12] -

Step 2: Iteration We define for k € N,

(6.18) 1 = max{i—g,l},

s+81

(617)  [(-2)"

k+1 Pk n g
. 1
(6.19) Phk41 = min {Pk +36 Qk+1} ,
) 1
(6.20) Brs1 := P + min {55, s—1t— Bk} .

starting from ¢, p1, f1 as in 7 (6.11)), (6.10)), respectively.

Our goal is to show that for any k& € N,

s+Bk s
[(=A) 72 ullzer () + [[(=A) 2| Lrr (000
(6.21)

H5,2(Rn) .

2
S (Millz2@ey + L fill cogemy) + llul
=1

We prove this by induction induction. We already have shown (6.21]) to hold for k£ = 1,
(16.12)).

So assume as induction hypothesis that for some k € N (/6.21]) holds. We need to show

2
(6.22) 1(=A)2ull rrss @ ey S D (1fillz@ny + 1 fill Lony) + el oz eny
=1
and
+8 2
$+HPk41
(6.23) I(=2) 72wl st (un) S Y (Ifillz2@ey + 1fill o) + Nl a2 @e)-
=1

First we treat (6.22). If gz = ¢ there is nothing to show, because then py = pri1 = ¢q. If

not, we apply Theorem for 5=t=7=35,p=pp §:=q to (6.7) with 0 = 5. Again
(5.3) is satisfied since s < 1. (5.1)) and (5.2)) are satisfied in view of (6.5)) and the fact that

since ¢ < L% we have that |+ — 1| < ¢,
10 n Pk

Pk—1| — 1
Then Theorem [5.1] implies the existence of v; € H*Px(R™), suppv; CC Q"

v1 =u in a neighborhood of (g5



CALDERON-ZYGMUND TYPE ESTIMATES FOR NONLOCAL PDE 49

and for all ¢ € C(R"),
/ Kz ( 1(2) =) (0(@) = eW) ;0

|z —y[" 2

(6.24)
—/ gl,s(—A)gwd:H/ Gostp dx,

for some gy 5, go.s € L% (R™) with the estimate
2

lgr.sllo ey + lg2.sllon@ S (Ifillzz@e + 1 fillon) + llul

=1

and additionally (using the induction hypothesis (6.21)))

2

I(=A) 201 | reeny S (Mfillzz@ey + [ fill o) + el o).
=1

HS,Q(RTL) .

Applying Theorem for t := s and the equation (6.24]) we obtain
2
(=) 201l rer@ny D (Igill o ey + Ngill L2geny) + 1(=2) 701 || Lo ey

=1
2

S (Mfillz@ny + fillzogn) + llul
=1

Since u = v; in a neighborhood of €91 this implies ((6.22)).

Now we treat ((6.23]). We apply Theoremto §=s,t=5+B, D=0k G= Qs T = 5— 5
and to the equatlon . With o =5+ Pg. - is satisfied since s 4+ 6, <t < 1. As

before, , 1 ) are satlsﬁed in view of the choice of 0, qi, pr, Brr1. Since we have by
assumptlon , we find v, € H®? N H**P(R"), v, = u in a neighborhood of Qgy1,

g1, 9o € L% R” such that for all p € COO(]R”)
n Rn n

|z —y|m 2 "

HS,Q(Rn) .

We apply Theorem for t = s + (), to this equation, and find that

2
s+Bg 11

[(=A)72 " va|[prr(am) S Z (I fill 2ny + [ fill caqeny) + leell o2 ey
i=1
Since vy = u in a neighborhood of €29x, 1 we conclude that
2
sHBpy1
(6.25) [(=A)72  ullre(000) S Z 1 fill L2y + || fill Larny) + llal] o2 emy-

If pry1 = pr we have (6.23). Otherwise, we need to apply this chain of arguments one more
time: This time, we apply Theorem .to §=s5t=s —|— Brits D=0k, § = qQ, T = S — P
and to the equation (6.7 . with 0 = s+ Bky1. Agaln is satisfied since s+ f(r1 <t < 1,
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and (5.2), (5.1]) are satisfied in view of the choice of 0, gx, pr, Bri1. Since we have ((6.25),
we obtain from Theorem vy € H? N H”kaH(R”), v9 = u in a neighborhood of o9,
g1, g2 € L% (R™) such that for all ¢ € C2°(R")

/n 5 K(l‘,y) (UQ(x) — vQ(Q)) (90(‘1') - 90(3/)) dx dy _ / 91(—A) 5*52k+1 gpdl‘ " /n . d.

|z —y|" 2 "

We apply Theorem for t = s + Bj41 to this equation, and find that

2
s+Bk+1
1(=2) "= vsllresr o) S D (illz@ny + 1 fillagny) + llul

i=1

HS,Q(]Rn) .

Since v3 = u in a neighborhood of €915, we finally conclude (|6.23]).

Conclusion: From the definition of pgy1, gxy1, Skr1 as in (6.19)), (6.18)), (6.20) starting from
P1,q1, f1 as in (6.11)), 7 (6.10) we see that there is a large number (depending on & and

0, s, t, and ¢ — all of which are fixed numbers in this proof) there is a finite number L € N
such that p;, = qr = q, B =t — s. Thus, from we have ([6.21)) we obtain

2
(=22l 2oz + (=) Fullzoanny S D (Ifillaeny + L fill o) + Il sz geny.

i=1

Since ' C €y (see (6.8)), and taking into account the arguments from Step 0 of this
proof, we conclude. O

7. PROOF OF THE COROLLARIES OF THEOREM [1.2]

loc

Corollary is an immediate consequence of Theorem and its HY-estimates.

Proof of Corollary[1.4 Let Q" CC Q with Q" CC Q". Let n € C(Q) with n = 1 in Q"
Since f € (H*~7(2))" we have that f = nf € (H> 4 (R"))", since for any ¢ € C2(R"),

(f, @) = (f,n9)

Then u is a solution of
(Lou, ) = (f,0) Vo e C(Q).

Observe that
(F.0) S 1 st

By the fractional Leibniz rule, we also have

10| s (Rm)

16l r2e—tar @ny S N1l pr2e—t.ar eny

Moreover since ¢’ < 2 and 1 has compact support,

16l przs-v2q@ny S [l rze-v2 gy
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In view of Proposition we find fy, fo € L9 N L*(R™) such that

~ 25—
(o) = | h(=A)Tgde+ | fopde Vo CZ(R"),
R R
and
Ifillzany + 1 follLany + 1 fillzzmeny + 1 follez@ny S NI proevr @y S 1N (oo )

Thus, u is a solution of
(Chu) = | [(=A)F pde+ | fapde Ve CR(Q).
Rr R

Applying Theorem [1.2] to this equation in €’ CC Q" we obtain the claim.
O

Lastly, we show the following corollary of Theorem [I.2] for equations of the type L&{u =

divs o F', where divs denotes a fractional divergence as treated e.g. in [I3] 27]. Observe
that Corollary is a direct consequence of Corollary if we set F(z,y) := &)=/

|z—yl*

Corollary 7.1. Let s € (0,1) and p > 2. Let Q CC R"™ be a smoothly bounded set, and let
0y CC Q be open. Assume that u € W2(Q) satisfies

S, ) // ’x_y’n:f(y)) dz dy

for any ¢ € C°(Q), where Lf, corresponds to K € K(a, A\, A) for some given a € (0,1)
and A\, A > 0. Then if for any t > 0 we have

\F z,y)[P

then for any r € [s,s +t) we have u € VVZO’C(Q), and for any 0y C Q we have the estimate

|F(z,y)| z
[ulwreoy) < C ((// iz —y |n+tpd wdy )+ llull2@) + [ulws2) | -
Proof. Set
|F (2, y)] z
A= (// 7= ‘and.’chy

Observe that since 2 is bounded, we have for any # € [0, 1],

(Lms) =
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Let Q3 CC Q3 C R™ be an open set such that 0y CC 2y CC Q3 CC Q. Take n € C(Q)
such that n = 1 in a neighborhood of Q3. Then for any ¢ € C°(Q3),

// |x_ |n+—8<p(y)) dr dy
:/Q/Q (z,y) ‘x_(y‘)n;n(y)w(y)) dz dy.

Moreover we have for any ¢ € C®(R"), and any ¢ € [0,1],

// (z,9) : _( |)n+s n(y)e(y)) d dy

Ws t 0! (Rn)

By Sobolev embedding, for any r > s — t,

[@]Ws—f»p’(Rn) S HSOHHT»P’(]R")'

That is, T is an element of (H"* (R"))*, and by Proposition we find fi, fo € LP(R")
such that

Tlel= | h(=D)pdz+ | fopdr,
Rn Rr
with
Ifillze@ny + ([ f2lle@ny S A
In particular we have for any ¢ € C°(€),)

Rn Rn

and from Theorem we conclude that for any W*2-extension @ : R® — R of u| we have
Q

1(=A)2 o) S A+ [@wszgn) + 1] 2@n)
Again from Sobolev embedding this implies for any 0 < 7 < r
['U/]er ) S A -+ [ ]WS Q(R” + HUHLZ R™)
Since €2 is an extension domain we can find an extension « such that
[ ws2@n) + |18l L2@ny S [W]ws2@) + |ull2@)

and conclude the theorem. O

Proof of Corollary[1.5. Observe that for a C'*-diffeomorphism ® the maps u and u o ®
belong to the same Sobolev spaces H*? and W*? as long as s < 1.
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By the transformation rule

(u(r) —u(y))(p(x) — Y))
L (o) — by

[ [ &t (10 2(z) ~uoP)(pobla) — o2y, g,
Qo J Qo 7~y

where K(z,y) = det(D®(z))det(D®(y)) is still Hélder continuous. Now we can apply
Corollary [T.4] to this K. O
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