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Abstract. We study interior Lp-regularity theory, also known as Calderon-Zygmund
theory, of the equation

⟨Lsu, φ⟩ :=
∫
Rn

∫
Rn

K(x, y)
(u(x)− u(y))(φ(x)− φ(y))

|x− y|n+2s
dx dy = ⟨f, φ⟩, ∀φ ∈ C∞

c (Rn).

We prove that for s ∈ (0, 1), t ∈ [s, 2s], p ∈ [2,∞), K an elliptic, symmetric, and K(·, y)
is uniformly Hölder continuous, the solution u belongs to H2s−t,p

loc (Ω) as long as 2s− t < 1

and f ∈
(
Ht,p′

00 (Ω)
)∗

.
The increase in differentiability and integrability is independent of the Hölder coefficient

ofK. For example, in the event that f ∈ Lp
loc, we can deduce that the solution u ∈ H2s−δ,p

loc

for any δ ∈ (0, s] as long as 2s− δ < 1. This regularity result is different from its classical
analogue for divergence-form equations div(K̄∇u) = f where a Cγ-Hölder continuous
coefficient K̄ only allows solutions in H1+γ . In fact, the regularity estimates we prove
are another manifestation of the differential stability effects of nonlocal equations of the
above that are observed by many authors – only that in our case we do not get a “small”
differentiability improvement, but all the way up to min{2s− t, 1}.

The proof argues by comparison with the (much simpler) equation

⟨Ls,t
diagu, φ⟩ :=

∫
Rn

K(z, z)(−∆)
t
2u(z) (−∆)

2s−t
2 φ(z) dz = ⟨g, φ⟩, ∀φ ∈ C∞

c (Rn).

and showing that as long as K is Hölder continuous and s, t, 2s − t ∈ (0, 1) then the
“commutator” Lsu− Ls,t

diagu behaves like a lower order operator.
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1. Introduction and statement of main results

In this article, we develop the Calderon-Zygmund theory for a popular nonlocal equation

(1.1) LsΩu = f,

where Ω ⊆ Rn is an open set, s ∈ (0, 1), and the operator LsΩ is formally given by

LsΩu(x) := P.V.

∫
Ω

2K(x, y)
u(x)− u(y)

|x− y|n+2s
dy.

The “coefficient of LsΩ” is K : Rn×Rn → R, and it is assumed to be measurable, symmetric,
and bounded. Moreover we assume K to be bounded from below on the diagonal by a
positive number, infxK(x, x) > 0, which corresponds to ellipticity.

In the event that K = 1 and Ω = Rn, the operator LsΩ corresponds to the well-known
fractional Laplacian operator (−∆)s.

The main objective of this paper is to address the question of regularity of such a solution
u relative to the data f .

Before we state our main theorem, Theorem 1.2, we need some definitions. We say that K
satisfies a uniform Hölder continuity assumption if there exists α ∈ (0, 1), Λ > 0 such that

(1.2) sup
z∈Rn

|K(z, y)−K(z, x)| ≤ Λ |x− y|α, for x, y ∈ Rn.

For given positive numbers λ,Λ and α ∈ (0, 1), define the class of elliptic coefficients

K(α, λ,Λ) =

{
K : K(x, y) = K(y, x), inf

x∈Rn
K(x, x) > λ, ∥K∥L∞ <

1

λ
and satisfies (1.2)

}
.

We also need to introduce relevant differential operators as well as function spaces. Let F
denote the Fourier transform. For s > 0 the fractional Laplacian (−∆)

s
2 is defined as the

operator that for f in the Schwartz class acts as multiplier with symbol c|ξ|s

(1.3) F((−∆)
s
2f)(ξ) = c |ξ|sFf(ξ).

The Riesz potential Is = (−∆)−
s
2 is the inverse of the fractional Laplacian, i.e. the

multiplier operator with symbol (c|ξ|s)−1,

(1.4) F(Isf)(ξ) :=
1

c
|ξ|−sFf(ξ).
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This operator makes sense (for f a function in the Schwartz class) if 0 ≤ s < n, because
|ξ|−s is then locally integrable. In the definitions the constant c depends on n and s and
plays no deeper role in the theory that we consider.

Next we will introduce two types of fractional Sobolev spaces that we need to state the
main result: Bessel potential spaces Hs,p and Besov spaces W s,p. For 1 < p < ∞, the
Bessel potential spaces Hs,p(Rn) are defined as follows: f ∈ Hs,p(Rn) if f ∈ Lp(Rn) and
(−∆)

s
2f ∈ Lp(Rn). The associated norm is

∥f∥Hs,p(Rn) := ∥f∥Lp(Rn) + ∥(−∆)
s
2f∥Lp(Rn).

The Besov spaces W s,p(Ω), for s ∈ (0, 1), are induced by the semi-norm (called Sobolev-
Slobodeckij or Gagliardo norm)

[f ]W s,p(Ω) =

(∫
Ω

∫
Ω

|f(x)− f(y)|p

|x− y|n+sp
dx dy

) 1
p

,

and ∥·∥W s,p(Ω) = ∥·∥Lp(Ω)+[·]W s,p(Ω) serves as a norm. For p = 2, W s,2(Rn) = Hs,2(Rn), for
p < 2 we have W s,p(Rn) ⊊ Hs,p(Rn) and for p > 2 we have Hs,p(Rn) ⊊ W s,p(Rn). These
spaces are particular examples of the more general Triebel-Lizorkin spaces and F s

pp(Rn) =
W s,p(Rn) and F s

p,2(Rn) = Hs,p(Rn), see [33].

For u ∈ W s,2(Ω), we define the map LsΩ by

(1.5) ⟨LsΩu, φ⟩ :=
∫
Ω

∫
Ω

K(x, y)
(u(x)− u(y)) (φ(x)− φ(y))

|x− y|n+2s
dx dy.

for any φ ∈ W s,2(Ω). It is not difficult to show that if K ∈ L∞(Ω × Ω), then for any
u ∈ W s,2(Ω), LsΩu ∈ (W s,2(Ω))∗.

We now define precisely what we mean by a solution to our equation of interest, (1.1).

Definition 1.1. Let s ∈ (0, 1) and t ∈ [s, 2s). Suppose that f1, f2 ∈ L2(Rn). We say
u ∈ W s,2(Ω) is a distributional solution of

(1.6) LsΩu = (−∆)
2s−t

2 f1 + f2 in Ω1

for some Ω1 ⊆ Ω if for any φ ∈ C∞
c (Ω1), it holds that

⟨LsΩu, φ⟩ =
∫
Rn

f1(−∆)
2s−t

2 φdx+

∫
Rn

f2φdx.

If Ω is bounded or Ω = Rn, the notion of solution introduced in Definition 1.1 coincides
with the classical notion of weak solution. Moreover, for Ω = Rn and for any bounded open
subset Ω1, given f1, f2 ∈ L2(Rn), a solution to (1.6) exists with additional assumption on
u. For example, a minimizer of the energy

E(u) := 1

2
⟨LsRnu, u⟩ −

∫
Rn

f1 (−∆)
2s−t

2 udx−
∫
Rn

f2 udx
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over {u ∈ Hs,2(Rn) : u = 0 on Rn \ Ω1} exists and is a solution to (1.6) in the sense of
Definition 1.1.

We also notice that (1.6) is often thought as the nonlocal (fractional) analogue of the weak
formulation of the elliptic differential equation

(1.7) div(A(·)∇u) = div h+ g.

The question of regularity of weak solutions u to (1.7) in relation to the regularity of data
(the coefficient A, the right-hand sides h and g) is decades old. One line of regularity theory
is the Calderon-Zygmund regularity theory where higher integrability of the gradient ∇u
of the solution u is sought in relation to higher integrability of h and g. The now well-
known W 1,p-theory proves that for a possibly rough coefficient A(x) but with small mean
oscillation, for any 1 < p < ∞, if h ∈ Lploc and g is, say, smooth, then ∇u ∈ Lploc(Rn)
[24]. Another line of regularity focuses on the differentiability of ∇u and this is intimately
related to the smoothness of the coefficient A(x) in (1.7). In fact, the W 2,p-theory states
that if A is Lipschitz continuous, and g ∈ Lploc(Rn), say h is smooth, then the weak solution
u of (1.7) is twice differentiable and D2u ∈ Lploc, [20, Theorem 9.11]1

The main objective of this paper is to prove regularity results of the above type for distri-
butional solutions u of nonlocal equations such as (1.6). Although the conditions we put
are different, the spirit of the results is similar in the sense that we are looking for higher
differentiability in the fractional Sobolev scale and higher integrability of the solution u as
a function of data f1 and f2 in (1.6). The following theorem states the main result of the
paper.

Theorem 1.2. Let s ∈ (0, 1) and s ≤ t < min{2s, 1}. If for 2 ≤ q < ∞, f1, f2 ∈
Lq(Ω) ∩ L2(Rn), and u ∈ W s,2(Ω) is a distributional solution of

⟨LsΩu, φ⟩ =
∫
Rn

f1(−∆)
2s−t

2 φdx+

∫
Rn

f2φdx ∀φ ∈ C∞
c (Ω1),

for some Ω1 ⊆ Ω in the sense of Definition 1.1 with LsΩ corresponding to K ∈ K(α, λ,Λ)
for some given α ∈ (0, 1) and λ,Λ > 0, then for any W s,2-extension ũ of u to Rn we have
(−∆)

t
2 ũ ∈ Lqloc(Ω1) and for any Ω′ ⊂⊂ Ω1 we have

∥(−∆)
t
2 ũ∥Lq(Ω′) ≤ C

(
∥u∥W s,2(Ω) +

2∑
i=1

∥fi∥Lq(Ω1) + ∥fi∥L2(Rn)

)
.

The constant C depends only on s, t, q, α, λ, Λ, Ω, and Ω′.

We used the notation A ⊂⊂ B when A and B are open and the closure of A is a compact
subset of B. In this work we focus on the case q ≥ 2, t ≥ s. This corresponds to the natural
setting of variational solutions (which by construction already belong to W s,2). We believe

1Observe that the statement of [20, Theorem 9.11] is in non-divergence form with bounded order co-
efficients. To transform a divergence form equation to an nondivergence form equation with bounded
coefficients, the original coefficients should be Lipschitz.
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it requires only minor conceptional changes to treat very weak solutions which a priori lie
in W s̃,q̃ for suitable s̃ < s or q̃ < 2 – but adapting the already technical argument to very
weak solutions would even further blur the conceptional elegance and simplicity of our
approach. We will, therefore, postpone that to a future work.

Let us highlight some corollaries of Theorem 1.2 that might appear in applications. For
the proofs we refer to Section 7.

Corollary 1.3. Let s ∈ (0, 1) and s ≤ t < min{1, 2s}). If for q ≥ 2, f ∈ Lq(Ω),
u ∈ W s,2(Ω) is a distributional solution of

⟨LsΩu, φ⟩ =
∫
Ω

f φ dx, ∀φ ∈ C∞
c (Ω),

with LsΩ corresponding to K ∈ K(α, λ,Λ) for some given α ∈ (0, 1) and λ,Λ > 0. Then for
any W s,2-extension ũ of u to Rn, (−∆)

t
2 ũ ∈ Lqloc(Ω), and for any Ω′ ⊂⊂ Ω we have

∥(−∆)
t
2 ũ∥Lq(Ω′) ≤ C

(
∥f∥Lq(Ω) + ∥ũ∥W s,2(Rn)

)
.

In particular, if γ := t− n
q
> 0 then u ∈ Cγ

loc(Ω).

Corollary 1.4. Let s ∈ (0, 1) and s ≤ t < min{1, 2s}. For any open set Ω ⊂ Rn,
2 ≤ q <∞ the following holds.

If f ∈ (H2s−t,q′(Ω))∗ and u ∈ W s,2(Ω) is a distributional solution of

⟨LsΩu, φ⟩ = ⟨f, φ⟩ ∀φ ∈ C∞
c (Ω)

in the sense of Definition 1.1 with LsΩ corresponding to K ∈ K(α, λ,Λ) for some given α ∈
(0, 1) and λ,Λ > 0. Then for any W s,2-extension ũ of u to Rn we have (−∆)

t
2 ũ ∈ Lqloc(Ω)

and for any Ω′ ⊂⊂ Ω we have

∥(−∆)
t
2 ũ∥Lq(Ω′) ≤ C

(
∥u∥W s,2(Ω) + ∥f∥(H2s−t,q′ (Ω))∗

)
The constant C depends only s, t, q, α, λ, Λ, Ω, and Ω′.

We can also change the metric in Corollary 1.4 via a diffeomorphism (a setup suggested
by M. Fall in [16])

Corollary 1.5. Let s ∈ (0, 1) and p ≥ 2. Let Ω,Ω2 ⊂⊂ Rn be two open sets and Φ : Ω →
Ω2 a C1,α-diffeomorphism for some α > 0 with strictly positive Jacobian det(DΦ) > 0.
Assume that f ∈ (H2s−t,q′(Ω))∗ and u ∈ W s,2(Ω) is a distributional solution of∫

Ω

∫
Ω

(u(x)− u(y))(φ(x)− φ(y))

|Φ(x)− Φ(y)|n+2s
= ⟨f, φ⟩ ∀φ ∈ C∞

c (Ω),

Then the conclusions of Corollary 1.4 still hold true.
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Corollary 1.6. Let s ∈ (0, 1) and p ≥ 2. Let Ω ⊂⊂ Rn be a smoothly bounded set, and let
Ω1 ⊂⊂ Ω be open. Assume that u ∈ W s,2(Ω) satisfies

(1.8) ⟨LsΩu, φ⟩ =
∫
Ω

∫
Ω

(f(x)− f(y)) (φ(x)− φ(y))

|x− y|n+2s
dx dy

for any φ ∈ C∞
c (Ω1), where LsΩ corresponds to K ∈ K(α, λ,Λ) for some given α ∈ (0, 1)

and λ,Λ > 0. Then if for s < t0 < min{2s, 1}, f ∈ W t0,p(Ω) then for any s ≤ t < t0,
u ∈ W t,p

loc (Ω), and for any Ω1 ⊂ Ω we have the estimate

[u]W t,p(Ω1) ≤ C
(
[f ]W t0,p(Ω) + [u]W s,2(Ω)

)
+ ∥u∥L2(Ω).

We observe that Corollary 1.3 is to some extent an analogue of the local W 2,p-theory for
divergence-form equations such as (1.7). However, there is one major difference: while the
higher fractional differentiability of solutions for local equations of the form (1.7) is closely
related to the smoothness of the coefficient A, for nonlocal equations of the form (1.6) it
is only loosely related to the smoothness of the coefficient K.

Namely, for local equations, if div(A∇u) ∈ Lp and A ∈ Cα, then u ∈ W s,q
loc for any

s < 1 + α and 2 − s − n
p
> −n

q
. That is, the increase in differentiability of the solution

depends on the relative smoothness of the coefficient, the α-Hölder continuity of A. This is,
however, not so much an effect that highlights the differences of “nonlocal vs local”, but it
is rather a structural feature of the nonlocal equation as in Definition 1.1. More precisely,
denote by ∇α := ∇I1−α the Riesz- fractional gradient and by divα := div I1−α the Riesz-
fractional divergence, [42, 37, 43, 40]. Consider the nonlocal equation divα(A∇αu) =
f ∈ Lp. The improvement in differentiability of a solution u heavily depends on the
differentiability of A – indeed there is a one-to-one correspondence relationship between
solutions for equations of type div(A∇u) and divα(A∇αu), cf. [41]. Compare also the
discussion after Theorem 1.7.

In the case of solutions to the nonlocal equation as in Definition 1.1, the increase on
differentiability of u is independent of the measure of Hölder continuity of the coefficient
K. In other words, as long as K is Hölder continuous of any order α ∈ (0, 1), the solution
can be proved to be differentiable up to the order of min{1, 2s}.

This presents one of the distinctions of our work from that of the regularity result obtained
in [10] (which considers L2-regularity). In [10], the almost optimal regularity of solution
to (1.1) corresponding to f1 = 0, and f2 ∈ L2

loc(Rn) is obtained under the assumption that
K ∈ Cs(Rn × Rn). Using this smoothness assumption on K, which allows the application
of the “difference quotient” method of proving higher differentiability, in [10] the solution
u is shown to belong to H2s−ϵ,2

loc (Rn) for any ϵ > 0.

For right-hand sides in L2 we get similar differentiability results to [10], but at most up to
differential order 1. However, we merely assume K to be Cα-Hölder continuous for some
α > 0 possibly much smaller than s, and K only needs to be be positive on the diagonal.
An example for a kernel that belongs to K(α, λ,Λ) but does not fit the framework given
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in [10] is K(x, y) = 2λ+|x|α+|y|α
λ+|x|α+|y|α + 106(sinx+ sin y) |x−y|α

(1+|x−y|α) . Observe that for small λ > 0,
K could be negative off the diagonal {x = y}.

Optimal local elliptic regularity theory for weak solutions to the Dirichlet problem asso-
ciated with the fractional Laplacian is also investigated in [3] by extending the nonlocal
equation to be posed in Rn via a careful cutoff analysis and using optimal regularity esti-
mates for nonlocal equations posed in the whole space. Similar results are also obtained
in [23, 22] by methods from pseudodifferential theory for equations that involve fractional
Laplacian or its pseudodifferential generalizations which corresponds to K that is transla-
tion invariant and C∞.

Let us also mention the recent work [30], where nonlocal equations of the type (1.6) are
studied for translation invariant coefficients, K(x, y) = K(x − y). In this work, without
imposing any smoothness assumption on K(x− y), and using a real-analytic perturbation
argument pioneered in [8] and expanded in [7] to obtain W 1,p-estimates, it was shown that
if f1 ∈ Lploc(Rn), and f2 ∈ L

pn
n+sp

loc (Rn), then any weak solution u to (1.6) is in Hs,p
loc (Rn). This

result in [30] concerns only the higher integrability of (−∆)
s
2u, whereas, in comparison, our

work presents results on both higher differentiability and higher integrability of (−∆)
s
2u

for solutions of nonlocal equations corresponding to coefficients that are not necessarily
translation invariant. Cf. also [31].

We should also mention that for “strong solutions” of nonlocal equations of the type (LsRn+
γI)u = f corresponding to translation invariant coefficients, K(x, y) = K(x−y), and γ > 0
the optimal regularity theory of f ∈ Lp(Rn) =⇒ u ∈ H2s,p(Rn) is obtained in [15]. Similar
to the previous paper discussed, the result in [15] requires no smoothness assumption on
K(x− y) and relies on a priori mean-oscillation estimates and maximal function theorem.

Other types of improved regularity results have also been observed for weak solution of
nonlocal equations of type (1.6) with coefficients K(x, y) that are just measurable, elliptic
and bounded from above. What is called a self-improvement property of such solutions,
which was first obtained in [25] via a generalized Gehring lemma, states that for f1 ∈ Hs+ϵ

and f2 ∈ L
2n

n+2s

loc , a weak solution u ∈ Hs,2(Rn) is in fact in W s+δ,2+δ
loc (Rn). While the

improvement in integrability of the solutions is expected, the incremental improvement
in differentiability without requiring any smoothness assumption on the coefficient K is
unique to nonlocal equations of this type. Intuitively, one can see why such improvement
can be possible. In fact, that for any s1, s2 ∈ (0, 1) with s1 + s2 = 2s we have

⟨LsRnu, φ⟩ ≤∥K∥L∞

(∫
Rn

∫
Rn

|u(x)− u(y)|p

|x− y|n+s1p
dx dy

) 1
p
(∫

Rn

∫
Rn

|φ(x)− φ(y)|p′

|x− y|n+s2p′
dx dy

) 1
p′

That is, there is a possibility that one can distribute derivatives freely on test functions or
the solution. This is clearly false for the local case unless s1 = s2 = 1.∫

Rn

A(x)∂αu ∂αφ ̸≲ ∥A∥L∞ ∥u∥Ḣs1,p ∥φ∥Ḣs2,p
′ .
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The self-improving property of nonlocal equations have also been demonstrated via other
approaches: via functional analytic approach in [1] and via comparison and commutator
estimates in [38]. This kind of δ-differential flexibility of nonlocal equations has also been
observed and crucially used in the regularity theory of geometric equations [36, 4]. For non-
translation invariant kernels K(x, y), under a different Hölder continuity assumption, Fall
proved in [16] Schauder estimates. There he also observed that the gain Hölder regularity
below the differential order 1 is independent of the Hölder regularity of the kernel and
starts to depend on the Hölder continuity of the kernel for differential orders above 1. We
will treat the question of differentiability above 1 in the Sobolev-space context in a future
work [17].

Although the setup of the equation is different, Brasco–Lindgren [5, 6] have obtained a
higher regularity results for solutions of the fractional p-Laplacian. They developed a
discrete differentiation scheme that was successfully used to obtain a higher differentiation
result which essentially says if the right hand side is differentiable then the solution will have
improved differentiability as well. The equation they studied, the fractional p-Laplacian,
amounts to having the kernel K(x, y) = |u(x)−u(y)|p−2

|x−y|(p−2)s in our setting, and the regularity
of this kernel improves as the solution improves in regularity, which is a situation quite
different from ours.

Finally, we comment on our strategy of proving Theorem 1.2. Our argument relies on
comparing the leading order operator in (1.1), LsRn with that of the simpler operator Ls,tdiag
defined as

(1.9) ⟨Ls,tdiagu, φ⟩ :=
∫
Rn

K(z, z)(−∆)
t
2u(z) (−∆)

2s−t
2 φ(z) dz,

for all φ ∈ C∞
c (Rn) and s ≤ t < 1. To facilitate comparison of the operators, let us define

the difference function

Ds,t(u, φ) := ⟨LsRnu, φ⟩ − Γ⟨Ls,tdiagu, φ⟩.

Here Γ is the constant (depending on s, t, and n) such that Ds,t(u, φ) ≡ 0 for all u and φ
admissible whenever the coefficient K is a constant map. In this sense, Ds,t(u, φ) can be
seen as a commutator

∫
[T,K]uφ which is the main intuition in what follows. Indeed we

obtain in Theorem 3.1 a quantitative estimate for Ds,t that shows that in the case of Hölder
continuous K, the commutator is of lower order. Intuitively, the operator Ds,t(u, φ) gives
us the mechanism to ’transfer derivatives’ to K which along the way reduces the number
of derivatives on u and φ. The commutator estimate we state in Theorem 3.1 is similar
in spirit to the Coifman-Rochberg-Weiss commutator [T,K](f) where T is a Calderon-
Zygmund operator. If K is Hölder continuous of order γ, then [T,K](f) can be estimated
by a Riesz potential Iγf of f (i.e. a fractional antiderivative) – this is exactly what we
obtain for our commutator Ds,t in Theorem 3.1. While such a quantitative estimate is
almost obvious for the Coifman-Rochberg-Weiss commutator it is already involved for our
situation. Observe, however that a consequence of the famous work [9] Coifman, Rochberg,
Weiss is that the operator f ↦→ [T,K](f) is a compact operator for K in VMO, [45]. This
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suggests that with some work there could be a version of our theorem for K in VMO (in
a suitable sense yet to be defined).

Let us remark that after the completion of this work, Simon Nowak [32] obtained some
higher differentiability and integrability under merely VMO-assumptions on the kernel K –
for t ∈ [s, t0) where t0 depends on s and p, and in general is strictly smaller that min{2s, 1}.

Once we identify Ds,t(u, φ) as a lower-order operator, we can essentially read the regularity
theory for the operator in Theorem 1.2 from the regularity theory of equations of the type

(1.10) ⟨Ls,tdiagu, φ⟩ =
∫
gφ ∀φ ∈ C∞

c (Rn),

which is relatively easy to handle. Notice that (1.10) is a distributional formulation of the
elliptic equation (−∆)

2s−t
2 (K(z, z)(−∆)

t
2u) = g. Thus, formally, (1.10) is equivalent to

(−∆)
t
2u(x) =

1

K(x, x)
I2s−tg(x),

and thus one expects the estimate

∥(−∆)
t
2u∥Lp(Rn) ≤

1

infxK(x, x)
∥I2s−tg∥Lp(Rn).

In particular, if g ∈ Lq(Rn) for some q ∈ (1,∞) with p := nq
n−(2s−t)q ∈ (1,∞), then by

Sobolev embedding I2s−tg ∈ Lp(Rn); that is, if u solves (1.10) and g ∈ Lq(Rn), then
u ∈ H t,p

loc(Rn) which is the optimal regularity result we expect.

The precise argument is based on a duality argument and a bit tedious, but in the end we
obtain the following result in Section 4.

Theorem 1.7. Let s ∈ (0, 1) and t ∈ (0, 2s). Assume that for some q ∈ (1,∞), (−∆)
t
2u ∈

Lq(Rn) is a distributional solution to∫
Rn

K̄(z)(−∆)
t
2u (−∆)

2s−t
2 φ =

∫
Rn

f1 (−∆)
2s−t

2 φ+

∫
Rn

f2 φ ∀φ ∈ C∞
c (Ω).

Here K̄ : Rn → R is a positive, measurable, and bounded from above and below, i.e.

Λ−1 ≤ K̄(z) ≤ Λ a.e. x ∈ Rn.

Then for any Ω′ ⊂⊂ Ω ⊂⊂ Rn, p ∈ (1,∞), if f1, f2 ∈ Lq(Rn) ∩ Lp(Ω), then (−∆)
t
2u ∈

Lp(Ω′) with

∥(−∆)
t
2u∥Lp(Ω′) ≲ ∥f1∥Lp(Ω) + ∥f2∥Lp(Ω) + ∥f1∥Lq(Rn) + ∥(−∆)

t
2u∥Lq(Rn).

Let us remark that Theorem 1.7 holds with minor modifications for s > 1, for simplicity
we restrict it to the realm we are working in. It might seem surprising at first that in
Theorem 1.7 there is no assumption on the kernel being continuous or belonging to VMO
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– and still we are able to obtain Lp-estimates for any p > 1 if the right-hand side of the
equation is good enough. For classical divergence form equations,

(1.11) div(K̄∇u) = f

if K̄ is only bounded measurable, the best one can hope for is an W 1,2+ε-type estimate (if
f is nice enough) – this is known as a Meyers-type estimate, [28, 29]. To emphasize the
role the type of equation we are studying plays on the regularity result, the reason that we
get a (seemingly) better result in Theorem 1.7 is not because of the fractional order, but
rather of the fact that ∇ and div are non-elliptic operators, while (−∆)

2s−t
2 is invertible.

An argument such as the one described before Theorem 1.7 does not work for solutions
to (1.11), because we cannot invert the div-operator (and indeed for merely bounded
measurable kernels only Meyers’ 2+ ε-estimate remains true). So in Theorem 1.7 we make
crucial use of the fact that the equation involved is structurally substantially different from
(and for our purposes: simpler than) (1.11) – even if s = 1.

As we discussed earlier, a more proper ‘nonlocal analogue’ of the equation (1.11) (in the
sense that it has generally comparable regularity properties as (1.11)) is

(1.12) div2s−t[K̄∇tu] = f

where we recall that ∇t denotes the Riesz-fractional gradient ∇I1−t, and div2s−t = div I1+2s−t.
Indeed, if K̄ is merely bounded, measurable then for solutions to (1.12) only Meyers-type
estimates are known, [2, Section 9]; and one needs K̄ in VMO to conclude Lp-estimates,
[40]. See also [42, 43].

Let us remark on previous arguments that inspired this work: for regularity theory via an
harmonic analysis approach in the local case with an elliptic matrix Aα,β instead of the
scalar A see [24]. This was applied to nonlocal equations different from (1.1) in [40]. Com-
mutator operator similar to Ds,t have also been proved to be very useful in the harmonic
analysis of harmonic-type maps between manifolds [36] and nonlocal equations arising in
topological calculus of variations, [4].

The remainder of this work is as follows: in Section 3 we prove the commutator estimate for
Ds,t. This essentially reduces the desired Calderon-Zygmund theory to that of the theory of
a weighted fractional Laplacian which we treat in Section 4 where the proof of Theorem 1.7.
Since we only obtain local estimates, we will repeatedly employ cutoff arguments that are
obtained in Section 5. In Section 6, the proof of the main result Theorem 1.2 is presented.
And finally, the corollaries of Theorem 1.2 are proved Section 7.

2. Preliminaries and notation

Some notation and convention we will use throughout the paper. Domains of integrals are
always open sets. We use the symbol ⊂⊂ to say compactly contained, e.g. Ω1 ⊂⊂ Ω2 if
Ω1 is compact and Ω1 ⊂ Ω2.
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Constants change from line to line, and generally depend on the dimension. We will
make frequent use of ≲, ≳ and ≈, which denotes inequalities with multiplicative constants
(depending on non-essential data). For example we say A ≲ B if for some constant C > 0
we have A ≤ CB.

We work with fractional Laplacians, Sobolev spaces, and related operators. Below we in-
troduce the notation but refer the interested reader to surveys, e.g. [14, 19], or monographs
[34]. We will use many techniques from harmonic analysis, such as Sobolev inequalities,
embeddings etc. – these are all well-known in the abstract framework of Triebel-Lizorkin or
Besov-space theory – see e.g. in [21]. Generally we like to refer to [33] for the identification
of Triebel-Lizorkin and Besov-spaces with the “usual” function spaces. While we try to
make as little as possible use of such abstract arguments sometimes they are unavoidable.

For s ∈ (0, 2) the fractional Laplacian (−∆)
s
2 , defined in (1.3) via Fourier transform, has

a useful integral representation. Namely, for a function f in the Schwartz class

(−∆)
s
2f(x) = c

∫
Rn

f(x)− f(y)

|x− y|n+s
dy,

where the integral is defined in the principal value sense, although we do not explicitly
state it. For the Riesz potential defined in (1.4), for s ∈ (0, n), we have the representation

(−∆)−
s
2f(x) ≡ Isf(x) = c

∫
Rn

f(y)

|x− y|n−s
dy

for a function f in the Schwartz class. The constants c are different in each definition, they
only play an analytic role when considering stability s → 1±, s → 2− or s → 0+. Below
we will choose it to be c = 2.

For functions f and g in the Schwartz class, the L2-inner product of (−∆)
s
2f(x) and g(x)

can be represented as, for s ∈ (0, 2),

(2.1)
∫
Rn

(−∆)
s
2f(x) g(x)dx =

∫
Rn

∫
Rn

(f(y)− f(x))(g(y)− g(x))

|x− y|n+s
dx dy

see e.g. [35, Proposition 2.36.] or [14]. We also use the Leibniz’s rule for fractional Lapla-
cian frequently: for u, v ∈ W s,2(Rn), one can easily show using the integral formulation of
the fractional Laplacian that

(2.2) (−∆)
s
2 (uv) = u(−∆)

s
2v + v(−∆)

s
2u−

∫
Rn

(u(x)− u(y))(v(x)− v(y))

|x− y|n+s
dy

for almost all x ∈ Rn. See e.g. [3, Proposition 1.5], [11, Appendix A], [12]. Fractional
Laplacians and gradients are related via Riesz transforms and Riesz potentials. The Riesz
transform, R = (R1, . . . ,Rn) := ∇I1, has the Fourier symbol ci ξ|ξ| , and a potential repre-
sentation

Rf(x) =
∫
Rn

x−y
|x−y|

|x− y|n
f(y) dy.
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Riesz transforms are most prominent examples of Calderon-Zygmund operators and are
Lp-bounded. That is, for 1 < p <∞, there exists a constant C = C(n, p) > 0 such that

∥Rf∥Lp ≤ C∥f∥Lp , for all f ∈ Lp.

The now classical Lp-regularity theory for linear second-order PDEs is called Calderon-
Zygmund theory because it (secretly or explicitly) relies on estimates of Calderon-Zygmund-
operators (in most of the cases: the Riesz transforms).

We will frequently use Sobolev inequalities for Riesz potential.

Proposition 2.1 (Sobolev inequalities). Suppose that s ∈ (0, n) and p ∈ (1,∞). Then,

(a) if sp < n, then there exists a constant C = C(s, p, n) > 0 such that

(2.3) ∥Isg∥
L

np
n−sp (Rn)

≤ C ∥g∥Lp(Rn) for any g ∈ Lp(Rn).

In addition, if Ω ⊂ Rn is bounded, then corresponding to any q ∈ [1, np
n−sp ], there is

a constant C = C(s, p, n,Ω) > 0 such that

(2.4) ∥Isg∥Lq(Ω) ≤ C ∥g∥Lp(Rn) for any g ∈ Lp(Rn).

(b) If sp ≥ n and Ω ⊂ Rn is bounded domain, then for any q ∈ [1,∞), and r ∈ [1, n
s
),

there exists a constant C = C(s, p, n,Ω) > 0 such that

(2.5) ∥Isg∥Lq(Ω) ≤ C
(
∥g∥Lp(Rn) + ∥g∥Lr(Rn)

)
.

Proof. The proof of (2.3) can be found in [44]. (2.4) follows easily from (2.3). As for (2.5),
observe that for any q ∈ (1,∞) there exists some θ ∈ (r, n

s
) such that θn

n−sθ > q. Observe
that θ < p so that we have the interpolation inequality

∥g∥Lθ(Rn) ≲ ∥g∥Lp(Rn) + ∥g∥Lr(Rn)

By (2.4) we have

∥Isg∥Lq(Ω) ≲ ∥g∥Lθ(Rn) ≲ ∥g∥Lp(Rn) + ∥g∥Lr(Rn).

□

We also need the following characterization of the dual space of the function spacesHs,p(Rn)
and Ḣs,p(Rn). The homogeneous space Ḣs,p(Rn) is the set of tempered distributions u such
that (−∆)s/2u ∈ Lp(Rn), with the semi-norm ∥(−∆)s/2u∥Lp .

By definition, T ∈ (Hs,p(Rn))∗, the dual space of Hs,p(Rn), if T is linear on φ ∈ C∞
c (Rn)

and
|T [φ]| ≤ Λ

(
∥φ∥Lp(Rn) + ∥(−∆)

s
2φ∥Lp(Rn)

)
∀φ ∈ C∞

c (Rn).

The operator norm of T , ∥T∥, is defined to be the infimum of all such Λ. Similarly,
T ∈

(
Ḣs,p(Rn)

)∗
, if T is linear on φ ∈ C∞

c (Rn) and

|T [φ]| ≤ Λ∥(−∆)
s
2φ∥Lp(Rn) ∀φ ∈ C∞

c (Rn).
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Proposition 2.2. (Dual Spaces)

(1) If T ∈ (Hs,p(Rn))∗, then there exists g1, g2 ∈ Lp
′
(Rn),

∥g1∥Lp′ (Rn) + ∥g2∥Lp′ (Rn) ≈ ∥T∥

such that

T [φ] =

∫
g1(−∆)

s
2φdx+

∫
g2φdx ∀φ ∈ C∞

c (Rn).

(2) If T ∈
(
Ḣs,p(Rn)

)∗
, then there exists g ∈ Lp

′
(Rn),

∥g∥Lp′ (Rn) ≈ ∥T∥

such that

T [φ] =

∫
g(−∆)

s
2φdx ∀φ ∈ C∞

c (Rn).

Proof. Let T ∈ (Hs,p(Rn))∗. Denoting ⟨ξ⟩ :=
√
1 + |ξ|2, using the equivalence of the norms

(cf. [44, Chapter V§3])

∥f∥Lp(Rn) + ∥(−∆)
s
2f∥Lp(Rn) and ∥F−1(⟨ξ⟩sF(f))∥Lp(Rn)

we have
|T (φ)| ≤ ∥T∥∥F−1(⟨ξ⟩sF(φ))∥Lp , for all φ ∈ C∞

c (Rn).

We then introduce the linear function T̃ : Lp(Rn) → R defined by

T̃ (v) = T (F−1(⟨ξ⟩−sF(v))).

Then from the estimate for T , we have that |T̃ (v)| ≤ ∥T∥∥v∥Lp for all v ∈ Lp(Rn). By the
characterization of the dual of Lp spaces we have u0 ∈ Lp

′
(Rn) such that

T̃ (v) =

∫
Rn

u0(x)v(x)dx, for all v ∈ Lp(Rn).

Define now g = F−1(⟨ξ⟩sF(u0)). Then g ∈ H−s,p′(Rn) and for any φ ∈ S, the Schwartz
space, we have by applying Plancherel’s theorem repeatedly that

⟨g, φ⟩ = ⟨F−1(⟨ξ⟩sF(u0)),F1(Fφ)⟩ = ⟨⟨ξ⟩sF(u0),Fφ⟩
= ⟨F(u0), ⟨ξ⟩s(Fφ)⟩
= ⟨u0,F−1(⟨ξ⟩s(Fφ))⟩ = T̃ (F−1(⟨ξ⟩s(Fφ))) = T (φ)

We next characterize g further. Using [44, Lemma 2 of Chapter 5, §3], that describes the
relationship between Riesz and Bessel potentials, there exists a pair of finite measures νs
and λs so that

g = F−1(⟨ξ⟩sF(u0)) = νs ∗ u0 + F−1(|ξ|sF(λs ∗ u0))
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Define g1 = νs ∗ u0 and g2 = λs ∗ u0. Then both g1 and g2 are in Lp
′
(Rn). Moreover, by

applying Plancherel’s theorem again

T (φ) = ⟨g, φ⟩ = ⟨g1, φ⟩+ ⟨F−1(|ξ|sF(g2)), φ⟩ = ⟨g1, φ⟩+ ⟨g2,F−1(|ξ|sF(φ))⟩
as desired.

As for the second part, observe that since Ḣs,q(Rn) ≈ F s
q,2(Rn) we have that (Ḣs,q(Rn))∗ ≈

F−s
q′,2(Rn) ([18, Remark 5.14]). Since Is is an isomorphism from F−s

q′,2(Rn) to F 0
q′,2 ≈ Lq

′ ,
see [33, §2.6, Proposition 2, p. 95], we find that for any (Ḣs,q(Rn))∗ there must be g ∈
Lq

′
(Rn) with ∥g∥Lq′ (Rn) ≈ ∥T∥(Ḣs,q(Rn))∗ such that (−∆)

s
2 g[φ] = T [φ], that is T [φ] =∫

Rn(−∆)
s
2 g φ. □

Let us also mention two technical results that we will employ frequently. They fall under
the notion of “cutoff argument”, and the techniques are mainly based on estimating nonlocal
quantities for functions with disjoint support.

Lemma 2.3. Let Ω1 ⊂⊂ Ω2 ⊂⊂ Rn, and u, v ∈ Hs,2(Rn) with u ≡ v in Ω2, s ∈ [0, 1).

Then for any p ∈ (1,∞) we have

∥(−∆)
s
2u∥Lp(Ω1) ≲ ∥(−∆)

s
2v∥Lp(Ω2) + ∥u∥Lp(Rn) + ∥v∥Lp(Rn).

Proof. Let η ∈ C∞
c (Ω2) with η ≡ 1 in a neighborhood of Ω1.

We have
u = ηv + (1− η)u.

Then
χΩ1(−∆)

s
2u = χΩ1(−∆)

s
2 (ηv) + χΩ1

(
(−∆)

s
2 (1− η)u

)
,

and by the usual disjoint support argument⏐⏐χΩ1

(
(−∆)

s
2 (1− η)u

)⏐⏐ (x) ≲ ∫
|x−y|≳1

|x− y|−n−s|u(y)| dy

By Young’s inequality for convolutions we conclude

∥χΩ1

(
(−∆)

s
2 (1− η)u

)
∥L∞ ≲ ∥u∥Lp(Rn).

And thus in particular,

∥χΩ1

(
(−∆)

s
2 (1− η)u

)
∥Lp ≲ ∥u∥Lp(Rn).

Now we use commutator notation [T,m](f) = T (mf)−mTf ,

(−∆)
s
2 (ηv) = η(−∆)

s
2v + [(−∆)

s
2 , η](v).

Since s ∈ (0, 1) we can use the Coifman–McIntosh–Meyer commutator estimate, e.g. in
the formulation in [26, Theorem 6.1.] or the Leibniz rule, [26, Theorem 7.1.], and conclude
that

∥[(−∆)
s
2 , η](v)∥Lp(Ω1) ≲ ∥η∥Lip ∥v∥Lp(Rn).
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This concludes the proof. □

Proposition 2.4. Suppose that η1, η2 ∈ C∞
c (Rn), and η2 ≡ 1 in the neighborhood of the

support of η1. Suppose that p ∈ (1,∞), τ ∈ (0, 2) and

r >
np

n+ τp
> 1 if τ ≤ 1 and r >

np

n+ p
> 1 if τ ≥ 1

Then we have the following estimates which holds for any ψ ∈ C∞
c (Rn) with suppψ ⊂ {x :

η1(x) = 1}.

(a) There exists a constant C > 0 such that

(2.6) ∥(1− η2)(−∆)
τ
2 ((1− η1)I

τψ) ∥Lr′ (Rn) ≤ C∥ψ∥Lp′ (Rn).

(b) For any bounded set Σ ⊂⊂ Rn, there exists a constant C = C(Σ) such that

(2.7) ∥(−∆)
τ
2 ((1− η1)I

τψ) ∥Lr′ (Σ) ≤ C∥ψ∥Lp′ (Rn).

In either case the constant C may depend on r, τ, p, n, and on η1, η2, Σ, but not on ψ.

Proof. We prove part (b) first. Fix a large ball B ⊂⊂ Rn that compactly contains Σ.
Since (−∆)

τ
2 Iτψ = ψ, it follows from Leibniz’s rule for fractional Laplacian, (2.2), that for

x ∈ Rn,

(−∆)
τ
2 ((1− η1)I

τψ) (x)

=[(−∆)
τ
2 (1− η1)] I

τψ(x) + (1− η1)ψ(x)  
=0

+c

∫
Rn

(η1(x)− η1(y))(I
τψ(x)− Iτψ(y))

|x− y|n+τ
dy

since the support of 1− η1 and ψ do not intersect. The right-hand side can be rewritten as

(−∆)
τ
2 ((1− η1)I

τψ) (x)

=− [(−∆)
τ
2 η1 ]I

τψ(x) + c

∫
B

(η1(x)− η1(y))(I
τψ(x)− Iτψ(y))

|x− y|n+τ
dy

+ c

∫
Rn\B

(η1(x)− η1(y))(I
τψ(x)− Iτψ(y))

|x− y|n+τ
dy.

We will estimate each term in the right-hand side. We begin with the first one. To that
end, since η1 ∈ C∞

c (Rn), (−∆)
τ
2 η1 ∈ L∞(Rn). Moreover, in view of Proposition 2.1, for

any 1 <r′ < np′

n−τp′

(2.8) ∥Iτψ∥Lr′ (Σ) ≲ ∥ψ∥Lp′ (Rn).

Notice also that since we assumed np
n+τp

> 1, we have n > τp′. Thus we have

∥(−∆)
τ
2 η1 I

τψ∥Lr′ (Σ) ≲ ∥ψ∥Lp′ (Rn).

For the second term, we use, see e.g. [39, Proposition 6.6.], that for any α < 1,

|u(x)− u(y)| ≲ |x− y|α
(
M(−∆)

α
2 u(x) +M(−∆)

α
2 u(y)

)
,
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where M denotes the Hardy-Littlewood maximal function. Then, applying this inequality
for u = Iτψ, by the Lipschitz continuity of η1, for any x ∈ Σ (observe that also B is
bounded) for any α ∈ (0,min{τ, 1}) with 1 + α− τ > 0, we get∫

B

(
η1(x)− η1(y)

)
(Iτψ(x)− Iτψ(y))

|x− y|n+τ
dy

≲ C

∫
B

|x− y|1+α−τ−n
(
MIτ−αψ(x) +MIτ−αψ(y)

)
dy

≲ C
(
MIτ−αψ(x) + I1+α−τ

(
MIτ−αψ

)
(x)
)
,

where C depends only on ∥η1∥Lip , α, 2s, t, diam (B), and diam (Σ). If τ ≤ 1, 1 + α− τ > 0

is equivalent to α > 0. In that case, whenever 1 <r′ < np′

n−τp′ we can choose α above so that
r′ < np′

n−(τ−α)p′ . If τ ≥ 1, we need to choose α > τ −1 > 0, so whenever 1 <r′ < np′

n−p′ we can
find an α satisfying this condition so that 1 <r′ < np′

n−(τ−α)p′ . Now to estimate the Lr′ norm

of the map x ↦→
∫
B

(
η1(x)−η1(y)

)
(Iτψ(x)−Iτψ(y))

|x−y|n+τ dy we estimate the norms of MIτ−αψ(x) and
I1+α−τ (MIτ−αψ) (x) separately. To that end, using maximal function theorem first and
then Proposition 2.1 we have

∥MIτ−αψ∥Lr′ (Σ) ≲ ∥MIτ−αψ∥
L

np′
n−(τ−α)p′ (Σ)

≲ ∥Iτ−αψ∥
L

np′
n−(τ−α)p′ (Rn)

≲ ∥ψ∥Lp′ (Rn).

Also, using Proposition 2.1 first and then maximal function we have

∥I1+α−τ
(
MIτ−αψ

)
∥Lr′ (Σ) ≲ ∥MIτ−αψ∥Lp′ (Rn) ≲ ∥Iτ−αψ∥Lp′ (Rn) ≲ ∥ψ∥

Lp′∗ (Rn)

where p′∗ = np′

n+(τ−α)p′) ≤ p′. Finally notice that since ψ is compactly supported, we have
∥ψ∥

Lp′∗ (Rn)
≲ ∥ψ∥Lp′ (Rn). In summary, we have shownx ↦→

∫
B

(
η1(x)− η1(y)

)
(Iτψ(x)− Iτψ(y))

|x− y|n+τ
dy


Lr′ (Σ)

≲ ∥ψ∥Lp′ (Rn).

It remains to estimate for x ∈ Σ,⏐⏐⏐⏐⏐
∫
Rn\B

(
η1(x)− η1(y)

)
(Iτψ(x)− Iτψ(y))

|x− y|n+τ
dy

⏐⏐⏐⏐⏐ ≲
∫
Rn\B

Iτ |ψ|(x) + |Iτ |ψ|(y)
1 + |y|n+τ

dy

≲ Iτ |ψ|(x) + ∥Iτ |ψ|∥L∞(Rn\B).

The first term we have already estimated, (2.8). For the second term, observe that by the
integral representation of Iτ and the support of ψ, we have

∥Iτ |ψ|∥L∞(Rn\B) ≲ ∥ψ∥L1(Rn) ≲ ∥ψ∥Lp′ (Rn).



CALDERON-ZYGMUND TYPE ESTIMATES FOR NONLOCAL PDE 17

Thus, for any 1 <r′ < np′

n−τp′ ,x ↦→
∫
Rn\B

(
η1(x)− η1(y)

)
(Iτψ(x)− Iτψ(y))

|x− y|n+τ
dy


Lr′ (Rn)

≲ ∥ψ∥Lp′ (Rn).

This concludes the proof of part (b).

Next we prove part (a). As before, we split as

(−∆)
τ
2 ((1− η1)I

τψ)

=
(
(−∆)

τ
2 (1− η1)

)
Iτψ + (1− η1)ψ  

=0

+c

∫
Rn

(η1(·)− η1(y))(I
τψ(·)− Iτψ(y))

| · −y|n+τ
dy

Observe that by the disjoint support of ψ and 1− η2,

∥(1− η2)I
τψ∥L∞ ≲ ∥ψ∥L1(Rn) ≲ ∥ψ∥Lp′ (Rn).

Moreover, (−∆)
τ
2 (1 − η1) = (−∆)

τ
2 η1 ∈ L1 ∩ L∞(Rn) since η1 ∈ C∞

c (Rn). Consequently,
for any r′ ∈ [1,∞],

∥(1− η2)
(
(−∆)

τ
2 (1− η1)

)
Iτψ∥Lr′ (Rn) ≲ ∥ψ∥Lp′ (Rn).

On the other hand, for x ∈ supp (1 − η2) and y ∈ supp (η1) we have η1(x) = 0 and
|x− y| ≳ 1 + |x|. Thus,⏐⏐⏐⏐⏐(1− η2(x))

∫
Rn

(
η1(x)− η1(y)

)
(Iτψ(x)− Iτψ(y))

|x− y|n+τ
dy

⏐⏐⏐⏐⏐
≲

1

1 + |x|n+τ
|1− η2(x)|

(
|Iτψ(x)|+

∫
Ω

|Iτψ(y)|dy
)

≲
1

1 + |x|n+τ
|1− η2(x)| ∥ψ∥L1(Rn)

≲
1

1 + |x|n+τ
∥ψ∥Lp′ (Rn).

The right-hand side is now integrable for any r′ ≥ 1, and (2.6) is established.

□

3. A commutator estimate

As we described in the introduction, the crucial idea of this work is to compare the two
differential operators: LsRn defined by, for s ∈ (0, 1),

(3.1) ⟨LsRnu, φ⟩ =
∫
Rn

∫
Rn

K(x, y)
(u(x)− u(y)) (φ(x)− φ(y))

|x− y|n+2s
dx dy
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and Ls,tdiag defined by, for t ∈ [s, 2s), to the operator

(3.2) ⟨Ls,tdiagu, φ⟩ =
∫
Rn

K(z, z)(−∆)
t
2u(z) (−∆)

2s−t
2 φ(z) dz,

for u and φ in appropriate spaces. Observe that if K is constant, then the two operators
are the same up to a multiplicative constant. Indeed, for t ∈ [s, 2s)∫

Rn

∫
Rn

(u(x)− u(y)) (φ(x)− φ(y))

|x− y|n+2s
dx dy = C

∫
Rn

(−∆)
2s
2 uφdx = C

∫
Rn

(−∆)
t
2u(−∆)

2s−t
2 φdx.

The first equality follows from the characterization of the fractional Laplacian, (2.1) and
Fubini’s theorem. The second “integration by parts” equality follows from the Fourier
transform characterization of fractional Laplacian, (1.3) and Plancherel’s theorem.

In this section, we prove a fundamental estimate for Ds,t(u, φ), introduced as,

(3.3) Ds,t(u, φ) = ⟨Ls,tdiagu, φ⟩ − Γ⟨LsRnu, φ⟩

that establishes the difference LsRn − ΓLs,tdiagu is a lower order differential operator when
K is bounded and uniformly Hölder continuous. In (3.3), Γ is the universal constant that
ensures that Ds,t(u, φ) = 0 whenever K is a constant kernel,

This allows us to obtain estimates for the operator in (3.1) from estimates for the operator
(3.2), for which corresponding estimates are relatively easy to obtain as we will see in
Section 4. The main theorem of this section is the following.

Theorem 3.1. Let s ∈ (0, 1), t ∈ (0, 1) such that 2s − t ∈ (0, 1). Suppose also that α ∈
(0, 1) and Λ > 0 are given. Then, there exist constants σ0 ∈ (0, α] and Γ = Γ(n, s, t) ∈ R
such that the following holds. Let K = K(x, y) ∈ C(α,Λ), where

C(α,Λ) = {K : Rn × Rn → R : |K(x, y)| ≤ Λ, and (1.2) is satisfied}

Then for all σ ∈ (0, σ0) and all ε ∈ (0, σ
4
) there exists a constant C = C(Λ, σ, ε) such that,

|Ds,t(u, φ)| ≤ C

∫
Rn

Iσ−ε|(−∆)
t−ε
2 u|(x) |(−∆)

2s−t
2 φ|(x) dx

and

|Ds,t(u, φ)| ≤ C

∫
Rn

Iσ−ε|(−∆)
t
2u|(x) |(−∆)

2s−t−ε
2 φ|(x) dx

for all u ∈ H t,p(Rn) and any φ ∈ C∞
c (Rn). The constant σ0 ∈ (0, α] depends on s and t in

the following way: for any θ > 0, if

s ∈ (θ, 1− θ), t ∈ (θ, 1− θ), 2s− t ∈ (θ, 1− θ)

then σ0 can be chosen dependent only on θ and α (but not further depending on s and t).

Observe that K(α, λ,Λ) ⊂ C(α,max{Λ, 1
λ
}), so Theorem 3.1 is applicable in our situation.
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3.1. Some preliminary estimates. In this subsection we present some preliminary es-
timates that will be used in the proof of Theorem 3.1.

First we observe that the exponent of the Hölder continuity of K can be chosen to be very
small, namely

Lemma 3.2. Let 0 < α < β and Λ > 0 then there exists Λ′ > 0 such that whenever
K ∈ C(β,Λ) then K ∈ C(α,Λ′)

This is an easy exercise which we leave to the reader.

Secondly we recall a quite useful application of the fundamental theorem of calculus.

Lemma 3.3. For any r ∈ R, there exists a constant C = C(r) such that the following
holds. Let a, b ∈ Rn\{0} with |a− b| ≲ min{|a|, |b|}. Then for any σ ∈ [0, 1] we have

||a|r − |b|r| ≤ C |a− b|σ min
{
|a|r−σ, |b|r−σ

}
.

Proof. We may assume that r ̸= 0 otherwise the inequality it trivial.

If |a− b| ≲ min{|a|, |b|}, then |a| ≈ |b| (with a uniform constant), that is

min
{
|a|r−σ, |b|r−σ

}
≈ |a|r−σ.

Also for any σ ∈ [0, 1] we have

|a− b| ≲ |a− b|σ|a|1−σ.
Using the above inequality, to complete the proof it suffices to show that

||a|r − |b|r| ≲ |a− b| |b|r−1.

To that end, dividing by |b|r, the above is equivalent to showing⏐⏐⏐⏐⏐⏐⏐⏐ a|b|
⏐⏐⏐⏐r − ⏐⏐⏐⏐ b|b|

⏐⏐⏐⏐r⏐⏐⏐⏐ ≲ ⏐⏐⏐⏐ a|b| − b

|b|

⏐⏐⏐⏐
Observe that since |a| ≈ |b|, there are uniform constants 0 < R1 < 1 < R2 < ∞ such that
both a

|b| and b
|b| are in A := BR2(0)\BR1(0). So, the problem is now reduced to showing

||u|r − |v|r| ≤ C |u− v| ∀u, v ∈ A.

Since A is an annulus, for any u, v ∈ A there exists a curve γ ⊂ A with γ(0) = u, γ(1) = v,
|γ′| ≈ |u− v| – with constants depending only on r1 and r2 (and thus uniform). Set

η(t) := |γ(t)|α.
Then, the fundamental theorem of calculus implies

||u|α − |v|α| ≤ sup
t∈[0,1]

|η′(t)| ≲ |γ(t)|α−1|γ′(t)| ≲ |u− v|.

□

The following Lemma was essentially proven in [36, Proposition 6.3.].
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Lemma 3.4. Let m ∈ (0, n), α ∈ (0, 1), and λ,Λ > 0 are given. Then for any β such that

α < β < min{m+ α, 1}
and any K ∈ C(α,Λ) we have

|K(x, y)−K(z, z)|
⏐⏐|x− z|m−n − |y − z|m−n⏐⏐ ≲ |x−y|β

(
|x− z|m+α−β−n + |y − z|m+α−β−n) .

Proof. We first observe that we can estimate the difference |K(x, y)−K(z, z)| in three
different ways

(3.4) |K(x, y)−K(z, z)| ≲

⎧⎪⎨⎪⎩
|x− z|α + |y − z|α

|x− y|α + |x− z|α

|x− y|α + |y − z|α.

The first one can be obtained by adding and subtracting K(x, z) :

|K(x, y)−K(z, z)| ≤ |K(x, y)−K(x, z)|+ |K(x, z)−K(z, z)| ≲ |y − z|α + |x− z|α.
The second and third forms are obtained in similar ways as

|K(x, y)−K(z, z)| ≤ |K(x, y)−K(x, x)|+ |K(x, x)−K(x, z)|+ |K(x, z)−K(z, z)|
≲|x− y|α + 2|x− z|α,

and
|K(x, y)−K(z, z)| ≤ |K(x, y)−K(y, y)|+ |K(y, y)−K(y, z)|+ |K(y, z)−K(z, z)|

≲|x− y|α + 2|y − z|α.

The entire expression |K(x, y)−K(z, z)| ||x− z|m−n − |y − z|m−n| can now be estimated
by considering these three cases. To that end, first, if |x−y| < 1

2
|x−z| or |x−y| < 1

2
|y−z|

then
|x− z| ≈ |y − z|,

and thus by the mean value theorem, Lemma 3.3,⏐⏐|x− z|m−n − |y − z|m−n⏐⏐ ≲ |x− y| |x− z|m−1−n.

So we take the first option in the estimate for K (3.4) and have under our assumptions on
x, y, z (since β ≤ 1

|K(x, y)−K(z, z)|
⏐⏐|x− z|m−n − |y − z|m−n⏐⏐ ≲ |x−y||x−z|m+α−1−n ≲ |x−y|β|x−z|m+α−β−n

Second, if |x− y| ≥ 1
2
|x− z| and |x− y| ≥ 1

2
|y − z| and |x− z| < |y − z|, we have⏐⏐|x− z|m−n − |y − z|m−n⏐⏐≲|x− z|m−n.

In this case we choose the second estimate for the estimate of K (3.4) and obtain (since
β ∈ (α,m+ α),

|K(x, y)−K(z, z)|
⏐⏐|x− z|m−n − |y − z|m−n⏐⏐ ≲|x− y|α |x− z|m−n + |x− z|α+m−n

≲|x− y|β |x− z|α+m−β−n.
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Finally, if |x − y| ≥ 1
2
|x − z| and |x − y| ≥ 1

2
|y − z| but |x − z| ≥ |y − z|, we have by a

symmetric argument

|K(x, y)−K(z, z)|
⏐⏐|x− z|m−n − |y − z|m−n⏐⏐ ≲|x− y|β |y − z|α+m−β−n.

□

Lemma 3.5. Let λ,Λ > 0 be given. Suppose also that s, t ∈ (0, 1) with 2s − t ∈ (0, 1) in
the following form: assume that for some θ ∈ (0, 1),

(3.5) s ∈ (θ, 1− θ), t ∈ (θ, 1− θ), 2s− t ∈ (θ, 1− θ).

Then there exists α0 = α0(θ) such that for any α ∈ (0, α0), ε ∈ (0, α
3
), and K ∈ C(α,Λ)

the following holds. For i, j = 1, 2 set

M ε
i,j(z1, z2) =

∫
Rn

∫
Rn

|K(x, y)−K(zj, zj)| |κεi (x, y, z1, z2)| dx dy.

where

κϵ1(x, y, z1, z2) :=
(|x− z1|t−ε−n − |y − z1|t−ε−n) (|x− z2|2s−t−n − |y − z2|2s−t−n)

|x− y|n+2s
,

κε2(x, y, z1, z2) :=
(|x− z1|t−n − |y − z1|t−n) (|x− z2|2s−t−ε−n − |y − z2|2s−t−ε−n)

|x− y|n+2s

Then for any f, g ∈ C∞
c (Rn),∫

Rn

∫
Rn

f(z1) g(z2)M
ϵ
i,j(z1, z2)dz1dz2 ≤ C(Λ, θ)

∫
Rn

Iα−ε|f |(x) |g|(x) dx, i, j = 1, 2.

Proof. We prove the lemma by taking

(3.6) α0 :=
1

10
min{θ, 1− θ}.

To that end, assume that α < α0, ε < α
3

from now on. We will only consider the case of
M ε

12; the estimate of the other M ε
ij is analogous. To simplify notation we write κϵ := κϵ1

and M ε :=M ε
12.

We begin writing M ϵ(z1, z2) as

M ϵ(z1, z2) ≤
3∑

i,j=1

∫∫
Oi∩Pj

|K(x, y)−K(z2, z2)| |κϵ(x, y, z1, z2)| dx dy

=:
3∑

i,j=1

J (i,j)
ϵ (z1, z2),

where the regions of integration are given by
O1 = {(x, y) : |x− y| ≲ min{|x− z1|, |y − z1|}}
O2 = {(x, y) : |x− z1| ≲ min{|y − z1|, |x− y|}}
O3 = {(x, y) : |y − z1| ≲ min{|x− z1|, |x− y|}}
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and
P1 = {(x, y) : |x− y| ≲ min{|x− z2|, |y − z2|}}
P2 = {(x, y) : |x− z2| ≲ min{|y − z2|, |x− y|}}
P3 = {(x, y) : |y − z2| ≲ min{|x− z2|, |x− y|}}

Then we have∫
Rn

∫
Rn

f(z1) g(z2)M
ϵ(z1, z2)dz1dz2 =

∑
i,j

∫
Rn

∫
Rn

f(z1) g(z2)J
i,j
ϵ (z1, z2)dz1dz2.

We will estimate the integral that involves each of these terms.

Estimating terms involving J (1,1)
ϵ , J

(1,2)
ϵ , J

(1,3)
ϵ and J (2,1)

ϵ :

We begin by noting that for (x, y) ∈ O1, from Lemma 3.3 by taking r = t − ϵ − n for ϵ
small, for any 0 ≤ σ ≤ 1 and any (x, y)⏐⏐|x− z1|t−ε−n − |y − z1|t−ε−n

⏐⏐ ≲ |x− y|σ
(
|x− z1|t−ε−σ−n + |y − z1|t−ε−σ−n

)
.

Moreover, from Lemma 3.4 by taking m = 2s−t, α < α0, for any β < 2s−t+α < 1− 9θ
10
< 1

and (x, y)

|K(x, y)−K(z2, z2)|
(
|x− z2|2s−t−n − |y − z2|2s−t−n

)
≲ |x− y|β

(
|x− z2|2s−t+α−β−n + |y − z2|2s−t+α−β−n

)
.

Combining the above two inequalities we obtain that for 0 < ϵ < α
3
, for any β < 2s− t+α,

any σ ∈ [0, 1] and any (x, y) ∈ O1

|K(x, y)−K(z2, z2)| |κϵ(x, y, z1, z2)|
≲ |x− y|−2s−n+β+σ(|x− z1|t−ϵ−σ−n + |y − z1|t−ϵ−σ−n)

× (|x− z2|2s−t+α−β−n + |y − z2|2s−t+α−β−n)
(3.7)

Now for (x, y) ∈ O1 ∩ P1, (3.7) reduces to

|K(x, y)−K(z2, z2)| |κ(x, y, z1, z2)| ≲ |x− y|β+σ−2s−n |x− z2|2s−t+α−β−n |x− z1|t−ε−σ−n

after noting that in this case |x− z1| ≈ |y− z1| and |x− z2| ≈ |y− z2|. In view of (3.5) and
(3.6), we can choose β slightly smaller than 2s − t + α and σ slightly smaller than t − ε
and still ensure β + σ > 2s+ α− ε > 2θ > 0. For each x,∫

{|x−y|≲min{|x−z1|,|x−z2|}}
|x− y|β+σ−2s−n dy ≲ |x− z1|σ−t+

α
2 |x− z2|β−2s+t−α

2

and therefore,∫∫
O1∩P1

|K(x, y)−K(z2, z2)| |κ(x, y, z1, z2)|dx dy ≲
∫
Rn

|x− z2|
α
2
−n |x− z1|

α
2
−ε−n dx.
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From this we conclude that∫∫
Rn

J (1,1)
ε (z1, z2) f(z1) g(z2)dz1dz2 ≲

∫
Rn

I
α
2
−ε|f |(x) I

α
2 |g|(x) dx

=

∫
Rn

Iα−ε|f |(x) |g|(x) dx,

where the last “integration by parts”-equality follows by an application of Plancherel’s
theorem.

For (x, y) ∈ O1 ∩ P2, (3.7) reduces to

|K(x, y)−K(z2, z2)| |κ(x, y, z1, z2)| ≲ |x− y|β+σ−2s−n |x− z2|2s−t+α−β−n |x− z1|t−ε−σ−n

for our choice of β < 1 , σ ∈ (0, t − ε). In view of (3.5) and (3.6), in fact we choose
β := 2s− t+ α/2 > θ > α to get the estimate that

|K(x, y)−K(z2, z2)| |κ(x, y, z1, z2)| ≲ |x− y|σ−t+α/2−n |x− z2|
α
2
−n |x− z1|t−ε−σ−n.

If σ is close enough to t− ε and since ε < α/2, we can integrate∫
|x−y|≲|x−z1|

|x− y|σ−t+α/2−n |x− z2|
α
2
−n |x− z1|t−ε−σ−ndy ≲ |x− z2|

α
2
−n |x− z1|α/2−ε−n

Arguing in the previous case, we obtain∫∫
Rn

J (1,2)
ε (z1, z2) f(z1) g(z2)dz1dz2 ≲

∫
Rn

I
α
2
−ε|f |(x) I

α
2 |g|(x) dx

=

∫
Rn

Iα−ε|f |(x) |g|(x) dx,

For (x, y) ∈ O1 ∩ P3 or (x, y) ∈ O2 ∩ P1 and (3.7) reduces to

|K(x, y)−K(z2, z2)| |κ(x, y, z1, z2)| ≲ |x− y|β+σ−2s−n |y − z2|2s−t+α−β−n |y − z1|t−ε−σ−n

As before we choose β := 2s − t + α/2 (which is greater than α) to obtain that when
(x, y) ∈ O1 ∩ P3∫

|x−y|≲|y−z1|
|x− y|σ−t+α/2−n |y − z2|

α
2
−n |y − z1|t−ε−σ−ndx ≲ |y − z2|

α
2
−n |y − z1|α/2−ε−n,

from which, we have∫∫
R2n

J (1,3)
ϵ (z1, z2)f(z1) g(z2)dz1dz2 ≲

∫
Rd

I
α
2
−ϵ(|f |)(y)I

α
2 (|g|)(y)dy =

∫
Rn

Iα−ϵ|f |(y)|g|(y)dy.

For (x, y) ∈ O2 ∩ P1, we have∫
|x−y|≲|y−z2|

|x− y|σ−t+α/2−n |y − z2|
α
2
−n |y − z1|t−ε−σ−ndx ≲ |y − z2|σ−t+α−n |y − z1|t−ϵ−σ−n

From this it follows that∫∫
R2n

J (2,1)
ϵ (z1, z2)f(z1)g(z2)dz1dz2 ≲

∫
Rn

I t−ε−σ|f |(y) Iσ−t+α|g|(y) dy,
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and integration by parts leads to the same estimate.

Estimating J (2,2)
ε :

On the one hand, for (x, y) ∈ O2 ∩ P2, we have (since |x− z2|α ≲ |y − z2|α),

|K(x, y)−K(z2, z2)| ≲ |x− z2|α + |y − z2|α ≲ |y − z2|α.

On the other hand, |y − z1|−1 ≲ |x− z1|−1 and |y − z2|−1 ≲ |x− z2|−1, and thus

κε(x, y, z1, z2) ≲
|x− z1|t−ε−n |x− z2|2s−t−n

|x− y|n+2s
.

This leads to
|K(x, y)−K(z2, z2)| |κε(x, y, z1, z2)|

≲|x− z1|t−ε−n |x− z2|2s−t−n |y − z2|α |x− y|−2s−n

≲|x− z1|t−ε−n |x− z2|2s−t−n |x− y|α−2s−n,

where in the last step we used that |x− y| ≈ |y − z2|.

In view of (3.5) and (3.6), α− 2s < α− 2θ < 0, and we observe that∫
{y:(x,y)∈O2∩P2}

|x− y|α−2s−n dy ≲
∫
{y:|x−y|≳max{|x−z1|,|x−z2|}}

|x− y|α−2s−n dy

≲min
{
|x− z1|α−2s, |x− z2|α−2s

}
≲|x− z1|

α
2
−t |x− z2|

α
2
+t−2s.

As a consequence for each x∫
{y:(x,y)∈O2∩P2}

|K(x, y)−K(z2, z2)| |κε(x, y, z1, z2)|dy ≲ |x− z1|
α
2
−ε−n |x− z2|

α
2
−n

That is, in this particular case∫∫
R2n

J (2,2)
ε (z1, z2)f(z1)g(z2)dz1dz2 ≲

∫
Rn

I
α
2
−ε|f |(x) I

α
2
−ε|g|(x) dx

=

∫
Rn

Iα−ε|f |(x) |g|(x) dx.

Estimating J (2,3)
ε :

Since by (3.5) and (3.6) α
3
< θ − 1

10
θ < t − ε, α

3
< θ < 2s − t and ε < α

3
, we have for any

(x, y) ∈ O2 ∩ P3 that

|K(x, y)−K(z2, z2)| |κε(x, y, z1, z2)| ≲|x− z1|t−ε−n |y − z2|2s−t−n |x− z2|α |x− y|−2s−n

≲|x− z1|
α
3
−n |y − z2|

α
3
−n |x− y|2s−t−

α
3
+t−ε−α

3
+α−2s−n

≈|x− z1|
α
3
−n |y − z2|

α
3
−n |x− y|

α
3
−ε−n
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Thus in this case, we have that∫∫
R2n

J (2,3)
ε (z1, z2)f(z1)g(z2)dz1dz2 ≲

∫
Rn

I
α
3 |f |(x)I

α
3
−ε (I α

3 |g|
)
(x) =

∫
Rn

Iα−ε|f |(x) |g|(x) dx,

where we use the semigroup property of the Riesz potential.

Estimating J (3,1)
ε :

Here we get for any β < 1, β < 2s− t+α (in view of (3.5) and (3.6) α < θ < 1− (2s− t)),
for any (x, y) ∈ O3 ∩ P1

|K(x, y)−K(z2, z2)| |κε(x, y, z1, z2)| ≲|y − z1|t−ε−n |x− z2|α+2s−t−β−n|x− y|β−2s−n

≲|y − z1|
α
3
−n |x− z2|α+2s−t−β−n|x− y|β+t−ε−

α
3
−2s−n

Taking β := 2s− t+ 2α
3

the above inequality simplifies to

|K(x, y)−K(z2, z2)| |κε(x, y, z1, z2)| ≲|y − z1|
α
3
−n |x− z2|

α
3
−n|x− y|

α
3
−ε−n.

Since ε < α
3
, integrating we find that∫∫

R2n

J (3,1)
ε (z1, z2)f(z1)g(z2)dz1dz2 ≲

∫
Rn

I
α
3
−εI

α
3 |f |(x)I

α
3 |g|(x) =

∫
Rn

Iα−ε|f |(x) |g|(x) dx.

Estimating J (3,2)
ε :

By (3.5) and (3.6), α
3
< θ − 1

10
θ < t− ε, and α

3
< θ < 2s− t. Thus, for (x, y) ∈ O3 ∩ P2

|K(x, y)−K(z2, z2)| |κε(x, y, z1, z2)| ≲|y − z1|t−ε−n |x− z2|2s−t−n|y − z2|α|x− y|−2s−n

≈|y − z1|t−ε−n |x− z2|2s−t−n|x− y|α−2s−n

≲|y − z1|
α
3
−n |x− z2|

α
3
−n|x− y|α−2s−n+t−ε− 2α

3
+2s−t

=|y − z1|
α
3
−n |x− z2|

α
3
−n|x− y|

α
3
−ε−n.

As before, we can now estimate as∫
R2n

J (3,2)
ϵ (z1, z2)f(z1)g(z2)dz1dz2 ≲

∫
Rn

I
α
3
−εI

α
3 |f |(x)I

α
3 |g|(x) =

∫
Rn

Iα−ε|f |(x) |g|(x) dx.

Finally we estimate J (3,3)
ε :

For (x, y) ∈ O3 ∩ P3, we have that

|K(x, y)−K(z2, z2)| |κ(x, y, z1, z2)| ≲|y − z1|t−ε−n |y − z2|2s−t−n|x− z2|α|x− y|−2s−n

≈|y − z1|t−ε−n |y − z2|2s−t−n |x− y|α−2s−n
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Observe that from (3.5) and (3.6), we have α < 2θ < 2s, α
2
< θ < t and α

2
< θ < 2s − t.

Moreover, for any y∫
{x:(x,y)∈O3∩P3}

|x− y|α−2s−ndx ≲
∫
{x:|x−y|≳max{|y−z1|,|y−z2|}}

|x− y|α−2s−ndx

≲min
{
|y − z1|α−2s, |y − z2|α−2s

}
≤|y − z1|

α
2
−t|y − z2|

α
2
−2s+t.

Combining the previous two inequalities we have,∫
{x:(x,y)∈O3∩P3}

|K(x, y)−K(z2, z2)| |κε(x, y, z1, z2)| dx ≲ |y − z1|
α
2
−ε−n |y − z2|

α
2
−n.

This implies in this case∫∫
R2n

J (33)
ε (z1, z2)f(z1)g(z2)dz1dz2 ≲

∫
Rn

I
α
2
−ε|f |(y) I

α
2 |g|(y) dy =

∫
Rn

Iα−ε|f |(x) |g|(x) dx.

This completes the proof of Lemma 3.5. □

Lemma 3.6. Set for s ∈ (0, 1) and t ∈ (0, 2s) with 2s− t ∈ (0, 1),

κ0(x, y, z1, z2) :=
(|x− z1|t−n − |y − z1|t−n) (|x− z2|2s−t−n − |y − z2|2s−t−n)

|x− y|n+2s

then there exists a constant c = c(s, t) such that∫
Rn

f(z) g(z) dz = c

∫
Rn

∫
Rn

∫
Rn

∫
Rn

f(z1)g(z2)κ0(x, y, z1, z2) dz1 dz2 dx dy

holds for any f ∈ Lp(Rn), p ∈ (1,∞) and g ∈ C∞(Rn) ∩H1,p′(Rn).

Proof. Assume first that f, g ∈ C∞
c (Rn). Using the definitions of fractional Laplacian and

Riesz potential via Fourier transform we have∫
Rn

f(x) g(x) dx = c

∫
Rn

((−∆)
2s
2 I tf)(z) (I2s−tg)(z) dz

In view of (2.1) we thus find∫
Rn

f(x) g(x) dx = c

∫
Rn

∫
Rn

(I tf(x)− I tf(y)) (I2s−tg(x)− I2s−tg(y))

|x− y|n+2s
dx dy,

which holds for any f, g ∈ C∞
c (Rn). By density, it also holds for f ∈ Lp(RN) if e.g.

g ∈ H1,p′(Rn).

Recall that the Riesz potential is given by an explicit integral formula, and thus for almost
every x and y in Rn

I tf(x)− I tf(y) = C

∫
Rn

(
|z1 − x|t−n − |z1 − y|t−n

)
f(z1) dz1,



CALDERON-ZYGMUND TYPE ESTIMATES FOR NONLOCAL PDE 27

and
I2s−tg(x)− I2s−tg(y) = C

∫
Rn

(
|z2 − x|2s−t−n − |z2 − y|2s−t−n

)
g(z2) dz2

Again these formulas hold at first for f, g ∈ C∞
c (Rn) but by density they still hold for

almost every x and y for our f and g. This proves the above formula. □

3.2. Proof of the commutator estimate. We are now ready to present the proof of the
commutator estimate given in Theorem 3.1.

Proof of Theorem 3.1. Assume first that u, φ ∈ C∞
c (Rn). Fix, s ∈ (0, 1), and t ∈ (0, 1)

such that 0 < 2s− t < 1. Using the inverse relationship between the fractional Laplacian
and the Riesz potential, for every x ∈ Rn, we have that

u(x) = C

∫
Rn

|x− z1|t−n (−∆)
t
2u(z1) dz1,

and
φ(x) = C

∫
Rn

|x− z2|2s−t−n (−∆)
2s−t

2 φ(z2) dz2.

Plugging in these equations in ⟨LsRnu, φ⟩ and interchanging the integrals we obtain that

⟨LsRnu, φ⟩ =
∫
Rn

∫
Rn

K(x, y)
(u(x)− u(y)) (φ(x)− φ(y))

|x− y|n+2s
dx dy

=C2

∫
Rn

∫
Rn

∫
Rn

∫
Rn

K(x, y) (−∆)
t
2u(z1) (−∆)

2s−t
2 φ(z2)κ0(x, y, z1, z2) dz1dz2dx dy

where

κ0(x, y, z1, z2) :=
(|x− z1|t−n − |y − z1|t−n) (|x− z2|2s−t−n − |y − z2|2s−t−n)

|x− y|n+2s

is as defined in Lemma 3.6. Notice that the constant C2 depends only on s, t, and n.
Let us remark that this is related to the Calderon-Zygmund operator treated recently in
[46]. Since u, φ ∈ C∞

c (Rn), f(z1) := K(z1, z1)(−∆)
t
2u(z1) and g(z2) := (−∆)

2s−t
2 φ(z2)

belong to Lp(Rn) for any p ∈ [1,∞], moreover g belongs to H1,p(Rn) for any p ∈ (1,∞).
Consequently, by Lemma 3.6,

⟨Ls,tdiagu, φ⟩ =
∫
Rn

K(z, z) (−∆)
t
2u(z) (−∆)

2s−t
2 φ(z)dz

=

∫
Rn

∫
Rn

∫
Rn

∫
Rn

K(z1, z1) (−∆)
t
2u(z1) (−∆)

2s−t
2 φ(z2)κ0(x, y, z1, z2) dz1dz2dx dy.

Thus for the choice of the constant Γ = C2, we have

Ds,t(u, φ) = ⟨LsRnu, φ⟩ − Γ⟨Ls,tdiagu, φ⟩

=

∫
Rn

∫
Rn

∫
Rn

∫
Rn

Φ(x, y, z1, z2)dz1dz2 dx dy
(3.8)
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where

Φ(x, y, z1, z2) := (K(x, y)−K(z1, z1)) (−∆)
t
2u(z1) (−∆)

2s−t
2 φ(z2)κ0(x, y, z1, z2).

By the definition of the Riesz potential Iσ and the fact that Iσ =
(
(−∆)

σ
2

)−1 for any
σ ∈ (0, n), we have for any x, y ∈ Rn and any ε < 2s− t,∫

Rn

(−∆)
2s−t

2 φ(z2)
(
|x− z2|2s−t−n − |y − z2|2s−t−n

)
dz2

=c1

(
I2s−t(−∆)

2s−t
2 φ(x)− I2s−t(−∆)

2s−t
2 φ(y)

)
=c1 (φ(x)− φ(y))

=c1

(
I2s−t−ε(−∆)

2s−t−ε
2 φ(x)− I2s−t−ε(−∆)

2s−t
2 φ(y)

)
=c2

∫
Rn

(−∆)
2s−t−ε

2 φ(z2)
(
|x− z2|2s−t+ε−n − |y − z2|2s−t+ε−n

)
dz2

where c2 will depend on ϵ. By Fubini’s theorem we can thus rewrite the representation
(3.8) for Ds,t(u, φ) into

Ds,t(u, φ) = c

∫
Rn

∫
Rn

∫
Rn

∫
Rn

Φε(x, y, z1, z2) dx dydz1dz2,

where Φε(x, y, z1, z2) = (K(x, y)−K(z1, z1)) (−∆)
t
2u(z1) (−∆)

2s−t−ε
2 φ(z2)κϵ(x, y, z1, z2) and

κε(x, y, z1, z2) :=
(|x− z1|t−n − |y − z1|t−n) (|x− z2|2s−t−ε−n − |y − z2|2s−t−ε−n)

|x− y|n+2s
.

We can now estimate the latter to obtain that

|Ds,t(u, φ)| ≲
∫
Rn

∫
Rn

|(−∆)
t
2u(z1)| |(−∆)

2s−t−ε
2 φ(z2)|M ε(z1, z2)dz1dz2.

where

M ε(z1, z2) =

∫
Rn

∫
Rn

|K(x, y)−K(z1, z1)| |κε(x, y, z1, z2)| dx dy.

Now in view of Lemma 3.5 (when this M ε correspond to M ε
1,2 of the lemma) we have for

small enough α, ε < α/3, and K ∈ C(α,Λ)

|Ds,t(u, φ)| ≲
∫
Rn

Iα−ε|(−∆)
t
2u|(x) |(−∆)

2s−t−ε
2 φ|(x) dx.

The other estimate follows the same way by reversing the role of u and φ from the beginning
and we conclude under the assumption that u ∈ C∞

c (Rn).

In the case that u ∈ H t,p(Rn), but still φ ∈ C∞
c (Rn), take let uk ∈ C∞

c (Rn)

∥uk − u∥Ht,p(Rn)
k→∞−−−→ 0.
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Observe that since φ ∈ C∞
c (Rn) and 2s− 1 < t we have

lim
k→∞

⟨LsRnuk, φ⟩ =
∫
Rn

∫
Rn

K(x, y)
(uk(x)− uk(y)) (φ(x)− φ(y))

|x− y|n+2s
dx dy

=

∫
Rn

∫
Rn

K(x, y)
(u(x)− u(y)) (φ(x)− φ(y))

|x− y|n+2s
dx dy = ⟨LsRnu, φ⟩.

Similarly,

lim
k→∞

⟨Ls,tdiaguk, φ⟩ =
∫
Rn

K(z, z) (−∆)
t
2uk(z) (−∆)

2s−t
2 φ(z)dz

=

∫
Rn

K(z, z) (−∆)
t
2u(z) (−∆)

2s−t
2 φ(z)dz = ⟨Ls,tdiagu, φ⟩.

Combining the above we see that

lim
k→∞

Ds,t(uk, φ) = Ds,t(u, φ).

Moreover, we have already shown that

|Ds,t(uk, φ)| ≲
∫
Rn

Iσ−ε|(−∆)
t
2uk|(x) |(−∆)

2s−t−ε
2 φ|(x) dx

≈
∫
Rn

|(−∆)
t
2uk|(x) Iσ−ε|(−∆)

2s−t−ε
2 φ|(x) dx

Again, from the H t,p-convergence of uk (and using once again that φ ∈ C∞
c (Rn) is fixed so

that
∥Iσ−ε|(−∆)

2s−t−ε
2 φ|∥Lp′ (Rn) <∞,

we find
lim sup
k→∞

|Ds,t(uk, φ)| ≲
∫
Rn

|(−∆)
t
2u|(x) Iσ−ε|(−∆)

2s−t−ε
2 φ|(x) dx

This concludes the proof of Theorem 3.1. □

4. Calderon-Zygmund theory for weighted fractional Laplace: Proof of
Theorem 1.7

First, we prove the following intermediate result. Let us stress that the results in this
section can be extended to s ≥ 1 with only minor modifications, but since this is not a
focus of this work we do not pursue this direction here.

Proposition 4.1. Let s ∈ (0, 1) and t ∈ (0, 2s). Assume that for some q ∈ (1,∞),
(−∆)

t
2u ∈ Lq(Rn) is a distributional solution to∫

Rn

K̄(z)(−∆)
t
2u(z) (−∆)

2s−t
2 φ(z) dz =

∫
Rn

f1(z) (−∆)
2s−t

2 φ(z) dz+

∫
Rn

f2(z)φ(z) dz ∀φ ∈ C∞
c (Ω).

Here K̄ : Rn → R is a positive, measurable, and bounded from above and below, i.e.

Λ−1 ≤ K̄(z) ≤ Λ a.e. x ∈ Rn.
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Then for any Ω1 ⊂⊂ Ω2 ⊂⊂ Ω ⊂ Rn, p > q, and r ∈ (1, p) such that

r >
np

n+ (2s− t)p
if 2s− t ≤ 1, and r >

np

n+ p
if 2s− t ≥ 1

if f1, f2 ∈ Lq(Rn) ∩ Lp(Ω2) then (−∆)
t
2u ∈ Lp(Ω1) with the estimate

(4.1) ∥(−∆)
t
2u∥Lp(Ω1) ≲

2∑
j=1

(
∥fj∥Lp(Ω2) + ∥fj∥Lq(Rn)

)
+ ∥(−∆)

t
2u∥Lr(Ω2) + ∥(−∆)

t
2u∥Lq(Rn).

We delay the proof of the proposition. First we use the proposition to prove the optimal
regularity of solutions to the weighted fractional equation.

Proof of Theorem 1.7. If p ≤ q, there is nothing to prove. So, we assume p > q. We will
use Proposition 4.1 to iterate the estimate on successive subdomains. Assume first that
2s− t < 1. Let Ω1 = Ω′, and p1 = p. We introduce successive subdomains

Ω′ = Ω1 ⊂⊂ Ω2 ⊂⊂ · · ·ΩL ⊂⊂ Ω

and successive positive numbers

p1 = p, pi+1 ∈ [q, pi) with pi+1 >
npi

n+ (2s− t)pi

in such a way that for some L, pL = q. It is not difficult to see that such a finite L exists
depending on p, q, n, s and t. By Proposition 4.1, in each step we have

∥(−∆)
t
2u∥Lpi (Ωi) ≲

2∑
j=1

(
∥fj∥Lp(Ω) + ∥fj∥Lq(Rn)

)
+ ∥(−∆)

t
2u∥Lq(Rn) + ∥(−∆)

t
2u∥Lpi+1 (Ωi+1).

Iterating the above inequality L number of times we get that

∥(−∆)
t
2u∥Lp(Ω′) ≲

2∑
j=1

(
∥fj∥Lp(Ω) + ∥fj∥Lq(Rn)

)
+ ∥(−∆)

t
2u∥Lq(Rn) + ∥(−∆)

t
2u∥Lq(Ω),

from which the desired inequality follows. If 2s − t ≥ 1, then an obvious modification of
the above iteration lead to the inequality. □

We can now prove Proposition 4.1.

Proof of Proposition 4.1. To prove (4.1) we use a duality argument and show that

sup
ψ∈C∞

c (Ω1)
∥ψ∥

Lp′≤1

∫
Rn

(−∆)
t
2uψ dx ≲

2∑
j=1

(
∥fj∥Lp(Ω) + ∥fj∥Lq(Rn)

)
+∥(−∆)

t
2u∥Lq(Rn)+∥(−∆)

t
2u∥Lr(Ω2).
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Using the ellipticity of K̄, it suffices to show that for any ψ ∈ C∞
c (Ω1),

1

∥ψ∥Lp′ (Rn)

∫
Rn

K̄(z) (−∆)
t
2uψ dz ≲

2∑
j=1

(
∥fj∥Lp(Ω) + ∥fj∥Lq(Rn)

)
+ ∥(−∆)

t
2u∥Lq(Rn) + ∥(−∆)

t
2u∥Lr(Ω2) .

(4.2)

To simplify notation, we will write Ω2 = Ω.

Let η1, η2 ∈ C∞
c (Ω), η1 ≡ 1 in a neighborhood of Ω1 and η2 ≡ 1 in a neighborhood of

supp η1. Set
φ := η1

(
I2s−tψ

)
,

which is now an admissible test function for the equation. Then using the inverse relation-
ship between (−∆)

2s−t
2 and I2s−t, we have the identity

ψ = (−∆)
2s−t

2 φ+ η2(−∆)
2s−t

2 (1− η1)I
2s−tψ + (1− η2)(−∆)

2s−t
2 (1− η1)I

2s−tψ,

from which it follows that∫
Rn

K̄(z) (−∆)
t
2uψ dz = I + II + III

where

I :=

∫
Rn

K̄(z) (−∆)
t
2u (−∆)

2s−t
2 φdz,

II :=

∫
Rn

K̄(z) η2(−∆)
t
2u (−∆)

2s−t
2

(
(1− η1)I

2s−tψ
)
dz, and

III :=

∫
Rn

K̄(z) (1− η2)(−∆)
t
2u (−∆)

2s−t
2

(
(1− η1)I

2s−tψ
)
dz.

Now using the equation, since φ is a valid test function, we have that

I =

∫
Rn

K̄(z) (−∆)
t
2u (−∆)

2s−t
2 φdz =

∫
Rn

f1(−∆)
2s−t

2 φdz +

∫
Rn

f2φdz.

The right-hand side can now be rewritten using the identity between φ and ψ as

I = I1 − I2 − I3,

where

I1 :=

∫
Rn

f1 ψ + f2 φdz

I2 :=

∫
Rn

η2 f1 (−∆)
2s−t

2

(
(1− η1) I

2s−tψ
)
dz

I3 :=

∫
Rn

(1− η2) f1 (−∆)
2s−t

2

(
(1− η1) I

2s−tψ
)
dz.

Clearly, ∫
Rn

f1ψ dz ≲ ∥f1∥Lp(Ω) ∥ψ∥Lp′ (Ω).
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Sobolev embedding, Proposition 2.1, together with the fact that ψ is compactly supported
implies ∫

Rn

f2φdz ≲ ∥f2∥Lp(Ω) ∥I2s−tψ∥Lp′ (Ω) ≲ ∥f2∥Lp(Ω) ∥ψ∥Lp′ (Ω).

That is,
|I1| ≲

(
∥f1∥Lp(Ω) + ∥f2∥Lp(Ω)

)
∥ψ∥Lp′ (Ω).

Notice that by our choice of r,

r >
np

n+ (2s− t)p
⇔ r′ <

np′

n− (2s− t)p′
,

and therefore, Proposition 2.4 is applicable.

To estimate I2, we apply Proposition 2.4 part (b)with (τ, r, p)P.2.4 = (2s − t, p, p), and
obtain that

|I2| ≲ ∥f∥Lp(Ω) ∥ψ∥Lp′ (Ω).

Moreover, again apply Proposition 2.4 part (b), and estimate |II| as

|II| ≲ ∥(−∆)
t
2u∥Lr(Ω)∥ψ∥Lp′ (Rn).

For the remaining cases III and I3, we apply again Proposition 2.4 part (a) to estimate as

|I3| ≲ ∥f∥Lq(Rn)∥ψ∥Lp′ (Rn),

and
|III| ≲ ∥(−∆)

t
2u∥Lq(Rn) ∥ψ∥Lp′ (Rn).

This was the last estimate needed for (4.2), and we can conclude the proof. □

We finish the section by proving regularity result for weighted fractional elliptic equa-
tion when the coefficient K̄ is Hölder continuous. In this case, we can “differentiate the
equation”, which leads to estimates of the following form.

Proposition 4.2. Let s∈ (0, 1) and t ∈ [s, 2s). Assume that for some q ∈ (1,∞) (−∆)
t
2u ∈

Lq(Rn) is a distributional solution to∫
Rn

K̄(z)(−∆)
t
2u (−∆)

2s−t
2 φdz =

∫
Rn

f1 (−∆)
2s−t

2 φdz +

∫
f2 φdz ∀φ ∈ C∞

c (Ω).

Assume that K is positive, measurable, and bounded from above and below, i.e.

Λ−1 ≤ K̄(x) ≤ Λ a.e. x ∈ Rn.

and K̄ is moreover uniformly Hölder continuous, i.e. for some γ ∈ (0, 1],

sup
x,y,Rn

|K̄(x)− K̄(y)|
|x− y|γ

≤ Λ.

Then for any β < min{γ, 2s− t}, and any Ω′ ⊂⊂ Ω ⊂⊂ Rn

∥(−∆)
t+β
2 u∥Lq(Ω′) ≤ C(Ω,Λ, s, t, p, q)

(
∥(−∆)

t
2u∥Lq(Rn) + ∥f2∥Lq(Ω) + ∥(−∆)

β
2 f1∥Lq(Rn)

)
.
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Proof. Let Ω2 ⊂ Rn be open such that Ω′ ⊂⊂ Ω2 ⊂⊂ Ω. To prove the proposition, we will
show that for any ψ ∈ C∞

c (Ω2),

(4.3)
∫
Rn

(−∆)
t
2u(−∆)

β
2ψ dz ≲

(
∥(−∆)

t
2u∥Lq(Rn) + ∥f2∥Lq(Ω) + ∥(−∆)

β
2 f1∥Lq(Rn)

)
∥ψ∥Lq′ (Rn).

which by duality implies that (−∆)
t+β
2 u ∈ Lq(Ω′), with

∥(−∆)
t+β
2 u∥Lq(Ω2) ≲ ∥(−∆)

t
2u∥Lq(Rn) + ∥f2∥Lq(Ω) + ∥(−∆)

β
2 f1∥Lq(Rn).

To establish (4.3) observe∫
Rn

(−∆)
t
2u(−∆)

β
2ψ dz =

∫
Rn

(−∆)
t
2u (−∆)

β
2

(
K̄

(
1

K̄
ψ

))
dz = I + II

where

I :=

∫
Rn

K̄ (−∆)
t
2u (−∆)

β
2

(
1

K̄
ψ

)
dz and II :=

∫
Rn

(−∆)
t
2u [(−∆)

β
2 , K̄]

(
1

K̄
ψ

)
dz

where we used commutator notation

[(−∆)
β
2 , f ](g) = (−∆)

β
2 (fg)− f (−∆)

β
2 g.

Now since K̄ is γ-Hölder continuous we can apply Coifman-McIntosh-Meyer estimate, e.g. as in
[26, Theorem 6.1.], combined with Sobolev inequality to obtain

II ≲ ∥(−∆)
t
2u∥Lq(Rn) [K̄]Cγ ∥ 1

K̄
ψ∥Lq′ (Rn) ≲ ∥(−∆)

t
2u∥Lq(Rn) ∥ψ∥Lq′ (Rn).

For I, we argue similar to the proof of Proposition 4.1. To that end, let η ∈ C∞
c (Ω), η ≡ 1 in a

neighborhood of Ω2. Then, splitting I using η we get that,

I =

∫
Rn

K̄(z) (−∆)
t
2u (−∆)

2s−t
2

(
ηI2s−t−β

(
1

K̄
ψ

))
dz

+

∫
Rn

K̄(z) (−∆)
t
2u (−∆)

2s−t
2

(
(1− η)I2s−t−β

(
1

K̄
ψ

))
dz

We now use the equation and ηI2s−t−β
(
1
K̄
ψ
)

as a valid test function to conclude that

I =

∫
Rn

f1 (−∆)
2s−t

2

(
ηI2s−t−β

(
1

K̄
ψ

))
dz +

∫
Rn

f2

(
ηI2s−t−β

(
1

K̄
ψ

))
dz

+

∫
Rn

K̄(z) (−∆)
t
2u (−∆)

2s−t
2

(
(1− η)I2s−t−β

(
1

K̄
ψ

))
dz

=I1 + I2 + I3

where

I1 :=

∫
Rn

(−∆)
β
2 f1 (−∆)

2s−t−β
2

(
ηI2s−t−β

(
1

K̄
ψ

))
dz

I2 :=

∫
Rn

f2

(
ηI2s−t−β

(
1

K̄
ψ

))
dz

I3 :=

∫
Rn

K̄(z) (−∆)
t
2u (−∆)

2s−t
2

(
(1− η)I2s−t−β

(
1

K̄
ψ

))
dz



34 TADELE MENGESHA, ARMIN SCHIKORRA, AND SASIKARN YEEPO

The term I1 can be estimates using we can estimate with the help of (2.7) and (2.6), in the same
way we estimated I of the proof of Proposition 4.1, which imply

|I1| ≲ ∥(−∆)
β
2 f1∥Lq(Rn) ∥ψ∥Lq′ .

By Sobolev inequality, Proposition 2.1 part (b),

|I2| ≲ ∥f2∥Lq(Ω) ∥ψ∥Lq′ .

Similarly by Proposition 2.1 part (a), we can estimate I3 as

|I3| ≲∥(−∆)
t
2u∥Lq(Rn)

(−∆)
2s−t

2

(
(1− η)I2s−t−β

(
1

K
ψ

))
Lq′ (Rn)

Now observe that 1 − η and ψ have disjoint support, so that we can argue similarly to (2.6) to
obtain(−∆)

2s−t
2

(
(1− η)I2s−t−β

(
1

K
ψ

))
Lq′ (Rn)

≲ ∥ψ∥Lq′ (Rn) +

((1− η)(−∆)
β
2

(
1

K
ψ

))
Lq′ (Rn)

.

Observe that ψ ∈ C∞
c (Ω2) and 1− η ≡ 0 in a neighborhood of Ω2. If β = 0 this implies

(1− η)(x)(−∆)
β
2

(
1

K
ψ

)
(x) ≡ 0.

If β > 0 we use that for y ∈ Ω2 and x ∈ supp (1− η) we have |y − x| ≈ 1 + |x|, and estimate⏐⏐⏐⏐((1− η)(−∆)
β
2

(
1

K
ψ

))
(x)

⏐⏐⏐⏐ ≲ ∫
Rn

(1 + |x|)−n−β 1

|K(y)|
|ψ(y)| dy,

and thus ((1− η)(−∆)
β
2

(
1

K
ψ

))
Lq′ (Rn)

≲ Λ ∥ψ∥L1(Rn) ≲ ∥ψ∥Lq(Rn)

We conclude that (−∆)
2s−t

2

(
(1− η)I2s−t−β

(
1

K
ψ

))
Lq′ (Rn)

≲ ∥ψ∥Lq′ (Rn).

This establishes (4.3) and that concludes the proof of the proposition. □

5. Local to global equation

The main idea for the proof of Theorem 1.2 is to use Theorem 3.1 to compare the equation
of Theorem 1.2 with an easier equation to which we can apply Theorem 1.7 and Propo-
sition 4.2. This works well on a local scale and the improvement of differentiability and
integrability is each time incremental. So we apply this strategy repeatedly, which means
that we repeatedly need to use cutoff arguments to restrict our equation to the set where we
already have shown some improvement for differentiability and integrability. We describe
this cutoff argument in this section. The next theorem states that if for a given Ω1 ⊂⊂ Ω,
u solves the equation

LsΩu = F, in Ω1,
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then u can be extended in Rn in a controlled way. Namely, the extension v solves an
equation of the form

LsRnv = G, in Rn

and the norm of v is controlled by u, and the norm of data G is controlled by the norms
u and F . To be precise, we have the following.

Theorem 5.1. Let Ω2 ⊂⊂ Ω1 ⊂⊂ Ω ⊆ Rn be open sets. Take s ∈ (0, 1), t ∈ [s, 1) and
p, q ∈ [2,∞), τ ∈ (0, 1) (if n = 1 additionally, τ ≤ s) satisfying the following conditions:

(5.1)
1

q
≥ 1

p
− τ

n
, and

1

q
≥ 1

p
− t

n
and

1

q
≥ 1

p
− 1− 2s+ t

n
,

(5.2)
1

q
>

1

p
− τ + 1− 2s+ t

n

and

(5.3) 2s− 1 < τ.

Suppose that K ∈ L∞(Rn × Rn). For any u ∈ Hs,2(Rn) such that (−∆)
t
2u ∈ Lp(Ω1)

satisfies for some f1, f2 ∈ Lq(Rn) the equation

⟨LsΩu, φ⟩ =
∫
Rn

f1 (−∆)
τ
2φdz +

∫
Rn

f2 φ, dz ∀φ ∈ C∞
c (Ω1).

Then there exist v ∈ Hs,2 ∩ H t,p(Rn), supp v ⊂ Ω1, such that u ≡ v in Ω2 and g1, g2 ∈
Lq(Rn) such that

(5.4) ⟨LsRnv, φ⟩ =
∫
Rn

g1(−∆)
τ
2φdz +

∫
Rn

g2φdz ∀φ ∈ C∞
c (Rn).

Moreover,

(5.5) ∥v∥Ht,2(Rn) + ∥(−∆)
t
2v∥Lp(Rn) ≲ ∥u∥Hs,2(Rn) + ∥(−∆)

t
2u∥Lp(Ω1),

and

(5.6) ∥g1∥Lq(Rn) + ∥g2∥Lq(Rn) ≲ ∥f1∥Lq(Rn) + ∥f2∥Lq(Rn) + ∥u∥Hs,2(Rn) + ∥(−∆)
t
2u∥Lp(Ω1),

Additionally, for any β ∈ (0, 1) such that

(5.7) 2s− 1 + β < τ and t+
n

q
>
n

p
− τ − 1 + 2s+ β,

we have, whenever the right-hand side is finite,

(5.8) ∥(−∆)
β
2 g1∥Lq(Rn) ≲ ∥f1∥Hβ,p(Rn) + ∥u∥Hs,2(Rn) + ∥(−∆)

t
2u∥Lp(Ω1).

Above, g1 and g2 and v are independent of q and β, in the sense that if we apply the
statement above to f1, f2 ∈ Lq1 ∩ Lq2 then there is one set of functions g1, g2, v satisfying
the equations and the estimates in Lq1 and Lq2.
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We split the proof of Theorem 5.1 into several steps.

The first step is a cutoff argument, essentially replacing u with ηu for a suitable cutoff
function η.

Lemma 5.2. Under the assumptions of Theorem 5.1, let Ω2 ⊂⊂ Ω̃ ⊂⊂ Ω1. Then there
exist w ∈ Hs,2(Rn) ∩ H t,p(Rn) with suppw ⊂ Ω1, w ≡ u in a neighborhood of Ω2, and
g1, g2 ∈ Lq(Rn) such that

(5.9) ⟨LsΩw,φ⟩ =
∫
Rn

g1 (−∆)
τ
2φdz +

∫
Rn

g2 φdz ∀φ ∀φ ∈ C∞
c (Ω̃).

such that (5.5) (with v replaced by w), (5.6), and (5.8) hold.

Proof. Let Ω̃ ⊂⊂ Ω̃1,1 ⊂⊂ Ω1 with Ω2 ⊂⊂ Ω̃, and let η ∈ C∞
c (Ω1), η ≡ 1 in Ω̃1,1.

Set w := ηu, From Poincaré inequality and Sobolev embedding, we find that (5.5) holds.
Moreover, for any φ ∈ C∞

c (Ω̃), we have that

⟨LsΩw,φ⟩ =
∫
Ω

∫
Ω

K(x, y)

(
w(x)− w(y)

)
(φ(x)− φ(y))

|x− y|n+2s
dx dy

=

∫
Ω

∫
Ω

K(x, y)
(u(x)− u(y)) (φ(x)− φ(y))

|x− y|n+2s
dx dy

+

∫
Ω\Ω̃1,1

∫
Ω̃

K(x, y)
(1− η(y))u(y)φ(x)

|x− y|n+2s
dx dy.

Now, to show (5.9) holds, we set g1 := f1 and g2 := f2 + g̃2 where

g̃2(x) := χΩ̃(x)

∫
Ω\Ω̃1,1

K(x, y)
(1− η(y))u(y)φ(x)

|x− y|n+2s
dy.

To obtain the estimate (5.6) we only need to estimate g̃2. Observe that for any y ∈
supp (1− η) and x ∈ Ω̃ we have |x− y| ≳ c+ |y|. Consequently,

∥g̃2∥L∞(Rn) ≲ sup
x∈Rn

∫
Ω

|u(y)| (c+ |x− y|)−n−2s dy ≲ ∥u∥L2(Rn).

Since Ω̃ is bounded and supp g2 ⊂ Ω̃ we find g2 ∈ L1 ∩ L∞(Rn), in particular

∥g̃2∥Lq(Rn) ≲ ∥u∥L2(Rn).

This concludes the proof of Lemma 5.2 □

In the second step we increase the domain of integration of (5.9) from Ω to Rn.
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Lemma 5.3. Under the assumption of Theorem 5.1, let Ω2 ⊂⊂ Ω̃ ⊂⊂ Ω1. Then there
exist w ∈ Hs,2(Rn) ∩ H t,p(Rn) with suppw ⊂ Ω1, w ≡ u in a neighborhood of Ω2, and
h1, h2 ∈ Lq(Rn) such that

(5.10) ⟨LsRnw,φ⟩ =
∫
Rn

h1 (−∆)
τ
2φdz +

∫
Rn

h2 φdz ∀φ ∀φ ∈ C∞
c (Ω̃).

such that (5.5) holds with v replaced by w. Moreover, (5.6) and (5.8) with h1, h2 instead
of g1, g2, respectively.

Proof. Take w, g1, g2 from Lemma 5.2 and let φ ∈ C∞
c (Ω̃).

⟨LsRnw,φ⟩ =
∫
Rn

∫
Rn

K(x, y)

(
w(x)− w(y)

)
(φ(x)− φ(y))

|x− y|n+2s
dy dx

=

∫
Ω

∫
Ω

K(x, y)

(
w(x)− w(y)

)
(φ(x)− φ(y))

|x− y|n+2s
dy dx

+ 2

∫
Rn\Ω

∫
Ω

K(x, y)

(
w(x)− w(y)

)
(φ(x)− φ(y))

|x− y|n+2s
dy dx

+

∫
Rn\Ω

∫
Rn\Ω

K(x, y)

(
w(x)− w(y)

)
(φ(x)− φ(y))

|x− y|n+2s
dy dx.

(5.11)

The third term in right-hand side of (5.11) vanishes because of suppw ⊂ Ω1 ⊂⊂ Ω.
Moreover, since suppw ⊂ Ω1 ⊂⊂ Ω and suppφ ⊂ Ω̃ ⊂⊂ Ω, the second term in (5.11)
becomes∫

Rn\Ω

∫
Ω

K(x, y)

(
w(x)− w(y)

)
(φ(x)− φ(y))

|x− y|n+2s
dy dx

=

∫
Rn\Ω

∫
Ω̃

K(x, y)
w(y)φ(y)

|x− y|n+2s
dy dx =

∫
Rn

φ(y)w(y)χΩ̃(y)

∫
Rn\Ω

K(x, y)

|x− y|n+2s
dx dy.

Now the conclusion of the lemma is satisfied if we set h1 := g1 and h2 := g2 + h̃2, where

h̃2(y) := w(y)χΩ̃(y)

∫
Rn\Ω

K(x, y)

|x− y|n+2s
dx.

To see this, first, we obtain (5.10) from (5.9), (5.11) and the above observations. In
addition, estimates (5.5) and (5.8) hold from Lemma 5.3 since w did not change and
h1 = g1. In order to prove (5.6) for g1, g2 replaced by h1, h2 we only need an estimate for
h̃2, which we obtain by arguing in similar fashion as in the proof of Lemma 5.2. Since
dist (Ω̃,Rn\Ω) > 0, for all points x ∈ Rn\Ω and y ∈ Ω̃ we have |x− y| ≳ 1 + |x|, and thus

|h̃2(y)| ≲|w(y)|χΩ̃(y)

∫
Rn\Ω

Λ

1 + |x|n+2s
dx ≈ |w(y)|χΩ̃(y).

Thus,

(5.12) ∥h̃2∥Lq(Rn) ≲ ∥w∥Lq(Ω̃.
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Finally, since w ∈ H t,p(Rn) with compact support, in view of (5.1) and Sobolev inequality,
Proposition 2.1, we have

(5.13) ∥w∥Lq(Ω̃) ≲ ∥(−∆)
t
2w∥Lp(Rn).

We conclude that h̃2 satisfies the estimates (5.6) with g2 replaced by h̃2 in view of (5.12),
(5.13) and (5.5). This concludes the proof of Lemma 5.3. □

In the last step of the proof, we increase the domain of the test functions in (5.10) from Ω̃
to Rn. This is where the the main influence of the conditions on p, q, τ etc. come into play.

Proof of Theorem 5.1. Take w, h1, h2 from Lemma 5.3, so that (5.10) holds.

Let η ∈ C∞
c (Ω̃), η ≡ 1 in Ω2 and set v := ηw. Since we know from from Lemma 5.3 that w

satisfies the estimates (5.5) (with v replaced by w), consequently in view of Poincaré and
Sobolev inequality, so does v.

Fix any ψ ∈ C∞
c (Rn). Observe that(

v(x)− v(y)
) (
ψ(x)− ψ(y)

)
=
(
η(x)w(x)− η(y)w(y)

) (
ψ(x)− ψ(y)

)
=
(
w(x)− w(y)

) (
η(x)ψ(x)− η(y)ψ(y)

)
+
(
w(x)− w(y)

) (
η(x)− η(y)

)
ψ(y))

+
(
η(x)− η(y)

)
w(y)

(
ψ(x)− ψ(y)

)
.

We can now use the map ηψ ∈ C∞
c (Ω̃) as a test function for (5.10), and obtain

⟨LsRnv, φ⟩ =I + II + III(5.14)

where

I :=

∫
Rn

h1 (−∆)
τ
2 (ηψ) dx+

∫
Rn

h2 ηψ dx

II :=

∫
Rn

∫
Rn

K(x, y)

(
w(x)− w(y)

) (
η(x)− η(y)

)
ψ(y))

|x− y|n+2s
dx dy

III :=

∫
Rn

∫
Rn

K(x, y)

(
η(x)− η(y)

)
w(y)

(
ψ(x)− ψ(y)

)
|x− y|n+2s

dx dy.

Using the commutator notation [T,m](g) = T (mg) −mTg, we can rewrite the first term
of I as ∫

Rn

h1 (−∆)
τ
2 (ηψ) dx =

∫
Rn

h1 η(−∆)
τ
2ψ dx+

∫
Rn

h1 [(−∆)
τ
2 , η](ψ) dx

=

∫
Rn

ηh1 (−∆)
τ
2ψ dx−

∫
Rn

[(−∆)
τ
2 , η](h1)ψ dx.
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In the last step we used an integration by parts, we can justify by approximation as follows:
since τ ∈ (0, 1) we can use the Coifman–McIntosh–Meyer commutator estimate, e.g. in
the formulation in [26, Theorem 6.1.], and have

∥[(−∆)
τ
2 , η](h1)∥Lq(Rn) ≲ ∥η∥Lip ∥h1∥Lq(Rn).

Also, by Leibniz formula (2.2) (or Sobolev embedding) for any β > 0,

∥(−∆)
β
2 (ηh1)∥Lq(Rn) ≲ ∥h1∥Hβ,q(Rn),

whenever the right-hand side is finite. So if we set

g11 := ηh1 and g12 := −[(−∆)
τ
2 , η](h1) and g22 := ηh2

we have shown that

I =

∫
Rn

g11(−∆)
τ
2ψ dz +

∫
Rn

(g12 + g22)ψ dz,

and g11, g12, g22 satisfy (5.8), (5.6) because h1, h2 satisfies those equations.

Similar to the argument in (5.11), by the support of w and η, we have for the remaining
terms of (5.14)

II + III =

∫
Rn

∫
Rn

K(x, y)

(
w(x)− w(y)

) (
η(x)− η(y)

)
ψ(y)

|x− y|n+2s
dx dy

+

∫
Rn

∫
Rn

K(x, y)

(
η(x)− η(y)

)
w(y)

(
ψ(x)− ψ(y)

)
|x− y|n+2s

dx dy

=

∫
Ω1

∫
Ω1

K(x, y)

(
w(x)− w(y)

) (
η(x)− η(y)

)
ψ(y))

|x− y|n+2s
dx dy

+

∫
Ω1

∫
Ω1

K(x, y)

(
η(x)− η(y)

)
w(y)

(
ψ(x)− ψ(y)

)
|x− y|n+2s

dx dy

+

∫
Ω̃

∫
Rn\Ω1

(K(x, y) +K(y, x))
w(y) η(y)ψ(y)

|x− y|n+2s
dx dy

+

∫
Ω̃

∫
Rn\Ω1

(K(y, x)−K(x, y))
η(y)w(y)

(
ψ(x)− ψ(y)

)
|x− y|n+2s

dx dy.

We set

g32(y) :=χΩ̃w(y) η(y)

∫
Rn\Ω1

K(x, y) +K(y, x)

|x− y|n+2s
dx

g42(x) :=− χRn\Ω1(x)

∫
Ω̃

K(x, y)η(y)w(y)

|x− y|n+2s
dy + χRn\Ω1(x)

∫
Ω̃

K(y, x)η(y)w(y)

|x− y|n+2s
dy

g52(y) :=− 2χΩ̃(y)η(y)w(y)

∫
Rn\Ω1

K(x, y)

|x− y|n+2s
dx+ 2χΩ̃(y)η(y)w(y)

∫
Rn\Ω1

K(y, x)

|x− y|n+2s
dx
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Then

II + III = II1 + III1 +

∫
Rn

ψ(y)g32(y) dy +

∫
Rn

ψ(x) g42(x)dx+

∫
Rn

ψ(y) g52(y)dy

where

II1 :=

∫
Ω1

∫
Ω1

K(x, y)

(
w(x)− w(y)

) (
η(x)− η(y)

)
ψ(y))

|x− y|n+2s
dx dy, and

III1 :=

∫
Ω1

∫
Ω1

K(x, y)

(
η(x)− η(y)

)
w(y)

(
ψ(x)− ψ(y)

)
|x− y|n+2s

dx dy.

As in the steps before,

∥g32∥Lq(Rn) + ∥g52∥Lq(Rn) ≲ ∥(−∆)
s
2w∥Lp(Rn),

As for g42, by the distance of x ∈ Rn\Ω1 and y ∈ Ω̃ we have |x− y| ≳ c+ |x|, and thus

|g42(x)| ≲
1

1 + |x|n+2s
∥w∥L1(Ω̃) ≲

1

1 + |x|n+2s
∥w∥Lp(Rn).

Since 1
1+|x|n+2s is integrable to any power, we find that

∥g42∥Lq(Rn) ≲ ∥w∥Lp(Rn) ≲ ∥(−∆)
s
2w∥Lp(Rn) + ∥w∥L2(Rn).

That is g32, g42, g52 satisfy (5.6) because w satisfies (5.5).

Next we estimate II1.∫
Ω1

∫
Ω1

K(x, y)

(
w(x)− w(y)

) (
η(x)− η(y)

)
ψ(y)

|x− y|n+2s
dx dy =

∫
Rn

ψ(y) g62(y) dy

for

g62(y) := χΩ1(y)

∫
Ω1

K(x, y)

(
w(x)− w(y)

) (
η(x)− η(y)

)
|x− y|n+2s

dx.

Now we have, see e.g. [39, Proposition 6.6.], for any α < 1,

|w(x)− w(y)| ≲ |x− y|α
(
M(−∆)

α
2w(x) +M(−∆)

α
2w(y)

)
,

where M denotes the Hardy-Littlewood maximal function. Using this, the Lipschitz con-
tinuity of η and the definition of the Riesz potential Iα+1−2s, we find for any α ∈ (2s−1, 1)

|g62| ≲ χΩ1

(
M(−∆)

α
2w + χΩ1I

α+1−2s
(
χΩ1M(−∆)

α
2w
))

Observe that t ≥ s > 2s− 1. In particular in view of (5.1) we can choose α ≤ t such that

t− n

p
≥ α− n

q
,

and from Sobolev embedding (observe that Ω1 is bounded) we obtain

∥g62∥Lq(Rn) ≲ ∥(−∆)
t
2w∥Lp(Rn).
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That is, we have shown that

II1 =

∫
Rn

g62ψdx,

and g62 satisfies (5.6) because w satisfies (5.5).

The last term it remains to estimate is III1. Set

T [ψ] :=

∫
Ω1

∫
Ω1

K(x, y)
(
η(x)− η(y)

)
w(y)

(
ψ(x)− ψ(y)

)
|x− y|n+2s

dx dy

Clearly T is a linear operator acting on ψ ∈ C∞
c (Rn). Moreover, as above, for any α ∈

(2s− 1, 1),

|T [ψ]| ≲
∫
Ω1

|w|
(
M(−∆)

α
2ψ + Iα+1−2s

(
χΩ1(−∆)

α
2ψ
))
dx.

Under the assumption (5.3) we can take α < τ , and have

∥(−∆)
α
2ψ∥

L
nq′

n−(τ−α)q′ (Rn)

≲ ∥(−∆)
τ
2ψ∥Lq′ (Rn).

We repeat this argument for T [(−∆)
β
2ψ]. If 2s− 1+ β < τ , we can choose α ∈ (2s− 1, 1),

α > 0, such that α+β < τ , (observe that since q′ ≤ 2, τ−max{2s−1, 0}−β < n
q′

is certainly
satisfied if n ≥ 2, τ ∈ (0, 1). If n = 1, the condition τ ≤ s implies τ −max{2s− 1, 0} ≤ 1

2
as well),

|T [(−∆)
β
2ψ]| ≲ ∥w∥

L
nq

n+(τ−α−β)q (Ω)
∥(−∆)

α+β
2 ψ∥

L
nq′

n−(τ−α−β)q′ (Rn)

If for β ≥ 0 (5.7) is satisfied, then

∥w∥
L

nq
n+(τ−α−β)q (Ω)

≲ ∥w∥Ht,p(Rn)

In particular for β = 0, in view of (5.2),

(5.15) |T [ψ]| ≲ ∥w∥Ht,p(Rn) ∥(−∆)
τ
2ψ∥Lq′ (Rn).

and if (5.7) is satisfied we also have

(5.16) |T [(−∆)
β
2ψ]| ≲ ∥w∥Ht,p(Rn) ∥(−∆)

τ
2ψ∥Lq′ (Rn).

(5.15) implies that T is a linear bounded operator on Ḣτ,q′(Rn). By the characterization
of dual spaces, Proposition 2.2 we find g71 ∈ Lq(Rn) such that

III1 = T [ψ] =

∫
Rn

g71(−∆)
τ
2ψ dx

and
∥g71∥Lq(Rn) ≲ ∥w∥Ht,p(Rn).
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If (5.7) is satisfied, (5.16) implies that ψ ↦→ T [(−∆)
β
2ψ] is a still linear bounded operator

on Ḣτ,q′(Rn). From the characterization of dual spaces, Proposition 2.2 we thus find
g7,β ∈ Lq(Rn) such that∫

Rn

g71(−∆)
τ+β
2 ψ T [(−∆)

β
2ψ] dz =

∫
Rn

g7,β(−∆)
τ
2ψ dz.

and
∥g7,β∥Lq(Rn) ≲ ∥w∥Ht,p(Rn).

This implies that (−∆)
β
2 g71 = g7,β, and we have consequently the estimate needed for (5.8)

∥(−∆)
β
2 g71∥Lq(Rn) ≲ ∥w∥Ht,p(Rn).

That is, g71 satisfies (5.6) and (5.8).

In view (5.14) for
g1 := g11 + g71

and
g2 := g12 + g22 + g32 + g42 + g52 + g62

we have shown (5.4) holds, and g1, g2 satisfy the estimate (5.6) and (5.8). We have already
observed that w and v satisfy the estimate (5.5), so the proof of Theorem 5.1 is completed.

□

6. The Regularity theory: Proof of Theorem 1.2

In this section we prove the main result of the paper, Theorem 1.2. The argument of the
proof is based on iterating the following incremental higher integrability result for a priori
known smooth enough solution.

Theorem 6.1. Fix s ∈ (0, 1), t ∈ [s, 2s), t < 1. For given α ∈ (0, 1), λ,Λ > 0, let
K ∈ K(α, λ,Λ). Suppose also that for any 2 ≤ p <∞, u ∈ Hs,2(Rn)∩H t,p(Rn)∩H t,2(Rn)
with suppu ⊂ Ω ⊂⊂ Rn is a solution to

(6.1) ⟨LsRnu, φ⟩ =
∫
Rn

f1 (−∆)
2s−t

2 φdz +

∫
Rn

f2 φdz ∀φ ∈ C∞
c (Rn).

Then there exists ε̄ > 0 such that if r ∈ [p, p+ ε̄) and f1, f2 ∈ Lr(Rn) ∩ Lp(Rn), then

∥(−∆)
t
2u∥Lr(Ω) ≲

2∑
i=1

∥fi∥Lr(Rn) + ∥fi∥Lp(Rn) + ∥(−∆)
t
2u∥Lp(Rn).

In addition, if β ∈ [0, ε̄], (−∆)
β
2 f1 ∈ Lp(Rn), and f1, f2 ∈ Lp(Rn), then (−∆)

t+β
2 u ∈

Lploc(Rn) and for any Ω ⊂⊂ Rn we have the estimate

∥(−∆)
t+β
2 u∥Lp(Ω) ≲ ∥(−∆)

β
2 f1∥Lp(Rn) + ∥f1∥Lp(Rn) + ∥f2∥Lp(Rn) + ∥(−∆)

t
2u∥Lp(Rn).
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Here, ε̄ > 0 is uniform in the following sense: ε̄ depends only on α and the number
θ ∈ (0, 1) which is such that

θ < s, t, 2s− t < 1− θ, and 2 ≤ p <
1

θ
.

Proof. First we observe that in view of Theorem 3.1 and (6.1) we have for any φ ∈ C∞
c (Rn)∫

Rn

K(z, z)(−∆)
t
2u (−∆)

2s−t
2 φdz =

∫
Rn

f1 (−∆)
2s−t

2 φdx+

∫
Rn

f2φdx−Ds,t(u, φ)

=

∫
Rn

(−∆)
β
2 f1 (−∆)

2s−t−β
2 φdx+

∫
Rn

f2φdx−Ds,t(u, φ),

(6.2)

where Ds,t(u, φ) is as defined in (3.3) and where we have taken without loss of generality
that the constant Γ = 1 in Theorem 3.1. Now we observe that the map T defined as

T [φ] := Ds,t(u, φ)

is linear in φ ∈ C∞
c (Rn). Choose σ = 8ε from Theorem 3.1, for ε small enough so that

np′

n+σp′
∈ (1,∞) for all p ∈ [2, 1

θ
].

From Theorem 3.1 and Sobolev embedding, Proposition 2.1, we have the estimate for any
β ∈ [0, ε]

T [φ] ≲
∫
Rn

|(−∆)
t
2u|(x) Iσ−ε|(−∆)

2s−t−ε
2 φ|(x) dx

≲∥(−∆)
t
2u∥Lp(Rn) ∥Iσ−ε|(−∆)

2s−t−ε
2 φ|∥Lp′ (Rn)

≲∥(−∆)
t
2u∥Lp(Rn) ∥(−∆)

2s−t−ε
2 φ∥

L
np′

n+(σ−ε)p′ (Rn)

=∥(−∆)
t
2u∥Lp(Rn) ∥Iε−β(−∆)

2s−t−β
2 φ∥

L
np′

n+(σ−ε)p′ (Rn)

≲∥(−∆)
t
2u∥Lp(Rn) ∥(−∆)

2s−t−β
2 φ∥

L
np′

n+(σ−β)p′ (Rn)

.

Here σ and ε can be chosen to depend only on θ, and since p < 1
θ

we can make that choice
so that np′

n+(σ−2ε)p′
> 1 and Sobolev embedding is applicable with a uniform constant.

That is, T belongs to
(
Ḣ

2s−t−β, np′
n+(σ−β)p′ (Rn)

)∗

for any β ∈ [0, ε]. By classification of the

dual spaces, Proposition 2.2, and since
(

np′

n+(σ−β)p′

)′
= np

n−(σ−β)p we find gβ ∈ L
np

n−(σ−β)p (Rn)

(6.3) ∥gβ∥
L

np
n−(σ−β)p (Rn)

≲ ∥(−∆)
t
2u∥Lp(Rn),

and

T [φ] =

∫
Rn

gβ (−∆)
2s−t−β

2 φdx.
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That is, (6.2) becomes for any β ∈ [0, ε]∫
Rn

K(z, z)(−∆)
t
2u (−∆)

2s−t
2 φdz =

∫
Rn

(
(−∆)

β
2 f1 + gβ

)
(−∆)

2s−t−β
2 φdx+

∫
Rn

f2φdx

for all φ ∈ C∞
c (Rn).

For β = 0 we obtain from (6.3) and Theorem 1.7 that for any Ω ⊂⊂ Rn, r ∈
[
p, np

n−σp

]
, we

have

∥(−∆)
t
2u∥Lr(Ω) ≲

2∑
i=1

(
∥fi∥Lr(Rn) + ∥fi∥Lp(Rn)

)
+ ∥(−∆)

t
2u∥Lp(Rn).

Observe that we can find ε̄ such that np
n−σp ≥ p+ ε̄ for all p ∈ [2, 1

θ
].

For β ∈ [0, ε] from (6.3) and Proposition 4.2 for any

∥(−∆)
t+β
2 u∥Lp(Ω) ≲ ∥(−∆)

β
2 f1∥Lp(Rn) +

2∑
i=1

∥fi∥Lp(Rn) + ∥(−∆)
t
2u∥Lp(Rn).

This concludes the proof of Theorem 6.1. □

Iterating Theorem 6.1 and Theorem 5.1 leads to the proof of Theorem 1.2, namely

Theorem 6.2. Fix s ∈ (0, 1), t ∈ [s, 2s), t < 1. For given α ∈ (0, 1), λ,Λ > 0, let
K ∈ K(α, λ,Λ). Let Ω′ ⊂⊂ Ω′′ ⊂⊂ Ω ⊆ Rn be two open sets. Assume that u ∈ W s,2(Ω)
satisfies the equation

(6.4) ⟨LsΩu, φ⟩ =
∫
Rn

f1(−∆)
2s−t

2 φdx+

∫
f2φdx ∀φ ∈ C∞

c (Ω′′).

If f1, f2 ∈ Lq(Ω) ∩ L2(Rn), q ∈ [2,∞), then (−∆)
t
2u ∈ Lq(Ω′) and we have

∥(−∆)
t
2u∥Lq(Ω′) ≤ C(Ω,Ω′,Ω′′, s, t, p, q)

(
∥u∥W s,2(Ω) +

2∑
i=1

∥fi∥Lq(Ω) + ∥fi∥L2(Rn)

)
.

Proof. Fix θ ∈ (0, 1) such that

(6.5) t < 1− 10θ, 10θ < s < 1− 10θ, 10θ < 2s− t < 1− 10θ, 2 ≤ q <
1

10θ
.

We also fix ε = ε(θ, γ) from Theorem 6.1, and w.l.o.g. ε < 1
10

θ
n
.

Step 0: Rewriting the equation Take some cutoff function η ∈ C∞
c (Ω) with η ≡ 1 in a

neighborhood of Ω′′∫
Rn

f1(−∆)
2s−t

2 φdx =

∫
Rn

ηf1(−∆)
2s−t

2 φdx+

∫
Rn

(1− η)f1(−∆)
2s−t

2 φdx

=

∫
Rn

ηf1(−∆)
2s−t

2 φdx+

∫
Rn

χΩ′′(−∆)
2s−t

2 ((1− η)f1)φdx.
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Now observe that by the disjoint support of χΩ′′ and 1− η we have

∥χΩ′′(−∆)
2s−t

2 ((1− η)f1) ∥L∞ ≲ ∥f1∥L2(Rn)

For σ ∈ [s, t] we set
f̃1,σ := I t−σ(ηf1)

and
f̃2 := χΩ′′f2 + χΩ′′(−∆)

2s−t
2 ((1− η)f1)

then we have for all φ ∈ C∞
c (Ω′′),∫

Ω

∫
Ω

K(x, y)
(u(x)− u(y)) (φ(x)− φ(y))

|x− y|n+2s
dx dy =

∫
Rn

f̃1,σ(−∆)
2s−σ

2 φdx+

∫
f̃2φdx.

Moreover f̃2 ∈ Lq(Rn) ∩ L2(Rn) and since t − s ≤ 1 − s < 1 − θ we have by Sobolev
embedding, Proposition 2.1,

∥I t−s(ηf1)∥Lq(Rn) ≤ C(θ)∥ηf1∥
L

nq
n+(t−s)q

≲ ∥ηf1∥Lq(Rn)

If n ≥ 2 we also have

(6.6) ∥I t−s(ηf1)∥L2(Rn) ≤ C(θ)∥ηf1∥
L

2n
n+(t−s)2

≲ ∥ηf1∥L2(Rn)

so that for n ≥ 2 we have found f̃1,σ, f̃2 ∈ Lq ∩ L2(Rn) such that (6.4) holds for t replaced
with σ and f1, f2 replaced with f̃1,σ, f̃2.

If n = 1 we need a slight adaptation to have (6.6) (if t is close to one and s is close to
zero): Let η2 ∈ C∞

c (Rn) with η2 ≡ 1 in a neighborhood of Ω′′. Then we set
˜̃f1,σ := η2I

t−σ(ηf1)

and
˜̃f2,σ := f̃2 + χΩ′′

(
(−∆)

2s−t
2

(
(1− η2)I

t−σ(ηf1)
))
.

By the disjoint support we then get the same estimates as before.

In conclusion, for any σ ∈ [s, t] we have f1,σ, f2,σ ∈ L2 ∩ Lq(Rn) and

(6.7)
∫
Ω

∫
Ω
K(x, y)

(u(x)− u(y)) (φ(x)− φ(y))

|x− y|n+2s
dx dy =

∫
Rn

f1,σ(−∆)
2s−σ

2 φdx+

∫
f2,σφdx,

for any φ ∈ C∞
c (Ω′′).

Let L ∈ N a number which we shall define later, and choose nested open sets

(6.8) Ω′ := Ω2L ⊂⊂ . . . ⊂⊂ Ω1 ⊂⊂ Ω′′ ⊂⊂ Ω.

Step 1: First improvement

(6.9)
1

q1
:= max

{
1

2
− θ

n
, θ

}
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then (5.1) and (5.2) are satisfied in view of (6.5).

(6.10) β1 := min{1
2
ε, s− t}

(6.11) p1 := min{2 + 1

2
ε, q1}

We claim that

∥(−∆)
s+β1

2 u∥Lp1 (Ω2) + ∥(−∆)
s
2u∥Lp1 (Ω2)

≲
2∑
i=1

(
∥fi∥L2(Rn) + ∥fi∥Lq(Rn)

)
+ ∥u∥Hs,2(Rn).

(6.12)

We apply Theorem 5.1 for s̃ = t̃ = r̃ = s, p̃ = 2 and the equation to (6.7) with σ = s.
Then (5.3) is satisfied since s < 1. We also choose q̃ := q1 ∈ (2, q] then (5.1) and (5.2) are
satisfied in view of (6.5).

Observe that f1,σ, f2,σ ∈ Lq ∩ L2(Rn) ⊂ Lq1(Rn), so from Theorem 5.1 we obtain v1 ∈
Hs,2(Rn), supp v1 ⊂⊂ Ω′′

v1 ≡ u in a neighborhood of Ω1

and for any φ ∈ C∞
c (Rn)∫

Rn

∫
Rn

K(x, y)
(v1(x)− v1(y)) (φ(x)− φ(y))

|x− y|n+2s
dx dy

=

∫
Rn

g1,s(−∆)
s
2φdx+

∫
Rn

g2,sφdx,

(6.13)

for some g1, g2 ∈ Lq1(Rn) with the estimate

∥g1,s∥Lq1 (Rn) + ∥g2,s∥Lq1 (Rn) ≲
2∑
i=1

(
∥fi∥L2(Rn) + ∥fi∥Lq(Rn)

)
+ ∥u∥Hs,2(Rn)

and
∥(−∆)

s
2v1∥L2(Rn) ≲ ∥u∥Hs,2(Rn)

and in view of (5.8), for any 0 ≤ α ≤ min{θ, t − s} we have (for β̃ := α) that (5.7) is
satisfied

∥(−∆)
α
2 g1,σ∥L2(Rn) ≲ ∥f1∥L2(Rn) + ∥u∥Hs,2(Rn).

In view of Theorem 6.1 (applied to t̃ := s and the equation (6.13)) we have the estimate

∥(−∆)
s
2v1∥Lp1 (Ω′′) ≲

2∑
i=1

(
∥gi∥Lp1 (Rn) + ∥gi∥L2(Rn)

)
+ ∥(−∆)

s
2v1∥L2(Rn)

≲
2∑
i=1

(
∥fi∥L2(Rn) + ∥fi∥Lq(Rn)

)
+ ∥u∥Hs,2(Rn).
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Moreover, since we applied Theorem 6.1 to the equation (6.13), we have

∥(−∆)
s+β1

2 v1∥L2(Ω′′) ≲
2∑
i=1

(
∥fi∥L2(Rn) + ∥fi∥Lq(Rn)

)
+ ∥u∥Hs,2(Rn).

Since u ≡ v1 in a neighborhood of Ω1, by Lemma 2.3, we find that this implies

(6.14) ∥(−∆)
s
2u∥Lp1 (Ω1) ≲

2∑
i=1

(
∥fi∥L2(Rn) + ∥fi∥Lq(Rn)

)
+ ∥u∥Hs,2(Rn).

and

∥(−∆)
s+β1

2 u∥L2(Ω1) ≲
2∑
i=1

(
∥fi∥L2(Rn) + ∥fi∥Lq(Rn)

)
+ ∥u∥Hs,2(Rn).(6.15)

In order to obtain (6.12) we need to have an Lp1-estimate in (6.15). For this we repeat this
argument for the equation (6.7) with σ = s+ β1 (this is only necessary if t > s, otherwise
β1 = 0 and we are done with (6.14)).

We apply Theorem 5.1 for s̃ = s, t̃ = s + β1 and r̃ = s − β1, p̃ = 2, q̃ := q1 to (6.7) with
σ = s + β1. Again (5.3) is satisfied, since s + β1 < s + t − s = t < 1. (5.1), and (5.2)
are satisfied in view of (6.5). Then Theorem 5.1 implies the existence of v2 ∈ Hs+β1,2(Rn),
supp v2 ⊂⊂ Ω′′

v2 ≡ u in a neighborhood of Ω2

and for all φ ∈ C∞
c (Rn)∫

Rn

∫
Rn

K(x, y)
(v2(x)− v2(y)) (φ(x)− φ(y))

|x− y|n+2s
dx dy

=

∫
Rn

g1,s+β1(−∆)
s+β1

2 φdx+

∫
Rn

g2,s+β1φdx,

(6.16)

for some g1,s+β1 , g2,s+β1 ∈ Lq1(Rn) with the estimate

∥g1,s+β1∥Lq1 (Rn) + ∥g2,s+β1∥Lq1 (Rn) ≲
2∑
i=1

(
∥fi∥L2(Rn) + ∥fi∥Lq(Rn)

)
+ ∥u∥Hs,2(Rn)

and (with the additional help of (6.15)),

∥(−∆)
s+β
2 v2∥L2(Rn) ≲

2∑
i=1

(
∥fi∥L2(Rn) + ∥fi∥Lq(Rn)

)
+ ∥u∥Hs,2(Rn).

Applying Theorem 6.1 (for t̃ := s + β1 and the equation (6.16), observe that ε does not
change) we have

∥(−∆)
s+β
2 v2∥Lp1 (Ω2) ≲

2∑
i=1

(
∥fi∥L2(Rn) + ∥fi∥Lq(Rn)

)
+ ∥u∥Hs,2(Rn).
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By Lemma 2.3, since u ≡ v2 in a neighborhood of Ω2 we find

∥(−∆)
s+β1

2 u∥Lp1 (Ω2) ≲
2∑
i=1

(
∥fi∥L2(Rn) + ∥fi∥Lq(Rn)

)
+ ∥u∥Hs,2(Rn).(6.17)

Together, (6.17) and (6.14) imply (6.12).

Step 2: Iteration We define for k ∈ N,

(6.18)
1

qk+1

:= max

{
1

pk
− θ

n
,
1

q

}
,

(6.19) pk+1 := min

{
pk +

1

2
ε, qk+1

}
,

(6.20) βk+1 := βk +min

{
1

2
ε, s− t− βk

}
.

starting from q1, p1, β1 as in (6.9), (6.11), (6.10), respectively.

Our goal is to show that for any k ∈ N,

∥(−∆)
s+βk

2 u∥Lpk (Ω2k) + ∥(−∆)
s
2u∥Lpk (Ω2k)

≲
2∑
i=1

(
∥fi∥L2(Rn) + ∥fi∥Lq(Rn)

)
+ ∥u∥Hs,2(Rn).

(6.21)

We prove this by induction induction. We already have shown (6.21) to hold for k = 1,
(6.12).

So assume as induction hypothesis that for some k ∈ N (6.21) holds. We need to show

(6.22) ∥(−∆)
s
2u∥Lpk+1 (Ω2k+2) ≲

2∑
i=1

(
∥fi∥L2(Rn) + ∥fi∥Lq(Rn)

)
+ ∥u∥Hs,2(Rn).

and

(6.23) ∥(−∆)
s+βk+1

2 u∥Lpk+1 (Ω2k+2) ≲
2∑
i=1

(
∥fi∥L2(Rn) + ∥fi∥Lq(Rn)

)
+ ∥u∥Hs,2(Rn).

First we treat (6.22). If qk = q there is nothing to show, because then pk = pk+1 = q. If
not, we apply Theorem 5.1 for s̃ = t̃ = r̃ = s, p̃ = pk, q̃ := qk to (6.7) with σ = s. Again
(5.3) is satisfied since s < 1. (5.1) and (5.2) are satisfied in view of (6.5) and the fact that
since ε < 1

10
θ
n

we have that
⏐⏐⏐ 1
pk

− 1
pk−1

⏐⏐⏐ ≤ θ
n
.

Then Theorem 5.1 implies the existence of v1 ∈ Hs,pk(Rn), supp v1 ⊂⊂ Ω′′

v1 ≡ u in a neighborhood of Ω2k+1
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and for all φ ∈ C∞
c (Rn),∫

Rn

∫
Rn

K(x, y)
(v1(x)− v1(y)) (φ(x)− φ(y))

|x− y|n+2s
dx dy

=

∫
Rn

g1,s(−∆)
s
2φdx+

∫
Rn

g2,sφdx,

(6.24)

for some g1,s, g2,s ∈ Lqk(Rn) with the estimate

∥g1,s∥Lqk (Rn) + ∥g2,s∥Lqk (Rn) ≲
2∑
i=1

(
∥fi∥L2(Rn) + ∥fi∥Lq(Rn)

)
+ ∥u∥Hs,2(Rn).

and additionally (using the induction hypothesis (6.21))

∥(−∆)
s
2v1∥Lpk (Rn) ≲

2∑
i=1

(
∥fi∥L2(Rn) + ∥fi∥Lq(Rn)

)
+ ∥u∥Hs,2(Rn).

Applying Theorem 6.1 for t̃ := s and the equation (6.24) we obtain

∥(−∆)
s
2v1∥Lpk+1 (Ω′′) ≲

2∑
i=1

(
∥gi∥Lpk+1 (Rn) + ∥gi∥L2(Rn)

)
+ ∥(−∆)

s
2v1∥Lpk (Rn)

≲
2∑
i=1

(
∥fi∥L2(Rn) + ∥fi∥Lq(Rn)

)
+ ∥u∥Hs,2(Rn).

Since u ≡ v1 in a neighborhood of Ω2k+1 this implies (6.22).

Now we treat (6.23). We apply Theorem 5.1 to s̃ = s, t̃ = s+βk, p̃ = pk, q̃ = qk, r̃ = s−βk
and to the equation (6.7) with σ = s + βk. (5.3) is satisfied since s + βk ≤ t < 1. As
before, (5.1), (5.2) are satisfied in view of the choice of θ, qk, pk, βk+1. Since we have by
assumption (6.21), we find v2 ∈ Hs,2 ∩ Hs+βk(Rn), v2 ≡ u in a neighborhood of Ω2k+1,
g1, g2 ∈ Lqk(Rn) such that for all φ ∈ C∞

c (Rn)∫
Rn

∫
Rn

K(x, y)
(v2(x)− v2(y)) (φ(x)− φ(y))

|x− y|n+2s
dx dy =

∫
Rn

g1(−∆)
s−βk

2 φdx+

∫
Rn

g2φdx.

We apply Theorem 6.1 for t̃ = s+ βk to this equation, and find that

∥(−∆)
s+βk+1

2 v2∥Lpk (Ω2k) ≲
2∑
i=1

(
∥fi∥L2(Rn) + ∥fi∥Lq(Rn)

)
+ ∥u∥Hs,2(Rn).

Since v2 ≡ u in a neighborhood of Ω2k+1 we conclude that

(6.25) ∥(−∆)
s+βk+1

2 u∥Lpk (Ω2k+1) ≲
2∑
i=1

(
∥fi∥L2(Rn) + ∥fi∥Lq(Rn)

)
+ ∥u∥Hs,2(Rn).

If pk+1 = pk we have (6.23). Otherwise, we need to apply this chain of arguments one more
time: This time, we apply Theorem 5.1 to s̃ = s, t̃ = s + βk+1, p̃ = pk, q̃ = qk, r̃ = s− βk
and to the equation (6.7) with σ = s+βk+1. Again, (5.3) is satisfied since s+βk+1 ≤ t < 1,
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and (5.2), (5.1) are satisfied in view of the choice of θ, qk, pk, βk+1. Since we have (6.25),
we obtain from Theorem 5.1 v3 ∈ Hs,2 ∩Hs+βk+1(Rn), v2 ≡ u in a neighborhood of Ω2k+2,
g1, g2 ∈ Lqk(Rn) such that for all φ ∈ C∞

c (Rn)∫
Rn

∫
Rn

K(x, y)
(v2(x)− v2(y)) (φ(x)− φ(y))

|x− y|n+2s
dx dy =

∫
Rn

g1(−∆)
s−βk+1

2 φdx+

∫
Rn

g2φdx.

We apply Theorem 6.1 for t̃ = s+ βk+1 to this equation, and find that

∥(−∆)
s+βk+1

2 v3∥Lpk+1 (Ω2k+1) ≲
2∑
i=1

(
∥fi∥L2(Rn) + ∥fi∥Lq(Rn)

)
+ ∥u∥Hs,2(Rn).

Since v3 ≡ u in a neighborhood of Ω2k+2, we finally conclude (6.23).

Conclusion: From the definition of pk+1, qk+1, βk+1 as in (6.19), (6.18), (6.20) starting from
p1, q1, β1 as in (6.11), (6.9), (6.10) we see that there is a large number (depending on ε and
θ, s, t, and q – all of which are fixed numbers in this proof) there is a finite number L ∈ N
such that pL = qL = q, βL = t− s. Thus, from we have (6.21) we obtain

∥(−∆)
t
2u∥Lp(Ω2L) + ∥(−∆)

s
2u∥Lp(Ω2L) ≲

2∑
i=1

(
∥fi∥L2(Rn) + ∥fi∥Lq(Rn)

)
+ ∥u∥Hs,2(Rn).

Since Ω′ ⊂ Ω2L (see (6.8)), and taking into account the arguments from Step 0 of this
proof, we conclude. □

7. Proof of the corollaries of Theorem 1.2

Corollary 1.3 is an immediate consequence of Theorem 1.2 and its H t,q
loc-estimates.

Proof of Corollary 1.4. Let Ω′′ ⊂⊂ Ω with Ω′ ⊂⊂ Ω′′. Let η ∈ C∞
c (Ω) with η ≡ 1 in Ω′′.

Since f ∈
(
H2s−t,q′(Ω)

)∗ we have that f̃ = ηf ∈
(
H2s−t,q′(Rn)

)∗, since for any φ ∈ C∞
c (Rn),

⟨f̃, φ⟩ := ⟨f, ηφ⟩

Then u is a solution of
⟨LsΩu, φ⟩ = ⟨f̃, φ⟩ ∀φ ∈ C∞

c (Ω′′).

Observe that
⟨f̃, φ⟩ ≲ ∥f∥(H2s−t,q′ (Ω))

∗ ∥ηφ∥H2s−t,q′ (Rn)

By the fractional Leibniz rule, we also have

∥ηφ∥H2s−t,q′ (Rn) ≲ ∥φ∥H2s−t,q′ (Rn)

Moreover since q′ ≤ 2 and η has compact support,

∥ηφ∥H2s−t,2(Rn) ≲ ∥φ∥H2s−t,2(Rn).
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In view of Proposition 2.2 we find f1, f2 ∈ Lq ∩ L2(Rn) such that

⟨f̃, φ⟩ =
∫
Rn

f1(−∆)
2s−t

2 φdx+

∫
Rn

f2φdx ∀φ ∈ C∞
c (Rn),

and

∥f1∥Lq(Rn) + ∥f2∥Lq(Rn) + ∥f1∥L2(Rn) + ∥f2∥L2(Rn) ≲ ∥f̃∥(H2s−t,q′ (Rn))
∗ ≲ ∥f∥(H2s−t,q′ (Ω))

∗ .

Thus, u is a solution of

⟨LsΩu, φ⟩ =
∫
Rn

f1(−∆)
2s−t

2 φdx+

∫
Rn

f2φdx ∀φ ∈ C∞
c (Ω′′).

Applying Theorem 1.2 to this equation in Ω′ ⊂⊂ Ω′′ we obtain the claim.

□

Lastly, we show the following corollary of Theorem 1.2 for equations of the type LsΩu =
divs,Ω F , where divs denotes a fractional divergence as treated e.g. in [13, 27]. Observe
that Corollary 1.6 is a direct consequence of Corollary 7.1 if we set F (x, y) := f(x)−f(y)

|x−y|s .

Corollary 7.1. Let s ∈ (0, 1) and p ≥ 2. Let Ω ⊂⊂ Rn be a smoothly bounded set, and let
Ω1 ⊂⊂ Ω be open. Assume that u ∈ W s,2(Ω) satisfies

⟨LsΩu, φ⟩ =
∫
Ω

∫
Ω

F (x, y) (φ(x)− φ(y))

|x− y|n+s
dx dy

for any φ ∈ C∞
c (Ω), where LsΩ corresponds to K ∈ K(α, λ,Λ) for some given α ∈ (0, 1)

and λ,Λ > 0. Then if for any t > 0 we have∫
Ω

∫
Ω

|F (x, y)|p

|x− y|n+tp
dx dy <∞

then for any r ∈ [s, s+ t) we have u ∈ W t,p
loc (Ω), and for any Ω1 ⊂ Ω we have the estimate

[u]W r,p(Ω1) ≤ C

((∫
Ω

∫
Ω

|F (x, y)|p

|x− y|n+tp
dx dy

) 1
p

+ ∥u∥L2(Ω) + [u]W s,2(Ω)

)
.

Proof. Set

Λ :=

(∫
Ω

∫
Ω

|F (x, y)|p

|x− y|n+tp
dx dy

) 1
p

Observe that since Ω is bounded, we have for any t̃ ∈ [0, t],(∫
Ω

∫
Ω

|F (x, y)|p

|x− y|n+t̃p

) 1
p

≲ Λ.
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Let Ω2 ⊂⊂ Ω3 ⊂ Rn be an open set such that Ω1 ⊂⊂ Ω2 ⊂⊂ Ω3 ⊂⊂ Ω. Take η ∈ C∞
c (Ω)

such that η ≡ 1 in a neighborhood of Ω3. Then for any φ ∈ C∞
c (Ω3),∫

Ω

∫
Ω

F (x, y) (φ(x)− φ(y))

|x− y|n+s
dx dy

=

∫
Ω

∫
Ω

F (x, y) (η(x)φ(x)− η(y)φ(y))

|x− y|n+s
dx dy.

Moreover we have for any φ ∈ C∞
c (Rn), and any t̃ ∈ [0, t],

T [φ] :=

∫
Ω

∫
Ω

F (x, y) (η(x)φ(x)− η(y)φ(y))

|x− y|n+s
dx dy

≲Λ[φ]W s−t̃,p′ (Rn).

By Sobolev embedding, for any r > s− t̃,

[φ]W s−t̃,p′ (Rn) ≲ ∥φ∥Hr,p′ (Rn).

That is, T is an element of (Hr,p′(Rn))∗, and by Proposition 2.2 we find f1, f2 ∈ Lp(Rn)
such that

T [φ] =

∫
Rn

f1(−∆)
s
2φdx+

∫
Rn

f2φdx,

with
∥f1∥Lp(Rn) + ∥f2∥Lp(Rn) ≲ Λ.

In particular we have for any φ ∈ C∞
c (Ω2)

⟨LsΩu, φ⟩ =
∫
Rn

f1(−∆)
s
2φdx+

∫
Rn

f2φdx,

and from Theorem 1.2 we conclude that for any W s,2-extension ũ : Rn → R of u
⏐⏐⏐
Ω

we have

∥(−∆)
r
2 ũ∥Lp(Ω2) ≲ Λ + [ũ]W s,2(Rn) + ∥ũ∥L2(Rn)

Again from Sobolev embedding this implies for any 0 < r̃ < r

[u]W r̃,p(Ω1) ≲ Λ + [ũ]W s,2(Rn) + ∥ũ∥L2(Rn),

Since Ω is an extension domain we can find an extension ũ such that

[ũ]W s,2(Rn) + ∥ũ∥L2(Rn) ≲ [u]W s,2(Ω) + ∥u∥L2(Ω),

and conclude the theorem. □

Proof of Corollary 1.5. Observe that for a C1,α-diffeomorphism Φ the maps u and u ◦ Φ
belong to the same Sobolev spaces Hs,p and W s,p as long as s ≤ 1.
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By the transformation rule∫
Ω

∫
Ω

(u(x)− u(y))(φ(x)− φ(y))

|Φ(x)− Φ(y)|n+2s
dx dy

=

∫
Ω2

∫
Ω2

K(x, y)
(u ◦ Φ(x)− u ◦ Φ(y))(φ ◦ Φ(x)− φ ◦ Φ(y))

|x− y|n+2s
dx dy

where K(x, y) = det(DΦ(x)) det(DΦ(y)) is still Hölder continuous. Now we can apply
Corollary 1.4 to this K. □
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