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ABSTRACT

Open-ended programming increases students’ motivation by allow-
ing them to solve authentic problems and connect programming
to their own interests. However, such open-ended projects are also
challenging, as they often encourage students to explore new pro-
gramming features and attempt tasks that they have not learned
before. Code examples are effective learning materials for students
and are well-suited to supporting open-ended programming. How-
ever, there is little work to understand how novices learn with
examples during open-ended programming, and few real-world de-
ployments of such tools. In this paper, we explore novices’ learning
barriers when interacting with code examples during open-ended
programming. We deployed Example Helper, a tool that offers gal-
leries of code examples to search and use, with 44 novice students
in an introductory programming classroom, working on an open-
ended project in Snap! We found three high-level barriers that
novices encountered when using examples: decision, search, and
integration barriers. We discuss how these barriers arise and design
opportunities to address them.
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1 INTRODUCTION

Creative, open-ended programming projects, such as making student-
designed apps, games and simulations, are widely used in many
introductory programming courses (e.g. [11]). They encourage
novices to pursue projects that feel authentic to them, and to ex-
press their ideas creatively, motivating them to keep pursuing CS
[16]. In addition, through open-ended programming, novices also
learn to use computational thinking strategies (e.g., abstraction,
decomposition), and may further apply them in other areas, such
as math and engineering [17, 44].
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Open-ended projects can prove very difficult for novices [14], in
part because they encourage novices to design unique programs
that address their interests and goals, which may require them to use
new programming features, or accomplish new tasks, beyond what
they have already learned. Novices can also struggle to combine
the individual programming concepts they have learned (e.g. loops,
variables, etc.) into a complete program [14], and they may lack
experience making use of code blocks or libraries offered by the
language (i.e. APIs [10]).

Code examples are a common way for programmers to learn
new APIs and coding patterns [4], and are also considered one of
the most useful learning material for novices [24]. For example,
research in laboratory settings suggests that novices learned to use
code blocks more effectively after seeing them from code examples
[19]. However, novices can also face challenges learning from ex-
amples, and integrating examples to their own code [20], and these
challenges may be exacerbated by the challenges of open-ended
programming [21]. In addition, there have been few real-world
deployments of code examples for supporting open-ended pro-
gramming. To design example systems that better support novices’
open-ended programming, a key step is to uncover their own bar-
riers and frustrations [15]. This suggests the need to explore how
novices use code examples in practice, especially in a classroom
setting, with authentic population and learning activities.

In this work, we ask the research question: What are the learn-
ing barriers that novices face when using examples during
open-ended programming?. To answer this, We designed a sys-
tem called Example Helper to support open-ended programming
with a gallery of code examples. Our analysis of log and interview
data found that novices encounter three types high-level barriers:
decision, search and integration barriers. Based on these findings,
we discuss implications and design opportunities for better support-
ing novices’ open-ended programming with examples. The primary
contributions of this work are: 1) The Example Helper system that
offers a variety of learning support to novices during open-ended
programming. 2) An analysis of learning barriers novices encounter
when using code examples in open-ended programming, in an au-
thentic, classroom context. 3) Identification of design opportunities
to provide better example-based support to novices.

2 RELATED WORK

Open-ended programming.

Open-ended programming allows learners to integrate personal
interests into creating an artifact that is meaningful to them. Many
efforts to promote open-ended programming draw on the theory
of Constructionism [33], which suggests that learners effectively
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build their own knowledge structure when engaging in creating a
programming artifact they feel connected with [33].

However, open-ended projects can be challenging for novices.
1) They may struggle to design “logically-coherent” programming
components, and may start by putting together all possible code
elements that seemed relevant [27]. 2) Their programs may suffer
from code smells such as duplicated code [38]. 3) Their final arti-
facts were shown to be lack of usage of fundamental programming
concepts (e.g., variables, operations), from a systematic evaluation
of 80 novices’ open-ended projects collected from 20 urban middle
school classrooms [14]. These show struggles to apply existing con-
cepts into code, or to explore new programming concepts or APIs.
Kirschner et al. summarized through a literature review that open-
ended discovery may lead to experiential learning, where learners
rely heavily on trial-and-error instead of learning new knowledge
[23]. These challenges encountered by novices during open-ended
programming are examples of “Play Paradox” [32], which explains
that learning activities should strike a balance between creative
exploration and some levels of external support [32].

Code examples & opportunistic learning,.

Theory. Code examples are one of the primary resources profes-
sional programmers and end-users use to learn programming knowl-
edge and API usage patterns [4, 37]. Such an example usage scenario
arises when a programmer feels in need of resources in the mid-
dle programming. They search for a code example (e.g., through
documentation or forums) [4], and then integrate the example to
their project through testing and modification [4]. Prior work has
shown that, different from learning traditional Worked Examples
[8], where programmers engage in deliberate learning of a step-by-
step demonstration before working on the actual task [31, 34, 43],
learning an example in the middle of programming is a type op-
portunistic learning [4, 10], where programmers search, select, and
copy code examples to “get something to work with”, and then
briefly test or modify to integrate examples into their own code
[39]. When investigating experienced programmers’ opportunistic
learning, Rosson and Carroll found that these programmers made
effective use of examples to complete functionalities that they were
unfamiliar with, but many don’t reflect on how the example works
[39]. They may also struggle to apply or extend examples after-
wards [41]. While this explains the experts’ opportunistic learning
of code examples, and described how experts can encounter diffi-
culties in using and applying code examples, it is unclear how this
theory will extend to novices.

Systems. Researchers have developed systems to support novices’
use of code examples during programming. Many were built for
closed-ended tasks [45, 46]. For example, by offering step-by-step
examples with options to immediately run the example code [45].
Some offers an online database of annotated examples [6]. Some
prior work has shown that novices benefited from requesting such
code examples. For example, Ichinco et al. designed examples with
options to contrast an alternative choice, and found novices used
code blocks more effectively after seeing them from examples [19].
While this suggests that novices may potentially benefit from us-
ing code examples during programming, there are few real-world
deployment of example-based tools to support novices’ open-ended
programming in particular.

How to use this Example Helper?
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Figure 1: The Example Helper Interface.

Some prior work analyzed novices’ learning barriers when using
these example-based support systems [20]. Ichinco and Kelleher
analyzed novices’ example use in Looking Glass, and found that
they struggled to understand examples, and may fail to connect
an example to their own task [20]. However, this particular study
explored novices’ learning barriers in closed-ended code completion
tasks during a lab study. In contrast, we investigate novices’ learning
barriers of using code examples in open-ended tasks, where students
can encounter a different set of challenges.

3 EXAMPLE HELPER SYSTEM

The design goal of Example Helper is to allow students to view and
incorporate existing programming patterns into their own code
through effective use of code examples. To lower the barrier for
making these programming projects [30], the system is incorpo-
rated into Snap! [29], a novice programming environment. Simi-
lar to other novice programming environments (e.g., Scratch[36]),
Snap! already offers open-source galleries of complete program-
ming artifacts from other programmers, but these are complete
projects which demonstrate many related programming features.
By contrast, Example Helper offers small snippets of code exam-
ples [37] that demonstrate specific functionalities, collected in a
curated, browsable gallery. We developed this curated set of exam-
ples through an analysis of students’ programs from prior semester,
extracting key program features that were shared across students,
and built these as examples. Many of these key features include
usage of multiple sprite interactions! (e.g., in a collision event), we
therefore also included examples that include usage of multiple
sprites. Two experts then reconstructed examples from this reposi-
tory to include cleaner and higher-quality code. When a student
needs an example during programming, they can click on a “show
example” button within the scripting area of Snap! to open a gallery
of code examples. The student then follow two steps to select and
use an example within their own source code:

Step 1: Search for an example. The student can find an example
by: browsing through the gallery; or filtering and search for exam-
ples by clicking on a tag, or querying in a search box. The search
box finds a set of examples the student need by looking for words
that overlapped in the examples’ names. To visually understand
the functionality of the example, the student may also hover on the
example to look at the gif animation of the code’s output.

LA sprite in Snap! is an object (i.e., in object-oriented programming) that has its own
code (scripts), costumes (e.g., a button), and variables.



Step 2: Use an example. After finding a needed example, the
student can click on the gif animation, and learn the example using
the following steps:

Read the code in relation to the output. The student may click on
different sprites to look at the example code for each sprite (shown
in Figure 1). They may also look at the animation of the output next
to the example code, since reading code in relation to output has
been shown to trigger students to reflect on how the example code
works [45]. The student can also click on the “Open the Project”
button to view the example in a separate window and experiment
with it.

Write a self-explanation. The student can reflect on the exam-
ple by writing down a self-explanations: “What in the code here
creates the effect that you see in the animation?”. We designed
self-explanation prompt because self-explanation is a critical step
towards learning from an example [3, 42], since it promotes students
to stop and think deeper about the code example [2, 12].

Copy the example code. To allow students to test and modify the
example easily, after writing their self-explanation of the example,
the student may then drag and copy the example to their own code.
To discourage students from immediately copying the code without
thinking about it, we restricted the length of the self-explanation
answer to be at least 30 characters.

4 PARTICIPANTS & PROCEDURE

We conducted our study in an undergraduate CSO classroom for
non-CS-majors with no prior programming experience, with 44
consented novice students, in a research university in Southeast
US. The course was held online due to the COVID-19 pandemic.
To create an authentic learning experience for the students, we did
not collect their demographic information.

Students created open-ended projects over 3 weeks, starting
from the 7th week of the course. Prior to that, they have learned the
usage of fundamental programming concepts in Snap!, including
loops, conditionals, procedures, and lists. During the first week
of project-making, students were introduced to the engineering
design process [18], and were asked to make project pitches that
may solve a real-world problem, including innovative ideas and
user experience considerations.

Pair planning and programming. Students discussed their project
pitches online, and then may optionally form a 2-person group if
they had a similar project of interests. 18 students chose to work
individually, while the rest (26) worked in pairs, creating 31 student
groups?. Students then planned their project design in a digital plan-
ner [28]. Before students started programming, one researcher came
to the Zoom classroom and introduced the Example Helper. We also
instrumented Snap! to allow student pairs to easily transfer files
through saving and loading, and encouraged them to use Zoom’s
screen share to collaboratively program. We encouraged students
to collaboratively program because prior work has shown that
in making open-ended programming projects, students achieved
significantly higher performance in pair-projects than individual
projects [14].

2Since some students worked alone and some in pairs, we use the term “group” to
refer to the student or students who worked on a single project.

Interviews. During the second week of project-making, we re-
cruited 5 students to attend individual interview sessions with two
researchers, where we recorded audio and students’ screens. Dur-
ing these interviews, we asked students: “Is there anything you
want to program, where you think an example might help you?”,
and encouraged them to use an example and complete the feature
during the interview. During this programming process, we asked
students to think aloud [13]. When they asked questions, we first
encouraged them to think independently, and then offered them
some possible next steps if needed. After completing the feature
they wanted using the example, we asked about their experience
using the examples, both during the interview and in their project-
making experience, such as: “Did you experience any difficulties
using the examples?”.

5 ANALYSIS

Qualitative Interview Data Analysis. To investigate our research
question about students’ barriers using code examples, we began
by analyzing the interview data using thematic analysis [5]. Two
researchers each read thoroughly all interview data, and then indi-
vidually conducted line-by-line inductive open coding on the five
pieces of interview, to take note of any quotes or students’ program-
ming activities, that reflects their example-usage experience and
their perceptions of it. While doing the inductive coding, the two
researchers used each sentence as a segment, allowing 0 or more
codes per segment. To obtain accurate understanding of students’
experience during open-coding, they also used the screen-recording
when students did the programming portion of the interview. The
two researchers then discussed and resolved discrepancies. This
created a merged set of 103 initial codes. The two researchers then
investigated the 103 codes to identify ones that described students’
learning barriers, and combined codes that described similar inci-
dents of a type of barrier. This created 7 initial themes of learning
barriers. They then discussed and sorted themes that may belong
to a higher-level category, which created 3 high-level themes that
described students’ learning barriers, including 4 sub-themes.
Log Data Preparation. Based on the inductive and in-depth anal-
ysis on interview data, we discovered potential learning barriers
among a small set of students. We then used log data to validate
how these learning barriers are reflected across all participants,
throughout their entire project-making classroom experience. Our
log data included a total of more than 200 hours of programming
activities (e.g., grabbing or destroying blocks), and students’ code
snapshots at every timestamp when they made a change to their
code. To elicit clean data that may be analyzed further to uncover
novices’ example-usage barriers, we performed a pre-filtering and
prepared the following three types of the log data:

Search queries. We collected all search queries that students have
typed in the search box to look for an example.

Opened examples. We manually investigated and then built a pro-
file of each incident when a student opened an example, including:
1) What examples were opened. 2) How the students found the
example (e.g., whether they opened the best matches found by their
search query). 3) What (if any) they did to integrate the example
code to their own code (e.g., how they built, modified, or tested the
example code).



Project submissions. We analyzed students’ final submissions to
determine: 1) whether their project submissions included functional-
ity demonstrated by the examples, and 2) whether the functionality
came from their integration of a opened example, or from students’
implementing the behavior independently.

Using the above filtered data, we further conducted deductive log
data analysis based on the 7 themes collected from the interview,
to find evidence of how these 7 learning barriers occurred in log
data of all students, described in Section 6.

6 RESULTS & DISCUSSION

Our thematic analysis of the interview data revealed 7 barriers
that students encountered when using code examples during open-
ended programming, including 3 high-level categories: decision,
search, and integration barriers. For each barrier, we report our data
by presenting the results from thematic analysis, and then the log
analysis we conducted that may explain how this barrier occurred
in all 44 students. At the end of each barrier, we briefly discuss how
this barrier relates to prior work, as well as its design implications.

Decision Barrier: Should I ask for an example?

Our thematic analysis revealed that students encountered de-
cision barriers, which occurred when students did not recognize
their need or ability to ask for an example, even when they were
stuck at implementing a programming behavior. For example, stu-
dents may not consider asking for an example as an option: ‘TMy
partner] hadn’t figured out how to implement a timer. I don’t know
why we didn’t think about doing examples, but we didn’t” (P3).

Among 31 student groups, 27 (87.1%) clicked on the “show ex-
ample” button at least once to browse or search for an example,
suggesting almost all were at least aware of the examples. How-
ever, we also found that 22% of these students (6/27) opened the
example interface only 1-2 times. This may suggest that students
forgot about examples once they got started with their work, or
the examples were not salient as they worked.

Another explanation could be that students judged the examples
to be unhelpful after viewing the interface. While this may be the
case for some students, we found that those who did open the
interface more than 2 times did so in an average of 11.38 times (up
to 11 times for one group), suggesting that many students found
it useful. We also found that 3 groups who did not use examples
implemented functionality demonstrated by an example, totaling 7
times, suggesting examples would have been useful.

Discussion. Prior work on novices’ help-seeking behaviors has
shown that knowing the need to seek help is an important but chal-
lenging self-regulatory skill that requires cognitive competencies
[22]. Avoiding to seek help when stuck is a maladaptive learning
strategy that can lead to reduced learning outcomes [1]. This can be
a particular challenge in programming, where students may have
a strong desire to work independently, or get absorbed in their
work and forget about asking for help [35]. Our results suggest
that this help-avoidance behavior also applies to novices’ example
use during open-ended programming. One possible way to address
the problem of help avoidance in example systems like Example
Helper is to offer help automatically (e.g. with a pop-up), which
can reduce help avoidance [26], especially if the system can detect
when students are stuck.

Search Barrier: How do I explain the example I want?

We found that only 63.0% (17/27) of groups who clicked on the
“show example” button ended up opening a code example to view.
Our thematic analysis suggests that this may have been the result
of search barriers, where students sought an example but were
unable to find or articulate what they were looking for. For example,
“T think we had tried to look for a background that was like a sky or
like a stage... and I don’t believe we found one of those.” (P2)

The log data reveals how search barriers occurred in students’
search queries. We found 63 distinct searches across the 15/27
groups (48%) who used the search box to find examples(merging
consecutive, identical queries). Two researchers conducted two
rounds of coding on the queries to: 1) identify candidate themes
that describe at least 10% of the data, discuss to resolve conflicts;
and 2) count the number of occurrences of each theme. We found
three primary themes: 1) interactions between multiple sprites,
such as “lose a point when touching” or ‘shoot” (14.3%, 9/63); 2)
sprite movement such as “bounce”, or “wrap around the screen”
(30.2%, 19/63); 3) queries for how a sprite should look (rather than
what it should do), such as “dining room”, “airplane”, and “people”
(47.6%, 30/63). While almost half of searches were in this category
of how the sprite should look, the examples were designed to show
functionality, so these searches returned no results — such that only
39.7% (25/63) of all example searches yielded results. This shows
a disconnect between how students articulated the example they
were looking for, based on aesthetic properties, and how examples
are typically organized — leading to search barriers.

Encountering a search barrier may also deter students from
looking for examples in the future. Students who found and opened
at least one example (n = 17) used the “show example" button over
5 time more (avg = 13.2; SD = 10.5) than those who did not (avg =
2.6; SD = 0.91).

In the interview, students discussed that they avoided requesting

for help because of expectations that they won'’t find an example
they needed: “When I didn’t find [a needed example], I kinda just
steered away from [requesting examples].” (P1),
Discussion. Prior work on end-users’ example search behaviors
showed that they may not know how to articulate what it is they
want to see in examples [9]. Our analysis found similar results, that
novices may also encounter difficulties expressing the functionality
they need in an example, and instead search for items that they
associate with that functionality (e.g. I want a sprite to fly, so I
search for “airplane”). To help novices find an example based on
these aesthetic properties, we might tag examples with relevant
aesthetic tags, so that novices can find examples that include an
airplane (or other flying object) when they search for it. We could
also try to give feedback on search queries, e.g. “Try searching for
a verb — what do you want the sprite(s) to do?”.

Integration Barrier: How do I integrate the example code into my
own code?

Our interview analysis identified integration barriers as the
challenges students face when trying to integrate an example into
their own code, after finding and opening it. For example, students
noted differences between the example and their own code: T may
have looked at the ‘increase score’ [example]. But I don’t think I used
that because I don’t think we could have made it work... It wasn’t a



#unfamiliar blocks

20 6

0.0 0.1 0.2 0.3
#integrated examples / #opened examples

Figure 2: # unfamiliar blocks v.s. integration rate.

part of like our code..” (P5). This difficulty integrating examples may
be especially difficult in open-ended projects, where the students
received examples that were distinct from the tasks they were trying
to solve (i.e. it “wasn’t a part of” their own code).

Low integration rate. To understand how many examples stu-
dents actually integrated into their projects, we investigated the
153 instances of opened example performed by the 17 students
who opened examples. We treated an example that was revisited
multiple times by a group as one distinct opened example, creating
77 distinct opened examples, covering all of the 48 examples we de-
signed. We define “integrated examples” as the distinct opened
example where students managed to use code from the example
and integrate it into their program to create working code®. We also
define the “integration rate” as a measure of the proportion of
opened examples that were ultimately integrated to students’ own
code (i.e. # integrated examples over # opened examples). We found
the integration rate over all opened examples to be (24.7%) 19/77.
This includes 9 times where students filled out the self-explanation
prompt and copied the code to their own code, modifying it when
needed. This number excludes 10 times where students attempted
to integrate code but were unsuccessful.

We would not expect all opened examples to be integrated into
students code. For example, sometimes students browsed examples,
repeatedly opening examples in search of one they wanted. How-
ever, even when students searched for an example and found a
relevant match, they did not often integrate it. For the 25 searched
items that ended up retrieving at least one matched example, we
found all of the top matched examples have been opened, but only
12% (3/25) of them were later integrated to students projects. This
suggests that students were encountering barriers to integration.
Our thematic analysis revealed 4 specific types of integration barri-
ers that described how these difficulties occurred: understanding,
mapping, modification, and testing barriers, discussed below.

Understanding Barrier: How do I use an unfamiliar code block?

Understanding barriers occurs when students encounter un-
familiar code blocks in an example, e.g., P2 found a “glide” block
that they were unfamiliar with and asked “What is the glide [block]?”
(P2). In addition to not understanding a new API, students may also
experience doubts about the usage of the API in the context of the
example: ‘T don’t know how this will work with the broadcast start
timer” (P3), where “broadcast” is a code block that received “start
timer” as its message.

The log data shows that the number of unfamiliar blocks indeed
influenced students’ ability to integrate an example into their own
code. We used the number of distinct unfamiliar code blocks in each
code example as the measure of unfamiliar blocks, and calculated it
in the following way: 1) We took the set of blocks that appeared in at

3This includes 2 examples that were successfully integrated and later deleted.
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Figure 3: example type v.s. integration rate

least 80%* student submissions in at least 1 of the 11 programming
assignments prior to this open-ended project as a set of familiar
blocks. 2) In each example, A distinct code block that doesn’t belong
to the set of familiar block is an unfamiliar block. Figure 2 shows
that the example integration rate continuously decreased from
30% (6/20%) to 0 (0/4), as the number of distinct unfamiliar blocks
increased from 0-3 to 12-15. This shows that some students were
unable to overcome the barrier of using unfamiliar blocks when
the number of unfamiliar blocks increased in an example.
Discussion. During open-ended programming, students can benefit
from examples that demonstrate how to use features (e.g. blocks,
APIs) that are unfamiliar, so it is important not to eliminate unfamil-
iar code. Instead, our results show that students may find it difficult
to understand examples when there are too many new features
(blocks) at once. Therefore, code example systems for novices may
benefit from limiting the number of unfamiliar concepts to a certain
threshold (e.g., 0-3 blocks). A system could also proactively show
or link to documentation on unfamiliar concepts that students have
likely not encountered before.

Mapping Barrier: How do I map a property of the example code to
my own code?

Students encountered mapping barriers when trying to under-
stand which parts of the example corresponded to existing parts
of their own code, such as sprites — P3 explained not knowing
whether the example code should go into their current sprite or a
new sprite: “I don’t know if creating another sprite is necessary.”;
P5, when working with a multi-sprite example, had mistakenly
copied example code to the wrong sprite, and later acknowledged
that “Any difficulties that I might have had were... taking some time
to understand how to change sprites to fit my project.” (P5).

Mapping barrier is also shown in students’ challenges to inte-
grate examples with multiple sprites. The 77 instances of opened
examples included 4 primary categories: multiple-sprite interac-
tions, single-sprite examples, user interactions, and movement. One
example may belong to multiple categories. We calculated the inte-
gration rate for each category (shown in Figure 3), and found that
multiple-sprite interaction examples, despite being the second-most
popular category (with 34 distinct opens), had only an 11.8% rate of
successful integration, the lowest among all other types of examples.
This finding may be explained by the mapping barrier, since when
integrating multiple-sprite examples, students face the two-fold
barrier of finding “which part of the example code completes my
needed behavior”, as well as finding “where in my code does the
example go?”

One might argue that perhaps the challenge of integrating multiple-
sprite examples may also be due to them being longer. We inves-
tigated students’ ability to integrate examples as the size of the

4Other thresholds produced similar results.
56 integrated among 20 opened, shown by the right and left number in each bar



example grows. We divided examples into size bins (i.e. 1-25 blocks,
25-50 blocks, etc.) and compared multiple-sprites examples to other
examples within each bin. We found the integration rate was al-
ways lower for multiple-sprite examples. For example, for examples
of size 1-25 blocks, the integration rate was 13% (3/23) for multiple-
sprite examples v.s. 34% (9/26) for others. This shows that students
struggle to integrate multiple-sprite examples to their code even
when their sizes were small. However, students were still able to
integrate some large (50-75 block) single-sprite examples (60%, 3/5).
This suggests that mapping barriers with multiple-sprites, rather
than an example’s size, may explain students’ challenges with inte-
gration.

Discussion. This difficulty in mapping an example’s property to
one’s own code suggests that students need support to understand
the example in the context of their own code, e.g., potentially through
adapting examples to match the student’s current program. For Ex-
ample Helper, this might mean changing the sprites in the example
to match the student’s, based on code similarity, or annotating
when an example requires creating a new sprite.

Modification Barrier: How to modify the example code to fit my
own needs?

Modification barriers occurred when students were in the middle
of or have completed integrating an example code into their own
code, but encountered difficulties in modifying the example to what
they actually needed. For example, P2 asked for an example to
implement a bounce behavior. However, the example demonstrated
how to bounce when hitting a sprite vertically, while the students
wanted to bounce after a horizontal collision. The student gave up
using the example because they were unable to modify the example
to turn the correct number of degrees: “We were going to stick to
what the code said, but the ball keeps falling off the paddle and we
didn’t know how to fix that, so I'm trying new stuff.” (P2)

In our log data, we found 19 instances of example modification,
which followed two distinct strategies: 1) build, test, modify, test
(n = 15): students started by making code blocks based on example
code, then tested and modified the examples by changing blocks.
Among these students, 11 succeeded and kept the new code, while 4
were unsuccessful and removed the example code entirely. 2) modify
while building (n = 4): students directly modified the example code
as they constructed it (2/4 succeeded). Although with relatively
high success rate (68 %), some students who attempted to modify
examples have been shown to have failed in doing so.

Discussion. Students’ needs to modify the example show an active
learning strategy [7], which may cause the learner to mentally inte-
grate the new information with their activated prior knowledge [7].
Because example code introduce a different context, and therefore
not work correctly, students need debug the examples through mod-
ification, which can be challenging [40]. We may therefore include
options to toggle the example, or to encourage modification of a
specific part of an example after they have used it in their program,
which is also supported by the Use-Modify-Create practice [25].
Testing Barrier: How to test the example code?

Testing barriers occurred when students were expecting to test
the example quickly, but encounter difficulties in doing so. During
our interview, two students asked the interviewer about how to
test the example code immediately after the student has opened the

example (e.g., “Is there anywhere to see how the code actually works
in the example?” (P1)). In our log data, all 19 integrated examples
were immediately tested once the students have completed making
it. In addition, 9 opened example were tested in short time intervals,
marked by at least two writing - testing cycles. This showed that
students who managed to integrate the example code to their own
code may have overcome the barrier of finding how to test the
example code. However, our interview showed that some who were
able to test the example code were still expecting quicker testing
than what they experienced, and it’s possible that students who
did not integrate the examples successfully to their own code were
discouraged by the difficulties of testing immediately.

Discussion. Although our log data showed that all students who

integrated examples to their own code have tried testing the exam-
ple code by running it, students in the interviews were unsatisfied
with the expectation that they have to first reconstruct the example
in order to run it. Prior work has shown that when learning code
examples, actually running the code and see how the code executes
may lead to further reflections of the code itself [45]. Our findings
shows that just allowing students to view the animation next to the
example code is insufficient; we should allow students easy access
to run and test the example program directly.
Summary & Discussion. We found evidence that students en-
counter decision, search and integration barriers, leading to lower
levels of exploring, opening and using examples. Despite our fo-
cus on barriers, our results still suggest that code examples have
strong potential to support open-ended programming, as many stu-
dents were able to successfully integrate examples into their code.
Our results on learning barriers also show a strong connection
between the challenges faced using examples, and more general
programming skills, such as appropriate help-seeking [26], articu-
lating what code does [9], and modifying code [25]. In addition to
design opportunities discussed above, our results also have impli-
cation for instructors, who often integrate examples into lectures
and debugging sessions [40], where students may still face each of
the integration barriers we discussed.

7 LIMITATION & CONCLUSIONS

This work includes several limitations. With only five interviewees,
our interview data may not generalize to other student groups.
However, we validated our interview data with evidence from log
data, showing some generalisability of these barriers. Additionally,
some students programmed in pairs, others alone. We treated them
equally as one unit of analysis, although they engage in different
modes of programming. However, since the majority of our log
analysis focused on each unit of example requests, and therefore the
unit of analysis does not affect the validity of the data we reported.

In conclusion, in this work, we presented the Example Helper
system, which supports students’ open-ended programming using
code examples. We also identified students’ learning barriers while
using examples in open-ended programming, leading to design
opportunities that may better support students.
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