Paper Session: Collaboration

SIGCSE ’21, March 13-20, 2021, Virtual Event, USA

PlanIT! A New Integrated Tool to Help Novices Design
for Open-ended Projects

Alexandra Milliken Neeloy Gomes Tiffany Barnes
Wengran Wang Yihuan Dong Thomas Price
Veronica Cateté Rachel Harred Chris Martens

Sarah Martin Amy Isvik North Carolina State University

North Carolina State University
Raleigh, North Carolina, USA
aamillik@ncsu.edu

ABSTRACT

Project-based learning can encourage and motivate students to
learn through exploring their own interests, but introduces special
challenges for novice programmers. Recent research has shown
that novice students perceive themselves to be “bad at program-
ming”, especially when they do not know how to start writing a
program, or need to create a plan before getting started. In this
paper, we present PlanIT, a guided planning tool integrated with
the Snap! programming environment designed to help novices plan
and program their open-ended projects. Within PlanlIT, students
can add a description for their project, use a to do list to help break
down the steps of implementation, plan important elements of their
program including actors, variables, and events, and view related
example projects. We report findings from a pilot study of high
school students using PlanIT, showing that students who used the
tool learned to make more specific and actionable plans. Results
from student interviews show they appreciate the guidance that
PlanIT provides, as well as the affordances it offers to more quickly
create program elements.

CCS CONCEPTS

« Social and professional topics — Model curricula; K-12 edu-
cation; CS1; - Human-centered computing — Human computer
interaction (HCI); « Applied computing — Interactive learning en-
vironments;

KEYWORDS

block-based languages, novice programmers, planning program-
ming projects

ACM Reference Format:

Alexandra Milliken, Wengran Wang, Veronica Cateté, Sarah Martin, Neeloy
Gomes, Yihuan Dong, Rachel Harred, Amy Isvik, Tiffany Barnes, Thomas
Price, and Chris Martens. 2021. PlanIT! A New Integrated Tool to Help
Novices Design for Open-ended Projects. In Proceedings of the 52nd ACM

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SIGCSE °21, March 13-20, 2021, Virtual Event, USA

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8062-1/21/03...$15.00
https://doi.org/10.1145/3408877.3432552

North Carolina State University
Raleigh, North Carolina, USA

232

Raleigh, North Carolina, USA
tmbarnes@ncsu.edu

Technical Symposium on Computer Science Education (SIGCSE °21), March
13-20, 2021, Virtual Event, USA. ACM, New York, NY, USA, 7 pages. https:
//doi.org/10.1145/3408877.3432552

1 INTRODUCTION

Introductory programming courses hope to teach students both
“problem solving — devising an algorithm — and programming —
converting the algorithm into [a program]” [15]. Increasingly, such
courses focus on creative, open-ended coding projects, such as de-
signing games [23], apps [4, 17], and simulations [11]. Such project-
based learning can help broaden participation by improving learn-
ing and relevance to professional careers [20, 27] and improving
motivation by connecting to student’s personal interests and mak-
ing an impact on the world [19, 28]. Open-ended programming
projects can also support non-computing majors, who hope to use
programming to create novel, meaningful artifacts, such as compu-
tational models, data analyses, and scientific simulations [10].

While creative and open-ended projects can be meaningful and
motivating, prior work shows that students struggle with the design
process needed to achieve them [26]. Furthermore, the resulting
projects may be poorly-organized [9], with students struggling to
explain how their programs demonstrate abstractions and algo-
rithms. A few design tools exist to support students in this difficult
process, but only those for UML diagrams have been successfully in-
tegrated with programming environments [15]. We present PlanIT,
an integrated tool for planning open-ended projects. The goals
of the system are to: (1) Provide planning scaffolds, (2) Teach ef-
fective planning processes, and (3) Make planning feel useful and
worthwhile to students.

We conducted a pilot study using the PlanIT tool during a high
school computer science internship program with 26 high school
students. Students planned and programmed 3 open-ended game
projects in Snap!/, both with our tool and with a traditional planning
worksheet. Half of the students used PlanIT for the second program
and half for the third. Through analyses of interviews and the plan-
ning worksheets between the two groups, we found that students
appreciated PlanIT’s scaffolding, and incorporated elements from
its interface into their later worksheet plans. The contributions of
this paper are: (1) the design of a new planning tool that can be
integrated with various programming environments, and its align-
ment to design criteria for design tools for teaching introductory
programming, and (2) a study suggesting that the PlanIT digital

https://doi.org/10.1145/3408877.3432552
https://doi.org/10.1145/3408877.3432552
https://doi.org/10.1145/3408877.3432552

Paper Session: Collaboration

planning tool can support students to more effectively plan for
open-ended programming projects.

2 RELATED WORK

Self-efficacy is a top early predictors of success in a CS1 course [22].
Many CS students experience low self-efficacy, causing them to drop
out from CS courses [5]. In a survey study with 214 CS1 students to
understand why they had lower self-efficacy, Gorson and O’Rourke
found that students often formed negative self-assessments dur-
ing programming, despite successes in completing programming
projects. In particular, students were more likely to form negative
self-assessments that led them to conclude they were bad at pro-
gramming when they became frustrated by “not knowing how to
start”; 15.42% of the students also incorrectly believed that needing
to plan before programming shows low expertise [5].

However, the very problem-solving skills needed for planning
are the same skills that have been shown to predict novice program-
mers’ performance on programming problems [14]. In a survey of
559 novice students and 34 teachers on difficulties in learning and
teaching programming, Lahtinen et al. found that “design[ing] a
program to solve a certain task” is one of the most difficult aspects.
Another research study on 12 undergraduate students creating pseu-
docode to solve programming problems Kwon found that students
showed weakness in the strategic understanding needed to create
useful plans that could be translated into programs [12].

Programming curricula have introduced planning as a part of
the pedagogy into students’ design and programming processes
[7, 8, 26]. Jin’s Cognitive Apprenticeship Learning [7] and related
programming tutor frameworks with specific scaffolds for plan-
ning Jin et al., teach students to plan problem-solving strategies
to construct closed-ended, short programs, yield higher learning
gains over traditional approaches. Thomas et al. led a project called
“Supporting Computational Algorithmic Thinking” (SCAT) that
guided African-American middle school girls to design and code
open-ended games for social change [26], and found that students
have the most difficulties “articulating algorithms to describe user
actions and related gameplay functionality and behavior”, and also
struggled in “expressing initial game idea”. These findings show
that while a guided planning experience is helpful to students in
short programming tasks, there is still a need to facilitate planning
for students creating open-ended programs.

In a 2018 systematic literature review, Luxton-Reilly et al. identi-
fied three main types of design tools to help students with problem
solving for program design: pseudocode, flowcharts, UML diagrams.
The pseudocode and flowcharting tools promoted learning, but
none were integrated with programming environments. Authors
of 2 main UML diagramming tools for introductory programming,
CIMEL ITS[18] and Green[2], emphasized the need to integrate both
plans and code into an integrated development environment to
improve problem solving ability, to map plans to programs and vice
versa, and to reduce the tedium of creating plans.

Alphonce and Martin created a set of 7 design criteria for the
Green UML design tool: (1) tailored plans: aligning plans to con-
straints or affordances of the environment !, (2) code generation:
creating code from a plan, (3) reverse engineering: creating a plan

!Tailored plans are called restricted drawing for UML diagrams in the framework

233

SIGCSE ’21, March 13-20, 2021, Virtual Event, USA

from code, (4) extensibility: customizable functionality, (5) run-time
interactions, (6) refactoring support, and (7) set of relationships. In
the next section, we illustrate how we have enacted these criteria
into the design of PlanIT.

3 THE PLANIT TOOL

We designed PlanIT through an iterative design process with five
cycles of low-fidelity prototyping and testing with non-majors in a
college introductory CS1 course in Fall 2019. Our first prototype
considered the elements needed to make a simple game in Snap/. We
sought to create a flexible low-fidelity model for design plans that
would allow us to gather user feedback and make quick refinements.
In PlanlT v0.1, we used Google docs with instructional text for the
project overview (description), actors (objects), important scene (an
illustration of a prototypical moment in the game), game state (the
minimal information needed to save and reload a game), a wishlist
(things to create), and events.

We provided students with plans for implementing 2 assign-
ments, then required them to use PlanIT v0.1 on Project 1. Based
on plan grades and interviews with students on Project 1, we found
that students misunderstood game states, and felt that planning
was an extraneous and tedious task. Therefore, in PlanIT v0.2 we re-
moved game states and required students to define just two events:
one they knew how to program, and one they did not yet know.
We also added a self-managed to-do list to track their progress. Our
observations of students using PlanIT v0.2 showed that students (1)
simultaneously edited their plans in no particular order, (2) realized
that completing the plans helped them communicate and refine
their designs, and (3) completed more interesting programs. This
suggests that challenging students to plan complex things increased
student perceptions of the value of planning.

3.1 Design Elements

In the next phase of the project we developed a standalone PlanIT
v1.0 application using the Vue framework for integration into multi-
ple environments. Layered over the Snap! interface using an iframe,
PlanIT aligns well with Alphonce and Martin’s design framework
of seven criteria for design tools to support novice programmers
in learning to design programs and translate those designs into
programs. Figure 2 provides screenshots to illustrate how PlanIT
implements Alphonce and Martin’s framework. PlanIT has tailored
plans (TP), including creating actors and events, and code genera-
tion (CG) for actors and variables. It is also extensible (E) with free
response components, e.g. the Important Scene description. PlanIT
allows students to specify sets of relationships (SR) through events
that relate actors and variables. Snap!, the current programming
environment connected to PlanlT, provides run-time interaction.
Reverse engineering and refactoring support in PlanIT are achieved
by propagating changes to actors and variables.

3.2 Student Interface and Experience

We now present PlanIT’s components: Description, Actors, Vari-
ables, Important Scene, Events, and To Do List. The Description
and Important Scene components allow students to include text
and a static image in their project plans, describing a critical decision
point in their project. My Actors allows students to elaborate plans

Paper Session: Collaboration

Back to Snap!

> Project Description

paddie

able to be moved left and
right by player, ball
bounces off to hit blocks

ball bounces on the edges
of the screen, bounces on
the paddle, and breaks
blocks
Propeities: Bounces on edge

Properties None

SIGCSE ’21, March 13-20, 2021, Virtual Event, USA

Save and Logout

To Do

v Complete Project Description
@ List your variables

@ List your actors

@ find image for blocks

Add a new Todo Iltem

Important Scene

Edit Description

¥ Auio Refresh

w My Variables

currentLevel blockBreakCount

Add a new Vanable

Figure 1: The PlanIT tool with Actors, Variables, To Do, and Important Scene components

including actor names, images, descriptions, and properties (e.g.,
“wrap around screen”). My Variables allows students to create,
modify, or delete variables that they will need in their program-
ming project. When a student adds a new variable, they specify its
name and scope. PlanIT supports code generation and refactoring
support, for both Actors and Variables by automatically adding or
updating them in Snap! Figure 1 shows the PlanlT interface with
ball and paddle actors, a global variable called currentLevel, and
a local variable for the ball actors, called brickBreakCount. The
Events component has three options: (1) create a new event from
an existing list of actions and triggers, (2) create an event from the
example gallery with example behaviors with animated gifs, and (3)
create a custom open-ended event. Figure 1 shows an event being
created, using the trigger “When game starts” and action “change
backdrop”. Planning an event does not create code for students in
Snap!, only a plan for creating an event. To Do List helps students
manage their planning process and implementation by adding, mod-
ifying, completing and deleting tasks using a visual progress bar.
The To Do List starts with three default tasks (“complete project de-
scription,” “list your variables,” and “list your actors”) to encourage
students to interact with the respective components.

4 METHODS

We performed a pilot study to evaluate the effectiveness of PlanIT in
meeting our goals of 1) providing scaffolding, 2) teaching planning,
and 3) making planning worthwhile. The study design involved
students planning and programming three games, with all students
planning and programming the first game using a traditional plan-
ning worksheet, containing a project description text area and

234

instructions to use the remaining space to write down their plans,
which may include text and images. For the second game, pairs
of students were assigned randomly into 2 groups with the Early
group using PlanIT and the other using the worksheet. For the third
game, the Late group used PlanIT and the Early group used the
worksheet. Students were interviewed after each game planning
and programming process. Both groups planned and programmed

Detault Spite Henry

- ¥
This Is the actor Snap

provides you for any new
project.

Henry s & bat tha can
narm the dofaunt sprite!

Important Scene

i o

I
o a

“ Auto Refresh

[A'giant bat named
Henry appears to
attack the defaut

Jsprite in this serene

v Events

When actor named Henry touches another actor named Default Sprite, modify vaiable named iives by

When the lives vasiable becomes 0, change the backdiop and end the garme.

Event Add example Events

Figure 2: PlanIT provides (TP) tailored plans, (CG) code gen-
eration, (E) extensibility, and (SR) set of relationships

Paper Session: Collaboration

2 projects using a traditional planning worksheet and one with
PlanIT, with the Early group using PlanIT between the two work-
sheets, and the Late group using PlanIT afterwards.

Trigger: When game starts
New Action:

actor named

change backdrop

move backdrop

evel restarts

game

Figure 3: A contextual PlanIT menu for event creation

Participants: We recruited 26 high school students from an un-
paid summer internship in CS at a large, public research university.
Participants self-reported their gender (male/ female/ nonbinary/
prefer not to say) with 7 males and 19 females, and could select
all that applied for race/ethnicity, with 2 White, 2 Black/African
American, 19 Asian, 1 Other, and 2 Multiracial. The students self-
reported their programming skill as “a little” (5 students), “some”
(15 students), and “very strong” (6 students). We paired similar
performing students together based on their performance within
Crescendo, a self-paced coding practice tool [29].

4.1 Procedure

In the morning on Day One, all the students completed the same set
of activities synchronously within the same Zoom meeting. In the
morning, students completed a pre-survey, became familiar with
Snap/, completed Crescendo activities and became familiar with
planning and pair programming. The pre-survey collected their (1)
experiences and opinions with coding, (2) completed computer sci-
ence courses, and (3) experiences with planning past programming
projects. In the afternoon, students planned and coded a simple
arcade game, Asteroids, in their assigned pairs. The researchers
reviewed instructions for the Asteroids activity and outlined the
day’s schedule with all the students in the main Zoom room. The
researchers then opened the Zoom breakout rooms for pairs to plan
their Asteroids game. They were given 20 minutes to complete the
planning worksheet, where they could create a description for their
program and openly plan any other relevant information. After
planning, pairs shared their plans with the group and then returned
to their breakout rooms to pair program for an hour.

On Days 2 and 3, we evenly split the student pairs between two
groups. We define Early Pairs as those who used PlanIT on Day
2 and Late Pairs as those who used PlanIT later, on Day 3. On
Day 2, students planned and implemented a breakout-style game.
Breakout-style games are a subclass of the “bat-and-ball” genre. In a
breakout game, the “bat” is a paddle, and the goal is to continuously
bounce the ball off of the paddle, causing it to hit rows of tiles above
it, eventually breaking all tiles. Students were shown a breakout-
style game, but they were explicitly encouraged to create an original
program of their own design. To help students create events for
their Breakout game, the Early group had access to code example

235

SIGCSE ’21, March 13-20, 2021, Virtual Event, USA

behaviors in addition to PlanIT 2. The Late group used the planning
worksheet, and had no access to the extra support provided by code
examples during programming.

After an introduction to the programming activity and their
respective planning environments, student pairs went to their indi-
vidual breakout rooms and planned for 20 minutes. Students shared
their ideas with the other students within the same condition and
went back into their breakout rooms to program in pairs for 2
hours. They were allowed to ask for help when they got stuck on
something during implementation. On Day Three, we had the same
schedule as Day Two, but the Late group now had PlanIT and Ex-
ample support. On this day, students programmed a game in the
style of Space Invaders, a game where the user shoots at a group of
enemies who are moving intermittently and shooting back at the
user. On Day Two and Three, at the end of the day, we conducted
interviews with each pair of students, interviewing pairs together,
since time was limited and we were interested in the collective
experience of the pair.

4.2 Data and Analysis Methods

We analyze student interactions within PlanIT, interviews, survey
data, and planning artifacts to evaluate PlanIT’s effectiveness for
meeting our goals, as stated in section 1. We analyzed PlanIT log
data interactions, e.g. adding an actor from the Actor menu, or
unchecking a to-do item, to determine which were the most com-
mon. Two coders analyzed the interviews and planning worksheets
by open coding for thematic analysis [1, 16]. The two coders
completed their open coding blind to students’ condition, using
the following steps: (1) Become familiar with the data, (2) Generate
initial codes of 25% of the data (individually), (3) Discuss initial
codes and combine them into an initial codebook, (4) Two authors
individually code all interview data with the codebook, (5) Meet,
discuss, refine codes, (6) Two authors review all data using refined
codes, and (7) Organize each tag into themes (together).

5 RESULTS AND DISCUSSION
5.1 Comparison of Planning Worksheets

To evaluate how well PlanIT met goal 2 to teach planning, we in-
vestigated its impact on students’ planning processes outside the
tool. We investigated how the 7 pairs in the Early group completed
their planning worksheet on Day 1 (before using PlanIT) and on
Day 3 (after using the tool). Two authors used open coding (de-
scribed in Section 4.2 to identify 25 worksheet planning elements
(e.g. used pseudocode, used conditionals, planned game mechanics),
and categorized the level of planning detail as None, Low, Medium,
or High. We then identified which planning elements changed for
each pair between Day 1 and Day 3. We found that all 7 pairs in
the Early group made meaningful changes to the way they com-
pleted the planning worksheets, respectively adding [3, 3, 2, 6, 2, 4,
2] elements each. Specifically, we found all 7 pairs added PlanIT-
inspired components (events, actors, variables, to do lists), 5 added
references to specific programming concepts (input/output, con-
ditionals, loops), 4 added other elements (e.g. game mechanics or
specific Snap blocks) and 5 pairs increased the level of detail in their

2We provided the examples as additional support to help students program effectively,
but we are not evaluating the effect of the examples in this paper.

Paper Session: Collaboration

descriptions. Pairs also removed a smaller number of elements, [3, 1,
1,0, 0, 2, 0] respectively. Specifically 2 pairs removed programming
concepts (conditionals, loops) and 2 pairs removed other elements
(pseudocode, specific Snap blocks, pair programming roles).

These changes reflect some planning elements that are supported
by PlanIT, which emphasized the role of actors, detailed descrip-
tions, and the importance of planning variables, but did not sup-
port pseudocode, and did not emphasize the use of specific blocks.
However, some elements of PlanIT (e.g. planning events) were not
reflected in the majority of the students’ future planning work-
sheets. This may be due to the amount of scaffolding built into
event creation which heavily guided students during this process,
i.e. making it more difficult to do or write down outside the tool
than within it, or because students used the Events component less
than they used the Actor, Variable, and To Do List components.

It is possible that some of this change in planning behavior was
due to the experience of having completed projects between Day 1
and 3 (not just the use of PlanIT). Therefore, we also investigated
differences between the Late Pairs’ planning worksheets on Days 2
and 3. These 5 Late Pairs had also completed a project (on Day 1),
but had not used PlanIT. We found that there were few changes in
their planning worksheets. Two pairs used no different planning
elements. Of the remaining 3 pairs, one added a unique title, one
added references to specific blocks, and one (who had no plan
on Day 1) added pseudocode, and programming elements. This
indicates that the changes we saw in the Early groups’ planning
behavior were likely due to exposure to PlanIT. Our results suggest
that by explicitly scaffolding the planning process (goal 1), a tool
can also shape the way that students plan projects in the future,
meeting goal 2. However, we also note that some of the students’
natural planning behaviors (e.g. using pseudocode) should also be
supported in PlanIT.

5.2 Interview Themes

Interviews took place on days 2 and 3 after they completed their
programming projects. We used the thematic analysis described
in Section 4.2 to determine the following themes, which provide
evidence that PlanIT has met all three of its goals of scaffolding,
teaching, and making planning worthwhile:

o Students appreciated integrated planning

o Students liked planning structure and support

o Students found PlanIT useful for a variety of planning tasks
o Students learned from PlanIT

e Students wanted more from PlanIT

In the following sections, participants are differentiated with
numbers (e.g., P1,P2), and their gender and race are noted at the first
instance using the following code: Asian (A), Black (B), Caucasian
(C), Multi-racial (R), Male (M), and Female (F).

Students appreciated integrated planning An important fea-
ture of PlanIT is how it directly integrates a planning tool into the
Snap! coding environment, allowing students to directly create
code elements (e.g. Sprites, variables) as they plan. Students ap-
preciated this tight integration, illustrating how PlanIT met goal
3 of making planning worthwhile: “the most helpful part of the
Planner was... being able to make your sprites and your variables,
so when we came back to it it was just already all set up” (P8-FC).

236

SIGCSE ’21, March 13-20, 2021, Virtual Event, USA

Students noted this saved them time: “I feel like the [worksheet]
took longer than [PlanIT] since... you can create and set variables
and connect them to the things” (P14-FR). One student noted that
PlanIT “doesn’t feel like wasting time ‘cause normally planning
can feel like that” (P4-FA). Students also noted areas where PlanIT
did not seem well- integrated with Snap!/, such as when creating
events. One student noted that events “take too much time, so we
didn’t put it in [our plan]” (P7-FA). Students felt like they “didn’t
really quite get the point of doing the events” (P3-FA), and log data
confirms that events were one of the least used PlanIT features. We
hypothesize that lack of direct integration with Snap! was a primary
cause. Our results support prior work that students actively weigh
the utility of programming support [21], and want to spend their
time effectively working towards creating their project. Planning
tools can therefore make planning feel worthwhile by integrating
with programming environments and translating students’ plans
into progress towards implementation. This finding is consistent
with phenomena described by Suchman, who suggests that the
planning process of a design is not an isolated experience, but is
rather an interconnected component of the context of the plan [24].

Students appreciated structure and support when plan-
ning This theme provides evidence that PlanIT meets goal 1 of
scaffolding planning into steps, guiding students from determining
a generic theme and description of the design, to determining ac-
tors, and then to defining events. Students appreciated this guided
experience, because it “ helped organize things in a way I didn’t
think about before” (P4-FA). Students also appreciated that PlanIT
offers them cues to think of particular program elements, making
their plan® more specific and thorough” (P6-FA). The scaffolded
experience of PlanIT not only helped students plan strategically,
but also prepared them to program in specific steps. For example,
students explained that “with the to do list, and knowing what
variables and what events and what features we were going to code
beforehand, listing them all out, it made it a lot easier to mentally
start coding and separate it into parts” (P12-FA). In comparison with
the worksheet planner, students explained that PlanIT prevented
“ [diving] right in” (P12) and feeling “overwhelmed”
(P12). Given the context of prior research showing that beginning
CS students struggle to articulate structured programming strate-
gies without explicit support [12], we believe that the scaffolded
experience and structured components offered by PlanIT may help
students bridge the gap between their own natural design language
and the Snap! programming language.

PlanIT supported students in a variety of ways This theme
provides evidence of goal 3 of making planning worthwhile. Stu-
dents noted the system had organizational benefits: it “helped
us with the logistics” (P5), and “helped us keep organized” (P4).
PlanIT’s workflow helped students start on a large, complex project,
as it “prevented us from getting overwhelmed since we knew where
to start planning” (P12). PlanIT also helped students to plan ahead:
it “allowed us to think ahead more about what we were going to
code” (P6). Students noted that PlanIT helped make their ideas more
concrete, to “take your concepts and ideas, and actually turn it into
something you can use” (P5-FA). These benefits — organization,
decomposition, forethought and reifying ideas — are all proposed
benefits of planning in the literature [6]. Some students noted that
these benefits were not found with the planning worksheet. PlanIT

them from

Paper Session: Collaboration

“was a lot more helpful than just using [the worksheet],” which
“wasn’t able to actually visualize the code we were gonna use to
carry out the concept we had in mind” (P5). A student from the post
survey said that “when we used the digital planner, it was easier to
visualize...certain things before actually starting and I feel that we
were able to accomplish more of what we wanted to do” (P8). This
suggests the extra scaffolding provided by PlanIT was necessary to
achieve these benefits, also addressing design goal 1.

Students learned from PlanIT This theme provides evidence
for goal 2 of teaching planning proceses. Students felt that PlanIT
taught them an alternative way to plan out a programming project.
One student thought PlanIT “[gave] good insight about what is
the best way/process to organize code for [a] specific function”
(P9-FR). To further support this, a student from the post survey
concurred and said “the planning tool was really helpful because be-
fore I would’ve always just made a flowchart (like the standard
programming flowchart with rectangles/circles/parallelogram) and
never plan out the variables and actors, or just jump straight
into the project and not plan at all. It showed me a way to ef-
fectively plan a program which also helped us use the Work-
sheet Planner” (P5). On the post survey, one student explained
“on the first day of the study I did not specifically plan out variables
and events on the [worksheet], but after using [PlanIT] on the
second day, I was inspired to specifically plan out the variables on
the [worksheet] on the third day” (P10-FA). This agrees with our
other results from Section 5.1, showing that students incorporated
elements of PlanIT into their subsequent planning worksheets. This
result suggests these students transferred the skill they learned to
future tasks, addressing design goal 2. We found that the scaffolded
experience with PlanIT not only serves as a tool for students to
plan and program strategically within the task. It could also serve
as a “worked example” [25] for students to learn the step-by-step
planning strategies, and apply it for future programming tasks.

Students want more from PlanIT From the post survey and
interviews, there were some suggestions for improving PlanIT to
provide additional features and concepts that students often in-
corporated into their planning process when using the planning
worksheet. One of these suggestions included having a place within
PlanIT where students can jot down additional, unstructured notes.
One student suggested “maybe like a section for additional notes
that would go in the project description...so I wouldn’t forget” (P9)
smaller details or “miscellaneous ideas” they wanted to remember.
Another suggestion was to provide space for students to pseudocode
events or algorithms within their project. For example, one student
said they wanted to “plan some pseudocode beforehand” to allow
“some way to organize out [their] thoughts [on] how to implement
[their] ideas in the planning into code” (P11-FA,12). Another sug-
gestion for improving PlanIT was to have a more advanced and
formattable To Do List component which would allow for subtasks
or sections for organization. One student said they would like to
“add smaller bullets under large ones, therefore [they] can organize
your tasks from large general ideas to the smaller details” (P11).
One suggestion requested by multiple students was the ability for
students in a pair to simultaneously edit PlanIT (much like in a
Google Document).

237

SIGCSE ’21, March 13-20, 2021, Virtual Event, USA

5.3 Most Useful Elements

During the interviews, many participants found it useful to plan for
actors and variables, with five out of six Early group pairs mention-
ing its usefulness during post interviews on Day 2, and all five Late
Pairs mentioning its usefulness on Day 3. One pair stated that the
most helpful part of PlanIT was “being able to make your sprites
and your variables” that, when switching to Snap, were “already
all set up to go” (P17-MA,18-MC). These findings are supported by
our analyzed trace data showing that adding actors and variables
are some of the most commonly performed actions in PlanIT. Two
pairs from the Early group mentioned the usefulness of the to do
list during interviews on Day 2, with one stating that the “to-do list
was very helpful” (P15-MA, 16-FC), and that they ended up creating
a to-do list in the Planning Worksheet on Day 3 while “thinking of
the snap planner used previously” (P11, 12). When it came to events,
however, there was no overwhelmingly positive feedback from the
participants. One participant pair found the events to be helpful
(P15, 16). One participant felt “only new programmers would need
to plan events because the events contain simple logistics” that
more experienced programmers already understand. This feedback
is supported by the trace data, which shows participants adding
events only 8 times over the course of the study. Interestingly, par-
ticipants added twice as many events over the course of the study
while using the example gallery, adding a total of 15 example-based
events. This is likely because adding events based on examples
takes only a few clicks, while adding them manually requires users
to make several selections in a multi-step process.

Checking off to-do list items was also a common action, likely
due to the pregenerated to-do items. People want to check off
to-do items to stay oriented toward their planned goals and to
avoid dissatisfaction by leaving items unchecked [3], and this is
no different for the participants of this study. Overall, the common
actions relevant to the study of the students’ planning process in
an open-ended project suggest that students will make more use of
PlanlT features directly affecting the Snap interface.

6 CONCLUSION

The contribution of this work includes a new integrated planning
tool and a study demonstrating how it can help novice programmers
plan challenging open-ended, creative projects in a meaningful
and worthwhile way. Our results show that PlanIT has met goal
1 to provide students with scaffolding to make plans, especially
via tailored plans for Snap! elements. Toward goal 2 of teaching
planning, PlanIT influenced students to incorporate more elements
from the tool (e.g. actors, variables) into future plans outside the tool.
However, we also found that students were less likely to do some
kinds of planning after using PlanIT de-emphasized other elements
(e.g. pseudocode). This means that tools have the potential to shape
how students plan, and also poses the potential for unintended
consequences. Finally, our results show that when PlanIT meets
the design criteria of code generation and reverse engineering
that provide tight integration between plans and code, students
find planning to be useful and worthwhile. Our investigation also
revealed potential areas for improving PlanIT to meet targeted
design criteria, with requests for more extensibility and the ability
to more easily express a meaningful set of relationships.

Paper Session: Collaboration

7

ACKNOWLEDGEMENTS

This material is based upon work supported by the National Science
Foundation under grant number 1917885. Any opinions, findings,
and conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of
the National Science Foundation.

REFERENCES

(1]
(2]

[10]

[11

[12]

(13

[14]

Mohammed Ibrahim Alhojailan. 2012. Thematic analysis: A critical review of its
process and evaluation. West East Journal of Social Sciences 1, 1 (2012), 39-47.
Carl Alphonce and Blake Martin. 2005. Green: a customizable UML class diagram
plug-in for Eclipse. In Companion to the 20th annual ACM SIGPLAN conference
on Object-oriented programming, systems, languages, and applications. 108-109.
Adam Burke, Cristi Shanahan, and Eka Herlambang. 2014. An exploratory
study comparing goal-oriented mental imagery with daily to-do lists: Supporting
college student success. Current Psychology 33, 1 (2014), 20-34.

Dan Garcia, Brian Harvey, and Tiffany Barnes. 2015. The beauty and joy of
computing. ACM Inroads 6, 4 (2015), 71-79.

Jamie Gorson and Eleanor O’Rourke. 2020. Why do CS1 Students Think They’re
Bad at Programming? Investigating Self-efficacy and Self-assessments at Three
Universities. In Proceedings of the 2020 ACM Conference on International Comput-
ing Education Research. 170-181.

A Gwande. 2010. The checklist manifesto. New York: Picadur (2010).

Wei Jin and Albert Corbett. 2011. Effectiveness of cognitive apprenticeship
learning (CAL) and cognitive tutors (CT) for problem solving using fundamental
programming concepts. In Proceedings of the 42nd ACM technical symposium on
Computer science education. 305-310.

Wei Jin, Albert Corbett, Will Lloyd, Lewis Baumstark, and Christine Rolka. 2014.
Evaluation of guided-planning and assisted-coding with task relevant dynamic
hinting. In International Conference on Intelligent Tutoring Systems. Springer,
318-328.

Hieke Keuning, Bastiaan Heeren, and Johan Jeuring. 2017. Code quality issues in
student programs. In Proceedings of the 2017 ACM Conference on Innovation and
Technology in Computer Science Education. 110-115.

Amy J. Ko, Robin Abraham, Laura Beckwith, Alan Blackwell, Margaret Burnett,
Martin Erwig, Chris Scaffidi, Joseph Lawrance, Henry Lieberman, Brad Myers,
et al. 2011. The state of the art in end-user software engineering. ACM Computing
Surveys (CSUR) 43, 3 (2011), 1-44.

Michael Kélling. 2010. The greenfoot programming environment. ACM Transac-
tions on Computing Education (TOCE) 10, 4 (2010), 1-21.

Kyungbin Kwon. 2017. Novice programmer’s misconception of programming
reflected on problem-solving plans. International Journal of Computer Science
Education in Schools 1, 4 (2017), 14-24.

Essi Lahtinen, Kirsti Ala-Mutka, and Hannu-Matti Jarvinen. 2005. A study of the
difficulties of novice programmers. Acm sigcse bulletin 37, 3 (2005), 14-18.

Alex Lishinski, Aman Yadav, Richard Enbody, and Jon Good. 2016. The influence
of problem solving abilities on students’ performance on different assessment
tasks in CS1. In Proceedings of the 47th ACM technical symposium on computing
science education. 329-334.

SIGCSE ’21, March 13-20, 2021, Virtual Event, USA

Andrew Luxton-Reilly, Ibrahim Albluwi, Brett A Becker, Michail Giannakos, Am-
ruth N Kumar, Linda Ott, James Paterson, Michael James Scott, Judy Sheard, and
Claudia Szabo. 2018. Introductory programming: a systematic literature review.
In Proceedings Companion of the 23rd Annual ACM Conference on Innovation and
Technology in Computer Science Education. 55-106.

Moira Maguire and Brid Delahunt. 2017. Doing a thematic analysis: A practical,
step-by-step guide for learning and teaching scholars. All Ireland Journal of
Higher Education 9, 3 (2017).

Ralph Morelli, C Uche, P Lake, and L Baldwin. 2015. Analyzing Year One of a
CS Principles PD Project. In Proceedings of the ACM Technical Symposium on
Computer Science Education. 368-373. http://dl.acm.org/citation.cfm?id=2677265
Sally H Moritz, Fang Wei, Shahida M Parvez, and Glenn D Blank. 2005. From
objects-first to design-first with multimedia and intelligent tutoring. ACM SIGCSE
Bulletin 37, 3 (2005), 99-103.

Kylie A. Peppler and Yasmin B. Kafai. 2007. What Videogame Making Can
Teach Us about Literacy and Learning: Alternative Pathways into Participatory
Culture.. In Proceedings of the Digital Games Research Association Conference.
http://eric.ed.gov/?id=ED521155

Beatriz Pérez and Angel L Rubio. 2020. A project-based learning approach for
enhancing learning skills and motivation in software engineering. In Proceedings
of the 51st ACM Technical Symposium on Computer Science Education. 309-315.
Thomas W Price, Joseph Jay Williams, Jaemarie Solyst, and Samiha Marwan. 2020.
Engaging Students with Instructor Solutions in Online Programming Homework.
In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems.
1-7.

Keith Quille and Susan Bergin. 2018. Programming: predicting student success
early in CS1. a re-validation and replication study. In Proceedings of the 23rd An-
nual ACM Conference on Innovation and Technology in Computer Science Education.
15-20.

Alexander Repenning, Ryan Grover, Kris Gutierrez, Nadia Repenning, David C.
Webb, Kyu Han Koh, Hilarie Nickerson, Susan B. Miller, Catharine Brand, Ian
Her Many Horses, Ashok Basawapatna, and Fred Gluck. 2015. Scalable Game
Design. ACM Transactions on Computing Education 15, 2 (apr 2015), 1-31. https:
//doi.org/10.1145/2700517

Lucy Suchman. 1987. Plans and Situation Actions: The Problem of Human
Machine Communication. (1987).

John Sweller, Jeroen JG Van Merrienboer, and Fred GWC Paas. 1998. Cognitive
architecture and instructional design. Educational psychology review 10, 3 (1998),
251-296.

Jakita O Thomas, Yolanda Rankin, Rachelle Minor, and Li Sun. 2017. Exploring
the difficulties African-American middle school girls face enacting computational
algorithmic thinking over three years while designing games for social change.
Computer Supported Cooperative Work (CSCW) 26, 4-6 (2017), 389-421.
Elizabeth T Turner. 2012. Meeting learners’ needs through project-based learning.
International Journal of Adult Vocational Education and Technology (IJAVET) 3, 4
(2012), 24-34.

Ian Utting, Stephen Cooper, and Michael Kélling. 2010. Alice, Greenfoot, and
Scratch - A Discussion. ACM Transactions on Computing Education 10, 4 (2010).
http://dl.acm.org/citation.cfm?id=1868364

Wengran Wang, Rui Zhi, Alexandra Milliken, Nicholas Lytle, and Thomas W.
Price. 2020. Crescendo: Engaging Students to Self-Paced Programming Practices.
In Proceedings of the 51st ACM Technical Symposium on Computer Science Educa-
tion (Portland, OR, USA) (SIGCSE °20). Association for Computing Machinery,
New York, NY, USA, 859-865. https://doi.org/10.1145/3328778.3366919

http://dl.acm.org/citation.cfm?id=2677265
http://eric.ed.gov/?id=ED521155
https://doi.org/10.1145/2700517
https://doi.org/10.1145/2700517
http://dl.acm.org/citation.cfm?id=1868364
https://doi.org/10.1145/3328778.3366919

	Abstract
	1 Introduction
	2 Related Work
	3 The PlanIT Tool
	3.1 Design Elements
	3.2 Student Interface and Experience

	4 Methods
	4.1 Procedure
	4.2 Data and Analysis Methods

	5 Results and Discussion
	5.1 Comparison of Planning Worksheets
	5.2 Interview Themes
	5.3 Most Useful Elements

	6 Conclusion
	7 Acknowledgements
	References

