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ABSTRACT: Dielectric spectroscopy (DS) can be a robust in situ
technique for geochemical applications. In this study, we applied deep-
learning techniques to DS measurement data to enable rapid science
interrogation and identification of electrolyte solutions containing salts
and amino acids over a wide temperature range (20 to −60 °C). For
the purpose of searching for signs of life, detecting amino acids is a
fundamental high priority for field and planetary instruments as amino
acids are one of the building blocks for life as we know it. A
convolutional neural network (CNN) with channel-wise one-dimen-
sional filters is proposed to fulfill the task, using the DS data of amino
acid and inorganic salt solutions. Experimental results show that the
CNN with two convolutional layers and one fully connected layer can
effectively differentiate solutions containing amino acids from those
containing salts in both the liquid and solid (water ice) states. To
complement the experimental measurements and CNN analysis, the diffusive behaviors of ions (K+, Cl−, and OH−) were further
discussed with atomistic molecular dynamics simulations performed in this work as well as the quantum simulation published in the
literature. Combining DS with machine-learning techniques and simulations will greatly facilitate more real-time decision-making of
mobility systems for future exploratory endeavors in other worlds beyond Earth.

1. INTRODUCTION

Electrochemistry, combined with sensitive nondestructive
organic detection methods, can yield critical information
about metabolic strategies, prebiotic chemistry, and biosigna-
tures in planetary environments. The chemical and physical
processes investigated by electrochemical techniques are
fundamentally governed by (1) the physics of mass transport
from the bulk solution to the interfaces where polarization and
charge-transfer occur, for example, at a mineral interface where
microbes transfer electrons to/from that solid substrate; and
(2) the presence and concentration of various electroactive
species in solution, for example, reduced or oxidized inorganic
species or partially reduced products of carbon or other
biological building blocks. Knowing this, the development of
electrochemical in situ biosensors capable of dynamic
characterization (including detection/identification, quantifi-
cation, and selection) of basic organic or bioprecursor
materials has a substantial scientific value to future space
exploratory missions. In particular, dielectric spectroscopy
(DS) has emerged as a powerful measurement technique for
biosensor applications in characterizing organic systems
containing molecules such as enzymes, proteins, and antibod-
ies.1−4 DS instruments are highly portable and scalable for
adaptability in almost all deployment systems from large rovers

to small microbots and penetrators, with measurements
suitable for in situ and noninvasive capabilities using two to
four probes comprised of polarizable (chemically inert)
electrode materials.
From a single-frequency sweep (millihertz to megahertz),

measurements from DS can provide substantial information on
the chemical and physical properties of any geochemical
system emanating from the molecular level. Such measure-
ments of magnitude and phase shifts provide great details on
material systems’ transport dynamics and chemical energetics
from electrical properties such as conductivity, dielectric
constants, and relaxation time constants. Furthermore, material
phases and mixtures of heterogeneous materials such as soils/
water/ice also have very unique electrical properties as
observed from the magnitude of impedance, capacitance, and
phase angle spectra (known as Bode plots) as compared to
homogeneous material phases. Traditionally, these unique
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responses can be readily extracted directly from measurements
using equivalent circuit models consisting of passive resistor−
capacitor (R−C) combinations to provide physical interpreta-
tion of the responses and to serve as descriptors for decision
trees associated with chemical/geochemical systems under
scientific interrogation.5−8 However, the incorporation of
modern machine-learning techniques have significant advan-
tages in development of pattern recognition schemes which is
not yet fully realized for DS data analysis and interpretation of
results.9,10

The detection of amino acids in extraterrestrial environ-
ments is of particular interest to the astrobiology community.
For the purposes of searching for life or extant life beyond
Earth, detecting organic molecules such as amino acids would
be a high priority for field and planetary instruments as they
are one of the building blocks for life as we know it. Amino
acids have different functional groups and thus unique
chemical and physical properties, making them suitable for
identification and characterization by DS. Most importantly,
amino acids are soluble in water, providing an excellent
medium for detection by their transport properties. Certain
amino acids are basic (proton acceptor) or acidic (proton
donor) in nature and have charge polarity enabling detection
and possible ionic selection via their electrical properties. We
propose to take advantage of machine-learning techniques in
order to facilitate in situ identification of amino acids and
inorganic salts in samples.
Identification/classification is one of the major focuses of

machine learning. Classification consists of (1) taking a feature
vector x of an instance to be classified and (2) mapping the
feature vector x to a class label y.11 Classification problems are
solved by finding the mapping function f: x → y, which is
defined as follows

y f x( )= (1)

In many applications, mapping functions between features
and classes are so complicated that obtaining analytic forms of
the mapping functions is often impossible. Thus, a numerical
representation is more desirable.
Motivated by neural science research, convolutional neural

networks (CNNs) are proposed to solve the aforementioned
classification problems. They are very well suited to
approximating complicated and highly nonlinear mapping
functions. CNN-based classifiers have had success in image
classification,12,13 including medical image classification.14,15

CNNs can also be used on one-dimensional (1D) data
classification. Examples of CNN-based classification on 1D
data include using on-body sensor-collected time series to
identify human activities,16 speech recognition,17 biological
sequences classification,18 and so forth. In the case of applying
machine-learning techniques on chemical data, Sadik, et al.19

applied support vector machines to classify organophosphate
nerve agent simulants using changes in resistance versus time
obtained by an array of 32 sensors. Acquarelli, et al.20

employed CNNs to identify materials using vibrational
spectroscopic data.
To solve the classification problem, a CNN is trained to

approximate the mapping function between the feature vectors
of instances and classes of them through supervised learning.
In the mode of supervised learning, both artificial neural
networks (ANNs) and CNNs take pairs of training instances,
defined as (vi, ci), in which vi and ci are the feature vector and
class label of the ith training instance, respectively, to adjust

their parameters algorithmically. The performance of an ANN
depends on the selection of input features from raw data.21

The choice of input features is empirical, that is, trial and error.
An advantage of CNNs over ANNs is that CNNs can
automatically extract features from raw data. This salient
characteristic is achieved by the convolution layers in a
CNN.22 More details of the data set and CNNs used in this
work are discussed in Section 2.2.
Standard electrical properties spectra obtained by DS is over

a wide range of frequencies in the microhertz to megahertz
regions. The DS data used in this work are 1D and
multichannel. Definitions of data channels are listed in Table
1. Inspired by the CNNs for image classification,22 we propose

a CNN to classify DS data to detect/classify chemicals. The
proposed network has an array of channel-wise filters to
automatically extract features from data obtained by DS.
Extracted features are summarized at multiple abstraction
levels by multiple convolutional layers before being fed into a
fully connected layer for classification. Experimental results
show that the proposed algorithm is effective in classifying and
differentiating amino acids and inorganic salts in both the
liquid and ice states.
This paper is organized as follows. Section 2 describes

experimental data and depicts details of the proposed CNN
architecture to classify DS data in order to identify chemicals.
In addition, to illustrate ions’ diffusive behavior inside the ice
lattice at atomistic and molecular scales, atomistic molecular
dynamics (MD) simulations were performed for the two
systems, both without and with applying an external electric
field, also described in Section 2. Classical MD simulations
with fixed atomistic charges can probe molecular structures
with atomistic resolutions and sample MD behavior from
subnanoseconds to microseconds.23−32 Evaluation and dis-

Table 1. Definitions of Each Channel of DS Dataa

symbol definition unit

Y
admittance modulus measured.

Y Y Yr
2

i
2= +

siemens
(S)

θ phase angle measured. θ = tan−1(Yi/Yr) degrees

Z

impedance modulus calculated.

Z
Y
1= ohms (Ω)

Yr real component of the Y or in-phase portion of the
measured admittance. Yr = Y × cos(θ)

S

Yi imaginary component of the Y or out-of-phase
portion of the measured admittance.
Yi = Y × sin(θ)

S

1/tan(θ) it is associated with power dissipation factor or
ratio of energy stored/energy loss

b

C capacitance spectra associated with Yi or energy
stored

farads (F)

E′ relative permittivity spectra or real component of
the complex dielectric spectra

b

E″ dielectric loss spectra (associated with energy loss
because of ion motion or conductivity) or
imaginary component of the complex dielectric
spectra

b

σ conductivity spectra of the measurement
(intensive property)

S/cm

E″/E′ ratio of dielectric/dielectric loss, similar to tan(θ)
but in dielectric domain

b

aDetails of these parameters are presented in ref 33. b* indicates it is
dimensionless or unitless.
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cussion of experimental results are in Section 3. Finally,
Section 4 concludes the paper and discusses future work.

2. METHODS

2.1. DS Measurements of Amino Acid Solutions.
Amino acids were purchased as analytical grade reagents from
Sigma-Aldrich (St. Louis, MO). Stock solutions of the
individual amino acids were prepared at 100 mM in 18 MΩ
deionized (DI) water (ELGA water purification system,
PureLab-Option-Q 15BP) in 50 mL glass scintillation vials.
The stock solutions were diluted further to 1 μM prior to
analysis by DS. Electrolyte solutions containing KCl and KOH
were prepared similarly. For this investigation, we purposely
only reported results on Gly and Ala amino acid in comparison
to KCl and KOH solutions in concentrations ranging from 1
μM to 100 mM for validation on the efficacy of machine-
learning techniques on DS characterization; these nonpolar
amino acids pose the greatest challenge to identify because of
their low electrochemical activity as attributable to their
chemical and physical properties.33

DS measurements on aqueous amino acid solutions were
conducted using a novel electrochemical property cell (EPC)
design. The EPC employs a 3 mm diameter stainless steel
screw head to serve as the contact polarizable electrode; the
physical surface area of each electrode is about 8 mm2. The
electrode configuration in the EPC is adjustable to 2 or 4
electrode measurement. The DS measurements were per-
formed using a Wayne Kerr 6400B Precision Analyzer over a
wide frequency range from 20 Hz to 1 MHz with a
perturbation voltage amplitude of 100 mV with no applied
voltage bias. Prior to amino acid solution measurements, the
geometric factor (or cell constant), Geo, was accurately
determined from calibration protocols using a known
conductivity solution of 18 μS/cm purchased from Myron L,
Inc. The Geo factors for EPC1 (two microelectrodes) and
EPC2 (four microelectrodes) were 0.39 and 0.76 cm,
respectively. Also, as part of calibration protocols, an empty
cell measurement was performed to assess the system parasitic

capacitance and detection limits over the same measurement
conditions of voltage amplitude and frequency range. To
illustrate the characteristics of the DS data, an example of the
data used in our experiments is shown in Figure 1. The
definitions of the eleven channels of data are given in Table 1.
In Table 1, the real component Yr and imaginary component Yi
are independent measurements of DS. Even though the other
channels are calculated features, they represent various
characteristics of the chemical solutions of different aspects.
Thus, they are used in the CNN for the purpose of
differentiating chemicals. More representative experimental
measurements of DS data in amino acids and inorganic
electrolytes are shown in Figures S1−S3 (in the Supporting
Information document). All original experimental data can be
found in the Supporting Information document.

2.2. Data Set and Architecture of the CNN with
Channel-Wise Arrays of Filters. The measurement
conditions of the DS data set used in training and testing are
listed in Table 2. A data record consists of DS measurements
(Yr and Yi) and the calculated features over the frequency
range of 20 Hz−1 MHz. Their definitions are given in Table 1.

Figure 1. 1D multichannel measured and calculated DS response of glycine at 10 μm, 10 °C. A total of 10 spectra profiles over a frequency range
from 20 Hz to 1 MHz were measured. The admittance modulus (Y) and phase angle (θ) were measured responses. The impedance modulus (Z),
real admittance (Yr), imaginary admittance (Yi), real relative permittivity (E′), imaginary relative permittivity (E″), conductivity (σ), and
capacitance (C) data are calculated.

Table 2. DS Data Set Descriptiona

chemical
names concentrations temperatures (° C)

number
of

records

alanine 100 mM, 10 mM, 1 mM,
100 μM, 10 μM, 1 μM

−60, −50, −40, −30,
−20, −10, 0, 10, 20

54

glycine 100 mM, 100 μM, 10 μM,
1 μM

−60, −50, −40, −30,
−20, −10, 0, 10, 20

36

KCL 100 mM, 10 mM, 1 mM,
100 μM, 10 μM, 1 μM

−60, −50, −40, −30,
−20, −10, 0, 10, 20

54

KOH 100 mM, 10 mM, 1 mM,
100 μM, 10 μM, 5 μMb

−60, −50, −40, −30,
−20, −10, 0, 10, 20

53

aConcentrations and temperatures used in measurements. Every
chemical of each concentration is measured at all the listed
temperatures. bKOH of 5 μM is not measured at −60 °C.
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Each channel of the DS data represents the characteristic of
chemical(s) being classified from a different aspect. Hence,
channels of the DS data should be treated separately in
classification. This is done via channel-wise filters in the CNN.
The architecture of the proposed CNN-based DS data
classifier is depicted in Figure 2. At the very front of the
architecture, there are layers of channel-wise filter arrays to
process the DS data at consecutive levels before sending data
summaries to a fully connected layer. The outputs of the fully
connected layer feed a softmax (or classification) layer to
output chemical names.
The input data to the CNN in a channel are 1D, thus are

filtered by a group of 1D filters in the convolutional layers. The
activation map of filter f in channel c is given as the following
1D convolution (i.e., filtering) between filter f(n,c) and data
g(n,c)

x c g n c f x n cactmap( , ) ( , ) ( , )
n

1 1

1

∑= · −
=−∞

+∞

(2)

in which c is the channel of data. Please note that actmap(x,c)
is the activation map of the cth channel of data representing
characteristics of DS data of the channel. In the convolution
layers, each channel is assigned a group of such 1D channel-
wise filters. Filter parameters are to be learned (i.e., adjusted
algorithmically) during the supervised training process. This is
the source of the salient power of the CNNs by which they can
automatically extract information from data being used in
training. This is extremely useful when diversified categories/
channels of data are used. Otherwise, without such self-
learning power, input features have to be hand-tuned based on
trial and error. There are multiple filters in a convolution layer,
each of them will have a different set of parameters after
training. Thus, a group of filters can extract various
characteristics (i.e., features) from the input data for the
purpose of classification.
One point worth emphasizing is that the number of

parameters to be learned in a 1D filter equals to the size of
the filter wf. The total number of parameters to be learned in a
convolutional layer is wf × Nf × N, where Nf is the number of
filters for a channel and N is the number of data channels. The
number of parameters in a convolutional layer is usually fewer
than that in a fully connected layer. This is an important

feature of the proposed CNN-based classifier when only a
limited amount of DS data are available in this work.
The EIS data of amino acids and inorganic salts from

channels 1−11 listed in Table 1 are used to train the CNN-
based classifiers. CNN-based classifiers take pairs of training
instances, defined as (vi, ci), in which vi and ci are the EIS data
and name of chemical of the ith training instance, respectively,
to adjust their parameters (i.e., the values of filter parameters
and weights of connections between the last convolutional
layer and the fully connected layer, and the fully connected
layer and the softmax layer, algorithmically. vi = [vi,1, vi,2, ...,
vi,11), in which vi,k is the kth channel of the EIS data. The EIS
data were collected from the experiment run, as described in
Section 2.1. After training is done, given the EIS data of
instances, the CNN-based classifier outputs the names of
chemicals. Details about CNN-based classifier training and
testing are given in Section 3.

2.3. MD Simulations. MD simulations were carried out
using GROMACS package (version 4.6.5) in an isobaric−
isothermal (NPT) ensemble with a periodic boundary
condition. OPLS-AA forcefield parameters34 and the four-
point water model (TIP4P) were used to simulate the water/
ion interactions. All simulations apply SHAKE algorithm for
rigid water molecules to constrain hydrogen covalent bonds,
and the integration of the dynamic equations was done using
the leapfrog algorithm with a time step of 1 fs. The Berendsen
barostat method was used to maintain the pressure at 1 bar
through an isotropic position scaling, and Nose−Hoover
thermostats were used to keep the temperature at 220 K. The
particle mesh Ewald summation was utilized to calculate the
long-range electrostatic interactions, with a cut-off distance of
1.6 nm. The van der Waals interactions were calculated with
the cutoff at 12 Å, while the long-range dispersion effect on
energy and pressure was also included.
To illustrate the diffusive behavior of ions, an ice lattice

(53.9 Å × 62.2 Å × 58.7 Å) was doped with a pair of K+ and
Cl− ions without applying an electric field. Ions were directly
added into the cavity of the lattice. The simulations were
carried out for 400 ns. For the system with an electric field
applied, the ice lattice of the same dimensions was added with
30 ion pairs (60 ions total) by replacing water with ions,
corresponding to a concentration of approximately 0.253 M, in
order to simulate the conditions of briny concentrations similar

Figure 2. Architecture of the CNN-based classifier with multiple layers of channel-wise 1D filter arrays.
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to those in the experimental systems. The complete time-
dependent electric field pulse equation is of the form

E t E t( ) cos( )0 ω= × (3)

where electric field strength amplitude (E0) is 1 V/cm and
angular frequency (ω) is 1 MHz, which corresponds to a
nearly constant electric field over a 1 μs simulations duration.
These electric field parameters for simulation are virtually
identical with the experimental conditions of the applied
electric field and, therefore, offer direct comparison of
simulation results to experimental observations.

3. RESULTS AND DISCUSSION
3.1. CNN Structure Used in Experiments. The CNN

used for experiments consists of two convolutional layers of
channel-wise 1D filters. There is an average-pooling layer
following the first convolutional layer to smooth out its
activation maps. A batch normalization layer is introduced
following each of the convolutional layers to reduce overfitting.
The fully connected layer takes the “flattened” activation maps
of the second convolutional layer as its inputs. The softmax
layer facilitates generating the most likely chemical names of
the input instances. The architecture of the CNN used for
experiments is depicted in Figure 3.

3.2. Performance Metrics. We use accuracy, precision,
and recall to evaluate the performance of the classifiers. The
performance measures are defined as follows

accuracy
TP TN

TP TN FP FN
= +

+ + + (4)

precision
TP

TP FP
=

+ (5)

recall
TP

TP FN
=

+ (6)

In these formulas, TP is the true positive, TN is the true
negative, FP is the false positive, and FN is the false negative.
3.3. Machine Learning Experiments and Evaluation.

The system is implemented in Matlab 2019b. All experiments
are conducted in CentOS Linux 7 (Core) on a node of 8
NVIDIA Volta V100 GPUs, 16 GB/GPU memory, and 192
GB RAM. In our experiments, the CNN hyperparameters and
the range of their values used in parameter sweep are as
follows:

• the size of the 1D filters in the convolutional layers w ×
1, in which w ∈ {4, 8, 12, 16, 20}.

• the number of filters in the convolutional layers Nf ∈
{10, 20, 30, 40, 50}. The first and second convolutional
layers have the same filter size and number of filters.

• the size of the average pooling window = 2
• the stride of all layers = 1.
• the number of neurons in the fully connected layer ∈

{50, 100, 150, 200, 250, 300, 350, 400, 450, 500}
• the number of outputs of the softmax classification layer

= the number of chemical classes in experiments

Zero padding is done in a way that the output of a layer has
the same size as the input. CNN parameters are updated using
the stochastic gradient descent with momentum algorithm
with 0.5 momentum. The learning rate is 0.001. The maximum
number of epochs used in training is 800. The minibatch size is
128. Training and validation data are shuffled once before
training. To determine optimal combinations of the afore-
mentioned CNN hyperparameters, a CNN parameter
combination sweep is performed to find the best CNNs
which yield the highest classification accuracy, defined by eq 4.
Then, the CNNs with the best hyperparameter combinations
are trained and tested multiple times using shuffled data for
both training and testing. In both the parameter sweep and the
simulation steps, 80% randomly selected data are used to train
the CNNs and the rest 20% are used to test their performance.
Because the ranges of features in the electrical spectra vary
significantly, data values are normalized to the range of [−1,
+1] before they are fed into CNNs for both training and
testing purposes.
In our experiments, the CNNs with the best hyperparameter

combinations chosen by parameter sweep are trained and
tested 1000 times in total using shuffled data for both training
and testing. We use the metrics defined in eqs 4−6 to measure
the performance of the CNN-based classifiers. The mean and
standard deviations of these metrics are listed in the tables in
this section. Tables 3, 5, and 7 display classification accuracies

of various classifiers using the positive temperatures, negative
excluding −10 °C, and negative including −10 °C data,
respectively. These solutions at −10 °C are in nonequilibrium
conditions during measurement, thus have characteristics of
both liquid and ice phases. The precision and recall of
classification are listed in Tables 4, 6, and 8. The classification
accuracies are plotted in Figure 4 for the convenience of
comparison.

Figure 3. Architecture of the CNN used in experiments. Cl_1 and
Cl_2 are convolutional layers, BN is the batch normalization layer, FC
is the fully connected layer, and Softmax is the classification layer. Table 3. Accuracy of Classifiersa

classifiers mean accuracy (%) accuracy std (%)

alanine−KOH 87 13
glycine−KOH 78 19
alanine−KCl 85 13
glycine−KCl 81 16
alanine−glycine 72 19
KOH−KCl 80 19
alanine−glycine−KOH 63 13
{alanine, glycine}b−KOH 86 11
alanine−glycine−KCl 61 14
{alanine, glycine}b−KCl 85 12
alanine−glycine−KOH−KCl 62 13
{alanine, glycine}b−{KOH, KCl}b 82 11
aPositive temperatures. b{X, Y} means chemicals X and Y are treated
as one class.
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Tables 3 and 4 list the classification performance of
chemicals in the liquid state. Tables 5 and 6 show the
classification performance of chemicals in the solid state. Here,
we explain the reasons why classification is done in the liquid
and solid states separately. Fundamentally, dielectric (or
impedance) spectroscopy can enable measurements that
separate molecular processes on the basis of response time,
providing a unique relaxation frequency along with a signature
variation with frequency (10−6 to 1012 Hz).35 The relaxation
phenomenon is a time-dependent process (i.e., reaction,
diffusion, etc.) in response to an applied electric field resulting

in a dielectric displacement of charge carriers within a material.
For bounded charges, relaxation is related to fluctuations of
dipoles in molecules or part of them. For free charge carriers,
displacement leads to translational (drift) motion causing
conduction contribution to dielectric response.
The dielectric displacement, D(t), is a consequence of a

phase shift, which is the time difference between the material
response to outer applied E-field, [E(t)]. In real chemical
systems, the phase shift can have values ranging from 0 to 90°,
where the 0° phase angle indicates that responses are
dominated by free charge carriers inducing translational

Table 4. Precision (P) and Recall (R) of Classifiersa

classifiers alanine glycine KOH KCl {alanine, glycine}b {KOH, KCl}b

alanine−KOH P = 85, R = 94 NA P = 95, R = 80 NA NA NA
glycine−KOH NA P = 71, R = 78 P = 87, R = 77 NA NA NA
alanine−KCl P = 86, R = 89 NA NA P = 91, R = 82 NA NA
glycine−KCl NA P = 78, R = 78 NA P = 87, R = 84 NA NA
alanine−glycine P = 79, R = 76 P = 64, R = 64 NA NA NA NA
KOH−KCl NA NA P = 80, R = 82 P = 82, R = 77 NA NA
alanine−glycine−KOH P = 59, R = 81 P = 22, R = 17 P = 83, R = 75 NA NA NA
{alanine, glycine}b−KOH NA NA P = 87, R = 75 NA P = 83, R = 93 NA
alanine−glycine−KCl P = 56, R = 68 P = 28, R = 25 NA P = 82, R = 77 NA NA
{alanine, glycine}b−KCl NA NA NA P = 83, R = 79 P = 89, R = 88 NA
alanine−glycine−KOH−KCl P = 54, R = 81 P = 19, R = 16 P = 78, R = 68 P = 83, R = 68 NA NA
{alanine, glycine}b−{KOH, KCl}b NA NA NA NA P = 78, R = 88 P = 88, R = 78

aPositive temperatures. b{X, Y} means chemicals X and Y are treated as one class. P = precision (%). R = recall (%).

Table 5. Accuracy of Classificationa

classifiers mean accuracy (%) accuracy std (%)

alanine−KOH 67 14
glycine−KOH 95 9
alanine−KCl 84 12
glycine−KCl 93 11
alanine−glycine 62 17
KOH−KCl 91 10
alanine−glycine−KOH 55 13
{alanine, glycine}b−KOH 73 11
alanine−glycine−KCl 66 12
{alanine, glycine}b−KCl 82 10
alanine−glycine−KOH−KCl 60 10
{alanine, glycine}b−{KOH, KCl}b 84 7
aNegative temperatures, excluding −10 °C data. b{X, Y} means
chemicals X and Y are treated as one class.

Table 6. Precision (P) and Recall (R) of Classificationsa

classifiers alanine glycine KOH KCl {alanine, glycine}b {KOH, KCl}b

alanine−KOH P = 69, R = 54 NA P = 69, R = 77 NA NA NA
glycine−KOH NA P = 93, R = 91 P = 97, R = 97 NA NA NA
alanine−KCl P = 83, R = 83 NA NA P = 89, R = 86 NA NA
glycine−KCl NA P = 88, R = 88 NA P = 96, R = 95 NA NA
alanine−glycine P = 73, R = 71 P = 39, R = 44 NA NA NA NA
KOH−KCl NA NA P = 92, R = 89 P = 92, R = 92 NA NA
alanine−glycine−KOH P = 36, R = 30 P = 44, R = 48 P = 70, R = 79 NA NA NA
{alanine, glycine}b−KOH NA NA P = 90, R = 75 NA P = 80, R = 90 NA
alanine−glycine−KCl P = 55, R = 57 P = 33, R = 34 NA P = 84, R = 82 NA NA
{alanine, glycine}b−KCl NA NA NA P = 90, R = 75 P = 80, R = 90 NA
alanine−glycine−KOH−KCl P = 33, R = 27 P = 38, R = 41 P = 61, R = 68 P = 82, R = 81 NA NA
{alanine, glycine}b−{KOH, KCl}b NA NA NA NA P = 88, R = 66 P = 84, R = 94

aNegative temperatures, excluding −10 °C data. b{X, Y} means chemicals X and Y are treated as one class. P = precision (%). R = recall (%).

Table 7. Accuracy of Classificationa

classifiers mean accuracy (%) accuracy std (%)

alanine−KOH 51 13
glycine−KOH 61 15
alanine−KCl 77 12
glycine−KCl 74 14
alanine−glycine 57 15
KOH−KCl 76 11
alanine−glycine−KOH 38 11
{alanine, glycine}b−KOH 53 12
alanine−glycine−KCl 55 11
{alanine, glycine}b−KCl 78 10
alanine−glycine−KOH−KCl 43 9
{alanine, glycine}b−{KOH, KCl}b 64 10
aNegative temperatures, including −10 °C data. b{X, Y} means
chemicals X and Y are treated as one class.
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motion and can be modeled by resistors. At 90° phase angle,
one can say it is because of bonded charge carriers similar to
behavior in capacitors. In real chemical systems responding to
electrical spectroscopy, it is usually a combination of RC units
which provides the relaxation times of many physical/chemical
processes that can be detected over several frequency decades
using this technique. Therefore, each of the parameters listed
below has some information of the behavior of free versus
bonded charge carriers; hence, complex numbers are used to
separate contributions of real (in-phase) versus imaginary
(out-of-phase) components of the spectrum. The phase angle
is just the ratio of real to imaginary values.
In the liquid state, free charge carriers dominate the

response; it is directly related to important chemical properties
including ionic solubility, concentration, transport properties
(i.e., mobility and diffusion), and interfacial double-layer
charging. In the ice state, the bonded charge from ice
dominates the response; these properties include relaxation
time constants, static (low frequency) relative permittivity, and
defect or ion transport. Because of these reasons, it is

reasonable to identify chemicals in liquid and ice states
separately.
Tables 7 and 8 display the classification performance of

chemicals at negative temperatures, including data of −10 °C.
As beforementioned, these solutions are two-phase systems at
−10 °C, thus have characteristics of both liquid and ice
exhibiting nonequilibrium conditions during measurement.
Hence, excluding data of −10 °C used in classification results
in better accuracies for negative temperatures, as shown in
Figure 4.
The accuracies are higher when differentiating amino acids

{alanine and glycine} from inorganic salts {KCl and KOH}
than those differentiating among amino acids. As shown in
Figure 4, classifiers to differentiate amino acids from inorganic
salts (classifiers 1, 2, 3, 4, 8, 10, and 12) yield better accuracies
than classifiers to differentiate amino acids from each other
(classifiers 5, 7, 9, and 11), in both liquid and ice states. There
are several observed responses that best contribute to this
result. In the liquid state, inorganic salts have substantially
higher ionic strength than those of amino acids. Consequently,
both the responses in relative permittivity and conductivity
spectra exhibited unique features; the relaxation times in the
relative permittivity spectra are lower, and the magnitudes in
the conductivity spectra are higher for inorganic salts.
Similarly, in ice states, their electrical properties in ice are
strongly impacted by charge density, concentration, and
physical properties of the solvated species (i.e., molecular
size).36 Therefore, their relaxation times are lower and
conductivity is higher for inorganic salts despite substantial
lower magnitudes over the entire frequency range as compared
to the liquid state, which is consistent with previous studies
performed by Kawada and others.37−39 Because of these
differences between amino acids and inorganic salt DS
measurements, it is easier for the classifiers to differentiate
amino acids from salts than to differentiate amino acids from
each other.
The case of differentiating KCl from KOH is worth more

attention. The classification accuracies are 80% (in Table 3)
and 91% (in Table 5) in the liquid and ice states, respectively.
These results in electrical properties are mainly attributed to
the difference in their transport or diffusive behavior. In ices,
the doped ions cause Bjerrum defects in the lattice that
enhances the system’s static conductivity.40

3.4. MD Simulations. To complement the experimental
measurement and machine learning analysis, we performed
atomistic MD simulations in the ice Ih. Figure 5 shows our

Table 8. Precision (P) and Recall (R) of Classificationa

classifiers alanine glycine KOH KCl {alanine, glycine}b {KOH, KCl}b

alanine−KOH P = 43, R = 48 NA P = 59, R = 54 NA NA NA
glycine−KOH NA P = 34, R = 35 P = 72, R = 72 NA NA NA
alanine−KCl P = 73, R = 77 NA NA P = 84, R = 77 NA NA
glycine−KCl NA P = 58, R = 61 NA P = 84, R = 79 NA NA
alanine−glycine P = 65, R = 69 P = 39, R = 36 NA NA NA NA
KOH−KCl NA NA P = 77, R = 77 P = 78, R = 75 NA NA
alanine−glycine−KOH P = 37, R = 41 P = 17, R = 14 P = 47, R = 47 NA NA NA
{alanine, glycine}b−KOH NA NA P = 51, R = 34 NA P = 55, R = 70 NA
alanine−glycine−KCl P = 50, R = 53 P = 15, R = 15 NA P = 77, R = 73 NA NA
{alanine, glycine}b−KCl NA NA NA P = 84, R = 69 P = 77, R = 87 NA
alanine−glycine−KOH−KCl P = 36, R = 35 P = 8, R = 6 P = 39, R = 41 P = 64, R = R = 67 NA NA
{alanine, glycine}b−{KOH, KCl}b NA NA NA NA P = 51, R = 49 P = 72, R = 72

aNegative temperatures, including −10 °C data. b{X, Y} means chemicals X and Y are treated as one class. P = precision (%). R = recall (%).

Figure 4. Classification accuracy versus classifiers. Classifiers: 1 =
alanine−KOH, 2 = glycine−KOH, 3 = alanine−KCl, 4 = glycine−
KCl, 5 = alanine−glycine, 6 = KOH−KCl, 7 = alanine−glycine−
KOH, 8 = {alanine, glycine}*−KOH, 9 = alanine−glycine−KCl, 10 =
{alanine, glycine}*−KCl, 11 = alanine−glycine−KOH−KCl, and 12
= {alanine, glycine}*−{KOH, KCl}*. *Note: {X, Y} means chemicals
X and Y are treated as one class.
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simulation results of a single pair of K+ and Cl− ions doped
directly inside the lattice cavity inside the lattice of ice Ih at 220
K without applying an electric field. Our simulations show that
K+ and Cl− ions can be preferentially doped into the ice lattice,
causing local distortion of the ice lattice. Moreover, they
exhibit hopping behavior (Figure 5) driven by thermal motions
similar to other semiconducting materials.41 As shown in Table
9, three simulations were also carried out in an external electric

field using three different initial configurations, where the K+

and Cl− ions were doped inside the ice lattice by replacing
water molecules with ions at different crystal sites. By
monitoring the temporal profile of ions, the jump count of
both K+ and Cl− ions from those three simulations exhibited
excellent repeatability (Table 9), which indicates that jump
frequencies are relatively independent on initial ion locations.
This is attributable to the slow diffusion processes in solid-state
materials. The hop frequency of K+ ions is about five times that
of Cl− ions at 200−220 K, and the increase in temperature
enhances ions’ hopping rates (Table 9). The variance in the
hopping rates of such simple electrolytes (K+ and Cl−) is
highly dependent on factors including ions’ charges, ionic radii,
surface charge densities, water-ion van der Waals interactions,
and the masses. The ionic radius of Cl− is 167 pm, which is
larger than that of K+ at 152 pm, which can lead to the
difference in surface charge densities and diffusivities.
As shown in the experimental measurement (Figures S1−S3

in the Supporting Information), in comparison with KOH-

doped ice systems, KCl-doped ices have a higher conductivity
at the low concentration (1 μM and 1 mM) at 200−250 K.
However, at the high concentration (100 mM), the
conductivity of the KCl-doped ice is lower than that doped
with KOH. The likely explanation is found in the more
complicated transport mechanism of hydroxide (OH−) ions as
compared to K+ and Cl− ions in association with a
combinations of factors such as coordination state, proton
transfer, nuclear quantum effects, and solvation shell
effects.42−44 Quantum dynamics simulation indicated the
possible presence of “structural diffusion”, where charge
migration occurs through the water hydration bond net-
work.42,45 However, the transport of OH− ions can be more
complicated because they can adopt different dynamic
structural configurations.42,46 An OH− can be present with
in-the-lattice bulk configuration, where OH− accepts three
hydrogen bonds and donates one to its neighboring water
molecules.42,47 OH− can also adopt off-the-lattice configu-
ration, where an OH− anion accepts four hydrogen bonds at
the hydroxide oxygen site and the OH− axis points into a cavity
in the crystal structure, when the temperature decreases,
particularly below the ice melting temperature.42,47,48 Such a
unique hyper-coordinated state slows down the rotational
motions and decreases the structural diffusivity of OH− in the
ice lattice.42,48 In water, the stable nonplanar and hyper-
coordinated solvation structure of OH− also suppresses proton
transfer and slows down its diffusion compared to H3O

+.49 At a
microscopic level, ion concentration can also play a critical role
in ice transport properties as it can lead to localized phase
change behavior. Both our experimental measurement of the
conductivity and other studies using techniques such as nuclear
magnetic resonance50 suggested that the liquid-like phase often
coexists with the ice crystal when the concentration of KOH is
more than 10 mM. Further studies of hydroxide diffusive
behavior in the ice at different concentrations will be
conducted in our future works to provide a more
comprehensive explanation of the experimental data.

4. CONCLUSIONS
DS measurement responses can provide critical electrical
properties based on the unique response times of processes
such as molecular transport and relaxation phenomena over a
wide frequency range (10−6 to 106 Hz) attributed to the
presence of free or bound charge carriers. As an alternative to
equivalent circuit modeling in extracting important physical
interpretation of the measured response, we applied machine-
learning algorithms in the form of convolution neural networks
in an attempt to identify amino acid organic molecules and
inorganic salts solution despite similarities in their spectro-
scopic responses over a temperature range of 20 to −60 °C. As
this work has demonstrated, DS data when characterized by
such machine-learning techniques can be used to differentiate
between amino acids and salts, and to some extent between
different amino acids, for the case of alanine and glycine in salt
solutions containing K+, OH−, and Cl− ions.
A CNN with two convolutional and one fully connected

layer is proposed in this work. The convolutional layers in the
CNN consist of channel-wise 1D filters to extract information
from the DS data of amino acid and inorganic salt solutions.
Information of data is extracted and summarized at two
consecutive levels by channel-wise 1D filters before the
summary is fed into the fully connected layer for identification.
Experimental results show that classifiers based on the

Figure 5. Displacement (d) of a K+ ion inside ice simulated with
atomistic MD simulations at temperature of 220 K and 1 bar. The
initial position is used as the reference to compute the displacement.
Two snapshots display the configurations before and after the
hopping showing the displacement trajectory of the ion throughout
the simulation.

Table 9. K+ and Cl− Ions’ Hopping Rate of Three
Simulation Cases Using Different Initial Configurations
Over the Simulation Time Range of 200 ns to 1 μs

jump rate (jumps/μs)
and jump rate ratios simulation 1 simulation 2 simulation 3 average

K+ (200 K) 61.9 67.4 81.1 70.1
Cl− (200 K) 14.0 18.7 12.1 14.9
K+ (220 K) 214.5
Cl− (220 K) 90.5
ratio jump rate
K+/Cl−

4.4 3.6 6.7 4.9

ratio jump rate K+

220 K/200 K
3.2

ratio jump rate Cl−
220 K/200 K

4.8
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proposed CNN structure can effectively differentiate amino
acid solutions from salt solutions in both the liquid and solid
states. The proposed DS identifying approach will greatly
facilitate more real-time decision-making of mobility systems
for future exploratory endeavors in other worlds beyond Earth.
Classical atomistic MD simulations demonstrated micro-

scopic structure and diffusive behavior of ionic ions inside the
ice lattice. Simulations showed that K+ cations display more
frequent hopping frequencies than Cl− anions, whether an
electric field is applied or not. As shown in the quantum
simulation in the previous studies in the literature,47,48

compared to point charge ions (K+ and Cl−), the diffusion
of OH− ions is more complex, mainly because of the various
hyper-coordinated states.
In the future, we will apply the CNN-based identification

method to more amino acids and salts. Moreover, to address
the issue of identifying present or past habitability of soil and
ice environments, we plan to extend the application of the
CNN-based identification to solutions containing a mixture of
amino acids and salts and solutions containing just salts.
Further studies at quantum levels will also be conducted to
investigate the correlation between the hydroxide ions’
diffusivity and their concentration in the ice lattice. Further
simulations at the quantum and atomistic scale will also be
performed to study relaxation behavior of amino acids inside
ice and water in an alternating electric field to compare with
the behavior of electrolytes.
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