THE DARCY PROBLEM WITH POROSITY DEPENDING
EXPONENTIALLY ON THE PRESSURE

ZERIHUN KINFE BIRHANU*, TADELE MENGESHAT, AND ABNER J. SALGADO?

Abstract. We consider the flow of a viscous incompressible fluid through a porous medium.
We allow the permeability of the medium to depend exponentially on the pressure and provide an
analysis for this model. We study a splitting formulation where a convection diffusion problem is
used to define the permeability, which is then used in a linear Darcy equation. We also study a
discretization of this problem, and provide an error analysis for it.
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1. Introduction. In [22] a hierarchy of models for fluid flow through a porous
medium was developed within the context of mixture theory. It was shown that
the classical Darcy’s model of porous medium flow is the simplest of this hierar-
chy, and some extensions and variations of it are proposed and justified. Supported
by experimental evidence, the reasonableness of this hierarchy has been rigorously
demonstrated in [22].

One of the simplest models proposed in [22] is Darcy’s model but with a porosity
coeflicient that depends on the pressure, that is

(1) a(p)u+Vp =1, V-u=0.

Here p is the pressure within the fluid, u is its velocity, and f represents an external
force acting on the fluid. Reference [12] studied this model in the case when the
porosity « is a bounded and smooth function, see also [1]. The authors of [12] also
developed a heuristic analysis of the case of exponential dependence on pressure, that
is

(2) a(p) = ag exp[yp],

where o and 7 are positive parameters. The proposed formulation reduced this
problem to the solution of two linear equations: a convection diffusion problem and a
linear Darcy model, this formulation will be reviewed in Section 3 below. The analysis
of each of the resulting discrete linear problems has been investigated in [12] but the
rigorous well posedness of this strategy remained an open problem. A similar change
of variables was carried out in [10] to reduce the nonlinearity to a multiplicative
one. With this approach, and under a smallness assumption on the data, see [10,
Theorem 3.1] existence and uniqueness was obtained via a fixed point argument. This
reference, in addition, studies a numerical discretization via finite elements. Under
similar smallness assumptions existence and uniqueness ([10, Theorem 4.1]) for the
solutions of the discrete problems, a priori ([10, Theorem 4.2]), and a posteriori ([10,
Section 5]) error estimates are obtained.
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The thorough analysis of [10] relies, in a fundamental way, on the assumption
that the forcing term f is sufficiently small pointwise. To our knowledge no analysis
of problem (1) with porosity given as in (2) for large data, or of the splitting strategy
of [12] is available. The first goal of this work is to attempt to fill this gap. We will
specify a set of conditions on the data for which the splitting strategy is meaningful
and, thus, can be used to define a solution to our problem. Data in this class, i.e.,
satisfying our assumptions, are not necessarily small. Instead, we provide a different
set of conditions which, to us, seem to have physical relevance, see Remark 8 below.

Reference [12] also proposed a discretization of this split formulation, and pro-
vided an error analysis for it, provided the discrete solution to the convection diffusion
equation remained positive, see [12, (4.15)]. This assumption, however, was not veri-
fied and this will be the second goal of this work. Our second goal is to close the gaps
in the error analysis for the proposed numerical method.

Our presentation is organized as follows. In Section 2 we establish notation and
recall some useful facts. Our problem of interest is presented in Section 3. The
splitting formulation is introduced in Section 3.1, and its analysis is presented in Sec-
tion 3.2. We introduce a suitable, realistic, and reasonable set of assumptions on the
geometry and problem data which guarantee that the split formulation of our problem
is well posed. The discretization is described and analyzed in Section 4. Finally, some
numerical illustrations are presented in Section 5. We present convergence rates, and
computationally explore the positivity condition that is at the heart of our analysis.

2. Notations and technical tools. Throughout the paper, 2 C R? with d €
{2,3,4}, is a bounded domain with Lipschitz boundary. The analysis can be extended
to higher dimensions under suitable integrability and regularity of the data. Whenever
X (D) is a normed space of functions over D, we indicate by | - || x its norm. X (D)’
denotes the dual of X (D). If the spatial domain needs to be indicated, then we will
denote it by || - ||x(p). For r € [1,00), we denote the Banach space of Lebesgue r—

integrable functions by L"(Q2) with the norm ||v]|}, = / [v|" dz. For r = oo, L>(Q)

Q
represents the space of essentially bounded measurable functions on §2, with the usual
norm. For k positive integer and 1 < r < co, W""(Q) denotes the space of functions
in L"() whose weak partial derivatives of order up to k are all in L"(€2). With the
norm [[v||jyer = o7 + Z |0%||5., the space WH"(Q) is a Banach space. For
li|<k
0 < s < 1, we also use the notation W*" () to denote the set of functions v in L"(2)

with .
[v|fysr = / M dzdy < oo.
alao |z -yl
W#T(Q) is a Banach space with its natural norm ||[v||jys.r = |[v||%-+|v|}yer. Forr =2

we set H*(Q) = W2(Q) for s integer or s € (0,1). For vector-valued functions we
use boldface and the spaces of these functions are denoted, for instance, by L" ().
We also need the space H(div, Q) which is defined as

H(div,Q) = {v € L*(Q) : divv € L*(Q)}.

We use several facts about Sobolev spaces. The first is the trace property, namely,
owing to the fact that the boundary of € is Lipschitz, if v € H*(Q2) for s € (3,1],
then the trace of v on 9, which we denote simply by v|sq, belongs to the space
H*~1/2(9Q). Moreover, there is a constant C' such that the estimate

[vloallgs-1/2 < Cllv]la
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holds. See for instance Grisvard [14, Theorem 1.5.1.2]. For T' C 99 with H*~1(T") > 0,
where H41(T") denotes the d — 1 dimensional Hausdorff measure of T, we say v €
H'Y*(I') belongs to HégQ (T) if its zero—extension to A belongs to H'/2(9Q).

We will also recall that vector fields in H(div, 2) have a well defined trace of their
normal component along the boundary of 2. Namely, if n is the outward normal vector
at points of 99, then for any v € H(div, Q) we have that v - n|sq is in H/2(8Q)" and
its action is defined via the divergence formula

(v n,ulasn)an 22/

V-Vudx+/divvudx, Yu € HY(Q).
Q

Q

In the event v - n|sq is Lebesgue integrable, then the duality pairing (-, )sq is a mere
integration over 9f2.

The second property of Sobolev spaces that will be used frequently is the fact
that they embed into function spaces of higher integrability. Precisely, from Sobolev
embedding theorem, we have that for 0 < s <1,

2d

H(Q) — L2 (Q here 2* =
(Q) — (), where Py

if d # 2s, and any 2* > 2 if d = 2s.

along with the estimate: there is a universal constant C' = C(f2, s) such that
[oll e < Cllvllas, Vo€ H* ().

Notice that if s =1 and d < 4, then 2* > 4.

3. The continuous problem. We begin by providing the exact formulation of
our problem at hand. We assume that the boundary of ) is divided into two pieces:
Iy and T, with H4"1(T)H41(T',,) > 0. The problem we are interested in reads

a(ppu+Vp=1£, inQ,

divu =0, in Q,
(3) _

p=0, on Iy,

u-n=g, on I,

with the permeability function defined in (2). While f and g are given data, the
unknowns are the velocity u and pressure p of the fluid.

3.1. The splitting formulation. Let us now recall the transformation that
allowed [12] to write this problem as two linear ones. This will be useful in identifying
regularity requirements for the data f and g. Take the first equation in (3) and divide
it by . Incompressibility then implies that

(4) div (e "Vp) = div(e "Pf).
Define ¢ = e 7?7 and note that

Vq=—ve"Vp,
so that (4) can be rewritten as

—Aqg =~qdivf +~f - Vq.
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In addition, since p = 0 on I'y, we have that ¢ = 1 there. If we assume that f is
sufficiently smooth to have a normal trace on I' then taking a normal trace of the first
equation in (3) we obtain

a(p)g+0onp =1f-n.

This, for the variable ¢ means
Ongq + vqf - 1 = agvg.

In conclusion, for the variable ¢ we have obtained the following convection diffusion
problem

—Aq—~f-Vq—vqdivf =0, inQ,
(5) q=1, on Iy,
Onq + vqf - n = agvg, onT.
This motivates the following strategy to solve (3).
e Find ¢ that solves (5).
e Define

(6) a(r) = —, x e Q.

e Find (U, P) that solve

GU+VP=Ff, inQ,

divU =0, in Q,
(7) _

P =0, on ['y,

U-n=yg, on .

If (u,p) solves (3), and p € L*(Q), then & in (6) will be a function that is bounded
from below and above by positive numbers. Equation (7) is now the classical linear
Darcy’s equation and its solution coincides with (u,p). The advantage of the splitting
strategy is that it gives a meaning to a solution of a nonlinear system by transforming
it into two linear systems when the set up leading to this transformation is applicable.

3.2. Analysis of the problem. We now provide an analysis of the splitting
strategy. In order to do so, we will operate under the following assumptions:
e Geometry. The domain Q is constructed as follows: Let D € R? be a bounded,
nonempty, Lipschitz domain. Let N € N, and for i = 1,...,N, O; € R? be a
bounded, nonempty, Lipschitz domain. We assume that, for i # j, dist(O;, 0;) > 0,

and that UY ,0; € D. Then Q = D\ UY,0; with T = 9D, and T, = dUN| O;;
see Figure 1. Essentially we are working on annuli-type domains and I';, is taken
to be the inside boundary.

e Data reqularity. We assume that the problem data satisfies the following conditions.
o Permeability. The parameters ay and ~ are positive constants.
o Volume forcing. The volume forcing term f satisfies

fcLi(Q), divfeL?(Q), f-npecLl™ YD),

witht > d; § =0if d <3, and § > 0 if d = 4; and m > d.
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o)

Fic. 1. Geometry of the domain. The domain 2 is a bounded Lipschitz domain, where a finite
number of strictly contained subdomains are removed. The “exterior” boundary is I', whereas the
“interior” 1s Ty .

o Boundary forcing. The boundary forcing term g satisfies
g € Hyy*(T) n L1 (D),

with m > d.
e Sign conditions. We assume that the volume and boundary forcing terms satisfy
the following sign conditions.
o Volume forcing. The function f satisfies

divf <0, in Q, f-n>0, onT.
o Boundary forcing. The boundary forcing term g satisfies
g>0, onT.

We remark that the geometry assumption guarantees that the pieces of the bound-
ary I and T",, are well separated. In other words, there exists ¢y > 0 such that for
any € € (0,¢) we have (I' +¢) NIy, = 0 and the domain Q \ T + € is Lipschitz. Here
(T + €) = UgerB(z, ¢).

We now introduce a subspace of functions in H'(€) whose trace vanish on T',,:

Hy(Q) ={ve H(Q): v|r, =0}.

Our notion of a solution to (3) is defined via the splitting strategy as follows. We
immediately comment that, owing to the regularity conditions on f, the definition we
give below makes sense.

DEFINITION 1 (solution). We say that the triple (¢, U, P) € H' () x L*(Q) x
H(9Q) is a solution to (3) if ¢ — 1 € HL(Q),

(8) /S (VaVe — Af - Vao — ~qdiv £6) da + / ¢f -1 do = aey(g, S)r,
2 T
for all $ € HL(Q), and, with & defined in (6),

/(dU+VP).vdx:/f.vdx, Vv € L*(9),
Q Q

(9)
/U~Vrdx:<g,r>p, Vr € HL(Q).
Q
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Let us now proceed to show that this formulation, under our imposed assumptions
on the data, is well posed. We remark that the notion of solution given in Definition
1 assumes that for given a solution ¢ of (8), the function & is well defined almost
everywhere in ) and can be suitably used to solve the linear Darcy equation (9).
It is known that & being a bounded and strictly positive function is sufficient to
demonstrate that (9) is uniquely solvable, corresponding to appropriate data, see [8,
Theorem 2.34]. As a consequence, the conditions we impose on the data must ensure
that not only we have a unique solution to (8) but that it also gives a & that is
bounded and strictly positive.

We begin by showing existence and uniqueness of solutions for subproblem (8).
To simplify notation, we define the bilinear form

Af<q,¢>>:/quowfvawwqdivw) dx+v/rqf~n¢da

The subproblem (8) can now be rephrased, after the change of variables z = ¢ — 1,
as: given f, and g satisfying our conditions, find z € H}U (Q) such that

(10) As(z6) = /Q divEpde +v(aog — £-n,d)r, Vo € HL(Q).

Well posedness of this problem is established in [12] via Lax-Milgram theorem under
a smallness assumption on the gradient of f. The following proposition establishes
well posedness for other classes of the data f, namely those that satisfy the regularity
and sign conditions stated at the beginning of this subsection.

PROPOSITION 2 (boundedness and coercivity). Let g € Héf (D), and £ satisfy
our regularity and sign conditions. Then problem (8) has a unique solution.

Proof. We will show that the equivalent problem (10) is well posed. Since f €
H(div, ), and g is in Hy/*(T")', the map

¢»—>'y/ divfode 4+ v(aog — f - n, d)r,
Q

defines a bounded linear functional on H. (). This follows from the trace and em-
bedding estimates discussed in Section 2. Thus, we only need to show that, under the
given assumptions on f, the bilinear form Ag, is bounded and coercive. Boundedness
follows immediately from the regularity assumptions on f and its divergence. Indeed,
since d < 4, we have that 2* > 4. Consequently, Sobolev embedding shows that

‘7/ qdivfpdz| < Cl|div L2 [lql s[4l s < Clldiv ][22 [[VallL2([Ve|Le-
Q

Moreover, we have that

'7 /Q £ Vg da| < O |ue [ Vallueléll o

which together with Sobolev embedding shows the desired boundedness.
Let us now show coercivity, set ¢ = z € HL () on the left hand side of (10) to
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obtain
— 2 7 2 : 2 2
Ag(z,2) .—/ <|Vz| — —f-V|z|* — ydivf|z| ) dx+’y/f~n|z\ do
Q 2 r

/ (\Vz|2 . div f|z|* — J div(f|z\2)) dz +,y/ f-n|z|*do
0 2 2 r

=/ (\Vz|2—zdivf|z|2) dx—1/f~n|z|2da+’y/f~n|z\2da
Q 2 2 Jr r

=/ (\Vz|2—1divf|z|2) dx+l/f-n|z|2d02/ |Vz|? da,
Q 2 2 Jr Q

where, in the last step, we used the sign condition on the divergence of f and its
normal trace on I', and that completes the proof. 0

We remark that after integration by parts on the left hand side of (10), we have
that

/(Vz+’yfz)~V¢>d:c:'y/divf¢dm+’y<aog—f-n,¢>p, Vo € HL(Q).
Q Q

It then follows that z is a weak solution of the mixed boundary value problem

—div(Vz +~+fz) = ydivf in Q,
(11) z=0 on I'y,
(Vz+~fz) n=v(ag—f-n) onT.

Having shown that this problem always has a unique solution, we will make sure that
(6) defines a suitable coefficient for (9) to make sense. The goal is to exploit the sign
condition on g to guarantee that the solution ¢ is bounded from below by a positive
number. We begin by proving a regularity result for q.

PROPOSITION 3 (regularity). Suppose that §) satisfies our geometry assumptions,
f and g satisfy our reqularity assumptions, and f satisfies our sign conditions. Then,
there exists v € (0,1) such that ¢ € H*(Q), the unique solution of (8) belongs to
Cv(Q).

Proof. For ¢ € H'(), the solution to (8), the function z = ¢ — 1 € H} (Q) solves
the mixed boundary value problem (11). It follows from local Hélder regularity of
solutions of elliptic equations; see, for example, [11, Theorem 8.24], that the regularity
conditions on f, guarantee the existence of v € (0,1) such that z € C2(Q), with the

loc

estimate that for any Q' € Q, then there exists a constant C'= C(Q') such that
Izllcow @y < C(llzllL2 + [If]lLe) -

In particular, since for any € € (0, ¢p), O(T' 4+ €) N is in the interior of 2, z is Holder
continuous on A(I'+¢) N Q. As a consequence, since z = 0 on I'y,, we may apply
the global Holder regularity of solutions; see [11, Theorem 8.29] and the discussion
following this result, to conclude that for any ¢ € (0,¢p), there exists v € (0,1)
(possibly different from the previous v) such that z € C%*(Q\ (T + ¢)).

Next we study the regularity of z near I where a Robin—type boundary condition
is imposed. Holder regularity estimates for elliptic equations over Lipschitz domains
with Neumann, and more generally with Robin, boundary conditions are obtained in
the work of Nittka [20, 21]. Applying [21, Theorem 3.7] or [20, Proposition 3.6], we
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obtain that we can choose €y > 0 such that a solution z to (11) is in C%” ((I'4¢9) N Q)
for some v € (0,1) and for any € € (0, ) with the estimate

1zllcor (rrane) < C (22 + IElle + llgllom—r + I -0l L)

Combining the above estimates we obtain that z € C%¥(Q) with the estimate
that

[2llcow @y < C([lzll2 + [EllLe + [lgllzm-2 + If - nf[gm-1),
which is what we needed to show. O

With the regularity result of Proposition 3 at hand, we have that, in particular,
q is continuous on Q and so it is bounded. We must, additionally, show that this
function is strictly positive in €, to be able to conclude that &, defined in (6), is an
admissible coefficient. This is the content of the following result.

THEOREM 4 (positivity). In the setting of Proposition 3 assume, in addition,

that g =0 on T'. Then, we have that the unique solution to problem (8) satisfies
q((E) > qo, Vr € Q

Jor some qo > 0. As a consequence & € C(Q) and there is ag > 0 such that a(x) > ag

for all x € Q.

Proof. We prove this in two steps. First, we show that the solution ¢ is nonneg-
ative and then applying a separate argument we show that ¢ is strictly positive.
Step 1: In this step we show that ¢ > 0, using the argument developed by Chicco in
[3], adjusted to our setting, and which in turn uses Stampacchia’s truncation method
[23]. For k € R, we begin by defining ¢ (z) = min{q(z) — k,0}, and

Qk)={reQ:q, <0}
ko = sup{k : ¢z =0 in Q}.

We aim to show that gg > 0. For that it suffices to show that ky > 0. We argue by
contradiction and assume that kg < 0. We prove first that

(12) Jim (k)] = 0.

To do so, observe that from the definition of the set (k), as € | 0 we have, for every
T € 8, XQ(ko—e)(T) = X(ko) (). As a consequence, [Q(ko)| = hﬁ)l |Q(kog —€)| = 0. In

addition, one can easily show that as € | 0,
XQko+e) () = xp(x) Vo€,
where P = Q(ko) U {z € Q:q = ko}. In this case, we have that
lin [2(0ko + ) = [{ € @ 4(a) = hol.
Assume that this limit is positive. Owing to the fact that |Q(ko)] = 0 we have

ko — q(x) <0 for every = € Q. Moreover, using that ¢ € H'(2) solves (8) and kq is a
constant,

Af<k07q,¢>:kao/divfgbdxgo, Vo € HA(Q), ¢ > 0.
Q
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Where, to obtain the inequality, we used the sign condition on the divergence of f.
The weak minimum principle of [3, Corollary 1] then implies that, either g(z) = ko
in Q or g(x) > ko almost everywhere in Q. However, if ¢(z) = kg < 0 in §2, we arrive
at a contradiction, as ¢ € C(f2) is positive (in fact ¢ =1) on I',,. On the other hand,
if g(x) > ko almost everywhere, then [{x € Q : q(z) = ko}| = 0, which is again a
contradiction. In conclusion, 161&1 |2(ko + €)] = 0 and (12) holds.

We now use (12) to deduce that for every n > 0, there exists k1 € (ko,0) such
that 0 < |[2(k1)| < n and for all k < k;

gr(xz) =0 Ve Q\Qk).

Note that for such k, we have g < 0 in Q. Moreover, since ¢ = 1 on I'y, and ¢ is
continuous, there is an open set O C 2, such that I'y, C 00 N OS2, where we have

, YzeO,

N | =

q(z) >

1 1 _
and therefore, since k < 0, g(x) — k > 5~ k> 3 for all x € O. Consequently, ¢, =0

on O and this implies that g € Hi,(Q), which makes it a suitable test function in
(8). Therefore,

As(qr, qr) = As(q — K, qx)

0407/9% do — Ag(k, qr)
r

/ v(apg — kf - n)q, do + 'yk/ divfq, dx <0,
r Q

where we also used the sign conditions on the data. Now, the coercivity of Ag, proved
in Proposition 2, implies that

IVarllizamy) = IVarliz < Ae(ar, ax) <0,

so that g, = 0 on Q (recall that ¢ = 0 on I',,). However, we have arrived at a
contradiction, since g < 0 in Q(k), which has positive measure. In conclusion, we
must have that kg > 0 and therefore g(x) > 0, as we intended to show in this step.
Step 2. Applying the weak minimum principle in [23, Corollary 8.1], the minimum
of ¢, which could possibly be zero, can only be achieved at the boundary I". That is,
on any set ' compactly contained in £ we must have, inf{q(z) : x € Q'} > 0.

Assume now that zo € T is such that 0 = g(z¢) = inf{q(z) : z € Q}. Since g =0
in T, we can invoke the boundary Harnack inequality of [4, Theorem 3.1] to assert
then that, for a sufficiently small p > 0,

0 < max{q(z): 2 € QN B(xg,p)} <Cmin{g(x) : 2 € QN B(xg,p)} =0,

which is a contradiction. Therefore g(x) > 0 in Q, as we intended to show. 0

Remark 5 (sharpness and positivity under other conditions). The condition
g = 0 may seem rather restrictive, as one may expect that g > 0 may be sufficient.
After all, under enough smoothness of the domain €2 and solution ¢, this is all is
needed to conclude the strict positivity, say, via a boundary Hopf lemma; see [11,
Lemma 3.4] or [9, Section 6.4.2]. However, the counterexamples of [16], which are
attributed to A. Castro, show that in the case that the boundary is merely Lipschitz,
as it is our case of interest here, positivity may fail at “corner” points.

It is possible, nevertheless, to prove strict positivity under other assumptions:
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e In the case that Q is convex, ', = () (which does not satisfy our geometry as-
sumptions), f -n > fo > 0 and g > 0; we can invoke the weak Harnack inequality
of [16, Lemma 3.2] to conclude the strict positivity of ¢. Notice that the proof of
Proposition 2 shows that, under the strict positivity assumption on f - n, we still
have coercivity of Ag.

e In the case that Q, f and g are sufficiently smooth to guarantee that ¢ € W2%(Q),
and g > 0; we can invoke [19, Corollary 3.2] to arrive at the same conclusion. W

Once we know that & is bounded and strictly positive, the analysis of (9) is
standard. We summarize the well posedness of the splitting strategy in the following
result.

THEOREM 6 (existence and uniqueness). Suppose that the domain §) satisfies our
geometry assumptions; and the data f and g satisfy our reqularity, and sign conditions.
Under these conditions, problem (3) has a unique solution in the sense of Definition 1.

Proof. Owing to Proposition 2 problem (8) has a unique solution which moreover,
via Proposition 3, is continuous and strictly positive (Theorem 4). This implies that
&, defined as in (6), is a bounded and strictly positive function. The conditions of [8,
Theorem 2.34] are now satisfied and this implies that the linear Darcy equation (9)
has a unique solution. ]

Remark 7 (alternative formulation). Notice that the analysis presented here can
be easily modified to prove the existence and uniqueness of a notion of solution
different from that of Definition 1. In this, new, notion of solution we say that
(¢, U, P) € H'(Q) x H(div,Q) x L*(Q) is a solution if ¢ — 1 € H.(Q), (8) holds,
U.-n=gonl and

/(dU-V—Pdivv) dx:/f-vdx, Vv € Hr(div, ),
Q Q

/ divUrdz =0, Vr € L*(Q),
Q

where
Hr(div,Q) = {v € H(div,Q) : v|r -n = 0}.

Indeed, once the strict positivity and boundedness of & has been established, the
existence and uniqueness of a pair that solves the problem given above is standard.
Similarly, an extended formulation with a boundary Lagrange multiplier, like a linear
version of problem (3.1) in [10] is possible.

Remark 8 (assumptions on f). It may seem that, asides from smoothness, the
set of assumptions that our analysis imposes on the volume forcing term f is ad
hoc and unrealistic. However, they make physical sense because f represents the
density of body forces. These are usually due to gravity, i.e., constant and therefore
divf = 0 < 0. Gravity points in the z—direction which is perpendicular to the
schematic presented in Figure 1. Thus f - n=02>0on I

4. Discretization. Having studied the continuous problem, we can proceed with
its approximation. In addition to the conditions that guaranteed well posedness of
the continuous problem we shall, to avoid unnecessary technicalities, assume that €2 is
a polytope. This guarantees that 2 can be triangulated exactly. Given a conforming,
and quasiuniform triangulation of Q (see [6] for a definition of these notions) of size
h > 0, we construct two finite element spaces W, C H'(Q), and X;, C L?(Q). We
also define M;, = W), N H. ().
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We assume that the family of pairs (X,, M},) satisfies a discrete inf-sup condition:
There is a constant 5 > 0 such that for all A > 0

V .
(13) BIVralls < sup 2Ry e

vr€Xp ||VhHL2

Examples of suitable spaces can be readily found in the literature [6, 8, 13, 2]. To
ensure positivity of discrete approximations to the variable ¢, we require that the
Galerkin projection with respect to Ag onto our space M}, has almost optimal ap-
proximation properties in the max norm. In other words, if w € H 1(Q) and wy, € W,
are such that

Af(w_whv¢h) :0, v¢h tha

then
(14) lw = whl[Le < Cllog bl inf {[|w — @nllL~ : ¢n € Wi}.

Remark 9 (max norm estimates). The derivation of max norm error estimates for
finite element approximations is a, rather technical, and underdeveloped subject. To
our knowledge, most of the references that deal with this subject are only concerned
with the Dirichlet problem for the Laplacian, and assume at least convexity of the
domain; see for instance [18] for the Laplacian, and [7] for the Dirichlet problem
for more general operators, but under an acuteness assumption on the triangulation.
The only reference we are aware of that deals with mixed boundary conditions is [17],
where convexity is also assumed, and the differential operator is the Laplacian. While
we admit that this is a weakness of our analysis, we shall proceed assuming that (14)
holds. Another possible approach to obtain such an estimate is by deriving a discrete
maximum principle, as it is detailed, for instance, in [5, Chapter III, Sections 20, 21].
This, however, imposes restrictions on the mesh. |

We approximate the solution to (3) with the finite element spaces that we have
just described. We will say that the triple (g, un,pr) € Wi x Xp, X My, is a finite
element approximation of the solution to (3), in the sense of Definition 1 if:

e The function ¢, € W}, is such that ¢, — 1 € M}, and

(15) As(qn, dn) = aoy(g, d)r, Vou € M.
o We define
~ ) =
(16) ap(r) = (@) x € Q.

e The pair (up,pn) € X X M), satisfies

/ (&huh + Vph) “Vp = / f-vp, VveXy,
/ uy - Vry = <g,’l"h>1'*, Vr € My,
Q

Our main goal now is to show that the discrete problem is well posed and to study
its approximation properties.
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4.1. Analysis of the discrete problem. Here we show that, under similar as-
sumptions as for the continuous problem, the discrete problem (15)—(17) is uniformly
well posed.

THEOREM 10 (well posedness). In the setting of Theorem 6 or Remark 5 as-
sume, in addition, that h is sufficiently small. Then problem (15)—(17) has a unique
solution.

Proof. By conformity, coercivity of Ag is inherited to M}, so that problem (15)
has a unique solution g5, € W},. Now, since g, € W}, is the Galerkin approximation of
q € H'(Q), owing to (14) we have that

lg = anllze~ < c|loghlllqg — Ingl| Lo
where Ij, denotes the Lagrange interpolant. Theorem 6 now implies that ¢ € C%”(Q)
for some v > 0 so that,
g — gnllr= < ch”|logh||g|co.,
which, if h is sufficiently small implies, for every x € Q,

q v v
50 < gq(x) — ch”|log h||q|cor < qn(z) < q(x) + ch”|loghllg|cor < 2||q||Loe-

The previous reasoning shows that the coefficient &y, defined in (16), is a bounded and
positive function uniformly in h. Therefore, since the discrete inf-sup condition (13)
holds, we again invoke [8, Theorem 2.34] to conclude that problem (17) is uniformly
well posed. 0

4.2. Error analysis. We now proceed with the error analysis of scheme (15)—
(17).

THEOREM 11 (error estimates). In the setting of Theorem 10 we have that, if h
is sufficiently small,

Vg — 2 <c¢ In
V(g —qn)llL> < "

£ IV - on)lee,

U~ o+ V(P = plls < (g 10 = vilo + i, V(P = ra)l

+ llg = anllz=),

where, in all estimates, the constants may depend on (q, U, P) but are independent of

h.

Proof. The estimate on ¢—gqy, is immediate. Let us focus on the estimates between
(U, P) and (up,pp). Setting v =v;, € X, and r = rj, € My, in (9) yields

/ (dh(U—uh)-‘v-V(P—ph))~Vh=/(@h—&)U-Vh, Vv € Xy,
Q Q

/(U —uy) - Vry, =0, Yry, € My,
Q

Owing to the fact that & is uniformly bounded and positive, we can invoke
discrete stability to conclude, from the previous identities, that

U —uplrz + V(P —pn)llre <c < inf [|U = vl + inf [[V(P —rp)lLe
viheXp rn€Mp

+ lla = anllz=[1UllL2) -
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Notice now that, for z € Q,

~ ~ 1 1 20[0
alz) —ap(x)| = ag | — — < —lq(z) — qn(x)|,
3(0) = ()] = | o = 5| < 2 a(w) — (o)
which allows us to conclude. 0

The error estimate of the previous theorem can be combined with the regularity
of Proposition 3 to obtain

U—mmrwvw—mmm<c(

+ h¥|loghl).

inf ||U - inf P—
Lt U=+ inf [[V(P = 1)

We end by commenting that, if further regularity on ¢ can be asserted, the pointwise
estimate can be improved and a higher rate can be obtained.

5. Numerical experiments. In this section we present a series of numerical
examples that illustrate the performance of the splitting formulation we have been
studying. In Section 5.1 we show the error estimates we proved in Section 4.2. The
positivity of the variable ¢, which is at the heart of the splitting formulation, is
explored in Section 5.2 for a smooth domain, and in Section 5.3 for a polygonal domain.
In both cases we go beyond our theory and systematically violate the assumptions
that our theoretical developments have required.

The computations were carried out with the help of the FreeFem++ package [15].
We used a piecewise linear discretization of the variable ¢, a piecewise constant for
the variable U, and a piecewise linear for the variable P. It is well-known that these
choices satisfy (13).

5.1. Convergence rates. The error estimates we proved in Section 4.2 have
already been numerically illustrated in [12, Section 5]. Nevertheless, to make this
contribution self contained, we provide another set of illustrations here.

We consider the domain to be the annulus Q = B(0,4)\ B(0,1) and set the exact
solution to be

1
u:(—y,x)T, p(xay):_z (7’2—1)-’-411’17’,
Y

where r = /22 + y2. The problem parameters are g = 1 and v = 2. Notice that,
withe these choices,

divu =0, in Q g=u-n=0, onTI.
In addition, since
. 1
f=ape™Pu+Vp, = divf=Ap=—-——<0,
0
and because n = %(m,y)T on I" we also have, on T,

4 1 T Y\T 1 1
. — . Y T.(—- Z — —_ ) =
frn=Vp-n (16 2’y> (@.y) (r’r) 4(4 27) 0

Thus, all the assumptions of Theorem 6 are satisfied.
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. U — unr
dim X, Ul
192 | 1.349115E+01 —
752 | 4.664417E-01 | -2.46
2942 | 1.396501E-01 | -0.88
12216 | 3.770751E-02 | -0.92
52356 | 1.099546E-02 | -0.85
189254 | 3.921859E-03 | -0.80

rate

: ||V(1 —ph)HL2 HP —ph”L2
LI S VA1 Tl
dim M, HVPHLz rate ||P||L2 rate

116 7.651760E4-01 2.719474E+01 —
416 7.279389E4-01 | -0.04 | 1.319753E4-01 | -0.57
1551 1.484956E+00 | -2.96 | 9.813112E-02 | -3.72
6268 3.346502E-01 | -1.07 | 1.210256E-02 | -1.50
26498 8.856314E-02 | -0.92 | 3.603819E-03 | -0.84
95267 1.776036E-02 | -1.26 | 3.256271E-04 | -1.88
384716 5.61E-03 | -0.83 4.25E-05 | -1.46

TABLE 1
Rates of convergence for the solution to the problem of Section 5.1. Since Q C R?, and X,
consists of piecewise constants, for a suj/‘ﬁciently fine mesh the velocity error estimate proved in
Theorem 11 must decay like (dim Xh)71 2, Similarly, since My, consists of piecewise linears, the
pressure error in Hi) (£2) must decay as (dim Mh)fl/Q, at least for sufficiently fine meshes. By a
duality argument, we expect the pressure error in LQ(Q) to decay twice as fast.

Table 1 shows the convergence rates of the velocity in L?(£2) and the pressure in
H!(Q) and L*(Q), respectively. Notice that, since 2 C R?, by shape regularity of the
mesh we have that

h™? ~ dim X, ~ dim M.

For this reason, once the mesh is sufficiently refined, the results presented in Table 1
are not only in accordance with Theorem 11, but appear optimal. In addition, by a
duality argument we expect that the error of the pressure decays quadratically. We
observe this as well.

5.2. Positivity in a smooth domain. Let us now illustrate the positivity of
the variable ¢, which is at the heart of our analysis. We consider the same domain as
in Section 5.1. We set up the volume forcing to be

B2 CR\2 . NT
f(x,y):,‘{((r 5) £7 (7' 5) y) ’ ap =1, 7:2,
T T T T

2

where 72 = 2% + 92, and x > 0 is to be chosen. Notice that

2 _ 2
divf(x,y)zn<1—§+(r5))<0, inQ, f-n>0, onT,
r r

so that this forcing fits within our theory. However, for g, we consider two cases:
1. g=0and k = 1%7 which fits the framework of Theorem 4,
2. g= 1—10 with x = 1 that does not. See, however, Remark 5.
Table 2 shows the minimal value of g5, as a function of the number of degrees of

freedom. Notice that, as Theorem 10 shows, positivity can only be guaranteed for a
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g=0,/<c:% gzllo,kczl
NDOFs | min{q,(z) : z € Q} NDOFs | min{g,(z) : z € Q}
621 -0.187745 621 -0.478815
2358 1.38403e-07 2358 -0.0668046
5247 2.89064e-07 5247 0.0280257
9549 3.57685e-07 9549 0.028424
14722 3.93091e-07 14722 0.0285943
20476 4.12966e-07 20476 0.0286825
61489 4.4366e-07 61489 0.0287896
229441 4.57017e-07 229441 0.0288382

TABLE 2

Minitmum value of qpn, for the numerical experiments of Section 5.2.

Fic. 2. The polygonal domain for the numerical experiment of Section 5.3

sufficiently small mesh (sufficiently large number of degrees of freedom). After that,
the minimum of ¢; seems to stabilize at a positive value.

5.3. Positivity in a polygonal domain. As a last illustration, we again ex-
plore the positivity of the variable ¢, but in a setting that is beyond what our theory
can handle. We consider the polygonal domain depicted in Figure 2, i.e., we set
a= 11—0, b= %, and ¢ = 0.65 and define

Q= (—c,c)?\ ((—a, a)?U(c—b, c)2) .

The problem parameters are v = 2, ag = 4¢” and we set the problem data so that
the exact solution is

T
_ z Y 2 22 2
(18) u(fL‘,y)— ($2+y2 +y71_2+y2 —l’) ) p(m,y)—(x —a )(y —a )
We must remark that we are moving well past the scope of our theory in two
regards. First, although an easy computation shows that u-n =g > 0 on I', the
second item of Remark 5 is not applicable in this setting, due to the reentrant corner.
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NDOFs | min{g,(z) : x € Q}
278 0.728008
2406 0.712993
9452 0.711648
35806 0.711294
25435 0.711323
99579 0.711305
404843 0.711387
TABLE 3

Minimum value of qp for the numerical experiment of Section 5.3.

Second, the sign condition on the volume forcing are not met. Indeed, since the exact
solution to our problem is given in (18), we have that

Ap(z,y) = 2(x? +y* — 24%) > 0.
In addition,

1

— (2 —a?) [ 2_ (Y
WVP(%ZJ)'“(%ZJ) =r(y°—a”) (z2+y2 —i—y)—i—y(ﬂc a) (z2+y2 95) ;

so that setting = y > a we obtain

1

———Vp(z,z) - u(z,z) = 2(x* — a?) > 0.
aofye'ﬂ’(mvm)

In conclusion
divf = apyeVp-u+Ap, = divf(z,z) >0,

and by continuity this also holds in an open set.

The minimal value of ¢, as a function of the number of degrees of freedom is
illustrated in Table 3. In this case, despite not fitting our theory, positivity is obtained
for all values of h.

As a final word we comment that, as expected, our results only pose sufficient
conditions for positivity. It is completely plausible that for a different f, or a domain
with different types of reeentrant corners, the variable ¢ attains zero, or is perhaps
even negative.
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