This draft was prepared using the LaTeX style file belonging to the Journal of Fluid Mechanics 1

Gabor Mode Enrichment in Large Eddy
Simulations of Turbulent Flow

A. S. Ghate! and S. K. Lele!?}

!Department of Aeronautics & Astronautics, Stanford University, Stanford, CA

2Department of Mechanical Engineering, Stanford University, Stanford, CA

(Received xx; revised xx; accepted xx)

A turbulence enrichment model for subfilter-scale motions in Large Eddy Simulations
(LES) is comprehensively evaluated in the context of a-posteriori analysis. The paper
further develops the Gabor mode enrichment model first introduced in Ghate & Lele
(2017) by analysing three key requisites of LES enrichment using solenoidal small scale-
velocity fields: a) consistent spectral extrapolation and improvement of resolved single-
and two-point second order correlations, b) ability to accurately capture the flow physics
responsible for temporal decorrelation at small scales, and ¢) accurate representation of
spatially localized and intermittent inter-scale energy transfer between scales resolved by
the coarse grid LES and subfilter scales. We argue that the spatially and spectrally local-
ized Gabor wavepackets offer an optimal basis to represent small scale turbulence within
quasi-homogeneous regions, although the alignment of fine scale vorticity alignment with
large scale strain appears to be somewhat overemphasized. Consequently, we interpret
the resulting subfilter scales as those induced by a set of spatially dispersed Burgers-
Townsend vortices with orientations determined by the larger scale velocity gradients
resolved by the coarse grid LES. Enrichment of coarse grid simulations of two high
Reynolds number flow configurations, homogeneous isotropic turbulence and a rough-
wall turbulent boundary layer, show promising results.
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1. Introduction

It is now widely appreciated that turbulence closures based on Reynolds averaging have
limited capabilities and as noted by Spalart (2015), methods that at least resolve the dy-
namics of largest energy containing, and geometry influenced eddies are naturally suited
for a much broader range of engineering applications. Large Eddy Simulations employing
a suitable wall-stress closure (wall-model) are among the most accurate methodologies to
capture a wide range of turbulent physics including smooth body separation, unsteady
wall-pressure and heat-transfer effects. As detailed in recent reviews by Larsson et al.
(2016) and Bose & Park (2018), wall modeling in LES has come a long way since
the first algebraic stress models developed by Deardorff (1970), Schumann (1975) and
subsequent inviscid rough-surface adaptation by Moeng (1984) using Monin-Obukhov
theory. In engineering applications, wall models based on equilibrium and non-equilibrium
assumptions applied to thin boundary layer equations have been deployed with reasonable
success to predict skin friction and wall-pressure in complex flow configurations at very
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high Reynolds numbers (Piomelli & Balaras 2002; Kawai & Larsson 2012; Kawai & Asada
2013).

These recent successes of LES lead to a natural follow up question. While LES is by
design meant to provide improved accuracy of moments (ensemble/statistical averages
of flow variables) by explicitly resolving the geometry dependent dynamics of the largest
scales of motion and modeling the effect of smaller scales, it is only capable of providing
dynamical description of turbulence with a limited spatio-temporal bandwidth. This
is particularly true in canonical wall turbulence since the integral length scales vary
roughly linearly with distance from the wall (Jiménez 2012). In regions above the buffer
layer where the effect of the viscous boundary condition is of diminishing significance,
a wall-modelled Large Eddy Simulation (WMLES) can only barely capture the integral
length scale of the flow, thereby severely limiting the resolvable turbulent kinetic energy.
This aspect of under-resolution can easily be acknowledged by considering geophysical
flows where WMLES of planetary boundary layers at Re, ~ 105 — 107 (Smits et al.
2011) are typically done using only O(10% — 10°) total grid points (Jiang et al. 2018;
Brasseur & Wei 2010) depending on the application. Turbulence enrichment, where the
geometry /boundary influence large scales are solved using conventional LES and subfilter
scales are synthesized, is a natural solution that can potentially enable broadband
representation of turbulence at low cost in several applications including wind energy
and external hydro- and aerodynamics which deal with wall-pressure induced unsteady
structural vibration and noise generation. Recent work in particle-laden turbulence
(Mazzitelli et al. 2014; Bassenne et al. 2019) also underscores the need for synthesis of
scales subfilter to the LES of the carrier (fluid) phase. The enrichment model introduced
in Ghate & Lele (2017) tackled this aspect of LES directly via representation of small scale
turbulence using Fourier-Gabor modes together with systematic physics based modeling
of the equation governing subfilter-scale flow in the context of Planetary Boundary Layer
turbulence in an a-priori setting where the large scales were represented by spatial
filtering of high resolution DNS or LES data. In this paper we significantly extend that
approach for use in a-posteriori LES.

The primary requisites of a basic turbulence enrichment are systematically introduced
in Section 2. In Section 3, the notion of a spatially and spectrally localized Gabor
mode/wavepacket is introduced and by appealing to the assumption of quasi-homogeneity
of subfilter scales, we argue that these modes form an optimal numerical basis to
statistically represent small-scale turbulence, and for its temporal evolution. Sections 4
and 5 comprehensively investigate the a-posteriori enrichment of coarse-grid simulations
of isotropic turbulence and rough-wall turbulent channel flow and identify the key
strengths of the proposed model. The computational cost of the approach and salient
implementation details are included in an Appendix. Summarizing remarks made in
Section 6 are used to conclude the paper.

2. Preliminary background on turbulence enrichment

Inspired by a thought problem introduced by Wyngaard (2010) to introduce Large Eddy
Simulation (LES), we first introduce the notion of small scale enrichment by considering
temporally stationary turbulence where resolved and subfilter are defined via a spectrally
sharp filter (applied in cartesian coordinates) and denoted with superscripts () and (s)
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respectively. Consider the incompressible, constant density Navier-Stokes equation for
the total velocity field, u;

wi(x,t) = ul (x,t) + u (x,t) (2.1)

where u] is the spatially filtered (resolved) component of u,;.

ul (z,t) = / ui(x', )G a(x’ — x)dx’ (2.2)
x’'eR3

Note that the filter kernel, G o represents a filter applied at A scale which is assumed
to be spatially constant throughout this work in order to enable commutation with
differentiation operators. We have,

1
8tui + 8j (Ui'l.tj) = —&-p + ﬁajajuz + Bz N 8jUj =0 (23)

where the notation, 0; is used to denote partial derivative in time, and 9; is the spatial
partial derivative, [3; is the additional acceleration vector needed to balance dissipation
and maintain a statistically stationary state in time.

=0 (2.4)

r 1
at'l.l,: + 8]- (uluj) = —&-pr + ﬂajaju: + ﬁz 3 aju;

5 1
8tuf + 6]‘ (uiuj)é = -0;p° + %8jajuf ; 8juj =0 (25)

where we have assumed that the forcing applied is exclusively at superfilter (8 = 87)
scales. Further, note that the terminology (u;u;)" corresponds to the spatially filtered
tensor field, (u;u;) and is typically expressed as (uju;)" = uju}+7;;. Here, 75 = (usu;)" —
ujuj is the residual stress tensor that is the only unclosed term which is modeled in the
equations governing large scales 2.4. The goal of subfilter scale enrichment as defined in
this work is generation of small scales with accurate second order space-time correlations
of the type:

cij(m,t,x’,6;) = (uf(, thuj(x’ t + 61)) (2.6)
We will separate the discussion into two parts: a) energetics of u$, and b) the temporal

problem which is particularly relevant since the scale splitting and filtering procedure is
explicitly defined in space and not in time (Eq. 2.2).

2.1. Interscale energetics

For a spectrally sharp filter, using Parseval’s theorem (which gives (u]u?) = 0) we see
that the mean kinetic energy can be decomposed as

(uiug) = (ujug) + (ujug) (2.7)

Since we are interested in the dynamics of the small scales, we can further expand
Equation 2.5 as

S ks S S ks S S S 1 S S
6tui + ujajui + ujajui + ujﬁjui = —@p + ﬁajajui + 8j7’ij ) 8juj =0 (28)

The equations that govern the kinetic energy split (Equation 2.7) for homogeneous
turbulence are given as:

8, <“2“ > = (Biw;) — e = (Baul) — ¢ (2.9)



4 Ghate & Lele

=7

Oy <u52u' > = (Biui) + (1;0;u7) — er (2.10)

ulsuf S, S T S
0 (M5 ) = [~(utusop) - (msdpud)] - (211)
where € = ¢, = (1/Re)(0;uf)(0;u]) (as Re — oo, fixed filter width) is the dissipation
rate. The term, (7;;0;u}) in Equation 2.10 can be further simplified as

(rijOjui) = = (ui0imij) = = (ui 0 (wiw;)") = — (ui0; [(wivg) — (uivg)*]) = — (uj0; ((Uiuj)»
2.12
Expanding (usu;) = ((uf +uf)) ((u} 4 uf)) in the last term and simplifying, we obtain
the definition for (7;;0;uf)

where the second equality follows by simply substituting the definition of 7;; and applying
Parseval’s theorem. Further note that the right hand side term is exactly the first two
terms in Equation 2.11 but with opposite sign. Following Wyngaard (2010), the global
(reversible) interscale energy transfer for homogeneous turbulence can be defined as

T = [ (ujuiSiy)] + [ (753)] (2.14)

I Z

where S;; is the symmetric strain rate tensor.

We see that the interscale energy transfer between the large and small scales is due to
two distinct mechanisms: 1) work done by subfilter scale stresses against large scale strain
(Z1), and 2) work done by residual/subgrid stress against small scale strain (Z). The
definition above must strictly be interpreted as a global balance since it does not hold
in a pointwise sense. While the second term in Equation 2.14 can be further simplified
as <Ti]‘Sfj> = <ufu§5’fj> (again using Parseval’s theorem), recall that the tensor 7;; is
typically modeled such that total interscale energy transfer is statistically accurate,
ie. — <Ti’?"dS{j> = — <Tiijj> (Meneveau & Katz 2000). For complete consistency in
energetics, one might assume that an additional constraint on the enriched fields, uf is
required if <Tiijj> = <T{;wdej>. We now use Leonard’s decomposition (Leonard 1975)
to show that this is not the case. Consider Z, again,

T, = (LiSy;) + (CisS5) + (RipSy) = (LiSiy ) (2.15)
where, L;; = (ufug)T — ujuj is the Leonard stress, Cj; = (u;uj—i—ufu;)r is the

cross-stress, and R;; = (ufuj)r is the resolved component of the small scale Reynolds
stress tensor. Note that the last equality in Equation 2.15 is a consequence of Parseval’s
theorem. Therefore, the energy transfer due to Zs is only a function of Leonard stress
which is a closed term in the LES equations (Eq. 2.4), and hence is not affected by the
spatio-temporal inaccuracies associated with 7724,

Figure 1 shows the interscale energetics for a periodic homogeneous isotropic turbu-
lence simulation done on a 2563 numerical grid at Re — oo (with a subgrid scale model).
In the present discussion, the role of the subgrid scale model has been ignored since its
effect is modeled as part of the non-linear physics later. A Cartesian spectrally sharp
filter is used to define large and small scales. This figure allows for the following three
observations: a) While the magnitude of interscale transfer, Z; is substantially smaller
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FI1GURE 1. Kinetic energy decomposition and interscale energy transfer for the Homogeneous
Isotropic Turbulence (HIT) case discussed in Section 5. In subfigure (d), red and blue regions
correspond to regions where there is gain and loss in large scale KE respectively. In subfigures
(e) and (f) red regions depict gain in small scale KE whereas blue regions indicate loss of small
scale KE.

than that of Zs, Z; makes a larger contribution to the global interscale energy transfer
(it is more persistently positive); b) The small scale kinetic energy does not appear
spatially homogeneous over the entire domain but is rather well correlated with the
interscale transfer that contributes to Z;; and ¢) The terms that contribute to Zy appear
to be correlated to the cross component of the energy, vju;. While not shown here for
brevity, these qualitative observations appear to be independent of the choice of the
cutoff wavenumber selected in the inertial subrange.

While the discussion in this section regarding inter-scale energy transfer has been
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presented from the perspective of single point statistical measures targeted for modeling,
interested reader is referred to the substantial array of literature on inter-scale energetics
in turbulent flows. Recent work by Doan et al. (2018) has addressed the role of non-local
vortex stretching in interscale transfer of enstrophy flux for a wide range of Reynolds
numbers and Johnson (2020) introduced an exact relationship between interscale energy
transfer and vorticity-strain interactions. Johnson (2020) shows that scale non-local
vortex stretching (large scale strain on small scale vorticity) and strain self-amplification
play a more important role in interscale transfers than scale local vortex stretching. As
will be shown later in Section 4, the proposed enrichment model captures the interscale
tranfers via non-local vortex stretching resulting in certain vorticity alignments with large
scale strain rates that are reminiscent of the behaviour of Burgers-Townsend vortices
subjected to background strain.

2.2. Temporal decorrelation of subfilter-scale turbulence

Since, one of the requirements of the subfilter scale enrichment model is accurate
temporal behavior in terms of second order statistics, i.e. ¢;;(x,t, 7) = (u;(x, t)u;(x, 7)),
it is instructive to return to Equation 2.8 and analyze its terms. However, before doing
so, we will absorb the pressure non-linearity into the other terms by using the divergence
free constraint. Equation 2.8 can be rewritten as

rd s T s r 1 S, S, S\T
Opuy = — [uj05uf — (ujojuf) | ™ — [usouf — (ujajui)r} — [0 (wjuf — (ujus) )]L
Term 1 (Sweeping) Term 2 (Straining) Term 3 (Nonlinear relaxation)
+ [0;Li;] " + Riajajuf (2.16)
—— €

Term 4 (Leonard stress source/sink) Term 5 (viscous diffusion)

where, fi is the solenoidal projection of the vector field, f; which can be computed by
solving the Poisson equation

fr=fi-oe o 8,007 = aif; (217)

It is easy to see that Equation 2.17 can be solved exactly in spectral space (homogene-
ity /periodicity) as f;- (k) = ((Sij - %) fj (k) and inviscid boundary conditions can be
accommodated via specifying boundary conditions on ¢.

For the HIT simulation shown in Figure 1, we can compute the relative magnitude
of each of the terms on the RHS of Eq. 2.16 (shown in Figure 2). While this plot does
not provide any information regarding the relative phase and cross-correlations among
each term (sum of the mean squares of 4 terms does not give the energy of the total
acceleration), it still suggests that majority of the small scale acceleration is due to
the sweeping of the small scales by the large scales. The non-linear term only becomes
significant at large k and only dominates the sweeping term for k > 10k.,, where k., is
the cutoff or the scale-separation wavenumber. Note that while the energies in Terms 2
and 4 are substantially smaller than the other terms, it does not necessarily mean that
they do not affect temporal dynamics (in fact as shown in the previous section these
terms cause interscale energy transfer).

In order to systematically study the decorrelating effect of each of the 4 contributors
in small scale acceleration, consider the time integral of Equation 2.16,
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FIGURE 2. Magnitude of each term in RHS of Equation 2.16 binned in spherical wavenumber
bins. The magnitudes from each of the three equations are computed separately and then
averaged for generating this figure. Note that the units of the y-axis are non-dimensionalized
using the domain length and a velocity scale determined by the energy spectrum.

t+71 t+71
/ Opusdt = v (@t + 7) — ul (1) = / T {u (2, ), ' (z, ¢')) dt’
t t

t+7 t+1 t+7

+ To{u’(z,t'),u" (z,t')} dt’ + Tz {u’(z,t')} dt’ + Ta{Lij(z,t')}at’
t t ¢
t+7

+ Ts {Re,u’(z,t'} dt’  (2.18)
¢

where the terms of the form 7; are the 5 terms on the right hand side of Equation 2.16.

Now, if we multiply both sides of the Equation above by uf(x,t) and average/integrate
over all  and t, we gett:

1 The index notation for repeated indexing is NOT applicable in this equation.
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t+7

Ci(T)

(uf (@, i (2, ¢ + 7)) = (uf (@, il (2, 1)) + <uf<a:,t> mt/>

t

Dy
t+7 t+1 t+T1
+ <u§(a:, t)/ 7‘2dt’> + <uf(:c,t)/ 7gdt’> + <uf(m,t)/ 71dt’>
t t t
D2 D

Dy

t+7
+<uf(:c,t)/ 7'5dt’> (2.19)

t

Ds

Note that in the high Reynolds number limit, Re — oo, the viscous decorrelation
Ds(t) — 0 as long as the solution uf does not contain a finite-time singularity! The
decorrelation, ¢;(7) along with the 4 contributions from Equation 2.19 for the HIT case
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are shown in Figure 3. Several observations are immediately evident from these results
(pertaining to the k., = (2/3)16 case). The sweeping term dominates the decorrelation
of small scales at early and intermediate times (0.01 < 7¢/k < 0.055). At early times
(subfigure (c)) 7e/k < 0.004, the sweeping term overpredicts the true decorrelation and
the straining term corrects it by keeping the small scales correlated. This is expected
since the straining term adds energy via phase alignment (RDT) which is consistent
with the interscale energy transfer observations (see Z;) made in Figure 1. At late times
(re/k > 0.045), the non-linear term causes non-negligible decorrelation (see subfigure
a), compensating for the correlating effect of the straining term. The Leonard stress
source/sink term does not appear to affect the overall statistical decorrelation of the flow
field. In other words, while the term itself may be non-negligible (see Figures 2 and 1), its
spatial averaged counterpart does not appear to induce substantial decorrelation at time
scales that are relevant to subfilter-scale motion. This is a very convenient attribute of
this source term since its effect can be modeled separately using instantaneous Leonard
stresses from the resolved scales. For the case with k., = (2/3)16 cutoff, a large part of
the overall decorrelation occurs due to the linear interactions (sweeping and straining)
since the larger scales are more energetic in k., = (2/3)32 case.

These observations play a key role in development of the model for small scale
enrichment as described in the next section.

3. Gabor mode representation
3.1. Wavelet/Wavepacket representation

The Gabor modes/wavepackets employed in our formulation, represent a windowed
Fourier transform as will be defined later in this section. Its advantages over other types
of wavelet transform are limited to the synthesis problem (as opposed to the sensing
problem). In general, the use of canonical wavelets such as Daubechies (see Mallat
(1999)) family of wavelets (used in discrete wavelet transforms) provides more aggressive
compression in degrees of freedom since these wavelets have physical supports that scale
with wavelength, whereas Gabor wavepackets discussed here have the same fixed support
for each wavelength. Due to this spatial coarsening, wavelets can provide more spatial
localization than the Gabor transform/wavepacket. For a more comprehensive discussion
of Gabor modes in the context of the broader class of tools that rely on wavelets (Farge
& Schneider 2001; Goldstein & Vasilyev 2004) the reader is referred to Ghate (2018).
However, we note the following two advantages of using Gabor modes in the context of
the enrichment problem.

(i) The Gabor transform is more amenable to theoretical manipulation, and ideas of
WKB asymptotics using scale separation can easily be incorporated theoretically, which
allows for easier modeling of the temporal dynamics (Section 4). In fact, substantial
contributions to turbulence theory were made in late 1990s and early 2000s using the
Gabor transform (see for e.g. Nazarenko et al. (1999); Dubrulle et al. (2001, 2002); Laval
et al. (2004)).

(ii) Notion of compression in degrees of freedom does not necessarily imply reduction
in computational cost. In incompressible flows, the non-linearity introduced by pressure
is non-local in physical space, and can be a significant challenge in 3D flows where
pressure-less algorithms are not widely known. In fact, a more appropriate compari-
son of wavelet-based treatment of the governing equations is that with other spectral
discretizations of the full equations. Schneider & Vasilyev (2010) provide an excellent
review of the challenges associated with wavelet discretization of incompressible Navier-
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Stokes equations. The notion of quasi-homogeneous regions along with some theoretical
simplifications (since the oscillatory aspect is provided by Fourier basis) associated with
WEKB-RDT makes the treatment of this non-local non-linearity associated with pressure,
very tractable.

3.2. Quasi-homogeneity assumption

We will introduce the notion of quasi-homogeneity in the context of simulations of
wall-bounded turbulence by introducing the following three length scales:

(i) The domain length scale (boundary layer height): §. The flow is highly inhomoge-
neous at this length scale due to the viscous and kinematic effects of the wall.

(ii) A coarse LES grid scale, which is also the filter width used to separate the small
scales from the resolved scales: A

(iii) A windowing scale, A,, such that A, > A and § > A,,.
If we window the subfilter-scale (based on A) field using an appropriate windowing
function (here taken to be a Gaussian) of characteristic length, A, and centered at
coordinate xy we obtain:

Uy (X, 20, Ay) = f(x — 0, Ay)u(x) (3.1)

where u(x) is an instantaneous snapshot of the velocity field. We now make the fol-
lowing hypothesis: For a certain choice of Ay, the vector field w,,(x,xo, Ay) is locally
homogeneous over length scales smaller than A,,; this will be referred to as the quasi-
homogeneity assumption. If we argue that the length scale of this quasi-homogeneous
region (Dgp (o) C R?) is smaller than the window support, then the following deduc-
tions regarding w,, (x, g, A4,) immediately follow:

(i) An energy error-minimizing representation (Proper orthogonal decomposition, or
Karhunen-Loeve expansion) of w,,(x, g, Ay ) which is also the most optimal represen-
tation (in terms of modes used), is in fact the Fourier representation (Lumley 1970). It
is important to acknowledge that strictly speaking, this result’s practical use is limited
to uy (x, 2o, Ay) C C? (Dgrr) due to uniform convergence of the Fourier series.

(ii) A stochastic field that is statistically equivalent (up to second order) to
Uy (X, o, Ayy) for (x — x9) € Dom can be written in terms of the stochastic Fourier-
Stieltjes integral (see Batchelor (1953)),

s (x) = /k _ emazk) (3.2)

where the stochastic vector field Z(k) has uncorrelated increments (dZ;(k)dZ;(k’)) =
d(k — k')¢;j(k)dk where the spectral tensor, ¢;;(k) is the Fourier transform of the two-
point Reynolds stress tensor, R;;(r) = (u;(x)u;(x —r)).

(iii) Equation 3.2 can be discretized efficiently by sampling wavenumbers following the
ideas of Kraichnan (1970) and Fung et al. (1992) and as such the field, us(x) can be
represented very efficiently in terms of dZ (k). However, any stochastic equivalent must
also decay/attenuate to 0 for  outside of Dgp (o). Thus, the random processes/modes
must also carry appropriate support functions centered at xy. We will refer to these
dZ(k,xo, Ay ) random samplings as Gabor modes and rewrite the synthesis equation 3.2
as:

us(x, 2o, Ayy) = / e*dZ(k,xo, Ay) (3.3)

keRs3
At this stage, it is essential to draw the distinction between the windowed field,
Uy (T, o, Ayy) and the synthetic field, us(x, g, Ay). These two fields are not the same,
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and the choice of dZ(k, xg, A,,) is not made to approximate u,, and as such dZ(k, xg)
are not the POD modes of w. In fact, any choice of dZ(k,x, A,) that satisfies the
compactness requirement for us(k, o, 4,,) and the requirement:

le k,ZB dZ; kz’,m —ik-r
< ( 0) J( 0)> = ¢ij(ka 1130) = / <U7,(.’1} — Xy, :Bo)’u,j(.’ll — Xy — T, CC())> e k d’l"
dk reR3
(3.4)
will result in us(x, €g, Ay) with the same second order spatial statistics as u.,(x, o) as
dk — 0.

3.3. Discrete Gabor modes and scale separation

We now formalize the procedure for generation of us which requires us to first identify
the length scale, A, used to window the small scale field, u. It is obvious that for
w,, (2, o) to preserve the statistical characteristics of u(x) for € Dgu(xo), we require
A, to be much larger than the largest relevant scale present in u(x), * € Don(xo).
This requirement is simply ¢ = A/A,, < 1 since the scale splitting filter width is A. We
will refer to parameter ¢ as the scale-separation parameter.

The Gabor transform of the small scale field, u(x) is defined asf:

(@0, k<) = / w(@)f (e(wo — o)) e @) 4oy (3.5)

TERS
where f(x) is a smooth, compact support window function, and the parameter € controls
the window width. It is easy to state the analogy between @(k, xo,c) and the stochastic
mode, dZ:

dZ(zo, k, ) ~ (27)%0(x0, k, g)e” F®o (3.6)
The main property that is used implicitly throughout this work is the following differen-
tiation property:
g;f; = ik;i; + O(e) (3.7)
The impact of these O(e) errors on the quality of the solution is detailed in Appendix A
in the context of divergence error (for two different choices of €).

The synthesis of a small scale field induced by the Gabor modes requires sampling
of the stochastic modes dZ(xo, k,e). Each Gabor mode thus, carries the following 4
variables that define it:

(i) A complex valued vector amplitude: a

(ii) A real-valued wave vector: k

(iii) A real-valued location in the physical domain: @

(iv) Support function, f(x — @) defined in the neighborhood of xy.

Due to the uncorrelated character of the increments/modes, dZ, the most appropriate
choice for the support function is a trigonometric window such as a cosine window which
will be used throughout this paper. This choice is largely influenced by the arguments
previously made by Xiong et al. (2004).

1 This definition is slightly different from the one seen in textbooks (Debnath & Shah 2002)
where the term e® (®=%0) is replaced by e'®*® The difference between the two is a simple
modulation/phase factor e~ *®0 and the definition stated here is primarily intended to make
the definition consistent with Equation 3.1 and simplify some of the properties pertaining to its
differentiation.
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Posithen (&) Wave vector (k) Velocity (&) Generated u{x) field

L

Multiple modes

FIGURE 4. Small-scale velocity induced by Gabor modes

In order to compute the induced velocity field at a point, @, we need to simply sum the
contribution from each of the modes in the neighborhood of @ (its quasi-homogeneous
region) where the contribution from each is simply du(x) = af(x — x)e’® ®=*0) In
principle, this is a fairly expensive calculation; each quasi-homogeneous region could
contain hundreds of Gabor modes, since the support function is defined by the quasi-
homogeneous region it resides in, as opposed to its wavenumber. However, the calculation
can be substantially accelerated by making all the modes within a quasi-homogeneous
region, share a single support function. As the modes travel in space, their support
envelopes change depending on the quasi-homogeneous region they lie within. This
assumption is consistent with the fact that quasi-homogeneous regions are defined based
on flow properties, and not the Gabor modes.

The synthesis of the velocity field for homogeneous isotropic turbulence using Gabor
modes seeded in quasi-homogeneous regions is shown in Figure 4. In this illustration, the
size of a quasi-homogeneous region is set to (Aguae, Aguy, Aqguz) = (244,24,,2A,),
where A; is the coarse LES grid spacing in ith direction. The support length is taken to
be (Awa, Awy, Aw:) = (2AQHz, 2A¢QHy, 2A¢H-). This choice implies a value of 0.25 for
the scale separation parameter, ¢ and is a theoretical upper bound for the overlapping
implied by the cosine support functions. The spatial location of each mode (z;, where j
is used to index a specific mode) within a quasi-homogeneous region is randomly sampled
from a uniform distribution.

The velocity induced by m total modes present within a quasi-homogeneous region
centered at xg at an arbitrary point,  in the domain is given as

m m
ug(x, 29) = Z flx —x;)ae® @) ~ f(x — x) Z ajet*i (@)
j=1 j=1

.’13 —x Z{ —ikj-(x;— mo)}eikj'(w,mo) — ZC —x Z i (x—x0) (38)
j=1 j=1

This reconstruction shows that once the modulation for each mode (a; = aje~ s (®i—®0))
is calculated, calculation of the velocity field requires evaluation of the sum in the last
term of Equation 3.8. Appendix B is dedicated to developing an appropriate Non-uniform
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Fast Fourier Transform (NUFFT) algorithmf to calculate this sum in O(nlog(n)) (n is
the number of grid points in real space), as opposed to O(mn) complexity (m is the
number of modes) implied by Equation 3.8. For all the problems studied in this work,
the size of quasi-homogeneous regions is constant throughout the domain, including wall
bounded flows, since we assume that no grid stretching is used due to wall modeling in
the coarse simulations. This assumption will also need to be revisited when Gabor modes
are applied to problems with abrupt changes in direction of dominant transport (such as
separated flows).

Finally, note that the initialization of the Gabor modes within Quasi-homogeneous
regions uses the notion of isotropically sampled modes linearly distorted by the local
large scale velocity gradient tensor (RDT) through a k—dependent time scale (Mann
1994); further details of this procedure including determination of model constants for
wall-bounded flows can be found in Ghate & Lele (2017).

3.4. FEwvolution ODEs for Gabor modes

The equations governing temporal evolution of each Gabor mode can be obtained
by considering the Gabor transform of the subfilter scale equations (2.8). However, the
assumption of quasi-homogeneity requires a further decomposition of the resolved scales
as:

u(x,t; A) = Uz, t; A, Agn) + U (x, 1 A, Agn) (3.9)

where,
Ulx,t) = / T(r — x)u (r,t)dr (3.10)
reR3

with T'(r —x) acting as the Agy scale filtering operator (equal to 2A for all the examples
discussed in this paper). With this decomposition, we can derive (see Appendix C)
the equations that govern the evolution of each Gabor mode located within the quasi-
homogeneous region, Dgop (o) over a time scale ¢ € [0, 7] to a leading order in the scale
separation parameter, ¢

dt ( k2
where a; is the complex valued velocity information in the Gabor mode and the eikonal
equation for its wavenumber given as

- 5im) a;0;Un — vk*a; + hi (3.11)

CZ? = —k;0U; (3.12)
in the frame
dl‘i
T U; (3.13)

where U;, 0;U; is evaluated at xg. The term hi = (0i — (klkj)/(kmkm))fzj comes from
the non-linear term 9;(u;u;) + 0;(Ufu;) + 0j(u;UT). The simplest model for the non-
linear term is a spectral eddy viscosity such as the one obtained using Renormalization
Group (RNG) (see Canuto & Dubovikov 1996; Laval et al. 2001). Under this modeling
assumption, we compute lAzZL as

hi = —v(k)k?a; (3.14)

T The special log-spaced structure of wavenumbers k can be used to substantially accelerate
Greengard & Lee (2004) Type-I NUFFT algorithm further.



14 Ghate & Lele

where the RNG model (isotropic turbulence) for the spectral viscosity is given as:

vi(k) = (1/2 +0.02 /:O q_QE(q)dq> v —v (3.15)

The Energy Spectrum, FE(k) in Eq. 3.15 is estimated using the Gabor modes (k,a).
This is consistent with the assumptions and findings reported in Laval et al. (2001)
where comparisons with DNS of 3D isotropic turbulence suggest that a simple turbulent
viscosity model is sufficient to obtain accurate decay rates. We further note that in
the SGS model of Dubrulle et al. (2002), the authors ignore this term entirely by
arguing that the subgrid-subgrid interactions are negligible. This is reasonable in their
analytical model since after averaging, the transport contributed by this non-linear term
is negligible. However, in our synthesis problems we have noticed that the absence of
the spectral viscosity (and the implied time scale), leads to non-physical increase in
energy at high wavenumbers inconsistent with Kolmogorov inertial range (—5/3) scaling
(pile-up resulting from absence of a KE dissipation needed for finite resolution). This
is consistent with the observations made by Laval et al. (2001) for isotropic turbulence,
where they argue that the role of the local interactions in the non-linear term is to weaken
the intense vortices caused by the non-local interactions from the straining term. The
turbulent viscosity model based on RNG is a natural choice for regularization desired in
this formulation, since it gives the desired k=*/3 scaling for v, as k — oo, and k° scaling
as k — 0. Furthermore, the implied time scale also follows the k~2/3 in the inertial
subrange, as is discussed further in the next subsection.

At this stage, it is important to relate the individual contributions to small-scale
temporal decorrelations discussed in Section 2.2 with the temporal evolution model
of Equation 3.11-3.13. The sweeping-effect in Equation 2.16 is accounted for by the
description of Gabor modes in a Lagrangian frame (Eq. 3.13), and the straining-effect
is captured by the first term on the right hand side of Equation 3.11 together with
the Eikonal equation 3.12. The non-linear relaxation term in Equation 2.16 is modelled
using the RNG spectral viscosity closure of Equations 3.14-3.15. The Leonard stress
contribution which causes negligible temporal decorrelation, but results in interscale-
energy transfer is addressed next in Section 3.5. However, it is important to emphasize
at this point that these aspects of the model proposed here are helpful to justify the
excellent agreement in space-time correlations of the enriched fields with reference to
high resolution simulations that have previously been demonstrated for wall-bounded
flows in Figures 9 and 10 of Ghate & Lele (2017).

3.5. Cartesian Leonard fields

The effect of the Leonard stress on evolution of subfilter-scale fields can be accounted
for by using a simple superposition argument where the full subfilter scale flow-fields are
obtained as:

ul® (x,t) = uBP (x, t) + u'*ond (x, 1) (3.16)
and Leonard field is simply computed as:
wlonad (g #) = 700, (Lij(z,t)) " (3.17)

with the Leonard stress, L;; introduced in Equation 2.15: Two important observations
regarding the definition 3.17 can be made.

(i) Due to the quadratic non-linearity, L;; has a Nyquist wavenumber equal to twice
the Nyquist wavenumber of the the large scale fields w(™). This is consistent with its
contribution to the subfilter-scale acceleration shown in Figure 2. More importantly, all
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numerical operations on u!°°"'4 (such as the projection operation implied in Equation

3.17) can be performed on numerical grid that is only twice as fine as the coarse LES
grid. This is in stark contrast with the numerical grid used to render the velocity fields
associated with the Gabor mode contribution u#*P°" which requires a numerical mesh
that is at least a factor of 8 finer than the coarse LES mesh.

(ii) The time scale, T is exclusively a function of the filter-length associated with the
coarse-LES fields w(™). It can be modeled as:

N — R (3.18)

kay /[ Bk

where kA is the Nyquist wavenumber of the large scales w(™ and crpo = 1.2 is a model
constant, and the spectrum FE(k) can be approximated using the Gabor modes. The
reader is referred to recent work by Kelly (2018) who reviews the different timescales
used in literature, and the choice in Equation 3.18 corresponds to p = 0 in generic
form given in Kelly (2018). Note that the constant, cpgo is a calibrated (using isotropic
turbulence) model constant and does not depend on wavenumber as long as the scale
separation is performed in the inertial subrange.

4. Homogeneous Isotropic turbulence
4.1. Description of baseline simulations

Consider a forced HIT LES at Re — oo, performed on a sequence of numerical grids
starting from 323 through 5123. The absence of molecular viscosity necessitates the use
of a robust subgrid scale model to balance the production of turbulent kinetic energy
without causing aliasing of resolvable fields. All simulations reported in this section were
performed using Fourier-collocation with 2/3rd dealiasing (explicit filtering), and used
the Sigma (Nicoud et al. 2011) SGS closure with a grid independent model constant
of 1.3. The flow is forced in Fourier space by choosing random modes at each time
step within £ = 1 and k& = 2 spherical shells, thereby prescribing the overall turbulent
dissipation rate for the simulation (see Carati et al. (1995) for details). The parameters
that characterize the isotropic turbulence studied in this section are provided in Table
1. The domain size is the conventional 27 x 27 X 27, and the simulation is allowed
to reach an equilibrium state by an initial spin up time of approximately 10g/e (g is
the turbulent kinetic energy) prior to performing any analysis. Figure 6 shows that all
simulations exhibit reasonable scale invariance in terms of spatial distribution of kinetic
energy (since production is completely resolved for all cases), with some departure from
the —5/3 slope occurring beyond a wavenumber that corresponds to approximately half
of the Nyquist wavenumber.

Gabor modes are seeded within 32% simulation and the effective full velocity fields
are visualized on a 2563 numerical grid, which implies a factor of 8 enrichment (in each
spatial dimension), and the independent LES simulation performed on 2563 numerical
grid will serve as the benchmark for comparisons. A total of 512 Gabor modes are used
in each quasi-homogeneous region (2 X 2 x 2 LES cells) implying a use of 88% fewer
spatial degrees of freedom than in the 2562 case. Such a comparison requires the ability
to interpolate the 323 LES fields on to the 2563 grid and Figure 7 shows that while linear
interpolation is overly dissipative, using cubic splines essentially eliminates this artificial
energy loss. The applications discussed in this work use zero-padding in Fourier space
for upsampling in periodic directions (sinc-interpolation), and cubic spline interpolation
for non-periodic directions.
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Integral length scale,

Lo =gy

Velocity scale,

U = /UjUj

m |0.35 |8.97 |0.06 |0.0045

TABLE 1. Characteristic parameters for the forced HIT simulations

Turn over time scale, | Kinetic energy, | Dissipation rate,
Lo/uo uiui/Q g

Lo

. L m -0.4

FIGURE 8. Instantaneous snapshot of v velocity field on an arbitrary  — y plane. Results can
be compared with Figure 1.3(a)-(c).
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FIGURE 9. Kinetic energy spectrum for the forced HIT simulations with Gabor mode
enrichment. Results can be compared with Figure 1.3(d).

4.2. Gabor mode enriched solutions

Figure 8 shows an instantaneous snapshot of the flow fields generated via Gabor mode
enrichment of the 323 LES. The resulting kinetic energy spectrum (Figure 9) shows the
spectral extrapolation provided by the small scales induced by Gabor modes. The 5123
LES results are also included for reference to explain that the slight overprediction of
KE in the enriched fields at high wavenumbers is not unphysical; the 256% LES suffers
from some artificial decay in energy at very high wavenumbers due to inaccuracies in
SGS modeling. The remaining observations can be summarized as follows:

Figure 10 shows that small scale kinetic energy induced by Gabor modes has localized
peaks that occur due to intense straining by the large scales. This is consistent with the
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FIGURE 10. Instantaneous Kinetic energy resolved by the 323 LES and the small scale energy
induced by Gabor modes.

observations made in section 1. The instantaneous interscale energy transfers, Z; and
7, (Equation 2.14), are shown in Figure 11 to demonstrate the tight coupling observed
between the 32% LES and the enriched Gabor modes. The mean values for Z; and Z
are 0.0025 and 0.0018 respectively, in excellent agreement with the expected true values.
Again, it is interesting to observe the strong correlation seen between small scale kinetic
energy and 77, and cross-component of the energy and Z,. The interscale energy transfer,
7> is primarily a consequence of the Gabor modes generated by the Leonard stress term in
their evolution equations. The effect of these modes is localized near the filter wavenumber
(keo = (2/3)16). Spectral enrichment methods such as kinematic simulations of Flohr &
Vassilicos (2000) create excellent spectral extrapolations (similar to present results), but
do not capture any interscale energy transfers since Fourier modes lack spatial localization
seen in Gabor modes. Figures 1lc-d compare the two interscale transfer rates with
the true results based on filtering of the 2563 reference LES. The results show very
promising agreement, with any quantitative differences limited to slight over-prediction
of intermittency (kurtosis) in the Gabor mode enriched case. Note that such quantitative
differences in higher order statistics, are not unexpected since the reference case is not grid
converged (and is not a DNS), and the SGS model does contaminate the smallest scales
resolved in the 2563 LES. One dimensional spectra for v and v components are shown
in Figure 12. The overall agreement with the 2563 LES is reasonable. The discrepancies
seen near k., ~ (2/3)16 can be attributed to the cartesian (tensor-product) nature of
the 323 LES and the spherical nature of k—vectors in the enriching Gabor modes. Figure
13 shows 2d spectra for v and w components. The box drawn using red dashes is the
spectral reach of the 323 LES (corresponding to k., = (2/3)16). The black contour levels
are made using 256% LES data and the colored levels are generated using enriched LES
data. Figures (c) and (d) exhibit a 90° rotational invariance, whereas Figures (a) and
(b) notably lack this invariance, consistent with the symmetries expected in isotropic
turbulence (u component has a larger integral length scale in 2 direction, compared to y
and z directions); small scales induced by Gabor modes preserve these global symmetries.
Note that the 256% LES uses 2/3rd dealiasing, which is not needed in the enriched LES.
These results reinforce the excellent comparison seen in the energy spectrum. The ability
of the 322 LES in predicting accurate two-point correlations at large scales is noted.
The enstrophy spectrum is compared in Figure 14. The large noise level in 323 LES is
a consequence of reduced sampling size, but the effective enstrophy of the enriched LES
compares quite well with the enstrophy resolved by the 2563 LES. However, this global
picture of vorticity can be quite misleading since it doesn’t provide any insight regarding
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FIGURE 11. Instantaneous energy injected into the small scales induced by Gabor modes.



20 Ghate & Lele

T
I —LES256
—LES32

LES32 enriched|

10°

10

E(
3 ) )
%

wl el e e
/
//
//

4 /

10° 10 102

(a) u component

T
I —LES256
—LES32

102 LES32 enriched|

T
/,
Ll

Ev(kx)

10

S,
&

10° 10’ 102
k.

X

10°

(b) v component

FIGURE 12. One dimensional, k; spectra

spatial coherence of the vorticity field. Figures 15 and 16 show the iso-contours of vorticity
magnitude in the simulated domain at contour levels of 150¢/q and 210e/q respectively.
These values are approximately 2.1 and 3 times the RMS vorticity magnitude for the 2563
LES. It is clear that a simulation at 323 size does not resolve any strong vorticity of this
magnitude. However, these vorticity iso-surfaces help identify two notable deficiencies in
the Gabor mode induced velocity fields:

(i) The RDT-linearization in Gabor mode evolution equations leads to numerous thin
vortex filaments, however the effect of non-linear terms which cause mutual distortion
and entanglement (She et al. 1990), is noticeably absent. Laval et al. (2001) claim that
vortex reconnection is essentially a non-linear process in which local (in scale space)
interactions play an important role. Instead, the spectral viscosity used here simply
prevents uninhibited stretching implied by the RDT-like terms.

(ii) The effect of quasi-homogeneous regions is very evident in the Gabor mode induced
vorticity. While the thin filaments in the LES have a radii of the order of grid resolution
(Kolmogorov scale in DNS), their long lengths imply a large spatial coherence. We
consider the preferential orientation of the subfilter scale vorticity, wg with the largest
eigenvalue of the large scale (323 LES) strain rate tensor, Sk as shown in Figure 17. It is
clear that the fine scale vorticity in the enriched case lacks some of the true physics which
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FIGURE 13. 2d spectra for u and w components. The contour levels are logarithmically
equispaced between 107° and 107>°. Black lines: 256° LES, Colored lines: 32° LES enriched
with Gabor modes

appears to be more nuanced and complex (see Figure 16a). The enriched vorticity appears
to primarily consist of elongated cylindrical strucutres, reminiscent of Burgers-Townsend
vortices (Townsend 1951). We observe that this subfilter-scale vorticity contained in
Gabor modes is consistent with the RDT-type arguments made in vortex-based closures
(Pullin & Saffman 1994; Misra & Pullin 1997; Kosovi¢ 1997) for the full subgrid scale
stress tensor. Such closure models attempt to model the probability density of the
subfilter vortex orientation; this statistical information is naturally present in Gabor
modes due to the statistical equivalence requirement given in Equation 3.4.

Finally, it is interesting to observe that the small-scale strain rate as measured in terms
of the Lund-Rogers parameter (Lund & Rogers 1994) shown in Figure 18, suggests that
the field has Gaussian statistics. This appears to be consistent with the observation by
Pullin & Saffman (1998) who note that volume-filling ensembles of Townsend-Burgers’
vortices give poor results for the higher order moments of the longitudinal velocity
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(a) 256° LES (b) 32° LES enriched with Gabor modes

FIGURE 15. Isocontours of instantaneous absolute vorticity. Contour level is 150e/q. The 323
LES does not capture any features at this vorticity level.

derivatives for isotropic turbulence. In regards to the LES results shown in Figure 17,
note that while the 2563 LES which captures the entire non-linearity at small scales
also shows some preferential alignment, its PDF does not present a strong peak at the
perfectly aligned state as would be expected from a highly resolved direct numerical
simulation for a finite Reynolds number case. We note that the widely accepted result
regarding the alignment of vorticity with the eigenvector of strain rate with the second
largest eigenvalue (Ashurst et al. 1987; Cantwell 1992) should not be confused with
the observation reported in Figure 17 which only considers the non-local (large scale)
straining of vorticity (Hamlington et al. 2008). Other spectral enrichment methods relying
on global Fourier modes (Flohr & Vassilicos 2000) fail to capture any of these interactions
and the small scales are generated due to an entirely incoherent vorticity distribution.
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(a) 256° LES (b) 32° LES enriched with Gabor modes

FIGURE 16. Isocontours of instantaneous absolute vorticity. Contour level is 210¢/q. The 32°
LES does not capture any features at this vorticity level.
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FIGURE 17. Preferential alignment of the small scale vorticity with the largest eigenvalue of
the large scale strain rate tensor.

5. Half channel at Re —
5.1. Problem description and quality of coarse grid LES

The second problem studied is a canonical wall bounded flow simulated as a rough wall
turbulent half-channel (of height H), with slip boundary conditions at the top (z = H)
and implied no-slip (stress condition for WMLES) boundary conditions at the bottom
(2 = 0). Roughness length scale zy is taken to be 107*H. The domain size simulated for
all cases is (6 x 37 x 1) H; such a large horizontal domain is needed due to the presence of
very large streamwise-elongated coherent structures (also referred to as very large scale
motions or VLSMSs) of size O(10) boundary layer thickness that occur at high Reynolds
numbers (del Alamo & Jiménez 2003; Tomkins & Adrian 2003; Hutchins & Marusic 2007;
Balakumar & Adrian 2007). Furthermore, regardless of the total number of grid points
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FIGURE 18. Probability distribution of small scale strain state as measured according to the

parameter, s* = % (Lund & Rogers 1994) where «, 8 and ~ are the eigenvalues

(a2+82++2)
of the strain rate tensor (small scale). While the LES solution shows preference towards the
axisymmetric extension, the Gabor mode induced small scale strain rate is largely Gaussian.

used, the cell aspect ratios for all the reported WMLES is fixed at 27 X 7 X 1, implying
a smaller grid spacing in the spanwise direction (y) than the streamwise direction ().
Note that these choices of domain length and cell aspect ratio are consistent with the
findings of Lozano-Durdn & Jiménez (2014) and Stevens et al. (2014). The simulations
compared in this section correspond to the following cases:

(i) Coarse scale (low resolution) LES: Computed using 192 x 192 x 64 grid points and
three SGS models: Anisotropic minimum dissipation (AMD) model of Rozema et al.
(2015) using a model constant of 1/7% in 2— and y— directionsf, and +/0.30 for z
direction. These choices for the constants are consistent with those reported in Rozema
et al. (2015) and Bae (2018); while we use a 6th order compact finite difference scheme in
z, the formal order of accuracy is still second order in wall bounded flows due to the cosine-
transform based Poisson solver. Although this region of second order accuracy is highly
localized within the first few near wall cells, the use of Poincare constant corresponding
to second order numerical accuracy is a conservative choice. Our numerical experiments
suggest very low sensitivity to this choice of the constant in z direction. The results
obtained for this simulation case are labelled to as AMD64.

(ii) Coarse scale (low resolution) LES computed using a 384 x 384 x 128 grid and the
AMD subgrid scale model. This second low resolution simulation is used to address some
of the deficiencies seen in Gabor mode enrichment of the 192 x 192 x 64 simulations. The
results obtained for this simulation case are labelled to as AMD128.

(iii) Fine scale (high resolution) LES: Computed using 1536 x 1536 x 512 grid points
with the anisotropic minimum dissipation SGS model. This case will serve as a benchmark
for comparison with Gabor mode enriched LES and will be denoted as AMD512.

(iv) Enriched LES: Each quasi-homogenenous region (2 x 2 x 2 grid cells) of the coarse
LES is enriched with 512 Gabor modes. Induced flow fields are evaluated on a 1536 X
1536 x 512 grid.

In addition to the simulations listed above we further include results obtained by

t Note that due to 2/3rd dealising, the filter width is taken as Ay = (3/2)Agria
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FIGURE 19. Mean profile using AMD model for grid sizes increasing from 192 x 192 x 64
through 1536 x 1536 x 512.

enriching the filtered AMD512 fields; this case will be labelled as IDEAL64. These fields
are obtained by explicitly filtering the high resolution LES data to the coarse resolution
LES grids using sharp spectral filters in « and y, and the Pade-Least squares filter
(Spyropoulos & Blaisdell 1996) in the wall-normal, z direction.

Since we are considering the infinite Reynolds number limit, the large eddy simulations
discussed here replace the no-slip boundary condition at z = 0 by a shear stress boundary
condition where the shear stress is computed using a simple equilibrium wall model of
the form (Yang et al. 2017):

2 2
KU Umatch KU Umatch
n ] u (5.1)

Tz = D Ty =
! |:1n(zmatch/20) | v [ln(zmatch/ZO) u|

where, x is the von Karman constant, @match and vUmaten are the instantaneous
z and y velocity components at a fixed wall-normal location zpaten, and u =

< u? + Ur2natch>' As highlighted by Kawai & Larsson (2012), the choice of zpyatch

match

largely influences the so-called log-layer mismatch (LLM). While certain adjustments
in the near wall region are commonly used by the atmospheric science community
for Ekman layers (Brasseur & Wei 2010; Sullivan & Patton 2011), Bou-Zeid et al.
(2005) and Yang et al. (2017)have proposed to use either spatial or temporal filtering
of velocity fields (umatch and vmatch), and shown that when zpaten = A./2 (first off
the wall grid point), the filtering operation largely eliminated the log-layer mismatch
in this infinite Reynolds number half channel problem. Results from our numerical
experiments regarding the choice of zyatch are reported in Ghate (2018). All subsequent
results presented in this section use first off-the-wall grid point without any spatial and
temporal filtering to compute the wall shear stress.

Figures 19 and 20 show mean velocity and Reynolds stresses for the coarse LES
simulations at varying resolutions. While the mean velocity profiles clearly demonstrate
lack of any log-layer mismatch at all resolutions, the streamwise velocity variances near
the walls for coarse grids are larger than the values obtained using the high resolution
simulations, which is contradictory to the notion of filtering. Some physical insight
into these persistent over-predictions was recently proposed by Bae et al. (2018) who
argue that the no-penetration boundary condition implicit in the equilibrium wall model
used in our simulations, results in non-physical splatting of the resolved large scales.
They report up to 90% over prediction of the streamwise variance in their Re, = 2000
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FIGURE 20. Single point second order correlations using the AMD model from grid sizes
increasing from 192 x 192 x 64 through 1536 x 1536 x 512.

simulations using a no-slip boundary condition. While the spanwise and vertical velocity
variances are smaller in the coarse LES than the high resolution LES, we will show later
(using IDEAL64) that these variances are still larger than the expected values at the
192 x 192 x 64 resolution. While these errors are not unexpected (the present results
are entirely consistent with the profiles shown in Porté-Agel et al. (2000) for similar
resolutions), it is clear that the AMD model (also true for the Sigma SGS model)
over-estimates all four pertinent single point correlations at the coarsest resolution,
especially in the near wall region (z < 0.1H). A second striking feature seen in the
variance profiles is the significant under-prediction of the streamwise variance z > 0.25H
by the 64-point simulation. This is related to the underprediction of energy in the
large streamwise coherent structure corresponding to kL. /(27) ~ 2 and kL, /(27) ~
4 wavenumber and our numerical experiments using the Sigma SGS model and the
wall-damped Smagorinsky model showed the same flaw. The grid refinement study
suggests that as the LES Nyquist wavenumbers increase, this spanwise coherent structure
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FIGURE 21. Model inputs for enrichment of the three coarse LES flow fields

becomes more energetic, especially as the coarsest mesh at 192 x 192 x 64 is refined to
384 x 384 x 128. This improvement can be seen in terms of single point correlations
in Figure 20. This energetic large scale structure necessitates the use of such a large
domain size for periodic simulations. The inability of coarse simulations to capture the
correct energy in these large spanwise structures also implies that the coarse simulations
inaccurately predict the integral length scales. While the total cross stress (u/w’ + 757%)
is grid independent (since a constant pressure gradient is used to drive the flow), the
grid invariance of mean profiles using the AMD model, also implies that the total TKE

production rate <u’w’ + 3G > % is correctly predicted in the coarse simulations.

5.2. Gabor mode enrichment of low resolution LES

The three model inputs that need to be specified to initiate the Gabor modes (see
Ghate & Lele (2017) for details) are the following:

(i) Minimum wavenumber, k,,;, associated with the embedded Gabor modes. This
parameter is a purely geometric parameter and depends on the size of quasi-homogeneous
regions defined. Since in the WMLES described above, no grid stretching is used in the
vertical direction, this parameter is simply computed using the coarse LES cell width
(filter width), and does not vary in the wall normal direction. The maximum sampling
wavenumber is simply set to ensure that the induced fields when resolved on a 1536 x
1536 x 512 grid, do not alias.

(ii) Pre-distortion isotropic length scale measure, L;s,. Based on the discussion regard-
ing inadequacy of coarse LES in predicting energy in the streamwise streaks, we use the

following choice: Liso(2) = cr/L%(2)Ly(2) where the constant ¢z, = 1/0.67 to ensure

that in the limit of isotropy, L;s, is the integral length scale of isotropic turbulence. Note
the preference of using spanwise velocity lengthscales over streamwise velocity length
scale in order to reduce the influence of streamwise variance underprediction error in
coarse LES, on the enriched fields. For stably stratified Ekman layer (as in Ghate &
Lele (2017)) the choice of streamwise velocity length scales was satisfactory because
the stable stratification prevented the integral length scales from growing larger than
boundary layer height. Our experience suggests that for a larger value of L;s, (if u length
scales are used), implying larger (kuinLiso), @ larger shearing constant ¢, is needed in
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FIGURE 22. Single point correlations as a function of height for the AMD128 case enriched using
Gabor modes.

order to obtain the correct Reynolds stresses, thereby creating subfilter scales that are
overly anisotropic.

(iii) The shearing constant ¢, which is computed by minimizing the least squares error
in the Reynolds stress, < u/w’ > (see Appendix B in Ghate & Lele (2017)) which for this
problem, is a known analytical function of z.

Figure 21 shows the two inputs used for Gabor mode enrichment of the coarse
simulation data. While all three coarse representations largely agree in the prediction
of the length scale measure, L;,,, it is clear that the shearing constant seen in AMD64
and AMD128 (to a lesser extent) is lower that what is expected from ideal filtering. This
lower value of the shearing parameter results in enrichment of subfilter scales that are
more isotropic than those expected by the implied grid filtering in coarser simulations
for z/H < 0.2 as is discussed in a subsequent section.

Figure 22 and 23 show the single-point and two-point (1D spectra) correlations for
the Gabor mode enriched AMD128 case. The single point correlations suggest that for
z/H > 0.3 the Gabor modes accurately represent the second order statistics of the
subfilter scale turbulence. This is supported by the various 1D spectra shown for all three
components in Figure 22a at z/H = 0.4 where a consistent wavenumber extrapolation
of each spectrum is observed. For z/H < 0.2, while the single point correlations show
overprediction of variances, we note that the 1D spectra suggest that this overprediction
is primarily due to overprediction of the energy in low (resolved-scale) wavenumbers
for the coarse simulation (see Figure 22b). This is especially evident in the wall-normal
velocity which appears to suffer from large aliasing at the z = 0.05H location. The
turbulent kinetic energy profiles for both AMD128 and AMD64 are shown in Figure 24.
The figure shows that enrichment of both AMD128 and AMD64 recovers the total resolved
turbulent kinetic energy of the reference simulation to a reasonable degree of accuracy at



Gabor mode enrichment

10" 10!

102 )

=

2

wr
10°
10

10° 10° 10? 10° 10' 10 10° 10 10°
k k k
X X X

10° 10' 10%

10°

K, 3
y y

(b) z = 0.05H
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FIGURE 25. Single point correlations as a function of height for the AMD64 case enriched using
Gabor modes.

virtually all wall-normal locations. Furthermore, while some discrepancies exist between
AMD64 and IDEAL64 for z/H < 0.15, it is promising to note that the post-enrichment
total TKE in the a-posteriori setting (AMD SGS model) is similar to the TKE in the
a-priori setting (idealized filtering of reference simulation).

We now consider the single point correlations for the AMD64 case in Figure 25. The three
variance profiles suggest that although the total subfilter TKE is reasonably accurate,
the contributions of each of the three components has a qualitative bias at all wall
normal distances; the streamwise variance is underpredicted at the expense of substantial
overprediction in the spanwise and wall-normal variances. In order to further explore this
deficiency, we now consider the 1D spectra for the three velocity components in Figure
26. All size 1D spectra considered at the two wall normal locations indicate that virtually
all the error in single point correlations is a consequence of errors in the low-wavenumber
region which is expected to be resolved by the coarse grid LES. We will refer to this flaw
observed in the 64-point simulations as overenrichment and the following subsection
discusses this aspect of a-posteriori enrichment. Enrichment of IDEAL64 case (shown
in Figure 27 and Figure 28) is used to explain this overenrichment in the a-posteriori
(AMD64) case.

5.3. Ower-enrichment in coarse LES

The overall quality of the Gabor model enrichment for AMD64 can be broadly summa-
rized using the following four observations.

(i) Significant underprediction of streamwise variances through the bulk of the bound-
ary layer, particularly above z/H > 0.1. The 1D spectra of u at z = 0.4H (see Figure
26b) confirm that this is entirely due to missing energy in the k,L./(27) =~ 2 and
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FIGURE 26. Velocity power spectra for Gabor mode enriched AMD64 LES

kyL,/(2m) ~ 4 coherent streak that was briefly discussed earlier. Since the present
application is a one-way-coupled enrichment, Gabor mode enrichment simply cannot
alleviate this deficiency of coarse simulations because it pertains to large wavelength
meandering motions. For the IDEAL64 case, the filtering procedure does not remove
any energy from this large streamwise coherent structure and as a result Gabor mode
enrichment performs remarkably well as shown in Figures 27 and 28. In other words, the
profiles of the resolved Reynolds stress, < u/w’ > for AMD64 suggest that for z > 0.2H, the
subfilter scales are primarily isotropic. However, the profiles for the streamwise velocity
variances are inconsistent with this characterization of subfilter scales primarily due to
the underprediction of the single-point correlation < w’u’ > associated with the large
coherent streak.
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FIGURE 27. Single point correlations as a function of height for the IDEAL64 case enriched
using Gabor modes.

(ii) The low dissipation property of AMD model results in substantially more energy
at barely resolved scales near its Nyquist limit, which is suggestive of aliasing. This is
particularly evident in the k, spectrum of spanwise and wall normal velocity fluctuations,
and also results in substantial overprediction of the Reynolds stress < u/w’ >. This results
in an overenrichment of the wall-normal velocity component when the variance of the
enriched field is compared with the higher resolution simulation. This is in contrast to our
observations for simulations done using the wall-damped Smagorinsky model (discussed
in Ghate (2018)) which is overly dissipative near the wall and consequently underpredicts
the Reynolds stress, which results in Gabor mode enrichment of highly anisotropic small
scales (seen in terms of large ¢, value) near the wall.

(iii) The turbulent kinetic energy spectra at z/H = 0.05 and z/H = 0.40 are shown in
Figure 29. Following Figure 29, we note that the gradual decay in energy for values around
the cutoff wavenumber (Nyquist wavenumber for coarse simulations), is due to anisotropy
of the grid resolution (dz = 2dy) and not due to excessively dissipative numerics or SGS
modeling. At the z/H = 0.05 plane, the LES512 shows a prominent k~! energy scaling
at low wavenumbers suggestive of production scales. However, it is apparent that the
transition from k' to k~°/% is not quite well resolved, which suggests that perhaps
the AMD512 LES used for reference is not sufficiently well resolved at z/H = 0.05. The
primary purpose of showing the TKE spectrum along with the 1D velocity spectra is to
emphasize that if we evaluate solution quality using the TKE and its scale distribution,
Gabor mode enrichment seems to work rather well. This is consistent with the basic
philosophy of eddy viscosity type SGS modeling which attempts to correctly model the
TKE cascade, but is not necessarily designed for accuracy in representing the spectral
anisotropy. These results make a strong case for the future work towards improving SGS
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FI1GURE 28. Velocity power spectra for Gabor mode enriched IDEAL64 LES

modeling to improve representation of anisotropic effects in very coarse simulations of
wall bounded turbulence.

(iv) Figure 20a suggests that AMD128 does not suffer from severe underprediction of
energy in the large spanwise coherent structure, like the 192 x 192 x 64 simulations.
However, Figure 20d indicates that the increase in grid points does not remove the over-
prediction in Reynolds stress (< u'w’ >) near the wall; in fact, the resolved Reynolds
stress also increases as the grid is refined from AMD64 to AMD128. It is clear that while
overshoots in spanwise and vertical velocity variances still persist (over prediction of
resolved Reynolds stress by AMD128 requires enriched scales to be more isotropic than
true subfilter scales), the underprediction of single point correlations for z > 0.2H is
not present anymore. Further work is needed to study the failure of SGS models at
predicting the correct resolved near wall anisotropy in the asymptotic Reynolds number
limit (Re — o0).

Again, it is important to emphasize that while the single point correlation profiles in
Figures 25 suggest limited success in Gabor mode enrichment of the flow studied in this
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section, the analysis using 1D spectra suggests otherwise. Even though the two-point
statistics of the large scales predicted using the three SGS models have some deficiencies,
the enrichment procedure does embed small scales that are fairly representative of the
true subfilter scales. Much of this is attributed to informed choice of using an input length
scale (L;s,) measure computed using spanwise velocity fluctuations instead of streamwise
fluctuations.

6. Conclusions

The turbulence enrichment approach using spatially and spectrally localized Gabor
modes introduced by Ghate & Lele (2017) is significantly developed and extended in
this work. We formally define the turbulence enrichment problem to be the one where
subfilter scales are superposed on large scales resolved on coarse-grid LES where the
subfilter-scales exhibit the following properties: a) consistent extrapolation of second
order spectra and two-point spatial correlations for spatially inhomogeneous turbulence,
b) representation of spatially localized and intermittent inter-scale energy transfer from
large to small scales, and c¢) accurate characterization of physics responsible for temporal
decorrelation of the enriched scales. Under an assumption of local quasi-homogeneity of
near-filter scales, Gabor wavepackets/modes provide an optimal basis for representation
of solenoidal velocity scales that can represent a physically consistent and realizable
structural anisotropy. They enable significant compression in degrees of freedom needed
for representation of subfilter-scale turbulence. Furthermore, by using WKB arguments,
the temporal evolution of these small scales is expressed via simple ordinary differential
equations for each Gabor mode. The rendering algorithm (see Appendix B) shows that
the velocity fields can be computed in physical space on finer numerical grids using an
efficient Non-Uniform Fast Fourier Transform (NUFFT). Rendering can either be done
at point locations or a subset of the physical domain without having to evaluate the
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fields in the entire domain at each simulation time step. This computational efficiency of
the algorithm can facilitate its use in applications beyond LES enrichment such as inflow
generation as was done recently in Ghate et al. (2020).

We investigate the accuracy of the enrichment algorithm for two LES problems in
an a-posteriori setting. In the first problem forced homogeneous isotropic turbulence
(HIT) is studied and the analysis shows that the enrichment not only provides an
accurate scale-space extrapolation of the coarse LES, but also captures the inter-scale
transfer of energy very accurately. The small scales represented by Gabor modes can
be interpreted as velocities induced by a set of Burgers-Townsend vortices dispersed
within quasi-homogeneous regions with their orientations defined by the gradients of
the larger scales. The second problem considers rough wall boundary layer at large
Reynolds number in a half-channel configuration. Two deficiencies relating to aliasing
of vertical velocity (near walls) and under-prediction of energy in large streamwise
structures by coarse grid LES using conventional SGS models are identified. Despite
these deficiencies of the original LES model, the enrichment leads to promising results,
especially when enrichment is characterized by the increase in turbulent kinetic energy.
We argue that accurate differentiation of physical anisotropy associated by Reynolds
stress transport and the geometric anisotropy associated with the grid-filtering is needed
by the enrichment algorithm in order to provide correct variances for the enriched
fields. Future development of this enrichment approach will focus on applications to
non-equilibrium flows, analysis of subfilter-scale enriched pressure and analysis of higher
order moments implied in the enrichment.

Acknowledgements

ASG was funded by Tomkat Center for Sustainable Energy at Stanford University. SKL
acknowledges partial support from NSF-CBET-1803378. All simulations were performed
on Stampede2 supercomputer under the XSEDE project ATM170028. The authors would
also like to thank the anonymous referees for their thoughtful comments and contribution
to this work.

Declaration of Interests

The authors report no conflict of interest.

Appendix A: Choice of scale separation parameter, ¢ and error in
divergence

One of the consequences of velocity field evaluation using Equation 3.8, is that the
synthesized velocity field is not exactly divergence free since the gradient of the cosine
support function is not orthogonal to the induced velocity vector. It is easy to see
that the true divergence is O(g), which provides an interesting opportunity to study
the impact of the scale separation parameter, . However, note that the velocity field
synthesized can in fact be projected onto an exact divergence free basis at negligible extra
computational cost, since we can simply project each of the contributions in Equation
3.8 individually/locally using Fast Fourier Transforms in the support region (regardless
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of the global boundary conditions), thereby replacing Equation 3.8 with:

Zu z,z\)) ; ul(z, mé))—ifft{<5ij[§illgn)-fft{ (z, mé,“)}}
(1)

where the upper case K; is used to denote equispaced wavenumbers corresponding
to the support of the quasi-homogeneous regiont. Figures 30 and 31 show the impact
of this exact divergence projection on the induced field, for an example, synthesis of
isotropic turbulence for two choices of the scale separation parameter, ¢, taken as 0.25
and 0.0625. The ¢ = 0.25 case corresponds to enrichment used throughout this paper,
while the ¢ = 0.0625 is generated by setting (Aguz, Agry, Agu:) = (844,84,,8A,).
In practice this is interpreted as the resolution of LES increased by a factor of 4 in each
direction. These results show that a reduction of € by a factor of 4 results in reduction in
divergence error. Furthermore, the loss in KE due to production is essentially negligible.
However, recall that this reduction in € comes at a loss of spatial localization since the
support function is four times as wide as the theoretical minimum. The comparison of
the energy spectra further shows that the impact of this exact projection (Equation 1) is
rather negligible in terms of the overall energy even for the ¢ = 0.25 case. Comparison of
two-point correlations between the two fields also suggests negligible impact of the local
projection. This is an excellent prospect since it suggests that we can avoid the additional
projection and thereby evaluate the fields directly at the required location as opposed
to evaluating them on a Cartesian mesh, x. For example, for an application involving
arbitrary located particles at x, ,the sum in Equation 3.8 can again be computed using
a Type III NUFFT if a direct evaluation is prohibitively expensive.

1 In practice one needs to deal with the odd-ball wavenumber before using the projection in
Equation 1
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Appendix B: Fast rendering algorithm using Non-uniform FFTs

The overall algorithm discussed in this appendix relies on the Gabor mode description
shown in Figure 4. This illustration leads to the following three key observations: (a) The
Gabor modes within each Quasi-homogeneous region affect the flow within the Quasi-
homogeneous region, and a portion of the immediately adjacent Quasi-homogeneous
regions, (b) The velocity field at each location in physical space is a superposition of
contributions from 8 Quasi-homogeneous regions in 3D space, and (¢) The Gabor modes
advect in time similar to passive tracers, or non-inertial particles. This means at two
different times, the set of modes in a specific QH region changes with time.

Hybrid MPI+X rendering

Since most modern computational many-core architectures strongly favor, an MPI+X
paradigm, we first identify the tasks necessary in an MPI formulation (Single Program,
Multiple Data).

(i) Mode transfer - Latency bound, can be done using non-blocking, point-to-point
communicators.

(ii) Gabor Transform - Bandwidth bound, can be done using non-blocking, point-to-
point communicators.

Further note that the implementation of the purely MPI code is trivial and requires
the use of halo-region exchanges (accomplished here using non-blocking point-to-point
communicators) and particle/mode exchanges also requiring non-blocking point to point
communicators. However, the halo-cell exchanges (physical space induced velocities) are
a substantial bottle neck since each overlap in Region-of-influence consists of around 8-
16 points (along each direction). This communication cost scales linearly with surface
area of processor decompositions. Therefore, there appears to be a substantial advantage
of reducing the total number of MPI processes spawned during execution, and hence
the choice to pursue a hybrid MPI + OpenMP implementation was made. The shared
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memory aspect of the parallelization (OpenMP) requires substantial modifications to a
serial implementation of the enrichment algorithm due to the multitude of race conditions
that occur in both the Gabor transform, and the particle evolutions phases. The focus
of the rest of this appendix hence will be limited to this shared memory portion of this
implementation. The distributed memory aspects are identical to solutions to PDEs using
finite difference schemes; i.e. it requires neighbor halo-exchanges for the Eulerian data, as
well as neighbor point-to-point communications for any Gabor mode exchanges. All MPI
calls are made by a single thread (OMP SINGLE directive is used to identify the thread).

The overall enrichment algorithm

The overall shared memory algorithm can be decomposed into the following set of
steps.

(i) Initialization/seeding of random modes in each QH region. This is done
by simply distributing the QH regions among threads for the portion of the domain
represented by each MPI process. Thread and process independent seeds are used to
ensure reproducibility of the stochastic initialization.

(ii) Rendering (Transform from Gabor modes to physical space fields) This is per-
formed by modifying the Greengard & Lee (2004) Non-Uniform Fast Fourier Transform
(NUFFT) algorithm.

(iii) Particle evolution. Since the particles within each QH region evolve due to the
large scale gradients within that QH region, this portion of the particle evolution is trivial
to perform using multiple threads. However, the particles also advect to regions outside
their original QH regions, and hence require to be resorted/histrogramming. While this
process can be performed using multiple threads special attention is needed to avoid the
ensuing race conditions.

Gabor Transform/Rendering using OpenMP

The Gabor tranform from a set of m modes to the uniform mesh in physical space can
be expressed as two successive steps

(i) Gaussian gridding (convolution): This step is operationally O(m)

(ii) 3D Fast Fourier Transform: This step is operationally O(N3log,(N)) where N is
an upsampled mesh depending on the desired precision. For present applications, 10~°
precision requires twice-upsampling and as such, this FFT operation is approximately 8
times as expensive as a regular FFT. That is, the FFT portion of an NUFFT to N grid
points has an operational complexity of O(8N3logy(N)).

Since each grid point is influenced by Gabor modes in 8 QH regions, the NUFFT cannot
be performed simultaneously in adjacent QH regions due to the implied race conditions.
To overcome this limitation (and to speed up the NUFFT), a further decomposition is
made in wavespace k for each QH region (see Figure 32). Since the contribution due
to large k values requires a high resolution mesh, we cannot compute and store the
field generated by each QH region in a temporary buffer (1 buffer for each QH region
would require memory 8 times larger than the problem size since window support is a
factor of 2 larger than QH region in each direction). However, we again leverage the
logarithmic sampling in k—space as shown in Figure 32. The calculation of the NUFFT
is now performed in three stages:

(i) The NUFFT from the low k& modes is evaluated on a coarse mesh spanning the
entire Region of influence (Rol or support of the window), this operation typically uses
about 85% of the modes within the QH region. This data can be represented on a
coarser mesh (see figure 33a/b, bottom pane), so it is stored in memory for each QH
region separately. This operation uses a single NUFFT call.
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FIGURE 32. Prep stage: The modes in each QH region are decomposed into large shells and small
shells based on a cut off wavenumber, kabs. In our application this decomposition ratio results in
approximately 7 : 1 in number of modes in each category. If m modes are present, this operation
does NOT require a sorting operation; instead it is performed using m conditional statements
and copies and as such the complexity is O(m) which is lower than that of quicksort.

(ii) The Rol surrounding a QH region is decomposed into 4 x 4 x 4 subdomains (QH
region into 2 X 2 X 2 octants), and the tranform from large k to each one of these octants
is computed recursively. There are two algorithms implemented for this transform: a)
Naive NUFFT (Figure B.3a) and b) Partial NUFFT (Figure B.3b). Depending on the
application and the CPU architecture, the Partial NUFFT algorithm can be 4-5 times
faster than the Naive algorithm due to substantially higher arithmetic intensity and the
use of Level 2 BLAS call (DGEMV/SGEMV). The data from the coarse grid (step 1), low
k mode is oversampled within each octant sequentially. The resulting race conditions
between threads are prevented by using 4 x 4 x 4 OpenMP barrier calls. Finally note
that at this stage, the code does not perform any interpolation from step 1 data; instead
it simply stores the higher resolution grid data obtained at the end of the NUFFT since
the NUFFT call anyway uses a twice upsampled grid for the FFT. As a consequence it
requires at least 8 times more memory than the number of degrees of freedoms; future
implementations can address this by performing explicit interpolation using cubic splines.

Finally, note that for the compression ratios typically seen in applications (> 85) the
cost is almost entirely given by the FFT stage of the NUFFT performed in step 2. Cost
of Step 1 is approximately a factor of 6-8 smaller than that of step 2. Now since the
NUFFT in step 2 is performed on a twice over-sampled mesh, our numerical experiments
show that the cost of NUFFT using m modes on N grid points is approximately
10 times larger than the cost of computing a single 3D FFT on N grid points
for m < N.

Computational cost of the overall algorithm

Finally, let’s return to the HIT enrichment example to illustrate the overall operational
count of the enrichment algorithm. We will consider the HIT enrichment example studied
in Section 5.1.

- LES problem size, Nygs = 323

- Number of quasi-homogeneous regions, Ngyg = 163.

- Number of Gabor modes per QH region, m = 512
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Larga M. Small m

Small N, Langs m

" —_—
b Single NUFFT, store physical space data

in memory; upsampling via zero-padding

(a) Naive NUFFT algorithm

Larga N, Small m

Multiple direct transforms
(tall-skinny matrix, vector products)

Small N, Lasge m

'_ —_—
fu Single NUFFT, store physical space data

in memory; upsampling via zero-padding

(b) Partial NUFFT algorithm

F1GURE 33. Compute stage: Each subset of Gabor modes is transformed separately on a different
set of physical grids. This is done in order to reduce race conditions in the OpenMP portion of
the calculations, and also for improved efficiency (in case of the partial NUFFT algorithm).

- Number of grid points to represent the enriched fields, N = 2563

- Compression in DOF: (1 — N“”%) x 100 = 15% (can do better by reducing m or
increasing V).

- Number of grid points within Rol for each QH region, Ny,1 = 231\% = 323 since Rol
is twice as wide as QH region.
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- Total number of NUFFTs needed: Ngy = 163

- Cost per NUFFT:
o Naive NUFFT algorithm: Cost per transform is O(ANgo1 logQ(Néo/I?’)), where A
is the ratio of cost of FFT to cost of NUFFT and is approximately 10 for the present
application where m/Ng,1 = 0.0156. Total cost of transforming each field from Gabor

modes to the entire domain: (ANgg) x O (NRoI logz(Né!I‘g)). This corresponds to
ANgy many Ngor sized 3D FFTs.

o Partial NUFFT algorithm: Cost per transform is O(%NRM log, (NRlo/I?’) +mNgo1)
where the first term is the NUFFT for coarse grid and the second term is a direct
transform for the fine grid. Total cost of transforming each field from Gabor modes to
the entire domain: (%NQH) x O (NRoI(logQ(Néo/Ig) + 8Tm)) Given \/8 =~ 1 this cost
can be interpreted primarily as Ngg many Ngor sized 3D FFTs, followed by Ngor many
m X Ngg sized matrix vector products.

Operationally, A depends on the choice of the library used for FFT portion of the
NUFFT, and our numerical experiments suggest A =~ 11 for FFTW and A ~ 9 for fftpack.
Using the naive NUFFT algorithm, the cost of a serial calculation of the Gabor mode
velocities on a 2563 mesh is approximately equivalent to the cost of performing 35 3D
FFTs of size 2563 using the FFTW library with AVX2 vectorization. Using the partial
NUFFT algorithm, the cost of a serial calculation of the Gabor mode velocities on a
2562 mesh is approximately equivalent to the cost of performing 8 3D FFTs of size 256>
using the FFTW library with AVX2 vectorization.

Note that this calculation does not indicate the total cost of simulation using Gabor
modes. The bulk of the cost reduction using Gabor modes lies in the temporal evolution
description via a set of ODEs and as such this transform needs to be performed only
when the fields need to be evaluated in physical space. Furthermore, the algorithm allows
for the transform to be performed locally; only physical regions of the domain that need
finer scale information need to use the transform.

In this worst case scenario, where the subfilter scales are needed in the entire domain
at each small scale time step, this factor of 35 for the cost of a single transform from
Gabor modes to physical space is still substantially smaller than evaluation of the full
equations using conventional methods where just an iterative Poisson solver typically
requires O(1000N) operations per time step (assuming RK substeps) for incompressible
flows evaluations.

Appendix C: Temporal evolution equation for a Gabor mode

In order to derive the Gabor mode evolution equation we make the following arguments
regarding the superfilter fields. Given a quasi-homogeneous region, * € D(x() and a
corresponding time scale, 7

e The superfilter field, U;(z;) is expanded in space as

Ul(l‘z) = Ulo + x5 8jUi|0 , T € D(CL‘())
e Galilean transform to the sweeping frame:

xi:xi—UiOt , t€[0,7]

Consider the evolution of subfilter scales (Eq. 2.8) in the sweeping frame,

1
Oyu; + (ImamUj)ajui = —UjajUZ‘ — 3,-;0 + 6jhij + ﬂﬁjﬁjui + 8j7ij (1)
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where h;; is the stress associated with non-local (quadratic) interactions, h;; = —(u;u; +
Ujuj + wUJ ). Next, by assuming Gabor modes of the form for an arbitrary function,

flx,t):
P, t) = 3 Flao,t,2)eik02) (2)

where the f (o, t) is the complex amplitude (zg is a coordinate fixed with the large
scales; dag/dt = U(xp)) with the spatial windowing corresponding to a scale separation
ratio, €. Thus, for an arbitrary function, we have

0@ t) =Y (#ks(0)f(o,1,2)) 9 1 O(e)

We will use this identity to substitute the modes (Equation 2) into the governing equation
for small scales (Equation 1). However, we will first derive the eikonal equation which
describes the temporal evolution of wavenumbers, k(t). Consider an arbitrary (passive)
scalar field, ¢(x,t) advected by the large scale field, U(x,t). That is, the scalar field
o(x, t) satisfies

D
F(fzf)t¢+Uj6j¢:O (3)
Now, assuming a modal representation of the field at time, ¢ = 0 of the form:
(@, t =0) = p(xo,e)e™™ (4)

the Eikonal equation can be obtained by postulating that the temporal evolution of the
field, ¢(x,t) can be obtained by a constant (in time) amplitude ¢ (in the frame of x)
and time dependent wavenumber, k(t). Simple substitution of Equation 4 into Equation
3 and using the properties: U;(z,t) = Us(x = 0) 4+ 9;U;(z; — 29) (quasi-homogeneity)
and the definition dag/dt = U(xg) we get,

D¢ .- dk; oU,,
== = k") =0 5
Dt~ Ol@0)e; ( it o, (5)
Due to the arbitrary nature of ¢, we now have the Eikonal equation for k(t):
Oikj + knOjUp, =0 (6)

Using this evolution equation for the wavenumbers, we can show that the Gabor mode
representation of the left hand sides of Equation 1 is given as:

Oru; + (O Uj)05u; = e* D90 (xg, t,€) + Ole) (7)

Now, consider the straining terms that appear on the right hand side of Equation 1.
The Gabor mode representation of the straining terms (using Quasi-homogeneneity
assumptions) is simply:

U??]\le = ’llj((l?o,t,é‘)ajUi(wo,t) (8)
Substituting these definitions in Equation 1, we get
A 1

Opll; = —ﬁjajUi —ik;p +ikjhi; + §8j8jﬁi + ik 75 (9)

The pressure term can be eliminated by multiplying Equation 9 by the projection tensor,

(5im — kkll‘,zl") and noting that:

kikm PPN . ~ . N
Oim — ——— (Zkh‘p) = itkmD — ikmp =0 ( 10)
kik,
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Upon projection (and using the property ki, = O(¢)), the left hand side of Equation
9 simplifies to

~ klkm ~ ~ ﬁz ~ kmﬂi

Oty — Watui = Oyl — <klkl5t(kikm)> +O(e) = Opitm — ( Kok 3t(ki)> +O(e)
(11)

Now using the Eikonal equation 6, we get:

kik kmk
Oim — = | Optlti = Oyl — | == | (10 12
( Ty ) Opli; = Oyt ( Tk ) (2;0;Up) + O(e) (12)
Similarly, the straining term projects as
kikm, ~ ~ kmkz ~

<5im — ook > (7UjajUi) = *Ujaij + <klk’l> (Ujale) (13)

Substituting Equations 12 and 13 into Equation 9, we get

N N ko k;
Opllyy, = —uk(‘?kUj (5mj -2 klkl]

. 1
) + kb + g 0i05tm + ikjtm; + O(e) (14)

il (5. kikm)j PR O 7 S
where h;; = <5zm Tk ) himj and 7;5 = (6”" kiky )TmJ'
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