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Abstract

Gene regulatory networks record relationships between tran-
scription factors and the genes whose expression they control.
Recent computational methods have been developed to pre-
dict these regulatory interactions based on gene expression
data generated by single-cell sequencing technologies. In this
review, we summarize these gene regulatory network infer-
ence algorithms, methods for evaluating predicted regulatory
interactions, and approaches to simulate scRNA-seq data. We
conclude by discussing developing trends in single-cell
multiomics that we expect to influence future research on
network inference.
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Introduction

Transcription factors (TFs) regulate cellular identity as
cells differentiate into specialized types. TFs also con-
trol changes in gene expression in response to environ-
mental signals. A gene regulatory network (GRN)
identifies and records these mechanisms, thus enabling
further research into tissue composition and function in
the context of health and disease [1]. Specifically, a
GRN models the regulatory effects of TFs on the
expression of target genes (Fig. 1(a)). Each node in a
GRN represents a TF or a gene and each edge corre-
sponds to a regulatory relationship between a TF and a

target gene; the edge is directed from the TF to the
target (Fig. 1(b)). An edge may also have a sign denoting
whether it is an activating or an inhibiting regulatory
interaction.

GRNs can be constructed by carefully reviewing the
published literature, which can be a time-consuming
and labor intensive process. This observation has
inspired the development of computational methods
that can automatically infer GRNs, especially from
transcriptional measurements. Because GRNs represent
regulation of transcription, several of these techniques
have used DNA microarray and next-generation RNA-
sequencing (RNA-seq) data [2]. These types of RNA-
seq data sets average measurements of gene expression
over a heterogeneous population of cell types, obscuring
biological signals in the gene expression profiles of in-
dividual cells. The advent of single-cell RNA-
sequencing (scRNA-seq) [3] has dramatically changed
this landscape by enabling the characterization of gene
expression in individual cells without the need to purify
each cell type. However, single-cell transcriptomics data
pose unique challenges for computational analysis in
general, and GRN inference in particular, such as cell-
to-cell stochastic variation in gene expression, changes
in gene expression resulting from different stages of the
cell cycle, and high sparsity due to insufficient sensi-
tivity in the sequencing of transcripts in individual cells
for genes with low expression. In spite of these technical
difficulties, the increasing availability of scRNA-seq data
sets has inspired the development of a wide variety of
new algorithms to analyze these data sets, including
methods for GRN inference. This review focuses on
recent developments in GRN inference algorithms, on
methods for evaluating them, and on strategies for
simulating scRNA-seq data sets. It also discusses
continuing advances in single-cell experimental
methods that promise to enable research into the next
generation of network inference in single-cell biology.

GRN inference from single-cell RNA-seq
data

There are several approaches that have been applied to
the problem of GRN inference based on scRNA-seq
data. The input to each algorithm includes a matrix
quantifying the level of expression for each gene across a
number of individual cells (Fig. 1(c)). The output of a
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GRN inference from single-cell RNA-seq data. (a) A TF (yellow) binds to DNA sequences in the promoter region of a target gene (blue) and has an
activating or inhibiting regulatory effect on its transcription. (b) A GRN in which each node represents a TF (yellow) or a gene (blue), and each edge
represents a regulatory relationship between a TF and a target gene. (c) Gene expression data sets generated by scRNA-seq contain levels of expression
of each gene in each cell. GRN inference algorithms predict regulatory interactions based on patterns in the gene expression profiles using methods such
as random forests, linear regression, and ODEs. GRN, gene regulatory network; TF, transcription factors; ODEs, ordinary differential equations.

GRN inference algorithm is a network of predicted TF—
gene relationships (Fig. 1(b)). Each edge may have a
weight representing a level of confidence in the corre-
sponding prediction.

In the rest of this section, we summarize GRN inference
techniques and refer the reader to other reviews for
more detailed information [4]. A significant develop-
ment that has inspired renewed interest in GRN infer-
ence using scRNA-seq data is the concept of
pseudotime, which often differentiates these algorithms
from earlier implementations based on bulk tran-
scriptomic data. Cells in a sample may be in various
states and transitioning between these states. Hence, it
is possible to place cells in a pseudotemporal ordering
based on differences in their gene expression patterns
[5]. GRN inference methods developed specifically for
scRNA-seq data are able to use this ordering as time-
series data to inform their prediction of regulatory
interactions.

Correlation

Pearson’s correlation, a well-established statistic for
calculating the association between two variables, has
been applied to measure the coexpression of TFs and
target genes in both RNA-seq and scRNA-seq data sets.
Being symmetric in its arguments, this correlation does
not predict the directionality of the regulatory interac-
tion. It may identify associations between pairs of genes
that do not necessarily have a direct regulatory rela-
tionship. Methods such as ppcor [6] account for the
influence of other genes by computing semi-partial
correlations. LEAP [7], an algorithm developed specif-
ically for analyzing single-cell data, calculates the
maximum Pearson’s correlation between each pair of
genes over windows in the pseudotime ordering. Since

this type of correlation is not symmetric, LEAP is
capable of predicting directed regulatory networks.

Mutual information

Information theoretic approaches use the mutual in-
formation, which measures the reduction in entropy for
one variable (e.g., the scRNA-seq measurements for one
gene) given the value of another variable (e.g., the
measurements for another gene). To reduce false posi-
tives resulting from indirect relationships between two
genes, methods such as PIDC [8] use partial informa-
tion decomposition to calculate the unique contribution
for a pair of genes that cannot be explained by the
expression of a third gene. Because this relationship is
symmetric, the predicted edges are undirected. The
Scribe [9] algorithm uses pseudotime to calculate
conditioned restricted directed information. This
quantity measures the mutual information between a
TF’s past level of expression and the current level of a
target gene’s expression, conditioned on the target’s
expression earlier in the pseudotemporal ordering.
Because the mutual information between past and cur-
rent expression may not be symmetric for a TF and
target gene, Scribe can infer directed edges.

Regression

In principle, the expression level of a target gene can be
predicted by the levels of its TFs. Under this assump-
tion, another approach for GRN inference models the
expression of each gene as a function of the level of
expression of other genes and uses regression-based
methods to solve the resulting system of equations.
GENIE3 [10], a notable GRN inference algorithm
developed for bulk RNA-seq measurements that has
also been applied to scRNA-seq data, uses a random
forest method based on an ensemble of regression trees.
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The weight of an edge from a TF to a target gene arises
from the importance of the TF in predicting the target’s
expression, averaged over all regression trees in the
random forest. The GRNBoost2 [11] software improves
the scalability of GENIE3 especially with a view to
processing large single-cell data sets efficiently. The
SINCERITIES [12] algorithm instead solves a regres-
sion model based on the difference between the dis-
tribution of each gene’s expression profiles at
consecutive points in experimental time or pseudotime.

Bayesian networks

Another method for GRN inference models regulatory
interactions between in a Bayesian network. The
GRNVBEM [13] algorithm divides pseudotime into
intervals. It then models the fold change in the
expression of a gene between consecutive intervals as a
linear combination of the expression in the previous
time interval of the gene’s parents in the Bayesian
network. The HBFM [14] method represents gene
coexpression using a sparse hierarchical Bayesian factor
model to reduce the effects of high cell-to-cell vari-
ability and noise in single-cell data sets on the predicted
network.

Boolean networks

While the previously introduced methods predict net-
works describing the regulatory effects of individual
'T'Fs, they do not account for logical rules governing the
combinatorial effect of multiple TFs on the expression
of a target gene. Biological regulatory mechanisms may
involve the activation of a gene only in the presence of
multiple TFs, or alternatively its inhibition by the
expression of another gene irrespective of other factors.
Boolean networks are able to characterize these com-
binations of interactions by representing the active or
inactive state of a gene as a binary variable discretized
using a threshold on gene expression, and combining
these states using AND, OR, and NO'T operations to
explain the expression of other genes. SCNS [15]
computes logical rules explaining the progression of
gene expression from one point in pseudotime to the
next. More recently, the LogicNet [16] algorithm uses
probabilistic continuous logic to build a Boolean
network in which gene expression is modeled as a
continuous, rather than binary, variable between 0 and 1
to construct a GRN with directed and signed edges.

Differential equations

The availability of pseudotemporal information in
single-cell data sets also enables gene expression to be
modeled using ordinary differential equations (ODEs).
Here, the rate of change in the expression of a target
gene with respect to time is a function of the expression
of its TFs. By solving this system of equations, regula-
tory relationships can be identified based on the weight
of each TF in the function describing a gene’s change in
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expression. The SCODE [17] algorithm makes the
simplifying assumption that changes in gene expression
can be defined as a linear combination of reduced di-
mensions to efficiently solve a less complex system of
equations using linear regression. Alternatively, GRISLI
[18] estimates the velocity of each cell, i.e., the rate at
which each gene’s expression changes according to the
dynamical process in each cell. Subsequently, it sim-
plifies the system of equations based on the assumption
the resulting GRN has few regulatory edges relative to
the number of genes, thereby creating a sparse regres-
sion problem. A valuable property of GRISLI is that it
allows cells to follow multiple differentiation trajec-
tories. The dynGENIE3 [19] algorithm applies the
GENIE3 random forest approach to solve a system of
ODE:s in which the change in expression of one gene is
defined as a potentially nonlinear combination of the
expression of other genes.

Another class of approaches is based on the observation
that cell-to-cell variation in gene expression can arise
from the stochastic nature of molecular regulatory in-
teractions. The Piecewise-Deterministic Markov Pro-
cess (PDMP) model formulates the ODE for a gene’s
expression as a function of a stochastic two-state Markov
process indicating whether or not the gene’s transcrip-
tion is activated, instead of directly as a function of the
expression of the regulating TFs [20]. For each gene,
the probability function representing the transitions
between the active and inactive states includes a weight
for each potential regulator. PDMP uses maximum
likelihood estimation to determine these weights and
thereby infer the edges of the GRN. The WASABI
framework implements an alternative maximum likeli-
hood estimation based on the concept that observed
increases or decreases in gene expression should be
preceded by transitions between active and inactive
states in an earlier temporal window [21].

TF binding motifs

Additional regulatory information can also be integrated
with the output of each of the aforementioned methods
to increase confidence in the predicted interactions. For
example, SCENIC [22] uses a database of TF binding
motifs to filter predicted regulatory interactions iden-
tified by GENIE3. It includes only those interactions in
which motifs for the TFare enriched in the target gene’s
promoter region. The more recent pySCENIC [23]
implementation uses parallelization to improve on the
efficiency of SCENIC.

Inference of multiple GRNs

Each of the aforementioned algorithms assume that the
patterns of gene expression in a scRNA-seq data set can
be described by a single GRN. This assumption might
not be valid in the case of disparate experimental con-
ditions, or to represent a variety of cell types in a
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heterogeneous population of single cells in which
different biological pathways may become activated.
There has been some research into the development of
algorithms which simultaneously infer multiple GRNs
from a given data set.

CSN constructs undirected gene association networks
specific to each cell in the scRNA-seq data set [24].
CSN computes probabilities for the observed expression
for each gene occurring in an individual cell based on the
frequency of that gene’s expression in neighboring cells
with similar gene expression. CSN compares the mar-
ginal probability for each pair of genes to their joint
probability in the same cell. It adds an undirected edge
connecting the two genes if the marginal probabilities
are not independent. The probabilities for each pair of
genes are unique for every cell, resulting in the con-
struction of cell-specific networks.

The joint Gaussian copula graphical model (JGCGM)
algorithm clusters cells into subgroups and infers a GRN
for each subgroup, under the assumption that every
GRN can be partitioned into a subgraph specific to the
corresponding group of cells and another subgraph that
is shared across all groups [25]. Based on Gaussian
graphical models, JGCGM constructs an undirected
graph by adding an edge between two genes if the
probabilities of their expression in a normal distribution
are not conditionally independent. JGCGM models the
gene expression for each cell cluster as a separate
Gaussian distribution. It uses maximum likelihood

distribution that maximize the probability of the
observed expression across all cells.

GRN inference from single-cell multiomics
data

Cells have evolved multiple, diverse layers of regulatory
mechanisms, including at the levels of epigenetics,
transcription, translation, and post-translational modifi-
cation (Fig. 2(a)). A natural generalization of a GRN
would include edges representing the activating or
inhibiting effects of combinations of these different
types of regulatory interactions, in addition to the effect
of TFs on the expression of target genes (Fig. 2(b)). The
transcriptional information that is present in scRNA-seq
data is not by itself sufficient to predict regulatory in-
teractions that do not affect transcription. Fortunately,
continuing and rapid innovation in experimental tech-
nology is enabling the generation of other types of omics
data sets with single-cell granularity. These advance-
ments present an opportunity to develop a next gener-
ation of GRN inference algorithms that model
heterogeneous regulatory relationships and provide a
more holistic view of the complex biological networks
governing differences in gene expression and function
between cells and cell types.

Multiomics integration

One strategy that has been applied in this context is the
integration of different types of single-cell multiomics
data sets independently sampled from the same cell

: . d . b " h types or under similar experimental conditions
estimation to determine the parameters for eac (Fig. 2(c)). Many of these methods profile the
Figure 2
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GRN inference from single-cell multiomics data. (a) Multiple layers of regulation occur in each cell in addition to TFs (yellow) controlling the transcription of
target genes (blue). Epigenetic regulation (green) such as chromatin packaging and DNA methylation affects the accessibility of target genes for tran-
scription. Translational regulation (orange) such as mRNA degradation and initiation factors affect the level of protein abundance for the target gene. Post-
translational modifications (red) such as phosphorylation can regulate the function and activity of a target protein through conformational changes. (b) A
generalization of a GRN could additionally include edges representing the activating or inhibiting effects of different types of regulatory interactions
inferred using single-cell multiomics data. (¢) Single-cell sequencing technologies such as scATAC-seq, scRNA-seq, and SCoPE-MS measure omics
data such as chromatin accessibility, gene expression, and protein abundance, respectively. Multiomics integration algorithms project omics data into a
shared lower-dimensional space to enable GRN inference algorithms to identify patterns in the combination of multiple data sets. GRN, gene regulatory

network.
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epigenome in individual cells to assess the accessibility
of genes for transcription, including the identification of
open chromatin regions (scATAC-seq [26]), histone
modifications (scChIP-seq [27] and scChlIC-seq [28]),
and DNA methylation states (scCGl-seq [29] and scBS-
seq [30]). Meanwhile, advances in mass spectrometry
such as SCoPE-MS [31] have been used to quantify the
levels of protein abundance in individual cells.

A major challenge in the integration of these additional
data types for GRN inference is associating corre-
sponding clusters of cells between the separate data sets
to identify patterns of coexpression between genes in
the combined multiomics data. While GRN inference
algorithms for multiomics data are still in their infancy,
the methods we review in the following suggest prom-
ising directions for how these diverse data may be in-
tegrated (Fig. 2(c)).

Canonical correlation analysis

This method seeks to integrate two types of single-cell
omics data sets by embedding them into a shared low-
dimensional space. Canonical correlation analysis
(CCA) can be used to find a linear combination of the
features from each data set that maximizes their corre-
lation. The Seurat software package for gene expression
analysis provides an implementation of CCA [32]. It
identifies pairs of cells between data sets that are
mutual nearest neighbors in the low-dimensional space.
Seurat uses these associations between cells to compute
a transformation of the scATAC-seq data to predict the
gene expression in each cell. The predicted gene
expression matrix is then integrated with other scRNA-
seq data to be used in downstream analysis. In addition
to a similar integration algorithm based on CCA,
MAESTRO [33] provides implementations of quality
control for both scRNA-seq and scATAC-seq data to
filter out unrepresentative cells prior to integration.

Non-negative matrix factorization

Non-negative matrix factorization (NMF) is an alter-
native method that has been applied to multiomics
integration, in which expression matrices are decom-
posed into two lower-dimensional and non-negative
factor matrices. LIGER [34] formulates a NMF problem
in which a low-dimensional factor matrix is shared in the
factorization of multiple data sets. Coupled NMF [35] is
an alternative approach that first uses a regression model
to compute a coupling matrix representing a linear
transformation of the feature matrices between data
sets and then adds a term to the optimization function
to penalize inconsistency between data sets based on
this coupling matrix.

Benchmarking of GRN inference algorithms
Given the wide variety of approaches to GRN inference
that we have discussed, it is challenging to select an
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algorithm that is best suited to a research application
studying GRNs without a standardized assessment of
the performance of available methods. Independently
published benchmarking results indicate that there is
tremendous scope for improvement in the accuracy of
GRN inference methods [36,37]. A framework for
evaluating GRN inference methods can also be a useful
tool by which to iteratively test and verify improvements
to algorithms during development.

Ground-truth networks

The performance of GRN algorithms can be evaluated
along multiple dimensions, including the accuracy of
predicted regulatory relationships, the consistency of an
algorithm’s output across multiple simulations, and the
scalability of the method for processing increasingly
large single-cell data sets. The lack of well-established
and commonly agreed upon ground-truth networks is
by far the biggest challenge to estimating the accuracy of
GRN inference algorithms reliably [37]. Data sets
arising from ChIP-seq experiments are often used to
create ground-truth networks. One strategy is to
manually match ChIP-seq experiments and scRNA-seq
data based on the cell type in which they are collected
[9,37]. A less common approach is to use integrated
databases that span multiple cell types [37]. While
these data sets may not be specific to any cell type, they
are often built by curation of the literature [38] and
measure the reliability of individual experiments [39].
Finally, networks of physical or functional interactions
among proteins may also be used for evaluating the ac-
curacy of GRN inference algorithms [37,40].

Simulation of single-cell data sets

Owing to the challenges inherent in obtaining high-
quality ground-truth data sets to evaluate GRNs infer-
red from experimental scRNA-seq data, it is also useful
to supplement them with simulated inputs using GRNs
based on careful literature curation with known struc-
tures. Alternatively, synthetic networks can be an
effective method for evaluating the performance of
GRN inference algorithms over a wider range of well-
defined network topologies than are available or can be
efficiently obtained from literature curation (Fig. 3(a)).
The BEELINE [37] benchmarking framework includes
a collection of synthetic networks, curated models, and
experimentally derived networks for evaluation of GRN
inference algorithms.

GeneNetWeaver [41] converts a known GRN into a
system of ODEs in which gene expression is modeled as
a function of TF protein abundance, which is in turn
defined as a function of TF—gene expression. The
method adds random noise to each equation to model
the stochasticity of gene expression. GeneNetWeaver
then outputs measurements of gene expression sampled
at simulated points in time using this system of ODEs.
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While GeneNetWeaver was originally developed to
simulate bulk gene expression data, it has been recently
used for generating synthetic scRNA-seq data
[36,42,37]. A drawback of GeneNetWeaver is that it
combines the regulators of each gene using a randomly
generated logic function. Hence, it may synthesize data
that do not accurately or realistically capture the dy-
namics of a GRN.

BoolODE [37] extends GeneNetWeaver by preserving
the Boolean logic function expressing the combined
regulatory effect of multiple TFs in the specification of
the GRN. Cells in data sets simulated by BoolODE can
be ordered along trajectories that end in clusters that are
consistent with the steady states of the GRN. Moreover,
there is a continuous pattern of gene expression along
each trajectory that spans the length of the simulation
(Fig. 3(b)). As a result, BoolODE may be more appro-
priate than GeneNetWeaver for the evaluation of GRN
inference methods that rely on scRNNA-seq data [37].

A significant difficulty presented by the generation of
gene expression data is accurately simulating the
complexity of cell-to-cell variation in gene expression,
high dropout rates and technical noise related to
sequencing technologies, and heterogeneity in the
population of cell types in actual experimental data.
Splatter uses the alternative approach of analyzing real
scRNA-seq data sets to learn the parameters for a dis-
tribution of gene expression from which simulated data
is generated [43]. The SERGIO simulator [44] gener-
ates gene expression profiles representing different cell
types and models additional sources of technical
variation.

Each of these methods focuses on the generation of
gene expression data. As more GRN inference methods

Figure 3

that integrate multiomics data are developed, there will
be a need to implement simulations for other single-cell
data sets and meet the challenge of modeling additional
stochastic effects specific to different sequencing
technologies. The recently developed dyngen package
can simulate multimodal regulatory events including
transcription, splicing, translation, and degradation and
stochastically generate the corresponding abundances of
pre-mRNA, mRNA, and protein with single-cell granu-
larity (Cannoodt et al., bioRxiv https://doi.org/10.1101/
2020.02.06.936971).

Evaluation strategies

Once a ground-truth network has been decided upon,
the area under precision—recall curve and the area under
receiver-operating characteristic curve have both been
used as measures by which to compare a GRN inference
algorithm to other methods or to a random predictor
(Fig. 3(c)) [36]. GRNs are generally expected to be
sparse networks, with relatively few regulatory in-
teractions between all possible pairs of genes. Owing to
the resulting class imbalance, the area under precision—
recall curve may be the more appropriate indicator for
use in evaluation [45]. Because the highest confidence
edges predicted by the algorithm may be of most in-
terest to an experimentalist, the early precision, which
considers only the top-ranking predictions, can also be
used as an evaluatio measure [37].

Several methods have been used to characterize the
biological relevance of predicted edges, including
enrichment of GO or KEGG pathways and identification
of literature support for regulatory relationships among
genes connected by an inferred GRN [42]. TF binding
motifs enriched in the promoter region of predicted
target genes are a notable example of experimental ev-
idence used for validation [40]. The distributions of
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Benchmarking of GRN inference algorithms. (a) Ground-truth GRNs constructed from curated models and synthetic networks have been used to evaluate
GRN inference algorithms. (b) Simulated scRNA-seq data sets are generated with gene expression profiles and trajectories based on the regulatory
interactions specified in the ground-truth GRN. GRN inference algorithms predict regulatory edges in inferred GRNs using the simulated data. (c)
Receiver-operating characteristic and precision—recall curves have been used to visualize the relative performance of different methods. The distribution
of metrics such as AUROC and AUPRC across multiple simulations can be used to benchmark a GRN inference algorithm against other methods or a
random predictor. GRN, gene regulatory network; AUROC, area under receiver-operating characteristic curve.;AUPRC: area under the precision—recall

curve
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node degrees for TFs and target genes in inferred GRN
networks have been compared with corresponding dis-
tributions in ground-truth networks [36]. Another
strategy is to check whether the total weight of the
edges outgoing from TFs is larger than for their targets

[9].

Given the high cell-to-cell variability in gene expression
and the low sequencing depth inherent to single-cell
data sets, the stability of an algorithm’s predictions in
response to variations in input data can also be a useful
measurement to report [37]. Execution time and
memory utilization of an algorithm given a range of input
sizes can be also reported as a practical consideration for
applicability to analyzing large data sets [37].

Performance results

Recent independent benchmarking results have indi-
cated that the accuracy of most current GRN inference
methods, by and large, is close to that of a random
predictor [36,37]. Moreover, methods developed spe-
cifically for single-cell data sets do not consistently
outperform earlier methods designed for bulk RNA-seq
data, such as GENIE3 [37]. The relative performance of
GRN inference algorithms can vary significantly
depending on the test dataset and methodology [36]. In
general, existing methods tend to perform better given
simulated data as input, compared to their performance
on experimental sScRNA-seq data sets [37].

Future perspectives

We now turn our attention to the latest trends in
experimental single-cell techniques. Because the tech-
nologies we discuss are very recent, none of them has yet
become as widely used as scRNA-seq. We present these
technologies with a view to discussing how they can
inspire a new generation of GRN inference methods.

Simultaneous multiomics sequencing

There has been a spate of innovative technologies that
simultaneously measure multiple omics data types in
the same individual cells. For example, scNMT-seq
[46], SNARE-seq [47], sci-CAR [48], scMT-seq [49],
and scM&T-seq [50] enable the simultaneous profiling
of epigenomics and transcriptomics. Technologies
including RAID [51], CITE-seq [52], and REAP-seq
[53] have been applied to simultaneously measure the
proteome and the transcriptome. To study diseases such
as cancers, especially to capture single nucleotide vari-
ations between somatic cells, there are methods that
simultaneously sequence DNA and RNA in single cells,
including G&T-seq [54], DR-Seq [55], SIDR [56], and
TARGET=seq [57]. The scNT-seq [58] method enables
the simultaneous sequencing of newly transcribed and
pre-existing mRNAs to profile temporal gene expression
dynamics. As more data sets generated by using these
recent advances in single-cell sequencing become
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available, there will be a need to develop tools for the
computational analysis of these integrated multiomics
data with the potential to revolutionize GRN inference.

Knockout screens and single-cell multiomics

The increase or decrease in expression of other genes in
response to a gene knockout is an alternative approach
that can be used to predict regulatory interactions. In
this context, another category of single-cell experi-
mental methods combine CRISPR-Cas9 knockout
screening with single-cell sequencing to measure the
changes in the gene expression of individual cells in
response to genetic perturbations. The technologies
include CRISP-seq [59], Perturb-seq [60], and CROP-
seq [61]. Similarly, methods such as Perturb-ATAC
[62] enable the profiling of chromatin in response to
CRISPR-induced cell-specific knockouts. The acti-
vating or inhibiting impact of a gene knockout on the
expression of other genes can be determined by
measuring the fold change of each gene in cells for a
given knockout relative to the average expression for
each gene in other cells [59]. Alternatively, scMAGeCK
[63] uses a linear regression-based approach to model
gene expression as a function of the knockout of other
genes and to compute scores for the effect of each
knockout on the expression of other genes.

Even more recent advancements in experimental tech-
niques, such as ECCITE-seq [64], are enabling the
simultaneous measurement of multi-omics data in
response to knockouts. The measurement of changes in
gene expression in individual cells, integrated with as-
sociations between expression profiles in a heteroge-
neous population of cell types, could be used to identify
different regulatory impacts from silenced genes
occurring in the context of the other genes expressed in
the cell. This additional information has the potential to
improve predictions for the interaction of multiple fac-
tors on gene expression, and distinguish between direct
and indirect regulatory relationships.

Supervised GRN inference

By and large, GRN inference methods for scRNA-seq
data are unsupervised, in the sense that they do not
exploit known TF—gene relationships to predict new
connections. Very recently, supervised techniques for
predicting GRNs have appeared in the literature
[40,65]. For example, convolutional neural network for
coexpression (CNNC) computes a normalized empirical
probability distribution function for each gene pair
based on their expression profiles [40]. CNNC inputs
this function as an image to a conventional convolutional
neural network to predict regulatory relationships. To
train the neural network, CNNC uses TF-target gene
pairs identified by ChlIP-seq experiements as positive
examples and randomly-selected gene pairs as negative
examples. Another approach by the same authors applies
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graph convolutional neural networks on spatial tran-
scriptomics data to predict interacting genes between
cells [66]. Although this approach does not infer a GRN
directly, it highlights the potential for supervised tech-
niques for this problem.

Conclusions

Despite more than 20 years of research, inference of
GRNSs continues to remain a challenging problem. The
BEELINE evaluation of a dozen methods showed that
even the best methods had an accuracy only marginally
better than a random predictor, whether they were
applied to simulated or to experimental scRNA-seq data
[37], underscoring the need for continued research in
this area. There are several directions for future devel-
opment of GRN inference algorithms.

The lack of high-quality, cell-type ground-truth data
sets continues to bedevil the evaluation of GRN infer-
ence methods. Therefore, community-wide efforts to
define such networks will benefit the field. Curated
GRNSs that describe developmental processes usually
contain only tens of nodes, which may represent a
simplification of real regulatory networks. Therefore,
additional research is needed to create larger-scale
GRNs with well-defined multimodal regulatory logic
that correspond to complex and realistic trajectories. A
new generation of simulators that can synthesize
multimodal single-cell data sets that correspond to
these GRNs can further drive the development of
inference algorithms.

Statistical relationships between expression profiles of
genes may be imperfect indicators of regulatory re-
lationships. Therefore, integrating these data with other
types of single-cell omics measurements is of paramount
importance. Approaches that combine genetic pertur-
bations with molecular profiling are very promising in
this regard. Single-cell multimodal GRN inference is
still in its infancy, especially because the development
of experimental techniques is very rapid. Methods that
incorporate other types of omics data sets for GRN
inference will also need to address inherent difficulties
in processing single-cell data such as cell-to-cell vari-
ability in sequencing depth, as well as new challenges
specific to each sequencing methodology.

In conclusion, there is a critical need and tremendous
scope for new ideas and directions in GRN inference.
We look forward to these developments over the next
few years.
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