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Abstract

Motivation: Nearly 40% of the genes in sequenced genomes have no experimentally- or computationally-
derived functional annotations. To fill this gap, we seek to develop methods for network-based gene function
prediction that can integrate heterogeneous data for multiple species with experimentally-based functional
annotations and systematically transfer them to newly-sequenced organisms on a genomewide scale.
However, the large size of such networks pose a challenge for the scalability of current methods.
Results: We develop a label propagation algorithm called FastSinkSource. By formally bounding its the rate
of progress, we decrease the running time by a factor of 100 without sacrificing accuracy. We systematically
evaluate many approaches to construct multi-species bacterial networks and apply FastSinkSource and
other state-of-the-art methods to these networks. We find that the most accurate and efficient approach
is to pre-compute annotation scores for species with experimental annotations, and then to transfer them
to other organisms. In this manner, FastSinkSource runs in under three minutes for 200 bacterial species.
Availability and Implementation: Python implementations of each algorithm and all data used in this
research are available at http://bioinformatics.cs.vt.edu/~jeffl/supplements/2020-fastsinksource.
Contact: murali@cs.vt.edu

Supplementary Information: A supplementary file is available at bioRxiv online.

1 Introduction Despite the sophistication of these methods, nearly 40% of all genes in
sequenced genomes have no annotation at all (Cozzetto and Jones, 2017).

To fill this gap, a broad range of techniques have been developed that
integrate multiple types of data (e.g., physical interactions, co-expression,
and cellular pathways) (Mostafavi et al., 2008; Wang et al., 2015; Cho
et al., 2016; Gligorijevi¢ et al., 2018). These methods can predict gene
function on a genomewide scale but usually operate on a single organism.

The number of fully sequenced prokaryotic genomes is increasing
dramatically (Land et al., 2015). The overwhelming majority of the genes
in these genomes have not been studied experimentally. In fact, fewer
than 0.01% (about 10,000 out of 104 million) of prokaryotic genes in
the UniProt Knowledgebase (UniProt Consortium, 2018) have a Gene
Ontology (GO) (Gene Ontology Consortium, 2018) annotation with an
experimental evidence code. To address this gap, several computational
methods have been developed to associate molecular functions and
biological processes with genes lacking experimental annotations. The
GO consortium uses many approaches including homology inference (Finn
et al., 2016) and phylogenetic analysis (Gaudet et al., 2011) to annotate
genes to GO terms using computational or electronic evidence codes.

They are also limited by the lack of availability of diverse, rich functional
genomic datasets for all but a handful of organisms.

Our main goal in this paper is to develop highly-efficient algorithms
that can make genomewide functional predictions for a newly-sequenced
“target” species by effectively using heterogeneous experimental data
from well-studied organisms. We adopt a network-based strategy since
it facilitates the representation and integration of diverse datasets and
because these types of approaches have been effective in gene function
prediction (Mostafavi et al., 2008; Cho et al., 2016; Jiang et al., 2017).
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Two distinct challenges arise at this point. The first is that we have
a large number of options for constructing a network that involves the
genes in the target and well-annotated species depending on which type of
information we want to integrate. The second challenge is that the largest
networks we build can contain tens of millions of edges. This size requires
efficient algorithms for network-based gene function prediction.

To address the first challenge, we systematically explore many
combinations of networks for connecting the genes in well-annotated
organisms to each other and to those in the target species (Section 2.4). We
evaluate these strategies using a leave-one-species-out (LOSO) validation
framework that mimics the challenge of making functional predictions for
a newly-sequenced species where none of its genes have any annotations.
Initially, we apply LOSO evaluation to 25 bacteria with a sufficient number
of experimental annotations, which we call the “core” species. To test
scalability and assess the trade-off between speed and accuracy of these
approaches, we then expand to 200 species. We find that it is not necessary
consider the genes in target species during network propagation, i.e.,
we were able to generate accurate functional predictions by running the
algorithms for only the core species, and then transferring those predictions
to the target organism(s) using sequence similarity.

To address the second challenge, we developed a novel, iterative label
propagation algorithm called FastSinkSource for which we mathematically
prove that the rate of convergence of the computed score for every node
in the network is geometric in the number of iterations (Section 2.1). This
property enabled us to decrease the running time of FastSinkSource by a
factor of 100 or more without sacrificing prediction accuracy.

We found that FastSinkSource and two other state-of-the-art network-
based algorithms, BirgRank and GeneMANIA computed far more
accurate predictions than a baseline BLAST-based method. In addition,
FastSinkSource was much more efficient than BirgRank with similar or
better prediction accuracy. FastSinkSource was moderately more accurate
than GeneMANIA while achieving the same runtime efficiency.

2 Methods
2.1 FastSinkSource

A standard formulation of network-based GO annotation prediction is as
a semi-supervised problem. We are given a weighted undirected network
G = (V, E,w), where wy, is the weight of the edge (u, v). In addition,
for a GO term 7, we have a partition of the nodes in V' into three sets:
V+,V~ and VO positive, negative, and unlabeled examples, respectively.
The goal is to compute a score s(u) for each node w that is an unlabeled
example, by propagating the positive and negative labels across G. Strictly
speaking, the score depends on 7 as well but we omit it for clarity.

Given a parameter 0 < a < 1, FastSinkSource computes a score s(u)
between O and 1 for each node w that is an unlabeled example for 7 by
minimizing the function

S(G,s) = a D wuw(su) = s(v)* + (1 —a) > d(u)s(u)?,

(u,v)EE ueV

with the scores of positive and negative examples fixed at 1 and O,
respectively. Note that if @ = 1, FastSinkSource is identical to the
SinkSource algorithm (Zhu et al., 2003; Murali et al., 2011).

We define P to be a | V0] x |V0| matrix of the degree-normalized edge
weights in G’ among pairs of nodes in V0, i.e., Pyy = wuyy/d(u) for
every pair of unlabeled examples (u, v). We also define stobe a |VO| x 1
vector formed by the node scores of all unlabeled examples and f to be a
[VO| x 1 constant vector in which uth element f(u) is the contribution
to s(u) from the positively-labeled neighbors of . Specifically, f(u) =

a Y. wyuw/d(u). Then s satisfies the following linear system:
vEN,

s=aPs—+f. (1)

We can compute the solutions = (I—aP) ™1 f using power iteration (Zhu
et al., 2003). We now describe how to compute an upper and lower bound
on every node’s score after each iteration and the benefits of these bounds.

Lower and upper bounds. If s(u, ) denotes the score of node u after ¢
iterations, then we can prove that the score for every node increases with
the number of iterations, i.e., s(u, %) < s(u,¢ + 1), and that

o' |f]

o) @

s(u, 1) < s(u) < s(u, i) +

where ||f|] is the largest absolute value of the entries in f. In other words, the
ol £

(1-a)
bounds s(u) from above. Thus the difference between the sought-for score

and its value after ¢ iterations decreases geometrically with 7. We based our

score s(u, ©) is a lower bound on the final score s(u) and s(u, %) +

proof of this result (Section S1) on Zhang et al. (2015), who used similar
ideas for finding the k£ nodes with the highest RWR scores.
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e
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Fig. 1. lllustration of the geometric convergence of scores in FastSinkSource. The
solid red line indicates the score s(w) for a node u that we are seeking to compute.
The shaded red region shows how different s(«) can be from the score computed
for node w after each iteration. The green line and region correspond to node v. At
iteration i, we cannot be certain if s(v) is larger or smaller than s(«) because the
difference between their computed scores after i iterations is less than the error
term. By iteration j, however, the difference is larger than the error term, which
implies that s(v) > s(u).

Now consider the scores of two nodes w and v after ¢ iterations
(Figure 1). If s(u,i) < s(v,i) < s(u,i) + ?117‘2”) then the
interval spanned by the lower and upper bounds for s(u) overlaps the
corresponding interval for s(v). In this case, it is unclear if the final score
s(u) will be larger or smaller than s(v). However, if we observe in a later
iteration j that s(v, i) > s(u, 1) + E";Jilg , then the intervals are disjoint,
guaranteeing that s(u) < s(v) (Figure 1). We can conclude that if the
interval spanning the lower and upper bounds of u does not overlap with

any other node’s interval after a certain number of iterations, then we have

determined u’s rank upon convergence. If this property is true for every
node, then we have ranked all the nodes correctly and no further iterations
are needed. This observation has two significant benefits:

(a) Itinspires an alternative strategy for checking convergence. At the end
of each iteration, we sort all the nodes in increasing order of score.
Then for each index k and node uy, in this sorted order, we check if
s(ug, ) + 211717\2\\) < 8(Ug41,1). If this inequality is true for every
index, then the rankings will not change in subsequent iterations and
we say that the process has converged. Note that we need only compare
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O(|V]) pairs of node scores to check for convergence. This approach
is especially useful when we only need to compute the correct ranking
of a subset of nodes by their scores, e.g., during LOSO validation.

(b) If we stop after ¢ iterations, we have an estimate (%) of how
much we have under-estimated every node’s score. We also have an
upper bound on the number of node pairs that may be ranked incorrectly
with respect to each other, which is the number of node pairs that have

overlapping lower and upper bounds.

It is possible for two or more nodes to have the same lower bound and the
same upper bound in every iteration. Our approach can determine the rank
of these nodes as a group with respect to the other nodes. In this case, we
simply give these matching nodes the same ranking as we have no way to
distinguish how to order them in relation to each other.

2.2 Other Algorithms

‘We compared FastSinkSource to its predecessor SinkSource (Murali ez al.,
2011), two other network propagation methods: GeneMANIA (Mostafavi
et al., 2008), and BirgRank (Jiang et al., 2017), and a baseline method
we call Local. GeneMANIA utilizes Gaussian Random Field label
propagation to diffuse labels from positive and negative examples to make
term-based predictions. SinkSource is similar to GeneMANIA but does not
allow the scores of the given positive and negative examples to change.
BirgRank (BI-Relational Graph page RANK) constructs a bi-relational
graph with a given network and a GO hierarchy, connecting each gene
to every GO term for which it has an annotation. It applies Random
Walk with Restarts (RWR) (Page et al., 1999) to diffuse the annotation
information across this network. Local mimics a BLAST-based procedure
for transferring GO term annotations, where a given gene’s score for a term
is the weighted average of the scores of its neighbors. See Section S2 for
more details about the algorithms and our implementations, respectively.

2.3 Datasets

Gene Ontology annotations. We considered three sets of evidence codes:
(i) Experimental as well as those used in the CAFA evaluations
(EXPC) (Jiang et al, 2016): EXP, IDA, IPI, IMP, IGI, IEP, TAS,
IC; (ii) Computational Analysis (COMP): ISS, ISO, ISA, ISM, IGC,
IBA, IBD, IKR, IRD, RCA; and (iii) Electronic Analysis (ELEC): IEA.
We selected the 200 bacterial species with the largest number of GO
annotations (protein-GO term pairs) with EXPC or COMP evidence codes
in the UniProt-GOA database (*“‘goa_uniprot_gcrp.gaf.gz” downloaded on
October 15, 2019). These 200 species did not contain any annotations with
the recently-introduced high-throughput evidence codes. See Section S3.1
for details of our definition of positive and negative examples.

Bacterial proteomes. We selected the 200 bacterial reference proteomes
with the most EXPC and COMP annotations and obtained their protein
sequences from UniProt (downloaded on October 15, 2019). We split these
organisms into two groups: i) the core species, i.e., those with at least one
GO term with 10 or more annotations with EXPC evidence codes, and ii)
the non-core species. We define a farget species as one or more organisms
in the non-core group for which we wish to make predictions. There were
25 and 40 species, respectively, in the core when we considered BP and
MF terms (Tables S1 and S2). About 91% and 93% of all bacterial BP and
MF EXPC annotations, respectively, came from the set of core species.

Sequence similarity network. We ran all-vs-all BLASTP with default
parameters, except for the E-value cutoff set to 20 and the parameter
-max_hsps (i.e., maximum High Scoring Segment Pairs), set to 1. For
the database required by BLAST, we used the protein sequences of the
200 species. We processed the results by retaining the weaker score for all
reciprocated matches, removing self-comparisons, and using the negative

of the base-10 logarithm of the E-value as the edge weight. If the E-value
was 0, we assigned a weight of 180, which was the largest (rounded) value
we observed. We tested various E-value cutoffs from 1 x 102 to 20.
If the cutoff was larger than one, we added the base-10 logarithm of the
cutoff to every edge weight to make it positive.

STRING networks. We integrated species-specific functional association
networks with the sequence similarity network (SSN) for bacterial species
that had networks available in the STRING database (v11, downloaded on
May 30, 2019) (Szklarczyk et al., 2019). A STRING network was available
for 23 of the 25 core species (for BP terms) and 173 of the 200 species. We
converted the STRING IDs to UniProt IDs using the mappings available
from UniProt. STRING assigns edge weights based on multiple lines of
evidence of association including physical binding, gene expression, and
orthology mapping. We utilized six STRING networks: neighborhood,
fusion, cooccurence, coexpression, experimental, and database. We also
tested various cutoffs of the STRING combined edge scores including 150,
400, 700, and 900 (low, medium, high and very high stringency).

Network integration. We tested two methods to integrate the SSN and
STRING networks: term-by-term weighting described in the original
GeneMANIA publication (GMW; we use this abbreviation to differentiate
the weighting method from the network propagation algorithm) (Mostafavi
et al., 2008) and Simultaneous Weights with Specific Negatives
(SWSN) (Youngs et al., 2013) which weights networks using multiple
related terms simultaneously (Section S3.2).

2.4 Network Combinations

We faced several choices in constructing the network linking the genes of
the target species to each other and to genes in the core group. Does the
target species have a STRING network? Should we connect the genes in
the core species based on sequence similarity or STRING edges or both?
How should we treat species that have no EXPC annotations? To study the
effects of these choices on the accuracy and scalability of gene function
prediction algorithms, we proceeded as follows.

SSN-Target

—~

|\
A\ TRING-Targe

A
N~
\<STRING Target

Fig. 2. lllustration of network-based approach to predict functions for an arbitrary
number of “target” species. Dashed and solid edges represent inter- and intra-
species edge types, respectively (e.g., SSN and STRING). Edges between groups
of nodes represent edges between the nodes in the respective groups.

We divided the sequence-similarity network (SSN) and STRING
networks into the following subsets (Figure 2): (a) SSN-T': The sequence-
similarity-based edges between the genes in the target species and those in
the core species. (b) SSN-C: The sequence-similarity-based edges among
the genes in the core species. (c) STRING-C: The union of the STRING
networks for core species. (d) STRING-T: The STRING network for the
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target species. This demarcation of networks generalizes to the case when
there are multiple target species for which we want to make predictions
simultaneously. In addition, we observed that the core group remains
the same even as we vary the target species. Therefore, we consider an
approach where we pre-compute prediction scores for the genes in the
core species, and then transfer them to the target genes using sequence
similarity. We refer to this approach as SSN-Nbrs (i.e., SSN-Neighbors).
In this case, we first computed scores using only nodes and edges in the
core, then for each gene in the target species, we took the weighted average
of the scores of its neighbors using the SSN-T edges.

Based on this partition, we evaluated the following nine network
combinations, where ‘+’ denotes the union of networks, and °,” denotes
the sequential use of networks:

(i) SSN-T: sequence-similarity edges between genes in the target species
and those in the core species.

(i1) SSN-T+SSN-C: in addition to (i), the sequence-similarity edges
among the genes in the core.

(iii) SSN-T+STRING-C: in addition to (i), the STRING networks for
every core organism.

(iv) SSN-T+SSN-C+STRING-C: in addition to (ii), the STRING
networks for every core organism.

(v) SSN-T+SSN-C+STRING-C+STRING-T: in addition to (iv), the
STRING network in the target species. This network contains all
the edges we considered, which we refer to as the full network.

(vi) SSN-T+STRING-C+STRING-T: the network in (v) without the
sequence-similarity edges among the genes in the core species.

(vii) SSN-T+STRING-T: the network in (vi) without the STRING
networks in the core species.

(viii) STRING-C,SSN-Nbrs: the STRING networks for every core
organism followed by the network in (i).

(ix) SSN-C+STRING-C,SSN-Nbrs: in addition to (viii), the sequence-
similarity edges among the genes in the core species.

Evaluating these choices in sequence, we expected to dissect the relative
utility of using SSN-T compared to SSN-Nbrs, as well as the SSN-C,
STRING-C, and STRING-T networks. We did not use the SSN-T+SSN-
C+STRING-T network since it was very unlikely that a STRING network
would exist for the target species but not a core species. We also did not
use SSN-C,SSN-Nbrs to limit the number of combinations. Note that we
either needed to include the SSN-T network or use the SSN-Nbrs approach.
Otherwise, we would not be able to make predictions for a target species.

2.5 Evaluation

We split our evaluations into two types as follows:

(i) Leave-One-Species-Out (LOSO) validation. In this method, for each
species s of the core group, we leave out the annotations of all genes of
s, apply each algorithm using the annotations of the other core species,
and then assess how well we can recover the annotations of s. In effect, s
is removed from the core group and serves as a target species during this
evaluation. We perform this evaluation only for EXPC annotations.

(ii) Target species validation. Experimentally-based GO term annotations
to evaluate the predictions of the algorithms are sparse for non-core species.
Therefore, we use annotations with curator-reviewed computational
analysis (COMP) or electronic (ELEC) evidence codes as alternative
ground-truth datasets. In this validation, we apply every algorithm using
only the EXPC annotations for the core species and assess how well we
can recover the COMP or ELEC annotations in the target species. Here we
considered only those target species (i.e., in the non-core group) for which
at least one term had 10 or more annotations of the given evidence code

type. For the BP COMP, MF COMP, BP ELEC, and MF ELEC evaluations,
there were 31, 24, 175, and 160 target species, respectively.

Term selection. For a term t to be evaluated, we required at least 10 EXPC
annotations to ¢ in the core species (minus the left-out species in the case
of LOSO validation), and at least 10 annotations to ¢ of the given evidence
code group in the target organism. For each species, we restricted our
evaluation to its leaf terms, which we defined as those that did not have
any children in the GO DAG that also satisfied our criteria.

Evaluation. When evaluating the predictions for a given species, we
calculated true positives and false positives from the positive and negative
examples of the given evidence codes for that species. We summarized the
quality of the predictions for each GO term using the Finax value, which
is the maximum of the harmonic mean of the precision and recall (i.e., F1
score) over the entire precision-recall curve.

3 Results

We evaluate the performance of four network propagation algorithms and a
baseline method on nine different combinations of networks (Section 2.4)
for different subsets of annotations: LOSO validation for EXPC
annotations in core species, COMP annotations in target species (not in
the core), and ELEC annotations in target species. We also compared the
running times of the algorithms. We focus on the results for BP GO terms,
and briefly mention our findings for Molecular Function (MF) terms.

3.1 Parameter Selection

We first determined values for the E-value cutoff for the SSN, the weight
threshold for STRING networks, the method for network integration, and
the different parameters required by FastSinkSource and BirgRank. We
used EXPC LOSO validation of BP terms on the full network (i.e., SSN-
T+SSN-C+STRING-C+STRING-T) for the selection of all parameters,
except for the E-value cutoff, for which we used SSN-T+SSN-C.

E-value cutoff. To evaluate the potentially deleterious effects of poor
homology on prediction quality, we used different E-value cutoffs to
construct the SSN; Table S3 shows the sizes of these networks. We found
that the median Fmax of every method gradually increased as we raised
the E-value cutoff, but did not improve past 0.1 (Section S4.1). Thus, we
selected a cutoff of 0.1.

Network integration. After evaluation of GMW and SWSN across multiple
cutoffs of STRING edge confidence, we selected SWSN with a cutoff of
700 to integrate the networks (Section S4.2), which resulted in a total of
96,107 nodes and 1,596,336 edges (Table S3). Note that during LOSO
validation, for each species we left out, we weighted the networks using
only annotations of the organisms that we retained.

FastSinkSource and BirgRank. We tested eight different values of o and
found o = 0.99 to yield the highest median Fiax value. We next
varied the number of iterations from 400 to 1 and found that any value
below 20 resulted in a statistically significant decrease in the Finax values
when compared to a = 0.99 and 400 iterations or to o = 1 and 1,000
iterations. Therefore, we chose o = 0.99 and 20 iterations for subsequent
analyses. See Section S4.3 for details. We performed parameter estimation
for BirgRank as well (Section S4.4).

3.2 Evaluation of Network Combinations

LOSO validation for EXPC annotations. We first performed LOSO
validation for the 25 core species with EXPC annotations. The median
Fmax of Local was 0.43 (Figure 3(a)). In contrast, other than for
SSN-T and STRING-C,SSN-Nbrs, every network propagation algorithm
achieved a median Fimax of 0.5 or more, with the largest median value
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Fig. 3. Comparison of Finax results for BP EXPC LOSO evaluation, as well as the evaluation of species with only COMP and ELEC annotations across five algorithms
and nine networks. (a-c) Median Fy,.x as well as the 95% confidence interval of the median, estimated using 1,000 bootstrapped samples of the data. Boxplots of the full
Fmax distributions appear in Figure S1. (d-f) Running time for each algorithm, measured in independent runs using a single core on a computer with a 2.2 GHz processor
and 64GB of memory running CentOS version 7. (a) Results for EXPC LOSO evaluation; 25 species and 242 BP terms (355 total pairs). (b) Results for evaluation of
species with COMP and no EXPC; 31 species and 301 BP terms (1,378 total pairs). (¢) Results for evaluation of species with ELEC and no EXPC; 175 species and 339
BP terms (15,237 total pairs). (d) Total running time of each method for EXPC LOSO (a). (e,f) Running time of each method to compute scores for the target-only species
(b,c). We limited algorithms to a maximum of 72 hours of running time, which explains the missing points for BirgRank.

exceeding 0.65. Moreover, network propagation methods also improved
when provided additional networks. The full network (SSN-T+SSN-
C+STRING-C+STRING-T) yielded the highest median Fax values,
except for SinkSource, which achieved a slightly higher median Fnax
of 0.67 for SSN-T+SSN-C+STRING-C.

To study these trends further, for each network propagation algorithm,
we determined if there were statistically significant differences between
the Fmax distributions for each network combination. A p-value <
0.05 (6.1 x 10~? for FastSinkSource, 2.1 x 1075 for GeneMANIA,
2.6 x 10~° for BirgRank, and 2.8 x 10~25 for SinkSource) for the
Kruskal Wallis test, after correction by the number of algorithms, indicated
that these nine sets of Fiax values did not originate from the same
distribution. Therefore, we performed post-hoc pairwise comparisons
using a Benjamini-Hochberg corrected one-sided Wilcoxon signed-rank
test, and found that for FastSinkSource and GeneMANIA, the seven
network combinations that included STRING, except for STRING-C,SSN-
Nbrs, significantly outperformed those without STRING, namely SSN-T
and SSN-T+SSN-C (g-value < 0.05, Table S5). For the 15 pairs
of networks in this group of six combinations, we did not observe a
statistically-significant difference for 13 pairs. The exceptions were the
improvement of the full network (fifth column in Figure 3(a)) over the
SSN-T+STRING-C and SSN-T+STRING-T networks (g-values of 0.03
and 0.01 for FastSinkSource, and 0.005 and 0.01 for GeneMANIA,
respectively). For SinkSource the trends were largely similar, except
that only the decrease of Finax for the SSN-T+STRING-C combination
in comparison to the full network was statistically significant. For

BirgRank, the two largest combinations, SSN-T+SSN-C+STRING-C and
SSN-T+SSN-C+STRING-C+STRING-T, had a statistically significant
improvement in Fmax compared to all other combinations (g-value <
0.05). From these comparisons, we concluded that a STRING network
for the target species was not needed as long as the SSN and STRING
networks are included among the core species. This finding is especially
relevant since a STRING network or other network datasets are likely not
to be available for a newly sequenced target species.

Target species validation for COMP annotations. Next, we evaluated the
ability of our methods to recover BP annotations with COMP evidence
codes in 31 target bacterial species when using the EXPC annotations in
the 25 core species to compute prediction scores. The median Finax for
most methods and network combinations improved to over 0.8. The median
increase in Fmax for any network propagation algorithm over the Local
baseline did not exceed 0.1 (Figure 3(b)). We reasoned that the relatively
high median Fiax of Local could be attributed to the fact that over 99% of
the 113,360 curator-reviewed annotations based on computational analysis
for these organisms had the evidence codes IBA (Inferred from biological
aspect of ancestor, 99,563 annotations) or ISS (Inferred from sequence
or structural similarity, 12,946 annotations). These annotations are likely
derived from genes with EXPC annotations in the core species.

For each algorithm, we compared the Fmax distributions across
the network combinations just as we did for EXPC annotations above.
Every algorithm had a Bonferroni-corrected p-value < 10~% for the
Kruskal-Wallis test. Therefore, we performed post-hoc tests for every
pair of network combinations. In almost all cases, only the differences
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between the first two columns (SSN-T and SSN-T+SSN-C) and six of
the other combinations were statistically significant (Benjamini-Hochberg
corrected one-sided Wilcoxon signed-rank test g-value < 0.05). The
exception was STRING-C,SSN-Nbrs which performed significantly worse
than all other combinations for three of the four algorithms, especially
for SinkSource. In contrast, the SSN-C+STRING-C,SSN-Nbrs approach
had Fiax distributions that were statistically indistinguishable from the
combinations in columns three to seven, suggesting that pre-computing
network propagation scores for core species is an effective strategy.

Target species validation for ELEC annotations. We then turned our
attention to recovering ELEC annotations in 175 target bacterial species
using EXPC annotations in the 25 core species. We observed that the
median Finax values, by and large, were in-between the previous two
evaluations, with Local at 0.62 (Figure 3(c)). The network propagation
methods achieved median Fiax improvements of up to 0.13 over Local.
Notably, the combination of networks which resulted in the highest median
Fax for three of the four methods was SSN-C+STRING-C,SSN-Nbrs.
Recall that in this method, we pre-compute scores for the genes in the core
species and transfer the scores to the genes in the target species by taking
the weighted average of neighbors in the SSN. Using either SinkSource
or FastSinkSource for pre-computing scores for the core species yielded
a median Fiax of 0.75, an improvement of 0.05 over GeneMANIA.
BirgRank also performed the best on this combination (median Fiax of
0.74). We did not test for statistical significance of the differences here due
to the large number of species-term pairs being evaluated (over 15,000). In
the next section (Section 3.3), we compare the prediction quality of each
method on the SSN-C+STRING-C,SSN-Nbrs combination in more detail.

Running times. We compared the running times for every algorithm on
each network combination (Figure 3(d,e,f)). For EXPC LOSO, we report
the total running time of each method to compute the prediction scores
(Figure 3(d)). FastSinkSource achieved the fastest running time of the
propagation methods, ranging from 0.46 minutes on SSN-T+STRING-T
(the second smallest network) to 1.7 minutes on SSN-T+SSN-C+STRING-
C+STRING-T (the largest network), with a factor of speed improvement
ranging from 75 to 262 over BirgRank, and 97 to 104 over SinkSource,
respectively. GeneMANIA was more efficient than FastSinkSource in
some cases, with the largest speed improvement of a factor of 3.1 on
the SSN-T network. Compared to Local, FastSinkSource was 21 to 28
times slower. Note that FastSinkSource, SinkSource, and GeneMANIA
performed network-wide predictions, i.e., they computed a score for each
unknown example in every species. In contrast, for BirgRank, we limited
predictions to the set of proteins that were either positive or negative
examples in the target species, except in the case of SSN-Nbrs where
scores were computed for all nodes in the core. See Section S5 for an
explanation of the prohibitive running time for the missing points.

For COMP and ELEC validation, we compute scores for the genes
in all the target species simultaneously. We report these running times
in Figure 3(e,f). Not surprisingly, we found that the combinations which
pre-computed the scores for the core species and then transferred these
scores using SSN-Nbrs were faster in general than those which directly
included the nodes of the target species into the network propagation (i.e.,
combinations thatinclude SSN-T). This difference was especially apparent
when computing scores for 175 target species, i.e., ELEC validation
(compare last two columns of Figure 3(f) to the first seven columns).

The number of species increased by a factor of 5.4 when we moved from
COMP to ELEC annotations with concomitantly larger networks (4 times
more nodes and 6 times more edges on average, Table S4). SinkSource,
FastSinkSource, and GeneMANIA took 4-8 times longer to run on these
larger networks (compare first seven columns of Figure 3(e,f)). In contrast,
for the SSN-Nbrs-based methods (last two columns in Figure 3(e,f)), the

running time for every algorithm remained about the same. FastSinkSource
and GeneMANIA took a mere two minutes using the SSN-C+STRING-
C,SSN-Nbrs combination (Figure 3(e,f), last column). Note that we did
not run BirgRank to completion on most combinations for the ELEC
evaluation due to prohibitive running times. We made an exception for
the full network, for which BirgRank took over 300 hours, to provide a
reference point of the likely upper limit of its running time.

Results for MF terms. We repeated these evaluations for MF terms. For
the EXPC LOSO evaluation, using the SSN-T+SSN-C network yielded
median Fiax values of 0.74 or higher for the network propagation
methods, with improvements up to 0.14 over Local (median Finax of 0.66
Figure S2(a)). The integration of the STRING networks did not increase
the median Fi,ax above that of the SSN-T+SSN-C combination for three
out of four methods for the EXPC LOSO evaluation, suggesting the data in
STRING were not helpful for predicting MF annotations. When recovering
COMP and ELEC annotations, the network propagation methods improved
over Local by up to 0.07 and 0.13, respectively (Local median Fiyax 0f 0.8
and 0.76, respectively; Figure S2(b,c)). Integrating the STRING networks
gave only marginal improvements, with a median Fi,ax increase of up to
0.02 for COMP, and up to 0.03 for ELEC, respectively. Although we did
not test the SSN-C,SSN-Nbrs combination, this would likely be the best
approach for computing prediction scores of MF terms for a large number
of target species.

3.3 Examination of SSN-Nbrs Approach for ELEC
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Fig. 4. Comparison of Fy,ax distributions for the SSN-C+STRING-C,SSN-Nbrs
network combination for the ELEC evaluation for BP terms. (a) Scatterplot of the
difference between the median Fy,.x of FastSinkSource and GeneMANIA vs. the
median Fiax for FastSinkSource. Each point represents one species. (b) Table
comparing methods using the SSN-C+STRING-C,SSN-Nbrs approach (rows) to
Local and SinkSource on the same network combination, and to SinkSource on
the full network (columns). Each cell contains the percentage of species-term pair
Fmax Values that increase (upper-left triangle) or decrease (lower-right triangle)
when comparing a row to a column.

In this section, we examine the results for the SSN-C+STRING-
C,SSN-Nbrs approach in the ELEC evaluation in more detail. We
selected this network combination since it both accurate and efficient, as
shown in the previous section. We first investigated the improvement of
FastSinkSource over GeneMANIA. For almost all of the 175 target species
evaluated, the median Fi,ax (taken over the BP terms we considered) was
higher for FastSinkSource than GeneMANIA, with a median improvement
in the median Finax of 0.05 or higher for 17% of species (Figure 4a). When
comparing the individual species-term pairs, we found that FastSinkSource
improved over GeneMANIA (i.e., higher Finax values) 62% of the time,
whereas the reverse was true for only 22% of the pairs.
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Next, we compared each of the network propagation algorithms using
the SSN-C+STRING-C,SSN-Nbrs approach with (a) the baseline Local
on the same network, (b) SinkSource on the same network (since this
algorithm achieved the highest Finax for that combination), and (c) the
method and combination which resulted in the highest median Fax
over all ELEC evaluations (i.e., SinkSource on the full network). For the
SSN-C+STRING-C,SSN-Nbrs combination, every network propagation
method substantially improved over Local, with FastSinkSource achieving
a higher Fmax for as many 79% of species-term pairs (first column of
Figure 4b). For the same combination, FastSinkSource and SinkSource
were evenly matched, with each method surpassing the other for
34% of species-term pairs (second column of Figure 4b). The trends
were similar when comparing FastSinkSource on the SSN-C+STRING-
C,SSN-Nbrs combination with SinkSource on the full network (third
column of Figure 4b). SinkSource achieved larger Fmax values for a
greater percentage of species-term pairs than BirgRank and GeneMANIA
(second and third columns of Figure 4b). These results demonstrate that
FastSinkSource outperforms GeneMANIA in terms of prediction quality
without sacrificing accuracy compared to SinkSource.

4 Discussion

We have systematically evaluated many network combinations for large-
scale, multi-species gene function prediction. We have also developed a
highly-scalable algorithm called FastSinkSource for this task. We found
that the most accurate and scalable method is to use FastSinkSource to
pre-compute prediction scores for the genes of core species (i.e., with
experimentally validated functions) connected in a network built from
many molecular systems datasets, and then to transfer those scores to the
genes of a target species using sequence homology. The benefits of our
approach include the ability to rapidly compute scores for any number of
target species, and increasing the number of positive training examples by
pooling information in multiple organisms.

Our inability to recover the COMP and ELEC annotations with perfect
accuracy (i.e., Fimax of 1) may be due to inherent errors in these predicted
annotations (Skunca er al., 2012). Nevertheless, to further improve our
accuracy in recovering these annotations, it may be valuable to integrate
phylogenetic information (Jain and Kihara, 2018) or predicted protein
secondary structure (Zhang et al., 2018) into the multi-species networks.

Finally, while we focused on bacteria, our methods apply generally to
any set of related species. Our results point to the feasibility and promise of
multi-species, genomewide gene function prediction, especially as more
experimental data and annotations become available for diverse organisms.
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