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Single-cell RNA-seq is a tool that generates a high resolution of transcriptional data that
can be used to understand regulatory networks in biological systems. In plants, several
methods have been established for transcriptional analysis in tissue sections, cell types,
and/or single cells. These methods typically require cell sorting, transgenic plants, proto-
plasting, or other damaging or laborious processes. Additionally, the majority of these
technologies lose most or all spatial resolution during implementation. Those that offer a
high spatial resolution for RNA lack breadth in the number of transcripts characterized.
Here, we briefly review the evolution of spatial transcriptomics methods and we highlight
recent advances and current challenges in sequencing, imaging, and computational
aspects toward achieving 3D spatial transcriptomics of plant tissues with a resolution
approaching single cells. We also provide a perspective on the potential opportunities to
advance this novel methodology in plants.

Introduction

Identifying and quantifying differentially expressed genes is a primary activity of many projects
focused on generating a molecular and cellular understanding of development and responses to
internal or external factors. These studies utilize diverse experimental or environmental conditions
and are fundamental to understanding phenotypic variation in organisms. A powerful, commonly
used technology to characterize gene expression or abundance is a high-throughput, transcriptome
profiling method known as RNA sequencing (RNA-seq) [1]. This has become a useful tool to answer
fundamental questions in biology and its adoption has been accelerated because it is cost-effective and
accurate. RNA-seq also provides a rich source of data because the technique can be adapted to many
methods. For example, RNA-seq is being used to understand regulatory networks in development,
responses to stresses, etc., often via computational modeling [2]. Modeled networks are used to
predict new or additional functions for previously described genes or their products. Additionally,
gene networks can predict potential interactions among genes and their protein products, while pro-
viding a systems-level view of the molecular mechanisms of a biological process [3]. However, a more
complete understanding of these biological processes in eukaryotic organisms requires high-resolution
spatial characterization of specialized tissue domains.

The advances in RNA-seq techniques have provided scientists the tools to conduct transcriptional
analyses at a cellular resolution. This includes facilitating the study of transcriptional activity at a
single cell level, known as single-cell RNA-seq (scRNA-seq). In addition, scRNA-seq typically gener-
ates datasets that contain thousands of transcripts per cell, and that identify cell types, including tran-
scripts that are low in abundance or are previously undescribed. While this is a substantial increase in
resolution compared with a whole tissue or ‘bulk’ RNA-seq approach, the drawback with most of
these scRNA-seq technologies is that they are unable to spatially resolve the transcriptional profiles
within the context of tissues — that is, where the cell types that are expressing specific transcripts are
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located, broadly and relatively, is unclear. A method known as spatial transcriptomics accomplishes this by
resolving the location of gene expression while maintaining relevant cellular adjacencies via tissue sections
including specific cell types. The technique utilizes arrayed, barcoded capture probes to make thousands of pos-
itionally defined libraries from a single sample or tissue section [4]. Characterization of transcriptome profiles
while retaining spatial information within the tissue permits more comprehensive and contextual studies for
understanding regulatory networks. Spatial transcriptomics originated in mammalian systems and has substan-
tially improved over the last few years. While this method has also been used in plants [5], the achieved reso-
lution is not yet comparable to that in mammals — mainly, we argue, due to a lag in adoption rather than any
inherent limitations specific to plants.

A variety of methods have been established in plants that allow transcriptional analysis at the level of individ-
ual tissue sections and/or cells. Yet, in order to generate datasets with a high spatial resolution of transcripts,
the spatial context of the plant tissue is often destroyed. Transcriptional analysis experiments in plant roots are
an example of this, as there are known marker genes that allow for single-cell transcriptomic analyses in
Arabidopsis [6-9]. However, the data is mapped back to the roots through cell sorting instead of precise spatial
data. Some other methods include fluorescence-activated cell sorting (FACS) [10-12], isolation of nuclei tagged
in specific cell types (INTACT) [13], and laser capture microdissection (LCM) of tissue sections [14,15].
Alternatively, approaches like Drop-seq [16] or the Chromium system (10x Genomics) use large sets of iso-
lated, protoplast cells. While these methods have been successful, they also have inherent limitations. For
example, the FACS and INTACT methods require transgenic plants — challenging for some species.
Additionally, FACS, Drop-seq, and the Chromium system require protoplasting of cells, a method that inher-
ently reduces spatial data from the cells, while also potentially stressing the cells and causing artifacts due to
handling. LCM is laborious, can be limited in quality by the cell type, and can damage RNA. Technologies that
do offer high spatial resolution for RNA localization lack breadth in the number of transcripts characterized.
That is, one of the current best ways to obtain precise spatial data in plants is to perform fluorescent in situ
hybridization (FISH) microscopy, but this is typically performed one gene at a time, which greatly limits
throughput [17,18].

In this review, we highlight the current advances and challenges, experimentally and computationally, for
achieving 3-D spatial transcriptomics in plants, with a particular focus on how this method might approach
single-cell resolution. We also identify and discuss potentially novel opportunities to further advance spatial
transcriptomics as a final frontier in plant transcriptomics: the opportunity to acquire spatially resolved data at
single-cell resolution.

Experimental challenges

While spatial transcriptomics methods have developed and expanded in recent years, these methods come with
many challenges. These range from sample and template preparation, and RNA transfer strategies, to down-
stream computational analyses (discussed later) — all of which may require special consideration when
working with plants. First, we will describe the process of performing ‘wet lab” aspects of this technology and
its resulting challenges, before offering potential strategies and solutions to overcome these hurdles.

Resolution and space

While the newest methods of spatial transcriptomics have received attention recently, approaches to spatially
resolve gene expression in tissue sections and cells have been around for decades. Techniques such as LCM and
FISH are commonly used in plant and mammalian studies and can achieve single-cell and subcellular reso-
lution. However, the area of tissue that can be reasonably accessed, probed, and analyzed in an experiment is
relatively limited. When the microarray-based system was first introduced in 2016 for mammalian systems, the
objective was to capture larger spatial content in the tissue section, at sufficiently high resolution, to capture
data about the distribution of gene expression [4,19]. Indeed, this approach allowed numerous regions contain-
ing different tissues or cell layers to be analyzed in an experiment without prior knowledge of the genes
expressed in each represented cell type. The primary drawback of the 2016 advance was that the resolution was
limited to ~100 wm, as the arrays were composed of 100 wm circular spots with a center-to-center distance of
200 pm, making this far from single-cell resolution. While the platforms (focused primarily on mammalian
tissues) have advanced to produce significantly higher resolutions, the approach in plants has yet to be applied
beyond the original 100 wm platform [5]. One reason that the technology has lagged for plant applications
compared with mammals is related to the cell wall. The majority of high resolution, spatially resolved methods,
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including Slide-seq [20] and High Definition Spatial Transcriptomics [21], would likely require protoplasting,
an approach not readily achieved in some plant systems, but is required for both capture methods which use
beads instead of probes.

To achieve single-cell, spatial transcriptomics in plants, a potential approach is to continue to increase the
resolution of the microarray-based approach (i.e. smaller spots, more densely spaced). The microarray approach
is being commercialized by 10x Genomics using smaller printed spots, called Visium Spatial Gene Expression,
with a spot size of 55 pum, and a 100 wm center-to-center distance between capture probes [22]. While Visium
has yet to be used on plant tissues (no data are reported, as this is written), it is likely to be applicable as the
protocols are similar to the existing 100 pm resolution technology [23]. Conceivably, the development of an
instrument that can synthesize more densely packed microarrays with high fidelity oligo probes would be key
to production of a platform for highly spatially resolved transcriptomics in plants.

Preparation of tissue sections

Plant cells have some unique challenges for transcriptional analysis, including the nature of certain cellular
structures, such as the cell wall, vacuole, and chloroplasts [24]. Additionally, plant tissues often contain apo-
plastic pockets of air that can lead to problems in cryosectioning. Furthermore, if the target tissue is leaves,
inherent curvature results in the requirement of more sections to completely capture the tissue volume (i.e.
adaxial surface to abaxial surface). Lastly, the thickness of the section needs to be considered. Most spatial tran-
scriptomics methods, both in plant and mammalian systems, use tissue sections with a thickness ranging
between 10 and 20 pwm [20,23]. Since plants have walled cells with complex structures, sections that are too
thick could potentially lead to reduced mRNA release or capture while sections too thin are prone to sectioning
artifacts or simply low transcript levels. Moreover, the large central vacuole of plant cells restricts cytoplasmic
RNA to a thin, peripheral cytoplasmic strip that may be problematic depending on its orientation relative to
the array surface.

There are some possible solutions to these challenges. For example, the approach typically used for leaf or
root tissues is to apply a cryo-compatible embedding medium to encapsulate the plant structure [23]. The
embedding medium provides a solid matrix to provide support and improve cutting properties. Therefore,
applying an additional thin layer of this embedding medium onto the specimen before cryosectioning will
better maintain the morphology and improve section quality [23]. Enzymatic improvements could also facilitate
removal of the cell wall [23]. Additionally, modifications to imaging and RNA capture procedures could serve
as solutions to the challenges of tissue preparations as outlined in the following sections.

Imaging

Imaging is a key part of spatial transcriptomics. The function of barcoding individual spots in a large array for
transcriptional analysis is to match the captured mRNA to corresponding and specific plant tissue structures (i.
e. meristem, epidermis, vascular tissue). In the simplest form, plant cell walls and boundaries can be delineated
in unstained samples using standard brightfield light optics, or further enhanced with stains such as toluidine
blue [23] or hematoxylin and eosin [19]. In some instances, autofluorescence (i.e. chloroplasts or cell walls)
could be leveraged to provide positional information or indicate cellular type or status. Moreover, imaging can
be effectively used to assess the quality of sections and the retention of targets. The release of plant material
can be assessed by inclusion of fluorescent nucleotides during cDNA synthesis [19,23]. Imaging can also be
used to visualize array spots that are labeled by hybridization of fluorescently-labeled probes. Additional spatial
targeting could be achieved by the selective expression of genetically encoded fluorescent proteins in plants
and/or associated microbes. Regardless of the contrasting method, larger tissue sections will require multi-
image montage maps and fiducial reference points that serve to register to the fluorescently-labeled spot arrays
[19] and their respective cells/tissues and accordant transcripts. Ideally, for 3D transcriptomics, each imaged
serial section must be registered to its corresponding address. Optimization of the quality of the upstream
sample and sectioning will aid significantly in the downstream data processing and visualization. However,
moderate section-to-section distortion and compression artifacts are practically not avoidable but can be
addressed with non-linear transformation and image alignment tools [25].

RNA capture

An advantage of spatial transcriptomics technologies is the ability to use barcoded oligo probes to capture RNA
from fresh-frozen tissue. To briefly explain this process, the section is placed on a microarray coated with
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reverse transcription oligo(dT) primers, with each spot having a unique barcode (Figure 1). After fixing and
imaging the sample on the array, the mRNA is released from the cells, captured by the oligo probe via its
polyT tail, and reverse transcribed into cDNA before subsequent elution and use for library preparation and
RNA-seq. The resulting gene expression data are mapped back to specific locations within the tissue section via
the barcodes embedded within the array. As previously mentioned, releasing mRNA from plant cells has the
added difficulty due to a physical barrier — their cell walls. Therefore, a cocktail of enzymes that specifically
hydrolyzes the components of cell walls must be used and has been demonstrated to work [5,23]. However,
plants also possess secondary metabolites that can form complexes with the released mRNA [26]. This, com-
bined with the need for harsh enzymes to break the cell wall, potentially limits the efficiency of RNA capture.
While this can be overcome by adding chemicals (i.e. poly 1-vinylpyrrolidone-2) [23], another potential solu-
tion is to force the released transcripts immediately down towards the slide surface where they can be captured
by the oligo probes, perhaps via electrophoresis, to increase the RNA capture efficiency. This method could
operate similarly to tissue printing methods in plants [27]. Nevertheless, additional modifications to the proto-
col would be needed for this theoretical approach to be successful in practice.

Computational challenges

The study of transcriptional activity and gene regulatory networks in plants using RNA-seq technologies has
heavily relied on computational algorithms and bioinformatics tools. Typically, millions of short RNA reads are
processed to remove sequencing adapters and low quality reads before being mapped to known reference gene
transcripts to quantify individual gene expression. Depending on the experiment, an appropriate statistical
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Figure 1. Microarray and oligo design.

(A) Tissue section from a leaf sample of N. benthamiana is fixed and placed on a microarray with gridded, barcoded spots. The
section is processed to permeabilize the cellular material, and convert the mRNA to cDNA (not shown). (B) Millions of
oligonucleotide probes are found at each spot on the microarray, and used to capture cDNA from the tissue section. Each
probe sequence consists of a spot-specific barcode followed by a unique molecular identifier (UMI); the PCR handle includes
the sequences necessary to amplify and sequence the RNA-seq library. Created with BioRender.com.
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method is applied to normalize gene expression counts for effective comparison across samples so that any
variation in sequencing depth, sample size and batch effects are neutralized. Finally, differentially expressed
genes are identified using computational methods [28-32] by comparing samples across developmental stages,
stress response or disease progression over time, etc. The core computational and analytical strategies to study
whole transcriptomes of both mammalian and plant species using bulk RNA-seq have been well established
over the past several years [33,34].

The recent advent of scRNA-seq technologies has allowed the study of transcriptional activity at a much higher
resolution, including at the cellular or even subcellular levels when combined with in situ hybridization or
sequencing. While this provides exciting new opportunities, it also presents new computational challenges [35].
The goal of spatial transcriptomics is to combine spatial context with cellular transcriptomics to enable the visual-
ization of the variation of gene expression across cells in a tissue section, to see where the identified cell types are
spatially located within the section, and to gain a better visual understanding of the regulatory networks at play
in a region of interest based on the gene expression of interacting cells [36]. Given the high resolution of
scRNA-seq and spatial transcriptomics, several computational challenges of scRNA-seq extend to spatial tran-
scriptomics, with the additional aspect of visualizing and correlating expression trends across spots to the tissue
images in the latter. Once the resolution of the spots is at or below the size of plant cells, the method may gener-
ate scRNA-seq data that are spatially resolved. In this section, we outline some of the computational challenges
that apply to both scRNA-seq and spatial transcriptomics, and highlight potential solutions.

Data processing

A major step in single-cell methods is data processing, which involves mapping reads back to cells and deter-
mining the nature of the cell based on those reads. In the Drop-seq method [16] for scRNA-seq,
DNA-barcoded microbead particles or oligo probes consisting of millions of primers coded with a unique cellu-
lar barcode followed by a UMI (unique molecular identifier) are used to capture the mRNA molecules from
dissociated single cells. For spatial transcriptomics, a microarray-based method [4] adapted this approach to
capture mRNA molecules from 100 um ‘spots’ (instead of dissociated single cells) gridded with 200 pm
center-to-center spacing on an array that is fixed with tissue sections, by replacing the cellular barcode in the
oligo primers with a spatial barcode that uniquely maps back to the X-Y locations of the spots (Figure 1). More
recently, the Slide-seq method [20] achieved higher resolution (10 wm tissue regions) by using spatially bar-
coded microbeads packed across a slide (termed ‘puck’) instead of the microarray. The rationale in these
spatial transcriptomics methods is that the mRNA molecules can be traced back to each gene in each spot (or
spatial bead in case of Slide-seq) in the tissue by using (a) the spatial barcode to distinguish the location of dif-
ferent spots and (b) the UMI to differentiate molecules within the same spot. UMIs are helpful in removing
sequencing biases during the PCR amplification step. Typically, for data generation, paired-end sequencing is
done with the first read of the pair coinciding with the spatial barcode and UMI part of the primer, while the
second read captures the cDNA of the gene transcript (Figure 2A).

After obtaining paired-end reads of the array-captured cDNA, one can estimate transcript abundances for
each gene, comparing across spots in a specific region of the sectioned tissue. To determine these abundances,
the workflow involves the following steps: (i) standard RNA-seq cleanup to remove sequencing adapters and
low quality reads, (ii) deconvolution of the reads and grouping by spatial barcode, (iii) map the cDNA reads to
reference gene transcripts and estimate gene expression by counting UMIs per spot per gene, (iv) normalize
gene expression by total reads per spot, and finally, specific to spatial transcriptomics (v) map the spatial
barcode and associated set of genes to a cell or location based on the microscopy image of the tissue section to
assign it a ‘real’ physical location. The final output from steps (i-iv) is a gene expression table, with columns
representing spatially oriented spots and rows representing genes (Figure 2A). This can be achieved using the
Cellranger pipeline by 10x Genomics, with the exception of assuming a spatial barcode in place of a cell
barcode, or it can be achieved by the ST pipeline [37], as previously used in plants [5]. However, for step (v),
which involves visualization of these spots and gene expression on a tissue image, there are limited tools cur-
rently available, particularly to create a Z-stack of 3D abundances by overlaying the 2D slices and assigning
X-Y-Z coordinates within the plant tissue. We discuss this issue in further detail below.

Dealing with inherent noise

The next step after obtaining the gene expression table is to cluster the data based on gene expression profiles
across cells or spatial positions. This identifies subpopulations of cell types or regions with similar expression

© 2021 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society and the Royal Society of Biology 5



PORTLAND Emerging Topics in Life Sciences (2021)

PRESS

https://doi.org/10.1042/ETLS20200274

A
Spatial Spatially barcoded spots
barcode UMI cDNA from gene transcript >
[ — ) | TTGATACTACAT || GTAGATCTAGTA | CAGATGATCACC | GATGATACTATA | AGAATGTTAGAT |
Gene-1 0 6 2 0 0
L iz Gene-2 12 1 0 0 0
&l S Gene-3 0 2 4 0 0
R1 1 R2 Gene-4 o o 2 o 5
—
R1 R2 Gene-5 o 1 o 4 2
Gene-6 6 0 0 3 7
R1 R2 Gene-7 o 0 0 0 0
R1 Pr— R2 Gene-8 5 2 0 0 0
R1 R2 Gene-9 o 0 4 2 0
B C D
nCount_RNA nCount_RNA
80000 .
30
60000
40000 20
oY
20000 &
o 10
7]
g (=
[}
6‘*‘\* p & &\* 9\* IE 0
ercent.mito =)
pereent -10
100
75 -20
50
-30
25

-30 -20 -10 0 10 20 30
Dimension-1

Figure 2. Summary of computational challenges.

(A) Data processing: involves deconvolution of paired-end reads by the spatial barcode, mapping the cDNA reads to reference
gene transcripts, and finally creating a gene expression table with columns representing spatial spots and rows representing
genes. (B) Dealing with inherent noise: Thresholds are established to remove spots with too low and too high RNA, given by
nCount_RNA that reflects number of UMIs per spot (top panel) and spots with a very high percentage of mitochondrial reads,
given by percent.mito (bottom panel). Violin plots showing distribution of spots (black dots) in two samples (different by color)
before and after removing noisy data. (C) Dimensionality reduction and clustering: After removing noise, spots are clustered
based on gene expression levels using dimensionality reduction and clustering techniques such as t-SNE or UMAP. (D)
Visualization of spatial expression maps: Using the spatial barcodes the clustered spots are mapped back to the physical
spots on the tissue. Not shown: Z-stacks of tissue sections would be reassembled to create 3D spatial maps of the
transcriptome. Created with BioRender.com.

trends. However, there are challenges unique to scRNA-seq or spatial data that can seriously compromise clus-
tering and downstream functional characterization. One such challenge is inherent noise. Noise in scRNA-seq
or spatial data is both technical and biological. From a computational perspective, technical noise in spatial
data results from ‘spatial dropouts’ (spots with low capture efficiency that increase at higher resolution), intrin-
sic variation between spots covering partial cells versus spots covering multiple cells, spots with highly expres-
sing ribosomal genes or mitochondrial RNA, variation in sequencing depth, and experimental batch effects.
Biological noise arises from transient cell states, cell-cycle variation, and cell heterogeneity. For accurate cluster-
ing of the cells, it is important to remove noise and reduce the feature set to the most informative genes [38].
One way to address this is to model the technical variation in the data and establish thresholds to remove cells
or spots with either very low RNA or very high RNA, as well as those with a high percentage of mitochondrial/
ribosomal genes (Figure 2B). Another way to reduce noise is to smooth the gene expression values of each spot
by averaging these with those of its adjacent spots [39,40]. Expression of spike-in control molecules can be
used for normalizing read counts and addressing variation in sequencing depth [41]. PCA-regression-like
approaches can be used to remove confounding factors such as batch effects, and it has been shown that vari-
ability due to cell-cycle phase can be accounted for by using a Gaussian-based linear regression approach [42].
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R or python packages such as Seurat [43], Scanpy [44], and Scater [45] have been developed particularly to
analyze large-scale scRNA-seq data and to provide tools to remove the inherent noise, and they can also be
applied to high-resolution spatial transcriptomics data.

Dimensionality reduction and clustering

ScRNA-seq generates high-dimensional data due to the large number of genes assayed across individual cells.
After removing technical noise and reducing the feature set to the most informative genes, computational strat-
egies may be applied to reduce the data to a lower dimensional space, at which point unsupervised clustering
(grouping cells based on gene expression profiles) is performed (Figure 2C). With complementary biological
annotation gathered from cell atlases and cell ontologies, one can identify and characterize new cell types from
the clustering results. Several clustering strategies have been well documented and are widely adopted to
analyze scRNA-seq data [35,38] including in plant studies [46]. t-SNE [47] and UMAP [48] are the two most
commonly used techniques for nonlinear dimensionality reduction and clustering of scRNA-seq data. In the
case of high-resolution spatial RNA-seq data, one could similarly carry out unsupervised clustering of spatial
features (as dissociated single cells) and later correlate clusters with spatial regions in the tissue. Some of these
computational methods for dimensionality reduction and clustering are available in the Seurat v3 R package
[49] with support for spatial transcriptomics data as well.

Visualization of spatial expression maps

The primary advantage of spatial transcriptomics is the ability to visualize gene expression dynamics within the
2D spatial contours of a section of plant tissue. Visualization in 3D space can be achieved by stacking multiple
2D tissue sections. This then entails the challenge of correlating gene expression data from array spots defined
by X-Y-Z coordinates (derived from the spatial basis of the 2D approach and then overlaid to create a Z-stack
of 3D abundances) with microscopy-based 3D array imaging of the plant tissue. To achieve this correlation, it
is first important to establish virtual or physical ‘fiducials’ on the spatially barcoded arrays used to physically
orient and align the array to the microscopy image. A simple example of a physical fiducial could be an empty
area in the top left corner of the array [4]. Secondly, the correlation itself can either be done manually using
imaging softwares such as Adobe Photoshop [5] or using ST Spot Detector, a computational tool developed
specifically to analyze spatial transcriptomics imaging data [50]. ST Spot Detector can overlay gene expression
data, defined by spatial coordinates, on a high-quality tissue image. Once the ‘real’ spatial context of gene

Table 1 Challenges, solutions and outcomes of spatial transcriptomics in plants

Challenge Possible solution Outcome
Experimental Current resolution in plants is Increase the resolution of the A platform that provides
limited at 100 pm microarray-based approach by single-cell resolution in
adding smaller spots that are plants
densely spaced
Nature of plant cells and tissue Apply a cryo-compatible Better support and
makes it difficult prep the tissue embedding medium to improved cutting
for sectioning encapsulate the plant structure properties; morphology of
the tissue sections is
maintained
Components of cell wall limits Push the released mRNA down Increased RNA capture
the efficiency of RNA capture towards the probes through efficiency
electrophoresis
Computational Biological/Technical noise when Model the technical variation in the Reduced noise that allows

handling high resolution data

Correlating gene expression
data from array spots with
microscopy-based 3D imaging
of the plant tissue

data and establish thresholds to
remove cells or spots with either
very low/high RNA content
Establishing virtual/physical
fiducials on arrays; manually
correlate gene expression or using
established analysis tools (i.e. ST
Spot Detector)

for large scale, high
resolution spatial data to be
analyzed

Ability to analyze single-cell,
spatial transcriptomics in
3D context
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expression across cells is resolved, one can proceed to visualize spatial expression maps of particular genes of
interest, view the differentially expressed genes in a specific region and visually locate the cell types on the
tissue that are clustered together (Figure 2D). Computational tools such as ST viewer [51] can also help with
these visualizations. Trendsceek [52] will identify spatial expression trends of significant genes including hot-
spots, step or linear gradients, and streaks; this is based on a statistical method using marked point processes,
in which points represent the spatial location of cells and marks on each point represent expression levels. It is
also worth noting that computational methods such as NovoSparc [53] attempt to reconstruct de novo spatial
positioning from dissociated scRNA-seq data, based on assumptions that cells in proximity show higher simi-
larity in expression than cells farther apart. However, most of the approaches discussed above are currently
known to work with 2D spatial data and will need to be extended and improved to analyze spatial transcrip-
tomics data in 3D space at a single-cell resolution.

Conclusion

The future is promising for advances in transcriptomics, particularly with the development of a new generation
of methods that map gene expression on tissues and organs. These advances, collectively representing the
method known as spatial transcriptomics, will allow the 3D reconstruction of potentially cellular-level variation
in gene expression in multicellular organisms. There are a number of technical challenges yet to be overcome,
including for both experimental and computational aspects of the approach (Table 1). Validation of the result-
ing data will require methods of equally high spatial resolution; the most promising are in situ hybridization
techniques for RNA, as these are now optimized for plants [18]. In situ methods have both sequence specificity
and, using super-resolution microscopy, the power to localize and quantify RNAs within individual cells [18].
Therefore, in our opinion, spatial analysis of gene expression, at a single-cell resolution and reconstructing 3D
organs or tissues, is the final frontier in RNA-seq analysis — and one that we are on the cusp of achieving.

Summary
e Spatial transcriptomics is an emerging technology that allows for gene expression data to be
spatially resolved in plant systems.

e Advancing spatial transcriptomics in plants to a single-cell resolution platform will require
overcoming several obstacles within wet lab techniques and computational analysis.

e |mplementing improvements in the methodology for spatial transcriptomics in plants will help
achieve the ultimate goal of having plant systems with complete, spatially resolved gene
expression at single cell resolution.
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