
Vol.:(0123456789)1 3

The Journal of Membrane Biology 
https://doi.org/10.1007/s00232-020-00151-0

Towards a Quantitative Understanding of Protein–Lipid Bilayer 
Interactions at the Single Molecule Level: Opportunities 
and Challenges

Gavin M. King1,2 · Ioan Kosztin1

Received: 14 September 2020 / Accepted: 4 November 2020 
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract 
Protein–lipid interfaces are among the most fundamental in biology. Yet applying conventional techniques to study the bio-
physical attributes of these systems is challenging and has left many unknowns. For example, what is the kinetic pathway 
and energy landscape experienced by a polypeptide chain when in close proximity to a fluid lipid bilayer? Here we review 
the experimental and theoretical progress we have made in addressing this question from a single molecule perspective. 
Some remaining impediments are also discussed.

Graphic Abstract

Introduction

Certain polypeptide chains freely partition into lipid bilayer 
membranes and form stable structures therein. Unraveling 
the mechanism by which this fundamental biological pro-
cess occurs has fascinated researchers for decades. Indeed, 
a significant knowledge base has accumulated on the topic 
(Almeida 2014; Bowie 2005; Cymer et al. 2015; Fleming 
2014; Marinko et al. 2019; Phillips et al. 2009). In semi-
nal work in the field, Wimley and White studied a series 
of model peptides as they interacted with lipid bilayers 
(White and Wimley 1999; Wimley and White 1996). Their 
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bulk equilibrium measurements employed host–guest pen-
tapeptides of the form Trp-Leu-X-Leu-Leu with cen-
tral “guest” position X representing a variable amino acid. 
These short protein segments spotlight the effect of peptide 
primary structure and allow differential comparisons of the 
free energy of transfer from solution to the bilayer interface, 
∆G. The Wimley–White data set constitutes one of the most 
widely utilized hydrophobicity scales in biophysics.

Despite the importance to the field, bulk equilibrium 
measurements obscure the rich asynchronous dynamics that 
underlie polypeptide partitioning and folding in membranes. 
This has left significant questions unanswered including the 
following: What are the energy landscape and the kinetic 
pathway(s) underlying a peptide–lipid interaction? Further, 
is it possible to lift the degeneracy between certain amino 
acids with identical ∆G’s [e.g., pentapeptides with X = Ser 
and X = Thr have ∆G values identical to within measure-
ment uncertainty: 4.12 (± 0.07) and 4.11 (± 0.03) kcal/
mol at pH 8, respectively (Wimley and White 1996)]? More 
generally, can membrane protein folding be understood at 
the single amino acid level? Computer simulations have shed 
light on some of these questions, but experimental and theo-
retical approaches are needed to validate such simulations 
(Aliste and Tieleman 2005; Chen et al. 2020; Gumbart et al. 
2005; MacCallum et al. 2008; Mori et al. 2016; Pogorelov 
et al. 2014; Ulmschneider et al. 2011; Wang et al. 2014).

Energy landscapes (Fig. 1) provide a theoretical frame-
work to understand how stable biomolecular structures 
emerge (Onuchic et al. 1997). Single molecule experimental 
methods are well suited for reconstructing such landscapes 
and have been applied to a number of systems including 
nucleic acids and proteins (Woodside and Block 2014). 
Though usually collapsed along a one-dimensional reaction 
coordinate and hence over-simplified, reconstructing an 
energy landscape can yield important insights. For exam-
ple, when comparing lipophilic peptides, it may be possible 
to resolve differences in intrinsic off rates (koff), distances to 
the transition state ( Δx‡ ), or transition state barrier heights 
( ΔG‡ ) that are not currently accessible. Precisely defining 
these quantities would not only provide a more detailed 
understanding of how polypeptide chains interact with lipid 
bilayers, but also improve predictive power.

It is important to note that the energy landscape drawn in 
Fig. 1, though a good starting point for discussion, depicts 
a simple scenario in which a peptide is either bound to the 
membrane in a single bound-state orientation or free in solu-
tion. A single association/dissociation pathway connects 
these two states in the drawing. The true situation is almost 
certainly more complicated. There are likely to be many 
intermediate states with multiple pathways interconnecting 
them. Additionally, membrane-induced secondary structure 
is common. Polypeptide chains, such as the bee-venom pep-
tide melittin, lower the energetic cost of partitioning peptide 

bonds by adopting amphipathic alpha-helical structure when 
in contact with membrane (Guha et al. 2019; Ladokhin and 
White 1999; White et al. 2001). An underlying stochastic 
driving force adds further complications (Serdiuk et al. 
2016; Shibata et al. 2010). This motivates the development 
of a theoretical framework that can handle these complexi-
ties and describe the kinetic pathways and detailed energy 
landscape that quantitatively characterizes peptides in the 
vicinity of lipid bilayers (Utjesanovic et al. 2019).

Several experimental methods have been used to probe 
energy landscapes underlying protein–fluid lipid bilayer 
interactions at the single molecule level including opti-
cal trapping microscopes, magnetic tweezers, and atomic 
force microscopy (AFM) (Desmeules et  al. 2002; Ma 
et al. 2017; Min et al. 2015; Schwierz et al. 2016). As 
expected, each method comes with its own advantages and 
drawbacks. Though extremely sensitive probes of force, 
optical and magnetic methods employ beads that exhibit 
large spatial fluctuations and are approximately two orders 
of magnitude larger than the apex region of an AFM tip 
(Fig. 2). When functionalized, the sharp needle-like geom-
etry of an AFM tip, coupled with the translational and tor-
sional constraints imposed by the cantilever, can limit the 
number of polypeptide chains available to participate in 
the interaction with a bilayer. An additional distinction is 

Fig. 1   Sketch of an energy landscape underling peptide–lipid inter-
actions. A model free energy barrier (pathway) connecting the inter-
facial bound state and the dissociated state of a peptide is shown. 
Energy is plotted as a function of reaction coordinate which is taken 
to be distance along the membrane normal direction. Bulk equilib-
rium experiments yield ΔG . In principle, single molecule measure-
ments can yield the height ( ΔG‡ ) and distance ( Δx‡ ) to the transition 
state, as measured from the association, A, and dissociation, D, side 
of the barrier, respectively. For lipophilic peptides, it is reasonable to 
assume that ΔG‡

A
≪ ΔG

‡

D
 (otherwise spontaneous partitioning of the 

peptide into the membrane would be a rare event) and, therefore, ΔG‡

D
 

is a good (upper-bound) approximation of ΔG . Kinetic information 
such as the intrinsic off-rate in the absence of force, koff, is also acces-
sible via single molecule force spectroscopy



Towards a Quantitative Understanding of Protein–Lipid Bilayer Interactions at the Single…

1 3

that bead-based methods generally require the use of long 
polymer handles or linkers. Linkers commonly comprise 
>1000 base pair nucleic acid chains (>300 nm contour 
length) to which polypeptide chains are attached (Ma et al. 
2017; Min et al. 2015; Perkins 2009). The added com-
pliance of long linkers convolutes the measurement and 
fundamentally reduces spatial–temporal precision (Cos-
sio et al. 2015; Walder et al. 2018). In contrast, linkers 
used in AFM measurements can be much shorter (<10 nm) 
or even non-existent. Indeed, affixing individual proteins 
directly to AFM tips via nonspecific interactions is typical 
when studying 2D crystalline arrays of membrane proteins 
such as bacteriorhodopsin (Oesterhelt et al. 2000; Yu et al. 
2017).

Peptide–lipid interactions take place in very close prox-
imity to and within an extremely thin membrane. Hence, 
when comparing instrument capabilities, a critical metric is 
positional noise in surface normal direction. The mechani-
cal restoring force inherent in AFM measurements gives 
rise to stiffness (typical kAFM ~ 10 pN/nm) that is substan-
tially larger than that of an optically trapped bead (typical 
koptical ~ 0.1 pN/nm) (Bustamante et al. 2000). For objects in 
harmonic potentials such as AFM tips and optically trapped 
beads, increasing the stiffness, k, leads to lower positional 
noise as dictated by the equipartition of energy 

⟨

x2
⟩

=
kBT

k
 , 

where 
⟨

x2
⟩

 is the positional variance, kB is Boltzmann’s con-
stant, and T is absolute temperature. The lower positional 
noise for AFM, sketched schematically by the arrows in 
Fig. 2b, not only reduces the requirement of signal aver-
aging but also minimizes the potential of unintended ther-
mally driven contact between the probe and the lipid bilayer 
surface. Historically, AFM has exhibited lower force preci-
sion and force stability than optical and magnetic methods, 
but recent advances have narrowed these gaps significantly 
(Churnside and Perkins 2014; Churnside et al. 2012; King 
et al. 2009; Walder et al. 2018). The current generation of 
high-precision biological AFM technology has a desirable 

set of attributes for probing peptide–lipid bilayer interactions 
at the single molecule level.

We sought to build a foundation for a more quantitative 
understanding of peptide–lipid interactions at the single 
amino acid level. Here we discuss experimental and theo-
retical progress our group has made along these lines (Matin 
et al. 2017, 2020; Utjesanovic et al. 2019). Our approach 
involves coupling high-precision (<1 pN) AFM-based 
dynamic force spectroscopy with theoretical modeling. The 
locus of a peripheral membrane protein–lipid bilayer interac-
tion underling the activity of the general secretory (Sec) sys-
tem of E. coli was used as a model system (Crane and Ran-
dall 2017). In particular, we studied the extreme N-terminus 
of SecA, the critical ATPase of the Sec system. Researchers 
have constructed a variant of SecA with the N-terminal seg-
ment deleted and replaced with a histidine tag. This SecA 
mutant did not support translocation in assays using stand-
ard proteoliposomes. However, when proteoliposomes were 
made with Ni–NTA-functionalized lipids, allowing a direct 
tether between the SecA mutant and the lipid bilayer surface, 
translocation of precursor protein was restored (Bauer et al. 
2014). Hence, we focused on the extreme N-terminus of 
SecA, the lipophilic activity of which directly couples to 
protein export function in E. coli.

Experimental Approach

Probing protein–fluid lipid bilayer interactions at the single 
molecule level is a challenging endeavor that requires careful 
attention to the biological system as well as to the experi-
mental technique employed. By their nature, peripheral 
membrane proteins bind to membranes, dissociate, and then 
often rebind as the cycle repeats. Such reversable associa-
tion/dissociation from a membrane is amenable to study via 
AFM-based single molecule force spectroscopy (Fig. 3a). 
In contrast, integral membrane proteins do not reversibly 

Fig. 2   Comparison between single molecule measurement tech-
niques. a Cross-section of a typical bead used in an optical trapping 
microscope (rBead ~ 1 μm). For comparison, the apex region of a typi-
cal AFM tip (rAFM ~ 10 nm) is overlaid. b AFM cantilevers are stiffer 

than optical traps, leading to lower amplitude positional fluctuations 
when exposed to a room temperature thermal bath, as indicated. The 
4 nm thickness of the lipid bilayer serves as a natural scale bar for the 
comparison
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unbind from membrane under natural conditions, with a 
handful of exceptions (Kyrychenko et al. 2012; Ladokhin 
and Haigler 2005; Ladokhin et al. 2004; Reshetnyak et al. 
2007). Forced dissociation of highly hydrophobic polypep-
tide chains can lead to artifacts such as pulling of lipid mol-
ecules from the membrane surface. Once dissociated from 
the bilayer, lipids can adhere to the functionalized tip, pre-
venting reversibility (Andre et al. 2007).

SecA is a critical peripheral membrane protein that drives 
translocation of precursor proteins across the cytoplasmic 
membrane of E. coli. As the central ATPase of the Sec sys-
tem, SecA is involved with nearly all steps of protein export. 
It forms a complex with precursor protein in the cytosol, 

binds the cytoplasmic membrane at the translocon SecYEG, 
undergoes ATP binding and hydrolysis, and then dissociates 
back into the cytosol where the cycle can begin again (Crane 
and Randall 2017).

Of particular interest is the SecA–lipid bilayer interac-
tion (Fig. 4, dashed rectangle). It is known that the extreme 
N-terminal segment of SecA binds directly to lipid, an 
important event underling Sec system activity (Bauer et al. 
2014; Roussel and White 2020). As a starting point to under-
stand this complex system, we studied the first 10 N-terminal 
amino acids of SecA (SecA2-11: Leu-Ile-Lys-Leu-
Leu-Thr-Lys-Val-Phe-Gly) interacting with a single 
component zwitterionic lipid bilayer [1-palmitoyl-2-oleoyl-
glycero-3-phosphocholine (POPC)] using precision AFM-
based dynamic force microscopy (Churnside et al. 2012; 
Matin et al. 2017, 2020; Utjesanovic et al. 2019). Peptides 
were synthesized with a C-terminal cysteine, enabling site-
specific covalent linkage to the AFM tip through a ~9.5-nm-
long flexible hydrophilic linker [24 ethylene oxide (PEG) 
subunits] (Zimmermann et al. 2010). This short linker mini-
mizes interactions with the surface of the AFM tip while 
allowing multiple binding orientations in the bilayer. Sup-
ported lipid bilayers were formed via vesicle fusion on clean 
glass surfaces, mimicking the cellular membrane (Sackmann 
1996). Figure 3b shows representative peptide–lipid interac-
tion traces.

Several experiments are warranted to bolster confidence 
in the experimental approach and in its quantitative inter-
pretation. First, to evaluate specificity of the interactions, 
we mimicked the final experimental design, but with pep-
tide omitted. Specifically, we examined tips functional-
ized with NHS-PEG-maleimide-Cys as they interacted 
with glass-supported POPC lipid bilayers. This produced 
13 dissociation events (>5 pN) out of 500 attempts with 
5 distinct tips (Fig. 5a) (Matin et al. 2017). No association 
interactions (>5 pN) were observed (data not shown). The 
results indicate that all association events arise from specific 

Fig. 3   Overview of AFM-based force spectroscopy experiment. a 
A functionalized AFM tip approaches and then retracts away from a 
supported lipid bilayer. The velocity of the base of the AFM canti-
lever and its equilibrium position are indicated with blue arrows and 
dashed gray lines, respectively. Association interactions between 
the peptide (red) and the bilayer are recorded during approach. Pep-
tide–lipid dissociation events are observed while retracting. b Force 
spectroscopy data (force versus tip-sample separation distance) show-
ing an individual association event (upper curve, purple asterisk). A 
dissociation event is shown in the lower curve (red asterisk). Such 
events are extracted from force versus time traces, F(t), that have been 
converted into force versus position, F(z). These data are then aggre-
gated into histograms for further analysis. Data adapted from (Matin 
et al. 2017)

Fig. 4   SecA interactions at the membrane. We focused on the N-ter-
minal SecA–lipid bilayer interaction which is a critical step underly-
ing protein transport in E. coli 
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peptide–lipid interactions and there is a low propensity (<3 
%) for non-specific dissociation events (Matin et al. 2017). 
Next, we tested for lipid adhesion to the tip upon peptide 
dissociation from the bilayer, as has been reported in other 
systems (Andre et al. 2007). To evaluate this, we compared 
the very first force curve acquired with a freshly functional-
ized SecA2-11 tip with subsequent force curves using the 
same identical tip (Fig. 5b). Based on the good overall agree-
ment between the first force versus distance curve and all 
of the subsequent curves, lipid adhesion to the tip for this 
peptide–lipid system can be ruled out.

We also carried out experiments to verify that specific 
changes in peptide geometry alter the force spectra in pre-
dictable ways. In addition to the core SecA2-11 sequence, 
peptide constructs with nearly identical chemical compo-
sition, but with differing geometry were synthesized: two 
copies of SecA2-11 linked in series, and two copies in paral-
lel. The data indicate (Fig. 6) that lipid bilayer partitioning 
interactions of peptides with differing geometry can be dis-
tinguished. The 2D density plots show height versus dissoci-
ation force (Fig. 6, top row) or association force (Fig. 6, bot-
tom row) with supported POPC bilayers. We note that height 
is defined as the position of the tip apex above the bilayer 
when the dissociation or association event occurred. Both 
of the dimeric constructs (i.e., series and parallel) exhib-
ited a population of dissociation events at approximately 
the same location in position-force space (~4 nm, ~18 pN) 
as the single copy peptide (Fig. 6, Top row). This was the 

only prominent population observed for the monomeric 
construct. In contrast, the dimeric series construct exhib-
ited a bimodal position-space distribution with a second and 
more pronounced population centered at similar force, but 
at a higher position above the bilayer. MD simulations sug-
gested that the population of events at the lower position 
(~3.8 nm) is likely due to a compact conformation of the 
series peptide (Matin et al. 2017). The parallel construct, in 
contrast to both single copy and series, exhibited a long tail 
of dissociation events extending well beyond 50 pN. This 
tail contained a significant fraction of the total population 
(40%) and appeared likely to be associated with pulling of 
lipid molecules from the bilayer surface (Stetter et al. 2014; 
Wieland et al. 2005). Indeed, control experiments with lipid 
bilayers comprising the same PC head groups, but rigidified 
with photo-polymerized tail groups, provided evidence that 
this was likely occurring with the parallel dimer construct 
(Fig. 7). 

One may intuitively expect that higher dissociation forces 
would be required for the dimeric peptide constructs because 
the number of hydrophobic residues is twice of that of the 
monomer. However, the interaction of the dimeric constructs 
was not additive with respect to the monomer, consistent 
with other work (Ladokhin and White 2001). Rather, the 
data indicated that intra-peptide interactions occurring 
within the dimeric series construct were competing with 
the bilayer. This resulted in the parallel dimer being sig-
nificantly more lipid-active than the series. In particular, an 
approximate fivefold greater probability of bilayer associa-
tion, A, was observed for the parallel construct compared to 
the series (Fig. 6, Bottom row). To summarize, prominent 
signatures in the force spectra mapped to specific peptide 
geometries. These results engender confidence in the overall 
experimental approach.

Recently, we extended the methodology to bilayers com-
prising E. coli polar lipid and probed the locus of this critical 
SecA–lipid interaction in near-native conditions. Repeated 
mechanical dissociation of (single copy) SecA2-11 from 
supported E. coli polar lipid bilayers generated dissociation 
force histograms, also known as rupture force distributions, 
P(F). An example P(F) for 50 nm/s pulling speed is shown 
(Fig. 8a). Theoretical modeling revealed several interesting 
features in a complex energy landscape. By modeling the 
dissociation process as a diffusive escape over an energy 
barrier, the dissociation force data were connected to kinetic 
parameters. Four dissociation pathways were needed to 
model the experimental data, two “single” pathways and two 
“double” pathways (see “Theoretical Approach” section for 
details). To constrain the fits, energy landscape parameters 
ΔG‡ and Δx‡ were estimated from molecular dynamics simu-
lations and held fixed, but this is not a hard requirement. 
Alternatively, ΔG‡ and Δx‡ can be used as fitting param-
eters (Matin et al. 2017). Catch bond behavior was evident at 

Fig. 5   Control experiments verify interaction specificity and evaluate 
lipid adhesion to the peptide-functionalized tip. a Density plot show-
ing superimposed force versus distance retraction data for tips lack-
ing the SecA2-11 peptide (N = 500 curves from Nt = 5 distinct tips). b 
The very first retraction interaction (dotted pink line) between a new, 
freshly functionalized SecA2-11 tip and a supported POPC bilayer. 
This force-distance curve is overlaid on a density plot of all subse-
quent curves recorded with the same identical tip (N = 100). Data 
were acquired with a pulling speed of 100 nm/s, adapted from (Matin 
et al. 2017)
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certain pulling speeds (Fig. 8b, arrows). Usually increasing 
force loading on an intermolecular bond makes the bond 
rupture faster. However, the opposite occurs with a catch 
bond (Marshall et al. 2003). In this case, the lifetime of the 
bond increases with increasing force loading.

Electrostatic effects have a significant influence on 
peptide–lipid bilayer interactions (Fernandez-Vidal et al. 
2011; Ladokhin and White 2001; Posokhov et al. 2007; 
Vasquez-Montes et al. 2018). In our experiments with 
anionic membrane, structural sturdiness accompanying 
secondary structure was evident. Circular dichroism meas-
urements indicated that SecA2-11 adopted little helical 
structure when bound to zwitterionic PC head groups, but 
secondary structure, which rigidifies the lipid-bound poly-
peptide, emerged when negatively charged 1-palmitoyl-
2-oleoyl-sn-glycero-3-phospho-(1′-rac-glycerol) (PG) 
lipid was present in the bilayer (Matin et al. 2020). Rup-
ture force distributions indicated an approximate twofold 

enhancement of double-rupture pathways for E. coli polar 
lipid over zwitterionic PC. We hypothesized that because 
an alpha-helical peptide is more mechanically stiff (exhib-
its a significantly larger persistence length and Young’s 
modulus), it is more likely to simultaneously dissociate 
multiple residues compared to an unstructured peptide 
when subject to the same force loading conditions. Fur-
ther, the structural rigidity of the E. coli polar lipid-bound 
SecA2-11 may play an important role in propagating con-
formational changes to distal regions of SecA, influencing 
translocation activity.

Despite complexities including multiple dissociation 
pathways, secondary structure formation, and catch bonding, 
a well-defined lipid bilayer dissociation rate in the absence 
of force was obtained over multiple pulling speeds of the 
AFM cantilever (Fig. 8b, inset). Specifically, we determined 
the E. coli polar lipid bilayer-bound-state lifetime of SecA2-
11 in the absence of force to be � lipido =

1

koff

= 1.18 s. This is 

Fig. 6   Force spectroscopy data correlates with peptide geometry. 
(Top row) Two-dimensional probability density plots of dissociation 
height versus force for single copy SecA2-11 and POPC (N = 303, 
Nt = 5). Dissociation data for the series (N = 357, Nt = 5) and parallel 
(N = 667, Nt = 8) peptide constructs are also shown. Cartoon insets 
show glycine-rich linkers (gray) connecting the two copies of SecA2-

11 (red) for the dimeric constructs. (Bottom row) Probability distri-
butions showing association events for the three peptide constructs: 
single copy (N = 261, Nt = 8), series (N = 205, Nt = 9), and parallel 
(N = 217, Nt = 8). Association probabilities, A, are also indicated for 
each peptide. Data were acquired with an advancing/retraction speed 
of 100 nm/s, adapted from (Matin et al. 2017)
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significantly larger than the fundamental timescale of the 
secretion process (~50 ms), suggesting that lipid interactions 
alone play a significant role in stabilizing SecA on the 
bilayer during translocation. We note that � lipido  is slightly 
larger than the previously reported value [ � lipido = 0.9  s 
(Matin et al. 2020)] due to differences in the fitting algo-
rithm employed.

Theoretical Approach

Similar to other force-induced molecular transitions [e.g., 
unfolding of protein (Cecconi et al. 2005; Kellermayer et al. 
1997; Marszalek et al. 1999; Rief et al. 1997; Schlierf et al. 
2004; Schlierf and Rief 2006), unzipping of nucleic acids 
(Greenleaf et al. 2008; Liphardt et al. 2001), ligand-receptor 
dissociation (Florin et al. 1994; Merkel et al. 1999)], the 
forced dissociation of peripheral membrane proteins or their 
constitutive polypeptide chains from lipid bilayers can be 
modeled as a stochastic Brownian escape process across a 
free energy barrier (Bell 1978; Dudko et al. 2006; Evans 
and Ritchie 1997; Hummer and Szabo 2003), whose size 
and shape are modulated by applied force. In general, such a 
dissociation pathway is characterized by three model param-
eters, namely, (1) the barrier height or activation energy, 
ΔG‡ ; (2) the separation distance (normal to the plane of the 
membrane) between the bound and transition states or acti-
vation length, Δx‡ ; and (3) the intrinsic dissociation (off-) 
rate, koff.

A seminal contribution from Stephen White’s laboratory 
is the identification of the interfacial zone of lipid bilayer 

structure (Wiener and White 1992). As a result, the energet-
ics of protein–lipid interactions should be analyzed in the 
context of (1) interfacial and (2) transmembrane zones. Our 
analyses focused on the last rupture events recorded in the 
force versus time traces (i.e., immediately before the peptide 
dissociated from the bilayer and entered the solution above). 
Due to the geometry of the force spectroscopy experiments, 
this last rupture event likely emanates from the interfacial 
bilayer zone.

When an external pulling force, F , is applied to the pep-
tide to facilitate its dissociation from the membrane, both 
ΔG‡ and Δx‡ decrease, resulting in an enhanced force-
dependent dissociation rate, k(F) . It is important to note that 
k(F) is model dependent and is a monotonically increasing 
function of F for an individual dissociation pathway (Utje-
sanovic et al. 2019). The values of all the parameters are 
determined by fitting the theoretical model to the experi-
mental results. However, it is not k(F) that is measured in 

Fig. 7   Pulling of lipid molecules off the surface assayed via photo-
polymerized bilayer. Distribution of dissociation events for the par-
allel SecA2-11 construct using photo-polymerized1,2-bis(10,12-
tricosadiynoyl)-sn-glycero-3-phosphocholine (DC8,9PC) lipid 
bilayers (purple; N = 701, Nt = 8). For reference, data using standard 
POPC are overlaid (green; N = 667, Nt = 8). Inset: integrated probabil-
ity densities. Data adapted from (Matin et al. 2017)

Fig. 8   SecA2-11 dissociation from E. coli polar lipid bilayers and 
kinetics analysis. a Dissociation force distribution, P(F) , for SecA2-
11 and E. coli polar lipid. Four dissociation pathways (labeled 1–4) 
are required to fit the theoretical model (solid black curve) to the 
experimental result (solid red curve). The first two pathways are sin-
gle dissociations, with ΔG‡

1
= 8kT  , Δx‡

1
= 1 nm, and ΔG‡

2
= 10kT  , 

Δx
‡

2
= 1.3 nm, respectively. The last two pathways correspond to 

double dissociations with the same activation energy and length as 
the second pathway. Contributions to P(F) from the individual path-
ways are shown as colored dashed curves; the corresponding off rates 
( koff,i ) and weights ( wi ) are listed. Data acquired with the base of the 
AFM cantilever retracting at a speed of v = 50 nm/s, adapted from 
(Matin et  al. 2020). b Force-dependent dissociation rate, k(F) , for 
SecA2-11 and E. coli polar lipid, for four retraction speeds (listed in 
nm/s). Two catch bond regions [where the slope of k(F) is < 0 ] are 
marked with arrows. Inset: Retraction speed dependence of the intrin-
sic off-rate, koff = k(0) . The horizontal line represents the mean value 
⟨koff⟩ = 0.85s−1
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experiments, but rather the dissociation force distribution, 
P(F) , which is the histogram of rupture forces recorded 
in repeated AFM retraction experiments. Fortunately, for 
a given force loading rate Ḟ (which, in force-ramp experi-
ments, is a known constant), there exists simple, model-
independent equations that connect k(F) to P(F) and vice 
versa. Because k(F) is more sensitive to the variation of the 
force (especially at large F ) than P(F) , it is usually easier to 
determine the values of the model parameters by fitting the 
latter instead of the former.

There are at least two features that set peptide–lipid mem-
brane dissociation apart from other force-induced molecu-
lar transitions (Matin et al. 2017, 2020; Utjesanovic et al. 
2019). First, the value of the activation energy is relatively 
small, i.e., ΔG‡ ≤ 10kT  , especially for polypeptide chains 
stemming from the membrane interaction loci of peripheral 
membrane proteins that bind predominantly at the interfa-
cial zone of the bilayer. Thus, the direct application of any 
of the two most popular models for determining k(F) , i.e., 
the Bell–Evans (BE) model (Bell 1978; Evans and Ritchie 
1997) and the Dudko–Hummer–Szabo (DHS) model (Dudko 
et al. 2006, 2008), are questionable because they both rely 
on Kramers theory of barrier crossing (Kramers 1940), 
which is valid only for large barriers. In order to address 
this shortcoming, we have extended the DHS model for bar-
riers of arbitrary size by defining k(F) as the inverse mean 
first passage time (MFPT) across the barrier (Utjesanovic 
et al. 2019). Figure 9 compares the force dependence of 
k(F) and P(F) from our MFPT model with those from the 
BE and DHS models for force and pathway parameter val-
ues typical to peptide–lipid membrane dissociation. While 
clearly BE is not suitable for a quantitative description of 
peptide–membrane interactions, the difference between the 
DHS and MFPT models is significant only at the higher end 
of the force range. Indeed, k(F) from DHS (Fig. 9a), after 
the expected increase with F , reaches a maximum value 
after which it decreases and eventually vanishes at a critical 
force F

c
= �(ΔG‡∕Δx‡) , where � is a numerical constant 

(of order unity) specific to the shape of the dissociation-
free energy profile. This unphysical behavior, which signals 
the breakdown of the DHS model for low barriers (i.e., for 
ΔG‡ ∼ FΔx‡ ), is removed in our MFPT model, where k(F) , 
as expected, increases monotonically with F until it diverges 
at F

c
 , where the barrier vanishes. It should be noted, how-

ever, that in spite of this difference, the dissociation force 
distributions calculated with the DHS and MFPT models 
give almost the same result (Fig. 9c), simply because the 
contribution of the large F region to P(F) is exponentially 
small. Furthermore, as shown (Fig. 9b, d), at sufficiently 
high barriers (i.e., ΔG‡ ≥ 15kT  ) both the DHS and MFPT 
models give essentially the same results for k(F) and P(F) 
over the relevant force range and their differences with 
respect to the high barrier BE results are manifestly reduced.

A second distinctive feature of peptide–lipid dissocia-
tion is the (usually) broad, multimodal structure of the 
experimentally measured P(F) , which indicates that more 
than one dissociation pathways are in play (Matin et al. 
2017, 2020; Utjesanovic et al. 2019). A simple method 
to verify the validity of the multiple dissociation path-
ways hypothesis is to calculate and plot the correspond-
ing k(F) . Indeed, in the case of stochastic mixing of two 
or more pathways, k(F) will be nonmonotonic and, for 
some intermediate force regions, will exhibit catch bond 
behavior where, contrary to expectations, the forced dis-
sociation rate decreases while the force is increased (i.e., 
dk∕dF < 0 ). The presence of multiple dissociation path-
ways in peptide–lipid membrane interactions is most likely 
due to the complexity of the system. Because the experi-
mentally measured P(F) represents a stochastic mixing of 
multiple pathways, it should not come as a surprise that 
the results may differ significantly for experiments set up 
and performed under the exact same conditions (Utjesa-
novic et al. 2019). In such cases the theoretical modeling 
also becomes more involved. Indeed, assuming i = 1,… ,N 
dissociation pathways, each characterized by a triplet of 
values ( ΔG‡

i
 , Δx‡

i
 , koff,i ), the measured force distribu-

tion must be fit to P(F) =
∑N

i=1
w
i
P
i
(F) , where the weight 

Fig. 9   Effect of free energy  barrier height on theoretical models. a, 
b Comparison between the force-dependent dissociation rate k(F) 
for a single pathway from theoretical models BE (blue lines), DHS 
(red lines), and MFPT (black lines) subject to two different barrier 
heights. c, d Similar comparison for the dissociation force distribu-
tion P(F) . Panels a and c (b and d) correspond to a low (high) barrier 
of ΔG‡ = 7kT  ( ΔG‡ = 15kT  ). The values used for all the other model 
parameters were held fixed: Δx‡ = 1.2 nm, koff = 0.5s−1 , and loading 
rate Ḟ = 300 pN/s
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coefficients w
i
 of each pathway should also be regarded as 

fitting parameters (Utjesanovic et al. 2019).
Another possible complication relevant to peptide–lipid 

membrane dissociation is due to the existence of the so-
called “double” rupture events (Matin et al. 2020; Utjesa-
novic et al. 2019). An example of such an event is when the 
tip of the cantilever contains more than one peptide and two 
of these dissociate from the bilayer in such rapid succession 
such that the AFM cannot resolve them in time. If the dis-
sociation of a small peptide from a membrane can occur only 
along a single pathway, the finite probability of “double” 
ruptures (besides the regular “single” ruptures) can render 
the rupture force distribution effectively bimodal. The situ-
ation is illustrated in Fig. 10 for the same model parameters 
as those in Fig. 9 and assuming that w1 = 0.6 ( w2 = 0.4 ) 
for “single” (“double”) ruptures. We find again that the BE 
model is not suitable for describing peptide–lipid membrane 
dissociation, while DHS and our MFPT model give essen-
tially the same result apart from k(F) at the largest forces 
considered. Because the “double” ruptures constitute a sepa-
rate pathway, as expected, k(F) has a narrow catch bond 
region (with dk∕kF < 0 ) at intermediate forces.

In general, a small number of pathways including both 
“single” and “double” ruptures, characterized by well-
defined parameter values ( ΔG‡

i
 , Δx‡

i
 , koff,i ), are sufficient 

to model the experimentally measured dissociation force 
distribution P(F) of the peptide–lipid membrane system. 
However, the model can be further improved by regarding 

the pathway parameters themselves as stochastic variables 
and characterizing their distribution by employing Bayesian 
inference methods.

Conclusions and Outlook

We reviewed our recent work on peptide–fluid lipid bilayer 
interactions via single molecule AFM-based dynamic 
force spectroscopy. The study focused on the locus of a 
peripheral membrane protein interaction essential for pro-
tein export activity in E. coli. Surprisingly, the relatively 
short 10-amino-acid-long SecA2-11 peptide–E. coli polar 
lipid interaction exhibited rich kinetic behavior. Control 
experiments bolstered confidence in the experimental data. 
Comparisons between molecular dynamics simulations 
and recent electron paramagnetic resonance measurements 
provide further corroboration of the approach (Findik et al. 
2018; Matin et al. 2020). Theoretical analysis of SecA2-11 
interactions with lipid bilayers revealed a complex energy 
landscape complete with multiple dissociation pathways as 
well as catch bond behavior. In the face of this complexity, 
a well-defined lipid bilayer dissociation rate in the absence 
of force was obtained. The value determined with E. coli 
polar lipid ( � lipido  ~ 1.2 s) is well separated from and is sig-
nificantly larger than the fundamental timescale of the pro-
tein secretion process (~0.05 s), defined as the time for a 
single amino acid to be translocated through the translocon 
(Kramer et al. 2009). Thus, lipid interactions alone appear 
capable of stabilizing SecA on the bilayer for a time period 
commensurate with the translocation of >10 amino acids. 
However, the measurements do not account for stabilization 
that likely occurs in full-length SecA through direct contacts 
with the translocon SecYEG or with precursors. We expect 
the � lipido  result to represent a lower limit for in vivo condi-
tions. Characterizing the SecA2-11–E. coli lipid interaction 
represents a step towards a more quantitative understanding 
of the interplay between SecA, the membrane surface, and 
SecYEG during the translocation process.

Can single molecule force spectroscopy of protein–fluid 
lipid bilayers be extended further towards native biologi-
cal systems? There are a number of longer polypeptide 
chains found in nature that may be amenable to the method. 
These include the bee-venom peptide melittin and other 
membrane-active peptides which form amphipathic heli-
ces on the bilayer surface (Guha et al. 2019). For the Sec 
system, a logical step in this direction would be to employ 
full-length SecA with an appropriately positioned handle 
distal to the N-terminal region (Fig. 11a). Several interest-
ing and longstanding questions could be addressed with this 
assay. For example, does the SecA–lipid bilayer interaction 
strength vary with the ATP hydrolysis state of this enzyme? 
Does the presence of precursor proteins bound to SecA 

Fig. 10   Stochastic mixing of single- and double-rupture events. Com-
parison between the a force-dependent dissociation rate k(F) for a sto-
chastic mixture of 60% “single” and 40% “double” ruptures involving 
a dissociation pathway (parameters listed in panel B) and b dissocia-
tion force distribution P(F) , generated from the BE (blue lines), DHS 
(red lines), and MFPT (black lines) models, described in the text
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affect the interaction? Further, if the liposomes were to be 
reconstituted with active translocons SecYEG (Mao et al. 
2013; Sanganna Gari et al. 2019), one could explore how 
contacts between the membrane external cytoplasmic loops 
of SecYEG modulate the SecA–membrane interaction. If 
the tertiary contacts stabilizing SecA structure are stronger 
than the protein–membrane interaction (Fig. 11b), then 
the approach should bear fruit. Alternatively, SecA could 
partially or fully unfold (Fig. 11c). Despite this potential-
ity, detecting this non-native artifact would be straight for-
ward—the last rupture event would occur well above the 
surface of the bilayer. If observed, SecA may be allowed to 
refold, alleviating the need of changing tips.

Probing polypeptide chains from integral membrane 
proteins such as full transmembrane helices remains chal-
lenging to study with fluid lipid bilayers. A potential path 
forward would be to focus on the handful of systems and 
conditions that have exhibited reversibility (Kyrychenko 
et al. 2012; Ladokhin and Haigler 2005; Ladokhin et al. 
2004; Reshetnyak et al. 2007). Additionally, rigidifying 
the bilayer by crosslinking lipid tails (Matin et al. 2017) or 
employing lipid nanodiscs (Zocher et al. 2012) may limit 
pulling of lipid molecules and allow the method to general-
ize, but these methods come with their own complications 

and are a step away from native biological conditions. In 
addition to experimental hurdles, there are theoretical obsta-
cles. The retraction force time series, F(t), contains detailed 
information about the entire polypeptide chain-lipid bilayer 
dissociation process. For highly hydrophobic chains, such 
as a transmembrane helix, this will likely include intermedi-
ate rupture events which are attributable to the transmem-
brane zone in addition to dissociation event(s) originating 
at the interfacial zone. To analyze the free energy profile 
that extends to the hydrophobic bilayer core would require a 
comprehensive study of the full time series, including inter-
mediate rupture events. Further work is needed to apply and 
test the theory for such experiments.
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