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Abstract 

The idea of harmonizing data is not new. Decades of amassing data in databases according to 

community standards - both locally and globally - have been more successful for some research 

domains than others. It is particularly difficult to harmonize data across studies where sampling 

protocols vary greatly and complex environmental conditions need to be understood to apply 

analytical methods correctly. However, a body of long-term ecological community observations 

is increasingly becoming publicly available and has been used in important studies. Here, we 

discuss an approach to preparing harmonized community survey data by an environmental data 

repository, in collaboration with a national observatory. The workflow framework and repository 

infrastructure are used to create a decentralized, asynchronous model to reformat data without 

altering original data through cleaning or aggregation, while retaining metadata about sampling 

methods and provenance, and enabling programmatic data access. This approach does not 

create another data ‘silo’ but will allow the repository to contribute subsets of available data to a 
variety of different analysis ready data preparation efforts. With certain limitations (e.g., changes 

to the sampling protocol over time), data updates and downstream processing may be 

completely automated. In addition to supporting reuse of community observation data by 

synthesis science, a goal for this harmonization and workflow effort is to contribute these 

datasets to the Global Biodiversity Information Facility (GBIF) to increase the data's discovery 

and use. 
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1. Introduction 

Primary environmental research data are being made publicly available based on two main 

premises. First, the practice will make research more transparent and back up results, and 

second, it will enable reusing the data in more than one research project (Heffernan et al., 

2014). Specifically, the combination of many local-scale research results may reveal broader 

patterns, drivers, trajectories, and predictions of ecological systems, particularly in response to 

the current rapid and unprecedented environmental changes (Levy et al., 2014) ⁠ . Many 

research communities have recognized this potential and data repositories like the 

Environmental Data Initiative (EDI, https://EnvironmentalDataInitiative.org) hold thousands of 

diverse primary datasets from research studies in the ecological sciences. However, these data, 

although publicly available, still remain mostly locked away by their varied sampling 

methodologies, idiosyncratic formatting and non-standardized terminology. Furthermore, these 

data can only be reused when the environmental context in which they were collected is fully 

understood and accounted for in the analytical approaches (Welti et al. 2021). 

 

Given this situation, primary research datasets in ecology are often not easily combined or 

synthesized. Comprehending sampling and environmental conditions, resolving terminology, 
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formatting, and aggregating data generally takes a large portion of research time (Press, 2013; 

Lohr, 2014; Wickham, 2014) ⁠ . A process of pre-harmonizing has been successful for some 

types of data in large community efforts. In some cases, the original investigators transform their 

data into a community-vetted, prescribed format using controlled terminology, such as Darwin 

Core-based contributions to the Global Biodiversity Information Facility (GBIF, n.d.) ⁠ , or the 

observation model used by the Consortium of Universities for the Advancement of Hydrologic 

Science (CUAHSI, Tarboton et al., 2008) ⁠ . In other cases, data collection and formatting efforts 

are coordinated from the start (e.g., Baldocchi et al., 2001; Duffy et al., 2019; Fraser et al., 

2013; Leray & Knowlton, 2015; Mulholland et al., 2001; Stokstad, 2011) ⁠ . Prescribed formats 

are more easily achieved for some types of regular monitoring (e.g., sensor data), and the 

concept of Analysis-Ready data (ARD) is becoming prominent in the earth-observing field to 

reduce the burden of pre-processing on users (Dwyer et al., 2018) ⁠ . However, the idiosyncratic 

methods for collecting organismal data preclude most efforts to apply any single standard to 

spatial or taxonomic concepts, and standard data formats rarely find community acceptance 

because most cannot accurately capture complex environmental sampling conditions or other 

constraints particular to each research program (Kissling et al., 2018; Reichman et al., 2011) ⁠ . 

Furthermore, in many cases, incentives for the original researchers to transform their data are 

lacking. Ultimately, these barriers to synthesis of datasets inhibit collaboration and slow down 

potential scientific insights (Evans, 2016; Poisot et al., 2019)⁠ . 

 

Today, complex ecological datasets are becoming available from single locations where 

observations were collected consistently over long time periods. If combined appropriately, with 

the diversity in their sampling approaches overcome, these datasets become indispensable to 

understanding trends, testing ecological theory, and predicting changes in the numerous 

ecosystem services beneficial to society (Orth, et al., 2020, Pereira et al. 2013). Research 

networks like the National Science Foundation’s (NSF) Long Term Ecological Research (LTER) 
Network have met the expectation that their data are available in public repositories and 

permanently archived (Mayer, 2020; Servilla et al., 2016) ⁠ . These primary datasets are 

especially valuable and are increasingly being synthesized and reanalyzed to generate new 

knowledge (Collins et al., 2018; Dornelas et al., 2014; Record et al., 2021) ⁠ . This increased 

third-party use shows that datasets are now meeting some of the FAIR principles (Wilkinson et 

al 2016), in that they are “Findable” and “Accessible”. However, many would benefit from 
improvements to their interoperability and reusability, the “IR” of FAIR. 
 

Here, we focus specifically on ecological community observation data and the collaboration 

among the Environmental Data Initiative (EDI) repository managers, data scientists from the 

National Ecological Observatory Network (NEON), and community ecologists from the LTER 

Network to recombine such data for reanalysis and improve their reusability. The need for this 

effort was prompted by community ecology synthesis working groups who noted that because 

pertinent datasets are formatted and described in a manner most appropriate to their unique 

original research objectives, they are not easily used in synthesis studies without major 

harmonization efforts. Multiple working groups typically use subsets of the same data 

independently and develop their own investigation-specific data cleaning, aggregation, and 

formatting procedures that do not translate across projects. This re-wrangling of datasets 
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effectively duplicates large amounts of effort and impedes synthesis science insights, pointing to 

a need for a harmonization system for data collected at particular levels of biological 

organization (e.g., population, community, ecosystem; Record et al. 2021) ⁠ . 

 

The harmonized format we present here is agnostic to the research question, adds specific 

metadata for improved discovery and reusability, and accommodates different types of 

measurements (e.g., count, percent cover, biomass), taxonomic resolutions, and nesting of 

sampling designs over space and time. Given use case requirements, the repository framework, 

and the need to emphasize the importance of sampling context, this model and workflow 

framework appeared to be the best compromise, and we look forward to feedback from users 

(e.g., https://github.com/EDIorg/ecocomDP/issues). Here, we report on the model itself, a library 

in the R language to assist with creation, access and exploration, metrics of the model's use to 

date, plus compatibility with a widely used biodiversity format, the Darwin Core Archive (DwC-

A). 

2. Methods 

The project was carried out in three phases: Design, Implementation, and Maintenance. Design 

captures essential attributes of a science domain, considers past and present standardization 

efforts, and potential linkages to external authoritative systems to disambiguate meaning. The 

design phase leveraged the activities of science synthesis working groups and data 

management expertise to identify accurate and persistent data patterns. Implementation is 

accomplished through conversion of archived legacy data by data contributors or by EDI’s data 
curation team, and is supported by data pattern documentation, best practices guides, and 

software libraries. Maintenance is achieved through programmatic workflows that automatically 

run when source data packages are updated. 

2.1 Design 

2.1.1 Learning from Existing Approaches 

We identified several ongoing or completed harmonization efforts using existing community 

observations and including datasets available from the EDI repository. All of these efforts used 

similar datasets from multiple sources, and all are one-time efforts with minimal plans for 

maintenance or updating harmonized data. In many cases, the resulting harmonized datasets 

were used to answer specific research questions and were then further changed or extended for 

additional uses. The abstract view of these datasets were potential models for general 

harmonization, and three  in particular exemplify the need for a more broadly useable data 

model for observations -- one which is also capable of structuring spatial information and 

taxonomy: 1) Popler, a database and R-libraries designed to analyze LTER population time 

series (Compagnoni et al., 2020) ⁠ ; 2) CESTES, a global database for metacommunity ecology 

(Jeliazkov et al., 2020) ⁠ ; and 3) BioTime, a global database of species abundances through 

time (Dornelas et al., 2014) ⁠ . In addition to the three research-focused models, we also 

considered the Darwin Core Archive (DwC-A) format used by the GBIF (Wieczorek et al., 

2012) ⁠ . The GBIF system is arguably the largest aggregator of organismal occurrence and 
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related data, holding over 1.5 billion records of species occurrences, taxonomic checklists, and 

sampling event or sample data from over 1500 institutions. 

 

All three research-focused models implemented table structures and measurement types which 

do not accommodate the wide variety of raw data that capture complex environmental 

conditions during sampling and which are available in the original dataset. Only one (Popler) 

allows spatial nesting and taxon authority referencing. None of these databases accommodates 

references to external measurement dictionaries or ontologies. For all, access is somewhat 

limited by the choices of storage (i.e., Excel, or relational databases which require a custom 

interface or code). Temporal sampling is generally limited to observation dates, and CESTES 

includes text fields to describe nuances of temporal or other sampling. Compiled harmonization 

efforts such as these are highly valuable, as they represent considerable scientific knowledge 

and hours (possibly days) of thorough, manual checking and reformatting. Computing cannot 

supplant that scientific knowledge, but a comprehensive intermediate format can streamline 

some of the reformatting tasks. 

 

GBIF’s DwC-A came closest to meeting the requirements for broad reuse; these are self-

contained datasets composed of text tables plus a file describing table organization. Table 

columns are labeled using the Darwin Core vocabulary (DwC) for indexing. A large fraction of 

GBIF records are simple organism occurrences, however DwC-A extensions allow for inclusion 

of other aspects such as contributor-defined measurements (e.g., abundance or cover), which 

are common for ecosystem studies of the type housed by EDI and data products published by 

NEON. The DwC also includes fields for external taxon references. Missing from the DwC-A 

were explicit site nesting and external measurement references (see Discussion). Interestingly, 

some of the structures created by scientists for their own synthesis can be strikingly similar to 

DwC-A tables (Walter et al., accepted) ⁠  with features added (e.g., the aforementioned nested 

sampling sites). 

2.1.2. Identifying requirements 

Consistent with the goals to support a synthesis workflow that will reduce data preparation 

efforts for answering new research questions and minimize impact on data producers, we 

developed requirements based on three main considerations (see also discussion in Sholler et 

al., 2019): 1) the expectations of data contributors and the original data; 2) the repository 

framework; and 3) the needs of the data reusers. The scope is defined as ecological community 

data, in which observations are abundances of co-occurring groups of organisms in an area, as 

opposed to population or demographic data (where observations are made at the level of 

individuals within a species). We recognize that some original data will contain both types of 

information, and ideally, while the harmonized intermediate may not contain the original 

population-level information, the framework should make that original readily available. Our 

short name for a model for the flexible intermediate for ecological community data is 

“ecocomDP”, for “ecological community data design pattern”. 
 

2.1.2.1 Data contributors and the original data 

Original data are available in the EDI repository as text tables (usually ASCII)  formatted to best 
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suit the original research questions, with collection methods that are adapted to the environment 

and community of interest (e.g., aquatic, forest, grassland). In many cases the datasets are 

updated regularly. The data contributors (data managers or scientists) are intimately familiar 

with local conditions, which is vital to creating high-quality data packages. As mentioned above, 

there is no incentive for the data contributor to format their data in any other way, and so it was 

essential that the harmonization process did not interfere with a data contributor’s formatting for 
their original research questions. The challenges presented by the data themselves included the 

large number of different parameters measured (e.g., number of individuals, cover, biomass, 

catch per unit effort), taxonomic resolution and consistency (e.g., family, genus, species), 

environmental or experimental conditions essential to interpretation (e.g., fertilization, harvest, 

simulated disturbance), the nesting of sampling units over space (e.g., site, transect, plot, 

subplot, depth) and time (e.g., date, season, year), plus changes to the sampling protocol over 

time (e.g., the addition of new sampling locations or changes in the taxonomic resolution of 

sampling). 

 

Additionally, NEON publishes a variety of data products on its portal that provide biodiversity 

data on sentinel taxonomic groups from 81 field sites located across the United States 

(https://data.neonscience.org/). Many of these data products were designed with input from and 

for use by population and community ecologists (Utz et al. 2013, Thorpe et al. 2016). These 

products offer organismal data that can be mapped to the ecocomDP model, used in research, 

and derived data packages can then be archived in the EDI repository (e.g., Li et al. in review). 

 

2.1.2.2. The repository framework 

In the EDI repository the granule is a “data package”, composed primarily of a metadata record 
(Ecological Metadata Language, EML) and, one or more data entities (i.e., ASCII tables). The 

repository supports metadata and data immutability, revision control, DOI assignment and event 

subscriptions to track updates to data. Repository staff, although experienced data specialists, 

lack specific local knowledge for every dataset. 

 

2.1.2.3. The data users 

Aside from a standard data format and nomenclature, scientists attempting to use these existing 

data were mostly concerned with data discovery, i.e., the ability to identify data that best suited 

their needs in a repository.  A few types of searches were common to all reuse (e.g., number of 

taxonomic units in study, duration of study and frequency of sampling, and the size and 

arrangement of sampling areas), and so needed to be supported. Those who are reformatting 

data to this model must understand the original data well, and so its associated code should 

include checks for certain features, like uniqueness and typing. 

 

Our solution to these requirements is the development of a flexible domain-specific intermediate 

model in a lightweight, distributed workflow framework, in which data repositories handle some 

of the preparation work typically done by end users. The original data are not aggregated or 

otherwise changed, only normalized to a standard format that can be more readily accessed 

and used. This reformatting is accomplished by automated workflows which allow data products 

to be repeatedly synchronized when original data are updated. This process increases the value 
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of the data by implementing standard quality checks and can provide feedback to contributors to 

inform them of aspects of data and metadata that are the most important during reuse, and of 

arrangement or presentation choices that function well. 

2.2. Implementation 

During the implementation phase, pertinent datasets in the EDI and NEON repositories were 

identified. For each EDI dataset, an R script was developed to convert the data into the 

ecocomDP model. This effort incrementally led to tuning of the model itself and associated 

documentation. It also served to outline necessary functions for building data packages and 

accessing NEON data. Lastly, to test both the data format and the entire workflow, we used 

ecocomDP formatted data to generate DwC-A for submission to GBIF. This last step has the 

added benefit of making EDI holdings available for GBIF users.   

 

Figure 1 depicts the general workflow which was implemented and will be followed for updates. 

The “level” designations and terminology are adapted from NASA’s Earth Observing System 
Data and Information System (EOSDIS) (Price et al 1994) with L0 being the original data; L1 is 

the same data transformed to the ecocomDP model, and made available as a data package in 

the EDI repository. L2 has been further transformed or aggregated as needed for a particular 

synthesis research question or other use (such as a DwC-A). 

 

 
Figure 1.  Level 0 (L0) are incoming, original data, ideally, already archived in the repository 

with complete metadata and contributed by those close to the research. Level 1 (L1) data 

packages (also in the repository) are formatted according to a predefined model, in this case, 

ecocomDP. Researchers are able to use L1 as inputs with its code to speed their analyses and 

generate Level 2 (L2) data. An archive of the L2 data package in the same repository is 

recommended.  Data sources and sinks may be a repository (e.g., EDI) another data provider 

(e.g., NEON) or aggregator (e.g., GBIF). 
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2.3. Maintenance 

The maintenance phase focuses on developing robust R scripts for continued conversion when 

source data (L0) are updated and converting new datasets as they are submitted to the EDI 

repository. Maintenance of the R package includes adaptations for the NEON endpoints as 

these evolve. The EDI infrastructure supports the execution of external workflows through its 

API and event notification service to automate routine data management tasks. Upload of an L0 

revision triggers execution of its conversion script. The system is ideal for a series of data 

packages, as it simplifies and accelerates creation of continuously updated synthetic data 

packages (Servilla et al., 2016) ⁠ . 

3. Results 

3.1 The ecocomDP data model 

The model (Fig. 2) is composed of eight related data tables in an extended star schema (Seyed-

Abbassi & Madesi, 2015)⁠  and implements database-style principles of foreign keys and 

normalization, along with attribute/value style tables to accommodate a wide range of 

measurements. Three data tables are required: the central “observation” table and two 

supporting dimensional tables, “sampling_location”, and “taxon”. The “dataset_summary” is 
automatically created and populated based on the observations. The three primary tables are 

each extended with an optional table for ancillary information to accommodate additional 

measurements important to understand and use specific sampling conditions for analysis. The 

optional eighth table maps variables to external dictionaries. 
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3.1.2 Locations 

The nesting of sampling locations (e.g., plots within transects within areas, or depths or heights 

of a profile) is accomplished using a self-referencing table, in which a location may have a 

‘parent’ which is itself a sampling location in the same table. This mechanism allows 
observations to be associated with a location at any level, and observations can be aggregated 

under groups of locations. 

 

3.1.3 Taxonomy 

The taxonomy table does not attempt to describe all aspects of a taxon, but rather holds basic 

information such as name and rank (e.g., family, genus, species), with the option to refer to a 

taxonomic name authority system. Although a taxonomic name may be reused in different 

kingdoms and a hierarchy required for full understanding, the model deliberately does not 

encode taxonomic hierarchies, as these are somewhat fluid and no single system applies to all 

organisms. Instead, that information can be held by the authority system, and accessed with 

readily available software tools, or it can be recorded in the taxon_ancillary table. 

 

3.1.4 Summary table 

A one-row table summarizes information in the Observation, Location, and Taxonomy tables. It 

represents the information most frequently needed by scientists as they evaluate a dataset for 

use, mainly to understand the taxonomic, temporal, and spatial coverage. 

 

3.1.5 Ancillary tables 

Each primary table has an optional table for additional information. Also designed as 

attribute/value, these ancillary tables provide a place for environmental conditions (e.g., air 

temperature, observation uncertainties), organism characteristics, (e.g., biomass, traits, 

morphotype, phylogenetic information), or experimental conditions (e.g., fertilization). Date fields 

are included for taxon_ancillary and location_ancillary as these may have been recorded a 

different times than the primary observation. The observation_ancillary table might contain 

specific sampling-event-data, such as volume cleared by a plankton tow or single depth (when 

not part of a profile). These are data typically included with the community observation data to 

ensure that data users are aware of conditions and can judiciously subset and aggregate 

original observations. 

 

3.1.6 Accommodating measurement term disambiguation 

An optional “variable_mapping” table allows unambiguous term definition using external 
vocabularies and ontologies by documenting the system used and a unique identifier for the 

term (i.e., a URI or URL). It is intended for the content of fields titled ‘variable_name’ in the 
observation and optional ancillary tables. 

 

3.2 Supporting code 

We developed an open-source code library in the R statistical language to support common 

tasks for creating, checking and using ecocomDP data packages (Smith et al, 2021) ⁠ . To assist 

with conversion to ecocomDP from EML-described data packages, R functions are available to 
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harvest EML metadata from the L0 dataset preserving essential high-level elements (e.g., 

abstract, methods and personnel), with additional text and EML elements to clarify that this (L1) 

is a derived data product: a provenance link to the L0 dataset, additional abstract and title text, 

and keywords (e.g., “ecocomDP”). L0 variable names and descriptions are transferred to coded 

value lists in L1 EML. To promote discovery, some ecocomDP table content is elevated to 

metadata, such as full taxonomic hierarchies including common names and external identifiers, 

and EML annotations created from the variable_mappings table. The R library also supports 

quality control to ensure that tables are model-compliant, confirming presence of required fields, 

referential integrity between tables, and uniqueness of identifiers. Taxon IDs are added with the 

taxize R library (Chamberlain et al. 2020). 

 

The ecocomDP R library provides functions to search data and metadata on free text, 

taxonomic names, geographic area, and summary features (from the dataset_summary table, 

Fig. 2), which is improved over typical repository searches on metadata alone. Analysis 

workflows are supported through functionality for programmatically accessing and reading the 

data and metadata; merging datasets; transposing ecocomDP tables into the “wide” format 
(e.g., each column representing a taxon) preferred by many scientists; and for creating plots of 

basic features to evaluate fitness for use (see below). As we have already stated, preparing 

data for analysis can still be complex, and these tools will not replace ecological understanding 

of fitness for use of data in a particular analysis. However, they will help streamline the process 

considerably. 

3.3 Using the ecocomDP format 

The R library described above was developed and tested as we processed original, incoming 

data through the Figure 1 workflow, first converting them to the ecocomDP model (L1; Fig. 1, 

Step 1), followed by a) plotting general characteristics as might be required by synthesis and b) 

conversion to publication ready DwC-A (an example of L2). Those processes and summary 

metrics from conversions are detailed here. As incoming datasets are nearly always unique, the 

conversion to the ecocomDP format (L1) requires an understanding of the study design, 

measurement methods and data types, with the R library helping to ensure full understanding, 

and appropriate use and accelerating the technical steps. Because all L1 are a standard format, 

further processing can be streamlined, and often automated. 

 

3.3.1 Converting original data to ecocomDP (L0 to L1) 

To date, we have created 70 ecocomDP data packages from EDI holdings of LTER and Long 

Term Research in Environmental Biology (LTREB) projects. Our approach to conversion of 

these original (L0 datasets) is to assemble each package's data into a single wide table, which 

helps maintain referential integrity in the derived tables. Issues arising at this step are best 

resolved in collaboration with the original data creators and may provide valuable feedback to 

them. The next step is to extract data from the L0-wide table for the core ecocomDP tables (i.e., 

observation, taxon, location; Fig. 2) followed by the optional ancillary tables. The ecocomDP R 

library supports common steps for scripting the entire process, including programmatic reading 

of the L0 package. We recommend scripting this entire step for two reasons: the script serves 

as documentation of the process, and if the L0 data package is updated (e.g., new data added), 
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subsequent conversions can be automated.   

 

When the original data format is well controlled, reformatting to the ecocomDP model is more 

straightforward. NEON exposes its corpus of datasets of organism data for integration with 

EDI’s holdings, using code created by NEON with scientists from the NEON Science Summit 
Meeting (Boulder, CO, 2019) (Li D. et al., in review) ⁠ . R functions pull data from the NEON 

share point using the neonUtilities R library and convert it from a NEON data product to the 

ecocomDP data pattern. As of this writing, functions are available in the ecocomDP R library to 

deliver data for NEON terrestrial organisms (breeding land birds, DP1.10003.001; ground 

beetles, DP1.10022.001; herptile bycatch from ground beetle sampling, DP1.10022.001; small 

mammals, DP1.10072.001; mosquitoes, DP1.10043.001; terrestrial plants, DP1.10058.001; 

ticks, DP1.10093.001; tick pathogens, DP1.10092.001) and for aquatic organisms (fish, 

DP1.20107.001; macroinvertebrates, DP1.20120.001; microalgae, DP1.20166.001;  

zooplankton, DP1.20219.001) at all sites where NEON routinely collects those data. 

 

As NEON data products are continent-wide, these divided into individual field sites for analysis to make them 

spatially compatible with EDI holdings.  For both NEON and EDI data, summary information, identifiers and 

DOIs if applicable can be found in the dataset, O'Brien et al (2021). Spatial, temporal, and taxonomic 

coverage for a total of 530 NEON and EDI datasets are shown in Figure 3, comprising over nine 

million observations. The NEON data are broken out by sites (83 total sites) as that unit was 

more similar in structure to the data packages available from EDI, which come from site-based 

research groups such as the LTER Network. Data in harmonized format clearly illustrate the 

differences between the data collection strategies of NEON and the EDI holdings from individual 

place-based sampling programs. NEON’s targeted biological collections focus on nine groups of 
species (by taxonomic or other attributes) over relatively narrow spatial extents within sites (but 

a large spatial extent among sites), and over shorter, evenly-spaced time periods (collections 

began in 2013 with full operations in 2019). Coverage plotted from EDI data holdings, on the 

other hand, shows a wide diversity for all three coverage elements and reflects the diversity of 

research programs. Durations range from a few years to over six decades, with somewhat less 

even sampling, a broader spatial extent (up to 105 square kilometers), and many general 

taxonomic groups represented. 
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Figure 3. Temporal, spatial and taxonomic coverage of datasets available in the ecocomDP 

model. Data source: Black, EDI; Gray, NEON. A) Temporal coverage (years), B) Temporal 

evenness (years), C) Spatial extent, D)  group. An asterisk indicates that two groups (Tick, 

Mosquito) are specifically targeted by NEON. When these taxa occur in EDI datasets, they are 

plotted here with Arthropods. 

 

 

3.2.2 Working with ecocomDP formatted (L1) datasets 

The principles of a central observation table linked to additional information and the 

attribute/value pattern that underlies the ecocomDP model are common approaches for 
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Information Facility (GBIF) to increase the data’s discovery and use. Although the ecocomDP 

model is more extensive than the DwC-A, their similarities make a scripted process 

straightforward. Both the DwC-A and ecocomDP models are star schemas with attribute/value 

tables and both use EML for metadata. Information loss is minimized by mapping to DwC-A’s 
Event Core layout (GBIF, n.d.). Our approach makes use of ecocomDP R functions for 

manipulating datasets, followed by mapping to the DwC-A terms and adding required metadata 

elements.  Several types of external identifiers are included in the DwC-A tables. For taxa, we 

include ids (DC: taxonID) with named authority (DC: nameAccordingTo) and Life Science 

Identifiers(LSIDS) in the DC scientificNameID field. We also make use of the recently added 

EML annotation field (Jones et al. 2019) to include measurement URIs in the DwC-A extension 

field measurementTypeID. 

 

With the conversion from original (L0) data to ecocomDP (L1) formatted data to DwC-A (L2) 

data fully automated, updating long-term observational datasets is simplified. As of this writing, 

we are working with GBIF on the technical aspects of the contribution mechanism. In the 

interim, all DwC-A packages are in the EDI data portal via the keyword “Darwin Core Archive”.  
Researchers will soon have several options for accessing these data in addition to the original 

dataset: the ecocomDP-formatted and the archived DwC-A packages both archived at EDI, and 

by querying values through GBIF systems. 

4. Discussion 

Decades of harmonizing data from diverse studies and developing community data standards at 

multiple scales indicate that a substantial upfront cost is incurred. These laborious efforts must 

be justified by benefits such as importance to meta-analyses, reduced expense of obtaining and 

preparing them for analysis, or even commercial value. Further, it appears that harmonization 

efforts generally lead to a certain loss of information, which can be acceptable during analysis if 

balanced by sufficient volume (e.g., Pollet et al., 2015). As a result, highly complex, 

multidimensional data have largely eluded harmonization. Ecological community observations, 

although irreplaceable and highly valued for understanding environmental change (LTERnet.edu 

n.d), have highly-variable sampling methods and high dimensionality that continue to make 

synthesis across studies difficult (Welti et al., 2021) ⁠ . A level of pre-harmonization is essential if 

the community is to avoid each synthesis group expending significant effort repeatedly 

wrangling data into similar formats, and to promote more rapid and reproducible synthesis 

efforts (Record et al., 2021) ⁠ .   

 

Given these experiences, requirements, and use cases, our new data model minimizes 

information loss while meeting most of the needs of meta-analysis, and uses a workflow system 

that also accounts for regular updates to the datasets. The reformatted data (ecocomDP format) 

are maintained as independent packages in the EDI repository to take advantage of its general 

functionality of search and access, hence avoiding another database ‘silo’. Further, specific 
discoverability is improved by the addition of standardized metadata to aid the process of 

selecting relevant datasets. Any synthesis effort will still have the significant step of determining 

if a dataset is fit for a particular analysis, which is typically performed by examining the sampling 

methods, constraints, and other facets of data collection. That task can be further assisted by 
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disambiguating semantics through linkages to external dictionaries, which is accommodated in 

the ecocomDP data model as well as the EML metadata standard. Li et al (in review) details the 

decisions made while converting NEON data to ecocomDP. Some of the checking available in 

our R-package is a result of that, however additional dependencies or checks may become 

evident which help ensure that scientists fully understand the data as they convert it into the 

ecocomDP format. 

 

Although extensive reusable R programming functionality was developed, the conversion from 

original data formats (L0) to ecocomDP format (L1) still requires a moderate investment in time 

and some ecological understanding for every new dataset—a significant task taken on primarily 

by the repository, EDI. Future reuse of these data will determine the value of such a reformatting 

service and the likelihood of its continuation. An advantage of the workflow system is that after 

the initial effort, the scripts generating ecocomDP data packages from the original data can be 

fully automated and repeated when the original data are updated. The generation of 

downstream data products can also be automated, and our creation of DwC-A for submission to 

GBIF serves as a model for generating submissions to other systems, such as Popler, CESTES, 

BioTIME or VegBank (Peet et al., 2012) ⁠ . In addition to supporting short-term synthesis 

research, we envision these important data supporting the needs of ecological forecasting 

studies (e.g., Dietze et al., 2018) and being used to calculate indices for Essential Biodiversity 

Variables (EBV, (Pereira et al., 2013; GEO-BON 2013), the community-managed state variables 

that stand between primary observations, plus higher-level indicators such as the Ocean Health 

Index, (Halpern et al., 2012, 2015; Schmeller et al., 2015) ⁠ . 

 

The flexible attribute/value data format used for ecocomDP has been widely used in other data 

harmonization approaches (e.g., Tarboton et al., 2008; Wieczorek et al., 2012) ⁠ . It saves space 

and allows an unlimited number of attributes, hence accommodating any type of measurement. 

However, description and control of aspects such as data typing, precision, or text definitions 

are not built in, and as compared to the detailed data table descriptions common in the original 

data packages, may result in some metadata loss. The ecocomDP project mitigates such losses 

by retaining as much metadata as possible, quality checking, and by implementing a workflow 

system that includes a provenance trace in derived data (L1, L2; Fig. 1) so that original data can 

be accessed if necessary. 

 

The semantic parity between ecocomDP and the DwC-A model is strong, especially for 

concepts like Observation and Taxon. The GBIF and Darwin Core systems work quite well for 

observations of individuals but less well for measures of abundance; the ecocomDP model 

helps fill that gap. The functionality of ecocomDP’s ancillary tables is aligned with 
ExtendedMeasurementOrFact, and together these features helped to streamline our conversion 

to DwC-A. Although that conversion was relatively straightforward, there are significant 

differences between the two formats. First, the DwC vocabulary and GBIF model does not 

explicitly support the kind of site nesting needed to understand a sampling design. The Event 

class (which includes locations) can be leveraged for this use (DePooter, et al 2017), although 

examples and recommendations are not well-established in the community. Therefore, 

ecocomDP explicitly includes a site-nesting feature, similar to other models used by scientists 
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(i.e., Popler, Compagnoni et al., 2020). Our conversion scripts can be adapted in the future as 

the use of the DwC-based models evolves. Secondly, inclusion of external dictionary references 

for measurements is not currently an established part of the DwC vocabulary (which determine 

column headings for DwC-A). Our L2 DwC-A already includes the proposed extension for 

measurementID (to hold URIs in external measurement dictionaries) and will serve as an 

example as adoption for this extension increases. Those differences, and the ease with which 

our ecocomDP datasets can be converted to DwC-A makes the ecocomDP intermediate 

valuable both for detailed scientific syntheses and large-scale querying by aggregators like 

GBIF. 

 

The use of ecocomDP to promote discovery, reusability, and integration of data is an exciting 

step towards harmonization of data across coordinated research networks, which advances 

collating in-situ ecological community observation data at global extents to support broad 

concepts such as EBVs. This EDI-NEON collaboration also reveals the value of synergies 

between networks  by integrating the deep long-term and place-based knowledge of the LTER 

Network with the broad spatial coverage of the NEON Observatory. Just as harmonization of 

data helps synthesis scientists avoid “reinventing the wheel” for each research project, 
collaboration among groups such as NEON, LTER, and EDI promotes communication between 

repository staff and scientists to share insights and pitfalls about data. Furthermore, although 

NEON data are extremely well documented and encapsulate standardized collection protocols, 

the level of detail surrounding slight nuances in data collection over time (e.g., reductions in 

sampling events) or abbreviations used (e.g., “sp.” and “spp.”) may elude users. The oversight 
of data wrangling in collaboration with NEON staff for the ecocomDP model assures users that 

these idiosyncrasies have been considered. End users will still need to recognize that the 

ecocomDP data are intended to be used for community ecology analyses rather than for  

demographic analyses, although the original data may contain that information. For instance, to 

access NEON's small mammal mark-recapture information (e.g., to estimate occupancy for 

population models) users would need to return to the  the original data product.   

5. Conclusion 

Many important primary data are ongoing research-grade time series, and access to these 

trusted, up-to-date data sources is highly desired by synthesis scientists, managers, and policy 

and decision makers, yet easy access is seldom realized. Data harmonization is not a new idea. 

But typically, harmonization projects for organismal data are designed for specific research 

questions or types of queries, which tend to drive data preparation decisions. Unfortunately, 

those formatting or aggregation choices often reduce the potential for other types of use. 

 

Our workflow-based model makes both the original data and harmonized version easy to 

discover and access, and takes advantage of existing repository functionality. Furthermore, 

heterogeneous data become available in a manner consistent and interoperable with current 

and emerging trends in other biological fields. The harmonized intermediate has basic 

formatting applied, and accommodates standardized measurement semantics and taxonomy. 

The use of event subscriptions to track their updates and rerun processing code is a 

transformative activity, and provides a template for a process that can be reused in other 
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scientific domains. 
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Highlights  
 
3-5 bullets, 85 characters max per bullet 
 
 

 ecocomDP is a flexible intermediate format for ecological synthesis or other uses  

 Collaborative development exposes data from NEON, EDI and LTER in a uniform 
manner 

 Processed in a workflow that does not impact existing data packages 

 R package to assist with reformatting original tables and work with ecocomDP data 

 Conversions to Darwin Core Archives Event Core for GBIF contributions 
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