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Abstract

The idea of harmonizing data is not new. Decades of amassing data in databases according to
community standards - both locally and globally - have been more successful for some research
domains than others. It is particularly difficult to harmonize data across studies where sampling
protocols vary greatly and complex environmental conditions need to be understood to apply
analytical methods correctly. However, a body of long-term ecological community observations
is increasingly becoming publicly available and has been used in important studies. Here, we
discuss an approach to preparing harmonized community survey data by an environmental data
repository, in collaboration with a national observatory. The workfl \w framework and repository
infrastructure are used to create a decentralized, asynchronous moau2! to reformat data without
altering original data through cleaning or aggregation, while rete ninc metadata about sampling
methods and provenance, and enabling programmatic data 7.ccoss. This approach does not
create another data ‘silo’ but will allow the repository to cor in.'* 2 subsets of available data to a
variety of different analysis ready data preparation effort=. Ww:*h certain limitations (e.g., changes
to the sampling protocol over time), data updates and v “wr stream processing may be
completely automated. In addition to supporting reuse of c. nmunity observation data by
synthesis science, a goal for this harmonization a \d w rrkflow effort is to contribute these
datasets to the Global Biodiversity Information T aciiy (GBIF) to increase the data's discovery
and use.
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1. Introduction

Primary environmental resea, ~b Jata are being made publicly available based on two main
premises. First, the pract ce v ill make research more transparent and back up results, and
second, it will enable reu~ing the data in more than one research project (Heffernan et al.,
2014). Specifically, the ~~.nbination of many local-scale research results may reveal broader
patterns, drivers, trajectories, and predictions of ecological systems, particularly in response to
the current rapid and unprecedented environmental changes (Levy et al., 2014) . Many
research communities have recognized this potential and data repositories like the
Environmental Data Initiative (EDI, https://EnvironmentalDatalnitiative.org) hold thousands of
diverse primary datasets from research studies in the ecological sciences. However, these data,
although publicly available, still remain mostly locked away by their varied sampling
methodologies, idiosyncratic formatting and non-standardized terminology. Furthermore, these
data can only be reused when the environmental context in which they were collected is fully
understood and accounted for in the analytical approaches (Welti et al. 2021).

Given this situation, primary research datasets in ecology are often not easily combined or
synthesized. Comprehending sampling and environmental conditions, resolving terminology,



formatting, and aggregating data generally takes a large portion of research time (Press, 2013;
Lohr, 2014; Wickham, 2014) . A process of pre-harmonizing has been successful for some
types of data in large community efforts. In some cases, the original investigators transform their
data into a community-vetted, prescribed format using controlled terminology, such as Darwin
Core-based contributions to the Global Biodiversity Information Facility (GBIF, n.d.) , or the
observation model used by the Consortium of Universities for the Advancement of Hydrologic
Science (CUAHSI, Tarboton et al., 2008) . In other cases, data collection and formatting efforts
are coordinated from the start (e.g., Baldocchi et al., 2001; Duffy et al., 2019; Fraser et al.,
2013; Leray & Knowlton, 2015; Mulholland et al., 2001; Stokstad, 2011) . Prescribed formats
are more easily achieved for some types of regular monitoring (e.g., sensor data), and the
concept of Analysis-Ready data (ARD) is becoming prominent in the earth-observing field to
reduce the burden of pre-processing on users (Dwyer et al., 2018, . However, the idiosyncratic
methods for collecting organismal data preclude most efforts to ~.p,.'v uny single standard to
spatial or taxonomic concepts, and standard data formats rarelv “ind community acceptance
because most cannot accurately capture complex environme ntar sampling conditions or other
constraints particular to each research program (Kissling ¢ al., 2018; Reichman et al., 2011) .
Furthermore, in many cases, incentives for the original esc archers to transform their data are
lacking. Ultimately, these barriers to synthesis of datasew. ‘1hibit collaboration and slow down
potential scientific insights (Evans, 2016; Poisot et ..., 2019) .

Today, complex ecological datasets are becr ., ~ing available from single locations where
observations were collected consistently ¢ ‘er 1ong time periods. If combined appropriately, with
the diversity in their sampling approaches ove. come, these datasets become indispensable to
understanding trends, testing ecological u <ory, and predicting changes in the numerous
ecosystem services beneficial to socizt, \Orth, et al., 2020, Pereira et al. 2013). Research
networks like the National Science ro'nidation’s (NSF) Long Term Ecological Research (LTER)
Network have met the expectatiin \~at their data are available in public repositories and
permanently archived (Mayer, ?0.9; Servilla et al., 2016) . These primary datasets are
especially valuable and are \.>cre asingly being synthesized and reanalyzed to generate new
knowledge (Collins et al.. 20.98; Dornelas et al., 2014; Record et al., 2021) . This increased
third-party use shows 1.7t Uuiasets are now meeting some of the FAIR principles (Wilkinson et
al 2016), in that they are “ “indable” and “Accessible”. However, many would benefit from
improvements to their interoperability and reusability, the “IR” of FAIR.

Here, we focus specifically on ecological community observation data and the collaboration
among the Environmental Data Initiative (EDI) repository managers, data scientists from the
National Ecological Observatory Network (NEON), and community ecologists from the LTER
Network to recombine such data for reanalysis and improve their reusability. The need for this
effort was prompted by community ecology synthesis working groups who noted that because
pertinent datasets are formatted and described in a manner most appropriate to their unique
original research objectives, they are not easily used in synthesis studies without major
harmonization efforts. Multiple working groups typically use subsets of the same data
independently and develop their own investigation-specific data cleaning, aggregation, and
formatting procedures that do not translate across projects. This re-wrangling of datasets



effectively duplicates large amounts of effort and impedes synthesis science insights, pointing to
a need for a harmonization system for data collected at particular levels of biological
organization (e.g., population, community, ecosystem; Record et al. 2021) .

The harmonized format we present here is agnostic to the research question, adds specific
metadata for improved discovery and reusability, and accommodates different types of
measurements (e.g., count, percent cover, biomass), taxonomic resolutions, and nesting of
sampling designs over space and time. Given use case requirements, the repository framework,
and the need to emphasize the importance of sampling context, this model and workflow
framework appeared to be the best compromise, and we look forward to feedback from users
(e.g., https://github.com/EDlorg/ecocomDP/issues). Here, we report on the model itself, a library
in the R language to assist with creation, access and exploration, .~ -etrics of the model's use to
date, plus compatibility with a widely used biodiversity format, th~ 2ai.vin Core Archive (DwC-
A).

2. Methods

The project was carried out in three phases: Design, In. ler 1entation, and Maintenance. Design
captures essential attributes of a science domain, con.idei. past and present standardization
efforts, and potential linkages to external authorite tiv e systems to disambiguate meaning. The
design phase leveraged the activities of science syiuiesis working groups and data
management expertise to identify accurate an' | pe.sistent data patterns. Implementation is
accomplished through conversion of archive « legacy data by data contributors or by EDI’s data
curation team, and is supported by dat.. nattern documentation, best practices guides, and
software libraries. Maintenance is ach.. ‘eu through programmatic workflows that automatically
run when source data packages are up deted.

2.1 Design

2.1.1 Learning from Existi~.g A, sroaches

We identified several . ng.inc, or completed harmonization efforts using existing community
observations and includin,* datasets available from the EDI repository. All of these efforts used
similar datasets from muitiple sources, and all are one-time efforts with minimal plans for
maintenance or updating harmonized data. In many cases, the resulting harmonized datasets
were used to answer specific research questions and were then further changed or extended for
additional uses. The abstract view of these datasets were potential models for general
harmonization, and three in particular exemplify the need for a more broadly useable data
model for observations -- one which is also capable of structuring spatial information and
taxonomy: 1) Popler, a database and R-libraries designed to analyze LTER population time
series (Compagnoni et al., 2020) ; 2) CESTES, a global database for metacommunity ecology
(Jeliazkov et al., 2020) ; and 3) BioTime, a global database of species abundances through
time (Dornelas et al., 2014) . In addition to the three research-focused models, we also
considered the Darwin Core Archive (DwC-A) format used by the GBIF (Wieczorek et al.,
2012) . The GBIF system is arguably the largest aggregator of organismal occurrence and



related data, holding over 1.5 billion records of species occurrences, taxonomic checklists, and
sampling event or sample data from over 1500 institutions.

All three research-focused models implemented table structures and measurement types which
do not accommodate the wide variety of raw data that capture complex environmental
conditions during sampling and which are available in the original dataset. Only one (Popler)
allows spatial nesting and taxon authority referencing. None of these databases accommodates
references to external measurement dictionaries or ontologies. For all, access is somewhat
limited by the choices of storage (i.e., Excel, or relational databases which require a custom
interface or code). Temporal sampling is generally limited to observation dates, and CESTES
includes text fields to describe nuances of temporal or other sampling. Compiled harmonization
efforts such as these are highly valuable, as they represent consic - rable scientific knowledge
and hours (possibly days) of thorough, manual checking and refr... ~ai.ing. Computing cannot
supplant that scientific knowledge, but a comprehensive interme Jiat : format can streamline
some of the reformatting tasks.

GBIF’s DwC-A came closest to meeting the requiremer s \or vroad reuse; these are self-
contained datasets composed of text tables plus a file ac~Zsibing table organization. Table
columns are labeled using the Darwin Core vocabr::zry (DwC) for indexing. A large fraction of
GBIF records are simple organism occurrences, h ~we ver DwC-A extensions allow for inclusion
of other aspects such as contributor-definer’ . ~ec<urements (e.g., abundance or cover), which
are common for ecosystem studies of the /b’ housed by EDI and data products published by
NEON. The DwC also includes fields for exte: .~al taxon references. Missing from the DwC-A
were explicit site nesting and external me ~surement references (see Discussion). Interestingly,
some of the structures created by sci :r.i *3 for their own synthesis can be strikingly similar to
DwC-A tables (Walter et al., accep.c)  with features added (e.g., the aforementioned nested
sampling sites).

2.1.2. Identifying requiremer.'s

Consistent with the geals to s apport a synthesis workflow that will reduce data preparation
efforts for answering new. research questions and minimize impact on data producers, we
developed requirement. Lased on three main considerations (see also discussion in Sholler et
al., 2019): 1) the expectations of data contributors and the original data; 2) the repository
framework; and 3) the needs of the data reusers. The scope is defined as ecological community
data, in which observations are abundances of co-occurring groups of organisms in an area, as
opposed to population or demographic data (where observations are made at the level of
individuals within a species). We recognize that some original data will contain both types of
information, and ideally, while the harmonized intermediate may not contain the original
population-level information, the framework should make that original readily available. Our
short name for a model for the flexible intermediate for ecological community data is
“‘ecocomDP”, for “ecological community data design pattern”.

2.1.2.1 Data contributors and the original data
Original data are available in the EDI repository as text tables (usually ASCII) formatted to best



suit the original research questions, with collection methods that are adapted to the environment
and community of interest (e.g., aquatic, forest, grassland). In many cases the datasets are
updated regularly. The data contributors (data managers or scientists) are intimately familiar
with local conditions, which is vital to creating high-quality data packages. As mentioned above,
there is no incentive for the data contributor to format their data in any other way, and so it was
essential that the harmonization process did not interfere with a data contributor’s formatting for
their original research questions. The challenges presented by the data themselves included the
large number of different parameters measured (e.g., number of individuals, cover, biomass,
catch per unit effort), taxonomic resolution and consistency (e.g., family, genus, species),
environmental or experimental conditions essential to interpretation (e.g., fertilization, harvest,
simulated disturbance), the nesting of sampling units over space (e.g., site, transect, plot,
subplot, depth) and time (e.g., date, season, year), plus changes .~ the sampling protocol over
time (e.g., the addition of new sampling locations or changes in *'.c ta..onomic resolution of
sampling).

Additionally, NEON publishes a variety of data products oi' its pourtal that provide biodiversity
data on sentinel taxonomic groups from 81 field sites lo aw>a across the United States
(https://data.neonscience.org/). Many of these data prou.~s were designed with input from and
for use by population and community ecologists (L= et al. 2013, Thorpe et al. 2016). These
products offer organismal data that can be mappre” (0 the ecocomDP model, used in research,
and derived data packages can then be arc’.. -eu in the EDI repository (e.g., Li et al. in review).

2.1.2.2. The repository framework

In the EDI repository the granule is a “da.> package”, composed primarily of a metadata record
(Ecological Metadata Language, EMI ) . -, one or more data entities (i.e., ASCII tables). The
repository supports metadata and uc*a ..nmutability, revision control, DOI assignment and event
subscriptions to track updates tc ac*a. Repository staff, although experienced data specialists,
lack specific local knowledge {~r «ery dataset.

2.1.2.3. The data users

Aside from a standard (a1 *urmat and nomenclature, scientists attempting to use these existing
data were mostly concern :d with data discovery, i.e., the ability to identify data that best suited
their needs in a repository. A few types of searches were common to all reuse (e.g., number of
taxonomic units in study, duration of study and frequency of sampling, and the size and
arrangement of sampling areas), and so needed to be supported. Those who are reformatting
data to this model must understand the original data well, and so its associated code should
include checks for certain features, like uniqueness and typing.

Our solution to these requirements is the development of a flexible domain-specific intermediate
model in a lightweight, distributed workflow framework, in which data repositories handle some
of the preparation work typically done by end users. The original data are not aggregated or
otherwise changed, only normalized to a standard format that can be more readily accessed
and used. This reformatting is accomplished by automated workflows which allow data products
to be repeatedly synchronized when original data are updated. This process increases the value



of the data by implementing standard quality checks and can provide feedback to contributors to
inform them of aspects of data and metadata that are the most important during reuse, and of
arrangement or presentation choices that function well.

2.2. Implementation

During the implementation phase, pertinent datasets in the EDI and NEON repositories were
identified. For each EDI dataset, an R script was developed to convert the data into the
ecocomDP model. This effort incrementally led to tuning of the model itself and associated
documentation. It also served to outline necessary functions for building data packages and
accessing NEON data. Lastly, to test both the data format and the entire workflow, we used
ecocomDP formatted data to generate DwC-A for submission to CBIF. This last step has the
added benefit of making EDI holdings available for GBIF users.

Figure 1 depicts the general workflow which was implemente s ¢ 1y will be followed for updates.
The “level” designations and terminology are adapted from N.\S’\s Earth Observing System

Data and Information System (EOSDIS) (Price et al 1994\ v, **h LO being the original data; L1 is
the same data transformed to the ecocomDP model, a. 1 m ide available as a data package in

the EDI repository. L2 has been further transformed or agy-egated as needed for a particular
synthesis research question or other use (such as a SwC-A).

Level 0 Le. 1 Level 2
£ = \ 5 S ™ _I—I_I_ X
‘ Ra.ed on '
Original or :defined Dr
Step 1 0
L ) | model ) Step 2 Derived ‘

Data Sources, Sinks

Figure 1. Level 0 (LO) are incoming, original data, ideally, already archived in the repository
with complete metadata and contributed by those close to the research. Level 1 (L1) data
packages (also in the repository) are formatted according to a predefined model, in this case,
ecocomDP. Researchers are able to use L1 as inputs with its code to speed their analyses and
generate Level 2 (L2) data. An archive of the L2 data package in the same repository is
recommended. Data sources and sinks may be a repository (e.g., EDI) another data provider
(e.g., NEON) or aggregator (e.g., GBIF).



2.3. Maintenance

The maintenance phase focuses on developing robust R scripts for continued conversion when
source data (LO) are updated and converting new datasets as they are submitted to the EDI
repository. Maintenance of the R package includes adaptations for the NEON endpoints as
these evolve. The EDI infrastructure supports the execution of external workflows through its
API and event notification service to automate routine data management tasks. Upload of an LO
revision triggers execution of its conversion script. The system is ideal for a series of data
packages, as it simplifies and accelerates creation of continuously updated synthetic data
packages (Servilla et al., 2016) .

3. Results

3.1 The ecocomDP data model

The model (Fig. 2) is composed of eight related data tables i1 an extended star schema (Seyed-
Abbassi & Madesi, 2015) and implements database-styl. orinciples of foreign keys and
normalization, along with attribute/value style tables to ‘s«ccommodate a wide range of
measurements. Three data tables are required: the cenu>! observation” table and two
supporting dimensional tables, “sampling_location”, ~nd “taxon”. The “dataset_summary” is
automatically created and populated based on the ,bs ervations. The three primary tables are
each extended with an optional table for an~....ary information to accommodate additional
measurements important to understand a:.11 se specific sampling conditions for analysis. The
optional eighth table maps variables to extern.' dictionaries.
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Figure 2. The ecocomDP model shown with relational database notation for foreign keys and
relationships (e.g, lines ending in crows-foot indicate 1:many relationships). Semi-transparent
tables are optional. Medium green fields in each table are the primary key. Yellow/hashed fields
are a combined unique constraint. IDs (suffixed, “_id"), must be unique within a table, as in an
relational database. Full documentation (e.g, optional fields and definitions) can be found in the

Git repository (EDI, n.d.).

3.1.1 Observations
The central “fact” table holds the actual ecological community observations (Fig. 2, e.g.,

abundances or densities of a taxon).



3.1.2 Locations

The nesting of sampling locations (e.g., plots within transects within areas, or depths or heights
of a profile) is accomplished using a self-referencing table, in which a location may have a
‘parent’ which is itself a sampling location in the same table. This mechanism allows
observations to be associated with a location at any level, and observations can be aggregated
under groups of locations.

3.1.3 Taxonomy

The taxonomy table does not attempt to describe all aspects of a taxon, but rather holds basic
information such as name and rank (e.g., family, genus, species), with the option to refer to a
taxonomic name authority system. Although a taxonomic name mc '+ be reused in different
kingdoms and a hierarchy required for full understanding, the mr .ot acliberately does not
encode taxonomic hierarchies, as these are somewhat fluid ana 1o “.ingle system applies to all
organisms. Instead, that information can be held by the auth ity system, and accessed with
readily available software tools, or it can be recorded in th: taxun_ancillary table.

3.1.4 Summary table

A one-row table summarizes information in the Ob<zrvation, Location, and Taxonomy tables. It
represents the information most frequently need<d' by scientists as they evaluate a dataset for
use, mainly to understand the taxonomic, te.. .o, 2l, and spatial coverage.

3.1.5 Ancillary tables

Each primary table has an optional table [~r additional information. Also designed as
attribute/value, these ancillary tables ro\ e a place for environmental conditions (e.g., air
temperature, observation uncertair.us), organism characteristics, (e.g., biomass, traits,
morphotype, phylogenetic inforn.au~n), or experimental conditions (e.g., fertilization). Date fields
are included for taxon_ancilla::* a.>d location_ancillary as these may have been recorded a
different times than the primory cuservation. The observation_ancillary table might contain
specific sampling-event-c'ata, such as volume cleared by a plankton tow or single depth (when
not part of a profile). Ti.~sc =e data typically included with the community observation data to
ensure that data users are aware of conditions and can judiciously subset and aggregate
original observations.

3.1.6 Accommodating measurement term disambiguation

An optional “variable_mapping” table allows unambiguous term definition using external
vocabularies and ontologies by documenting the system used and a unique identifier for the
term (i.e., a URI or URL). It is intended for the content of fields titled ‘variable_name’ in the
observation and optional ancillary tables.

3.2 Supporting code

We developed an open-source code library in the R statistical language to support common
tasks for creating, checking and using ecocomDP data packages (Smith et al, 2021) . To assist
with conversion to ecocomDP from EML-described data packages, R functions are available to



harvest EML metadata from the LO dataset preserving essential high-level elements (e.g.,
abstract, methods and personnel), with additional text and EML elements to clarify that this (L1)
is a derived data product: a provenance link to the LO dataset, additional abstract and title text,
and keywords (e.g., “ecocomDP”). LO variable names and descriptions are transferred to coded
value lists in L1 EML. To promote discovery, some ecocomDP table content is elevated to
metadata, such as full taxonomic hierarchies including common names and external identifiers,
and EML annotations created from the variable_mappings table. The R library also supports
quality control to ensure that tables are model-compliant, confirming presence of required fields,
referential integrity between tables, and uniqueness of identifiers. Taxon IDs are added with the
taxize R library (Chamberlain et al. 2020).

The ecocomDP R library provides functions to search data and mv’adata on free text,
taxonomic names, geographic area, and summary features (fror. .~e (ataset_summary table,
Fig. 2), which is improved over typical repository searches on motac ata alone. Analysis
workflows are supported through functionality for programmz tica'y accessing and reading the
data and metadata; merging datasets; transposing ecocor. DF wables into the “wide” format
(e.g., each column representing a taxon) preferred by r.arn * scientists; and for creating plots of
basic features to evaluate fitness for use (see below). As **¢ have already stated, preparing
data for analysis can still be complex, and these te<!s will not replace ecological understanding
of fitness for use of data in a particular analysis. F.~we ver, they will help streamline the process
considerably.

3.3 Using the ecocomDP format

The R library described above was de v 'op. 2d and tested as we processed original, incoming
data through the Figure 1 workflow. firs t converting them to the ecocomDP model (L1; Fig. 1,
Step 1), followed by a) plotting geera. characteristics as might be required by synthesis and b)
conversion to publication ready YwC-A (an example of L2). Those processes and summary
metrics from conversions are ac*aned here. As incoming datasets are nearly always unique, the
conversion to the ecocom™® ,>-.nat (L1) requires an understanding of the study design,
measurement methoc < ad d ita types, with the R library helping to ensure full understanding,
and appropriate use ana . ccelerating the technical steps. Because all L1 are a standard format,
further processing can L. streamlined, and often automated.

3.3.1 Converting original data to ecocomDP (LO to L1)

To date, we have created 70 ecocomDP data packages from EDI holdings of LTER and Long
Term Research in Environmental Biology (LTREB) projects. Our approach to conversion of
these original (LO datasets) is to assemble each package's data into a single wide table, which
helps maintain referential integrity in the derived tables. Issues arising at this step are best
resolved in collaboration with the original data creators and may provide valuable feedback to
them. The next step is to extract data from the LO-wide table for the core ecocomDP tables (i.e.,
observation, taxon, location; Fig. 2) followed by the optional ancillary tables. The ecocomDP R
library supports common steps for scripting the entire process, including programmatic reading
of the LO package. We recommend scripting this entire step for two reasons: the script serves
as documentation of the process, and if the LO data package is updated (e.g., new data added),



subsequent conversions can be automated.

When the original data format is well controlled, reformatting to the ecocomDP model is more
straightforward. NEON exposes its corpus of datasets of organism data for integration with
EDI’s holdings, using code created by NEON with scientists from the NEON Science Summit
Meeting (Boulder, CO, 2019) (Li D. et al., in review) . R functions pull data from the NEON
share point using the neonUtilities R library and convert it from a NEON data product to the
ecocomDP data pattern. As of this writing, functions are available in the ecocomDP R library to
deliver data for NEON terrestrial organisms (breeding land birds, DP1.10003.001; ground
beetles, DP1.10022.001; herptile bycatch from ground beetle sampling, DP1.10022.001; small
mammals, DP1.10072.001; mosquitoes, DP1.10043.001; terrestrial plants, DP1.10058.001;
ticks, DP1.10093.001; tick pathogens, DP1.10092.001) and for aq. atic organisms (fish,
DP1.20107.001; macroinvertebrates, DP1.20120.001; microalge ., D+ 1.20166.001;
zooplankton, DP1.20219.001) at all sites where NEON routinely ~oll :cts those data.

As NEON data products are continent-wide, these divided into ind "iduai field sites for analysis to make them
spatially compatible with EDI holdings. For both NEON and E"s1 (ta, summary information, identifiers and
DOIs if applicable can be found in the dataset, O'Brien et al (20.\. Spatial, temporal, and taxonomic
coverage for a total of 530 NEON and EDI dataset< aire shown in Figure 3, comprising over nine
million observations. The NEON data are broker (.t t y sites (83 total sites) as that unit was
more similar in structure to the data packao~.: a.~ilable from EDI, which come from site-based
research groups such as the LTER Netwc «. Tsata in harmonized format clearly illustrate the
differences between the data collection strate_ies of NEON and the EDI holdings from individual
place-based sampling programs. NEON < targeted biological collections focus on nine groups of
species (by taxonomic or other attribi te s, aver relatively narrow spatial extents within sites (but
a large spatial extent among sites®, < nu uver shorter, evenly-spaced time periods (collections
began in 2013 with full operatior s .~ 2019). Coverage plotted from EDI data holdings, on the
other hand, shows a wide diversi. for all three coverage elements and reflects the diversity of
research programs. Duratio: s ra .ge from a few years to over six decades, with somewhat less
even sampling, a broade’ sp.tial extent (up to 10° square kilometers), and many general
taxonomic groups represe.*~d.
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Figure 3. Temporal, spatial and taxonomic coverage of datasets available in the ecocomDP
model. Data source: Black, EDI; Gray, NEON. A) Temporal coverage (years), B) Temporal
evenness (years), C) Spatial extent, D) group. An asterisk indicates that two groups (Tick,
Mosquito) are specifically targeted by NEON. When these taxa occur in EDI datasets, they are
plotted here with Arthropods.

3.2.2 Working with ecocomDP formatted (L1) datasets
The principles of a central observation table linked to additional information and the
attribute/value pattern that underlies the ecocomDP model are common approaches for



managing heterogeneous data due to their flexibility and storage efficiency (Wieczorek et al.,
2012) . We used the formatted data to demonstrate two outcomes: first, the ease of creating
common plots for scientific evaluation, and second, a mechanism to create DwC-A for GBIF.

As with the coverage plots (Fig. 3), a common format enables other common plots to be
created. The ecocomDP R library supports plotting of features commonly requested by
scientists to evaluate a dataset’s suitability for use. Figure 4 shows four aspects: number of taxa
over time, spatio-temporal sampling effort, species accumulation, and species shared among
sites. These examples, plotted from L1 data represent features of interest to synthesis working
groups and are based on their input (Jarzyna et al., in review; Record et al., 2021; Walter et al.,
accepted) . Community ecologists often use data on taxon presence or abundance to generate
evidence that quantifies the strength of species interactions such <~ competition, predation, or
mutualism, or responses to shared environmental conditions. Fe: <vaiaple, Record et al.

(2021) used the L1 output to explore spatial and temporal repr.>se’ tativeness of several LTER
datasets to assess the suitability of LTER community datase s fo ' addressing questions of how
spatiotemporal scales influence insights from metacommu ity analyses. Likewise, Jarzyna et al.
(in review) used the L1 output of NEON data to explore cei.>oural dynamics in animal
communities at a continental scale. Walter et al. (in revie '} synthesized the spatial synchrony of
biodiversity across 20 marine and terrestrial commr..~iues. 1ne ability to quickly create the
common plots shown in Figure 4 for many datase.~ wr.re instrumental in streamlining the data-
discovery phase of each of these syntheser.
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Figure 4. Plots from four L1 datasets. (A) number of unique taxa (y-axis) observed over time
(x-axis), (B) sampling effort over time (x-axis) and space (y-axis), (C) species accumulation
curves (y-axis) over time (x-axis), and (D) matrix of species co-occurring among sites (site 1 on
x-axis and site 2 on y-axis).

In addition to supporting reuse of community observation data by synthesis science, a goal for
this harmonization effort is to contribute these datasets to the holdings of the Global Biodiversity



Information Facility (GBIF) to increase the data’s discovery and use. Although the ecocomDP
model is more extensive than the DwC-A, their similarities make a scripted process
straightforward. Both the DwC-A and ecocomDP models are star schemas with attribute/value
tables and both use EML for metadata. Information loss is minimized by mapping to DwC-A's
Event Core layout (GBIF, n.d.). Our approach makes use of ecocomDP R functions for
manipulating datasets, followed by mapping to the DwC-A terms and adding required metadata
elements. Several types of external identifiers are included in the DwC-A tables. For taxa, we
include ids (DC: taxonID) with named authority (DC: nameAccordingTo) and Life Science
Identifiers(LSIDS) in the DC scientificNamelD field. We also make use of the recently added
EML annotation field (Jones et al. 2019) to include measurement URIs in the DwC-A extension
field measurementTypelD.

With the conversion from original (LO) data to ecocomDP (L1) fo~...~tied data to DwC-A (L2)
data fully automated, updating long-term observational datasets ‘s s mplified. As of this writing,
we are working with GBIF on the technical aspects of the co itrib ition mechanism. In the
interim, all DwC-A packages are in the EDI data portal via *he neyword “Darwin Core Archive”.
Researchers will soon have several options for accessi ig \hese data in addition to the original
dataset: the ecocomDP-formatted and the archived Dwt *. packages both archived at EDI, and
by querying values through GBIF systems.

4. Discussion

Decades of harmonizing data from diverse s. 'dies and developing community data standards at
multiple scales indicate that a substanti..' upfront cost is incurred. These laborious efforts must
be justified by benefits such as impor'ar ~e .0 meta-analyses, reduced expense of obtaining and
preparing them for analysis, or ever cc.nercial value. Further, it appears that harmonization
efforts generally lead to a certain | yss uf information, which can be acceptable during analysis if
balanced by sufficient volume (e 1., Pollet et al., 2015). As a result, highly complex,
multidimensional data have larg. 'y eluded harmonization. Ecological community observations,
although irreplaceable an~. >ig...y valued for understanding environmental change (LTERnet.edu
n.d), have highly-varic."le sar.pling methods and high dimensionality that continue to make
synthesis across studies |'ifficult (Welti et al., 2021) . A level of pre-harmonization is essential if
the community is to avoiu each synthesis group expending significant effort repeatedly
wrangling data into similar formats, and to promote more rapid and reproducible synthesis
efforts (Record et al., 2021) .

Given these experiences, requirements, and use cases, our new data model minimizes
information loss while meeting most of the needs of meta-analysis, and uses a workflow system
that also accounts for regular updates to the datasets. The reformatted data (ecocomDP format)
are maintained as independent packages in the EDI repository to take advantage of its general
functionality of search and access, hence avoiding another database ‘silo’. Further, specific
discoverability is improved by the addition of standardized metadata to aid the process of
selecting relevant datasets. Any synthesis effort will still have the significant step of determining
if a dataset is fit for a particular analysis, which is typically performed by examining the sampling
methods, constraints, and other facets of data collection. That task can be further assisted by



disambiguating semantics through linkages to external dictionaries, which is accommodated in
the ecocomDP data model as well as the EML metadata standard. Li et al (in review) details the
decisions made while converting NEON data to ecocomDP. Some of the checking available in
our R-package is a result of that, however additional dependencies or checks may become
evident which help ensure that scientists fully understand the data as they convert it into the
ecocomDP format.

Although extensive reusable R programming functionality was developed, the conversion from
original data formats (LO) to ecocomDP format (L1) still requires a moderate investment in time
and some ecological understanding for every new dataset—a significant task taken on primarily
by the repository, EDI. Future reuse of these data will determine the value of such a reformatting
service and the likelihood of its continuation. An advantage of the . orkflow system is that after
the initial effort, the scripts generating ecocomDP data packages . ~n the original data can be
fully automated and repeated when the original data are updatel' T}.e generation of
downstream data products can also be automated, and our (rea.'on of DwC-A for submission to
GBIF serves as a model for generating submissions to ott. r systems, such as Popler, CESTES,
BioTIME or VegBank (Peet et al., 2012) . In addition tc suporting short-term synthesis
research, we envision these important data supporting 1.~ .1eeds of ecological forecasting
studies (e.g., Dietze et al., 2018) and being used t~ ~alculate indices for Essential Biodiversity
Variables (EBV, (Pereira et al., 2013; GEO-BON 2" (3 , the community-managed state variables
that stand between primary observations, p'..> h.>her-level indicators such as the Ocean Health
Index, (Halpern et al., 2012, 2015; Schme.'ar :t al., 2015) .

The flexible attribute/value data format us ~d for ecocomDP has been widely used in other data
harmonization approaches (e.g., Tart oty 2t al., 2008; Wieczorek et al., 2012) . It saves space
and allows an unlimited number of al*riLutes, hence accommodating any type of measurement.
However, description and contrc' o aspects such as data typing, precision, or text definitions
are not built in, and as compa:=a ‘2 the detailed data table descriptions common in the original
data packages, may result ii. sor .e metadata loss. The ecocomDP project mitigates such losses
by retaining as much metade‘a as possible, quality checking, and by implementing a workflow
system that includes a yro.~.1ance trace in derived data (L1, L2; Fig. 1) so that original data can
be accessed if necessary.

The semantic parity between ecocomDP and the DwC-A model is strong, especially for
concepts like Observation and Taxon. The GBIF and Darwin Core systems work quite well for
observations of individuals but less well for measures of abundance; the ecocomDP model
helps fill that gap. The functionality of ecocomDP’s ancillary tables is aligned with
ExtendedMeasurementOrFact, and together these features helped to streamline our conversion
to DwWC-A. Although that conversion was relatively straightforward, there are significant
differences between the two formats. First, the DwC vocabulary and GBIF model does not
explicitly support the kind of site nesting needed to understand a sampling design. The Event
class (which includes locations) can be leveraged for this use (DePooter, et al 2017), although
examples and recommendations are not well-established in the community. Therefore,
ecocomDP explicitly includes a site-nesting feature, similar to other models used by scientists



(i.e., Popler, Compagnoni et al., 2020). Our conversion scripts can be adapted in the future as
the use of the DwC-based models evolves. Secondly, inclusion of external dictionary references
for measurements is not currently an established part of the DwC vocabulary (which determine
column headings for DwC-A). Our L2 DwC-A already includes the proposed extension for
measurementID (to hold URIs in external measurement dictionaries) and will serve as an
example as adoption for this extension increases. Those differences, and the ease with which
our ecocomDP datasets can be converted to DWC-A makes the ecocomDP intermediate
valuable both for detailed scientific syntheses and large-scale querying by aggregators like
GBIF.

The use of ecocomDP to promote discovery, reusability, and integration of data is an exciting
step towards harmonization of data across coordinated research 1.~ tworks, which advances
collating in-situ ecological community observation data at global _.*er.:s to support broad
concepts such as EBVs. This EDI-NEON collaboration also reve 2ls “ne value of synergies
between networks by integrating the deep long-term and pl: ce-i. ased knowledge of the LTER
Network with the broad spatial coverage of the NEON Obc >rvawry. Just as harmonization of
data helps synthesis scientists avoid “reinventing the w'iec"” 10r each research project,
collaboration among groups such as NEON, LTER, and = promotes communication between
repository staff and scientists to share insights ancd -tialls apout data. Furthermore, although
NEON data are extremely well documented and €~ ar sulate standardized collection protocols,
the level of detail surrounding slight nuance~ 1 uata collection over time (e.g., reductions in
sampling events) or abbreviations used (e.1.. sp.” and “spp.”) may elude users. The oversight
of data wrangling in collaboration with NEON . taff for the ecocomDP model assures users that
these idiosyncrasies have been consider. 1. End users will still need to recognize that the
ecocomDP data are intended to be u e ~r community ecology analyses rather than for
demographic analyses, although t'.c ~rigyinal data may contain that information. For instance, to
access NEON's small mammal ra.«-recapture information (e.g., to estimate occupancy for
population models) users wou'd 1.~ed to return to the the original data product.

5. Conclusion

Many important primary u.ta are ongoing research-grade time series, and access to these
trusted, up-to-date data sources is highly desired by synthesis scientists, managers, and policy
and decision makers, yet easy access is seldom realized. Data harmonization is not a new idea.
But typically, harmonization projects for organismal data are designed for specific research
questions or types of queries, which tend to drive data preparation decisions. Unfortunately,
those formatting or aggregation choices often reduce the potential for other types of use.

Our workflow-based model makes both the original data and harmonized version easy to
discover and access, and takes advantage of existing repository functionality. Furthermore,
heterogeneous data become available in a manner consistent and interoperable with current
and emerging trends in other biological fields. The harmonized intermediate has basic
formatting applied, and accommodates standardized measurement semantics and taxonomy.
The use of event subscriptions to track their updates and rerun processing code is a
transformative activity, and provides a template for a process that can be reused in other



scientific domains.
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Highlights

3-5 bullets, 85 characters max per bullet

o ecocomDP is a flexible intermediate format for ecological synthesis or other uses

e Collaborative development exposes data from NEON, EDI and LTER in a uniform
manner

o Processed in a workflow that does not impact existing data packages

e R package to assist with reformatting original tables and work with ecocomDP data

o Conversions to Darwin Core Archives Event Core for GBIF contributions



