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Abstract—Sensitivity analysis (SA) is an important
aspect of process automation. It often aims to identify
the process inputs that influence the process output’s
variance significantly. Existing SA approaches typi-
cally consider the input-output relationship as a black-
box and conduct extensive random sampling from the
actual process or its high-fidelity simulation model
to identify the influential inputs. In this paper, an
alternate, novel approach is proposed using a sparse
polynomial chaos expansion-based model for a class
of input-output relationships represented as directed
acyclic networks. The model exploits the relationship
structure by recursively relating a network node to
its direct predecessors to trace the output variance
back to the inputs. It, thereby, estimates the Sobol
indices, which measure the influence of each input on
the output variance, accurately and efficiently. Theo-
retical analysis establishes the validity of the model
as the prediction of the network output converges in
probability to the true output under certain regularity
conditions. Empirical evaluation on two manufacturing
processes and a flooding process shows that the model
estimates the Sobol indices accurately with far fewer
observations than state-of-the-art black-box methods.

Note to Practitioners—This paper is motivated by the
problem of automated identification of the inputs that
influence the variance of the output for networked pro-
cesses without feedback control. Such processes arise
in various natural and engineered systems, of which
manufacturing operations and flood mitigation are of
particular interest to us, where the output variance rep-
resents the uncertainty in productivity, quality, or cost.
Therefore, influential inputs identification allows us to
quantify the effects of the various process parameters,
such as operating conditions and physical properties, in
determining the uncertainties in the process outputs.
‘We show that our identification method is guaranteed
to quantify the effects accurately, and is expected to do
so more efficiently (with fewer experimental observa-
tions) than widely used stochastic sampling techniques.
In the future, we will like to evaluate the usefulness
of the developed method on large-scale manufacturing
and supply chain networks in actual production facil-
ities as well as on critical infrastructures subject to
cascading failures.

Index Terms—directed acyclic graph, sensitivity
analysis, Sobol index, uncertainty quantification
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NCERTAINTY quantification plays a critical role in

controlling the uncertainties in process automation
[T, 2]. Automated processes that neglect important un-
certainties are, at minimum, unstable, and, in the worst
case, have catastrophic process outcomes in terms of both
quality and productivity. To quantify how such uncertain-
ties propagate through the process, sensitivity analysis is
widely used in process automation. The sensitivity analy-
sis of this study focuses on characterizing how the process
output’s variance is propagated from the inputs. This type
of analysis is ubiquitous in different areas of automation
science and engineering, such as thermodynamics [3], elec-
tromagnetism [4], power systems [5], building systems [6],
and manufacturing [7].

How sensitive a random variable (e.g., process output)
is with respect to another random variable (e.g., process
input) is measured using a sensitivity index. Arguably, the
most widely used sensitivity indices are the Sobol indices
[8], which quantify how the independent inputs apportion
the variance of the output. In practice, simple random
sampling (from the actual process) or Monte Carlo sam-
pling (from the simulation model of the process) is most
commonly used to estimate the Sobol indices, where many
observations of the inputs and output are available. A
more resource-efficient alternative is to construct a model
(or, metamodel) of the actual process (or, its simulation
model when the computational cost is expensive), and use
the model (or, metamodel) to estimate the Sobol indices

Among such models, polynomial chaos expansion (PCE)
is particularly conducive to estimating the Sobol indices,
as detailed in Sec. Il In essence, the PCE expands a
random variable (e.g., process output) in terms of or-
thonormal polynomials in other random variables (e.g.,
process inputs), and the expansion’s coefficients directly
yield convergent estimators of the Sobol indices thanks to
the orthogonality of the polynomials in a Hilbert space.

However, such models, including PCE, typically con-
sider the input-output relationship of a process as a black-
box for sensitivity analysis. This approach, while generally
applicable to many processes, misses the opportunity to
leverage the scientific/engineering knowledge of how the
process actually works. Opening the black-box and utiliz-
ing the knowledge of the inner working can enable more
effective modeling of the process, leading to more accurate
and efficient sensitivity analysis.

To this end, this study considers a broad class of pro-
cesses whose input-output relationships are expressed as
directed acyclic graphs (DAGs), also known as directed
acyclic networks. Since network-structured processes are
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ubiquitous in practice, several real-world systems can
potentially benefit from this study, such as biological
networks [10], supply chain systems [I1], manufacturing
operations [12], and process industries, in general [I3]. In
particular, this study uses two manufacturing processes
(welding and injection molding) in Sec. [[V|and a flooding
process in the article’s online supplementary document for
illustration purposes.

Consequently, the main contribution of this paper is in
the development of a novel model, called sparse network
PCE (SN-PCE), to accurately estimate the Sobol indices
of the process output (sink node in the DAG) with respect
to the process inputs (source nodes in the DAG). To
the best of our knowledge, SN-PCE provides the most
efficient way to estimate the Sobol indices for any process
represented as a DAG. The estimated Sobol indices allow
us to identify the inputs that significantly influence the
output variance. The proposed model is validated through
a theoretical analysis, which establishes that the prediction
of the output converges in probability to the true out-
put under certain regularity conditions (without imposing
impractical restrictions such as parametric relationships
among the network variables). The model is also empiri-
cally validated through sensitivity analysis of three real-
world processes, where it is shown to accurately estimate
the Sobol indices with much fewer observations of the
process inputs and output as compared to state-of-the-art
black-box methods.

The remainder of this paper is organized as follows.
Sec. [ briefly reviews the technical background on the
PCE and Sobol indices. Sec. [Tl starts with formal defini-
tions regrading the DAG and presents the following three
PCEs to model a process represented as a DAG: naive
PCE, network PCE, and SN-PCE. Sec. [[T]] also discusses
the theoretical properties of the PCEs. In Sec. [[V] the
PCEs are empirically evaluated with two manufacturing
applications. Sec. [V]concludes the paper with a discussion
on future research directions.

II. TECHNICAL BACKGROUND

In this section, we first formally define process inputs
and output that bear uncertainties. Then, we present
the PCE and sparse PCE. We review the construction
of orthonormal polynomials for the PCE, the Hoeffding
decomposition, and the Sobol indices. We also review how
to estimate the Sobol indices using the PCE.

A. Input random vector and output random variable

In this paper, we generally use the same notations as
[14], including No := NU{0}. A® CR", n € N, denotes
a bounded or unbounded subdomain of R". Let Q be a
sample space, and F be a o-algebra on Q. (Q,F,P) is
a probability space with a probability measure P : F —
[0,1]. The Borel o-algebra on A™ C R™ is represented as
B™ = B(A™). An A™-valued input random vector x :=
(x1,...,2n): (Q,F) = (A", B") describes the uncertainties
of n process inputs of interest.

To model a process output y using the PCE in x, we
assume that y is a function of & and is a square-integrable
random variable defined on the same probability space
(Q,F,P), written y(z) € L2(Q,F,P).

B. Polynomial chaos expansion (PCE)

PCE approximates y using a finite number of orthonor-
mal polynomials in x as follows:

P
)= fla)~) 0i(@), (1)
1=0

where 60; and ¢¥;(x), i = 0,1,2,...,P, denote the PCE
coefficients and orthonormal polynomials in 2, respec-
tively. P41 is the number of the orthonormal polynomials
and equals ("IP ) for the pre-specified highest polynomial
order p and the dimension of &, dim(z) = n. Thus, P+1
increases exponentially in n and p. As P increases, the
approximation error in eq. tends to zero [I5].

In this paper, we adopt a regression-based method to
obtain the PCE coefficients by solving an overdetermined
linear system of equations in the least-squares sense as
follows [16]:

m P 2
argminz (YJ - Zﬁiwi (Xj)> , (2)
ORP T ;1 i=0
where 8 denotes (6o,01,...,0p). Y; and X; represent the
output and the input vector of the j** observation, j =
1,...,m, respectively.

Note that in contrast to typical regression models whose
coefficients explain how the expectation of the output
would conditionally change when the inputs are varied, the
PCE coefficients are used to interpret how the variance of
the output is apportioned to the inputs.

Thanks to the orthogonality of the orthonormal poly-
nomials, the lower order moments of the output y are
approximated using the PCE coefficients in eq. as

follows:
E(y) ~ o,

. (3)
Var(y) =~ 67,
i=1
where E is the expectation operator with respect to the
probability measure P. The approximation errors in eq.
tend to zero as P in the PCE in eq. increases.

C. Sparse PCE
The sparse PCE is extensively studied in the recent
literature [I7H22]. In this paper, we use [; minimization,
specifically the least absolute shrinkage and selection oper-
ator (LASSO), to obtain a more parsimonious model than
the model from eq. , by solving the following problem:
P
argmin Z
96RP+1i:0

s (Y- S b (X))
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where Y = Z;nzlYJ /m. The parameter I" constrains the
goodness-of-fit for the sparse PCE (e.g., I' = 0 requires a
perfectly fitting model and I' =1 allows the model to be as
simple as a constant model). The two application examples
in Sec. [W use I" of 0.001.

D. Construction of multivariate orthonormal polynomials

A variety of PCEs have been proposed to construct
orthonormal polynomials considering different types of in-
put distributions. The Wiener chaos expansion, known as
the first PCE, uses Hermite polynomials for independent
Gaussian-distributed inputs [23]. Later PCEs allow for
different input distributions and include the generalized
PCE (gPCE) [24], the multi-element gPCE (ME-gPCE)
[25], the moment-based arbitrary PCE (aPCE) [26], and
the Gram-Schmidt based PCE (GS-PCE) [27]. In par-
ticular, GS-PCE, which accounts for dependent inputs
following arbitrary distributions [28], provides the basis
for constructing the proposed model in this paper.

In this work, process inputs are assumed to be mutually
independent. However, the other variables in the process
(represented as a network) are allowed to be dependent on
others. When the variables in z are mutually independent,
the orthonormal polynomials are directly constructed as
the tensor products of the univariate orthonormal polyno-
mials as follows:

Vi(2) =)o, (@ H Vo (7). (5)
where a; := (1,52, ..., Q4p). wau (x;) represents the ay;-
th order orthonormal polynomial in input x;. a; is the i-th
arbitrary vector satisfying |a;| := Z?:laij < p, where p
is the highest order of the polynomials in the PCE. When
variables are dependent on each other, we construct or-
thonormal polynomials using the modified Gram-Schmidt

algorithm, as proposed in [29].

E. Hoeffding decomposition and Sobol indices

Suppose the inputs in the n-dimensional vector x are
mutually independent and y = f(z) € £2(Q,.F,P). Denote
the probability density function of 2 as u(z). The Hoeffd-
ing decomposition of f(z) is then defined as follows [8] [30]:

fl@)= Y

uC{12,..,n}

Ju(®w), (6)

where fj := fo is a constant and z, := (2;) ., for u# 0.
Such decomposition is unique if and only if the summands
in eq. (6) are orthogonal to each other as follows [8]:

[ 1@ b (7)

Due to the orthogonal property in eq. @ the functional
decomposition of Var(y) is expressed as follows [31]:

/f 2)dz — f3
e

Du(y)7
uC{1,2,...,n}
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(x)dz = 0,Yu,v C{1,2,.

Var(y

where
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Based on the decomposition, our sensitivity analysis
considers the first-order Sobol index Sy, and total Sobol
index ST, of y with respect to z; defined as follows:

o D
A Var(y)’

:Zsua

uazj

where Sy, := D, (y)/Var(y). The first-order Sobol index
Sz; measures the main effect of input z; on the output
variance Var(y). The total Sobol index ST ; measures the
total contribution of x; to Var(y) including its main effect
and interactions with other inputs [32].

=Var(E(y|z.))

F. PCE-based Sobol indices

The Sobol indices can be estimated directly using the
PCE coefficients in eq. , making PCE particularly useful
for the sensitivity analysis [33]. The first-order Sobol index
is estimated as follows:

Za E.Qf{]} ag‘z
Sa; NP g2
Zz 191
where 0, is the PCE coefficient with respect to ¥q, () in
eq. (5) and

, (8)

oy, ::{aieN”:aij;ﬁOHjEu,\aﬂ Sp}
The total Sobol index is estimated as follows:
§Ta; = ) Set; 9)
Hysj
where )
Za Ealy 9 a;
Sy~ /==
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III. METHODOLOGY

In this section, we first define notations on the di-
rected acyclic graph (DAG), which represents the network-
structured process of interest. Then, we present three
models to estimate the Sobol indices for the process output
with respect to the process inputs. The first model called
naive PCE is a baseline model and directly approximates
the process output as a function of the process inputs,
viewing the process as a black-box. The second model
called network PCE uses the network structure of the
process to effectively approximate the process output in
terms of the process inputs. The third model called sparse
network PCE (SN-PCE) imposes sparsity on the second
model to use even fewer observations for the sensitivity
analysis than the other models.



In addition, we show that predicted outputs from naive
PCE and network PCE converge to the true network
output in probability under certain regularity conditions.
This validates the use of the PCEs for estimating Sobol
indices to conduct a sensitivity analysis. Because SN-PCE
is a sparsity-imposed version of network PCE; its validity
follows from the validity of network PCE and the sprase
PCE.

A. Directed acyclic graph

Let G = DAG(V,E) be the directed acyclic graph that
represents the network-structured process of interest. V =
{v1,v2,...,9y} is the collection of all the nodes in G,
where |V| denotes the number of the nodes. Let x,,, denote
the random variable represented by the node v; € V and,
forvCV, &y := (xvi)vi@. E CV xV is the collection of all
the directed edges in GG, encoding all dependencies between
the nodes. For example, (v;,v;) € E implies that there is
an edge from node v; to node v;, and hence &y; depends
on z,,. The adjacency matrix A is defined as follows:

<U’i’vj> 3

Aij = L

{0 <’Ui,’Uj> ¢ E.
If A;; =1, then v; is called a direct predecessor of vj. If
lezll Aj; =0, v; is called a source node. If le‘;ll A =0,
v; 18 termed as a sink node. Let S(G) denote all the source
nodes in G. We call the variables in zg(g) network inputs
and the variables represented by the sink nodes network
outputs. The node corresponding to the network output y
is denoted by v,.

We say that there exists a path from v; to v; if and

only if either A;; =1 or there exists a sequence of nodes
(Vkys---s0g, ) for 1 <7 < |V|—2 such that

T—1

Aiy [T Akeri Ay =1.
t=1
If there is such a path, we define &€ (v;,v;) = 1; otherwise,
€ (vs,v5) = 0. This function is useful for naive PCE, which
uses the network inputs that influence y, denoted as & :=

Zs(c)nv, for
Vy i ={v; € V:E(vs,vy) =1},

We assume the variables in € are mutually independent
hereafter to well-define the Sobol indices of y with respect
to &.

For network PCE, which relates each node to its direct
predecessors, we define

‘@(x’v) = z{vieV:vjE‘U,Aijil}U(’UmS(G))7

where {v; € V:v; € v, A;; = 1} represents the direct pre-
decessors, if any, of the nodes in v. To well-define & (z,,),
vNS(G) represents the source nodes in v, which do not
have any direct predecessors. For [ € N, £!(z,) denotes
applying the operator &(-) on @, [ times.

Network PCE can be applied to any DAG, which
contains any of the four possible 3-node motifs [34]. Fig.

shows an example DAG, which contains all the four motifs
(e.g., {vl,vg,w}, {U27U7,’U8}, {1}4,1)5,’09}, {UG;U107U12})-
Note the network inputs & = (Zy,, Ty, Toys Tug, Tog) are
mutually independent. The node w13 is the sink node
corresponding to the network output y. This example
DAG will be used in the following subsections to illustrate
naive PCE and network PCE.

wE Ee

C2)

Fig. 1. This example network contains all the four 3-node motifs
of DAG. The network inputs represented by the blue-shaded
nodes, Ty, ,Tvsz,Tv,,Tvs, and Tyg, are mutually independent.
The variable represented by node w13, Zv,5, is the network
output y. The arrows represent dependent relationships; e.g.,
Y = Ty,5 directly depends on zy,, and x,,, while indirectly
depending on all the network inputs.

B. Nuaive PCE

Naive PCE is the standard PCE in eq. that approx-
imates y directly as a function of the network inputs that
influence y, £ = zg(@)ny,,, as follows:

P
@:291‘7/)1'(5)' (10)
i=0
This PCE directly yields the estimated Sobol indices of
y with respect to & based on egs. and @ The naive
PCE algorithm is summarized in Algorithm

Algorithm 1 Naive PCE Algorithm

Input: G=DAG(V,E); at least P+ 1 observations of the
network output y and inputs £ = Z5(g)nv,-

Output: Sobol indices of y with respect to each input in
.

1: Construct univariate orthonormal polynomials for
each input in €.

2: Construct multivariate orthonormal polynomials for &
as the tensor products of the univariate orthonormal
polynomials using eq. .

3: Estimate @ in eq. by solving an equivalent prob-
lem to eq. .

4: Estimate the Sobol indices based on the estimated 6

using eqs. and @

As discussed in Sec. [[I-B] the number of orthonormal
polynomials, P, increases exponentially in dim (£). Thus,
this naive approach of taking the network as a black-
box requires an exponentially increasing number of ob-
servations to solve an equivalent problem to eq. as



dim (€) increases. In other words, a sensitivity analysis
with respect to a large number of network inputs requires
a large number of observations for naive PCE. This issue
is mitigated by network PCE that explicitly considers the
network structure.

C. Network PCE

We propose network PCE to leverage the known net-
work structure of the process of interest to improve the
efficiency and accuracy of sensitivity analysis. Intuitively
speaking, this model recursively relates a network node
to its direct predecessors to trace the output variance
back to the network inputs. How uncertainties propagate
through the network is effectively captured by the PCE
coefficients in the model. The coefficients directly yield
estimated Sobol indices of the output with respect to each
input in the network.

The recursive modeling process for network PCE starts
from the sink node vy (e.g., v13 in Fig. [I) and traces it
back to the source nodes (e.g., v1,v3,v4,05,0¢ in Fig. [1]).
The network output y is first modeled as the PCE in
P(y) (e.g., (@v,,Tv;,) in Fig. [I), which includes the
variables corresponding to the direct predecessors of vy.
Then, their direct predecessors are recursively found until
y is modeled as the PCE in &, or equivalently, 2(y),
where L :=inf{l € N: 2!(y) = 2*1(y)} denotes the total
number of iterations.

In the [*" iteration of this recursive process for | =
1,...,L, we need to find mutually independent vectors to
use in a PCE (recall eq. . Thus, we define the mutually
independent decomposition of 91( ) as follows:

Tym = (-’Evgz)»mvéz), X (lfz))’

which has an arbitrary order of the elements and satisfies
the following two conditions:

1) = (DJ—L-’B mNHéJ,

(11)

2) Ty; YL ka,VU],vk € ’U( ) ,Vi.

Note n() := dim v(l)) is the number of elements of
the tuple in eq. . For example, in Fig. [1} the mutu-
ally independent decompositions of #(y) and #2(y) are
(w115 Toyy) and ((Tog, Tog) , Tugs Tuy, ), Tespectively. Hence,
nM =2 and n® =3, not 4.

In the I*? iteration, network PCE approximates y using
the PCE as follows:

§=10)]

10 =3 0wl (7!
1=0

where each orthonormal polynomial d)gl)(@l(y)) can be
obtained using the mutually independent decomposition
of Z'(y) in eq. (11)) as follows:

), (12)

n®

v (7'w) = vl (#'0) = Hw g (m m) (13)

O _ (4®

Here a; ' = ( 11, 7a1(-2(z)) is the i-th arbitrary tuple

satisfying ijl ‘a%)‘ < p®) for the pre-specified highest
polynomial order p®. al(.l.) is the vector composed of the
polynomial orders with respect to the variables in N0

J
for j=1,2,.. n. w(l(n ( (l)) is an ’a(-l-)’—th order or-
J
thonormal polynomial i in (z) obtained using the modified

Gram-Schmidt algorithm [29]

In the first iteration (I = 1), the PCE coefficients,
Ggl),i =0,1,...,PV in eq. are estimated by solving
an equivalent problem to eq. (2)) where only the notations
are different. For the subsequent iterations (I > 2), the
coefficients are calculated in a different way using the
previous iteration’s coefficients, as detailed next.

To model y as a function of 2'*1(y), or equivalently,

(o) #(mp) 2 (s, )

network PCE substitutes w(l()l) (mv(l)> in eq. (13]) with
@ J

PO
@) N (1
NG <$v(_l>) = Zaz(j)k%(ﬁﬂ ( <$v(_l>)> (14)
1.7 J k=0 J
to obtain the approximation of eq. as follows:
() o
(2 ( )) =140 (-’”,,(_l))o (15)
J:1 k¥ J

Without loss of generality, we let the highest polynomial
order p( ) of orthonormal polynomials in eq. to be the

constant p(T1) . Substituting d) ( (y)) in eq. for
wgl)(@l( )2 in eq. . 12) yields the approximation of y for

the (I+1)" iteration as follows:
L 00
i =305 (') (16)
i=0
P(H'l)
> o (), an
i=0

where the PCE coefficient GEH_D in eq is calculated
after estimating the coefficients in eq. (14]) (by solving an
equivalent problem to eq. ) and rearranging the terms in
eq. (|16]), which involve the previous iteration’s coefficients.
This recursive approach of calculating the PCE coefficient
helps reduce the minimally required number of observa-
tions compared to naive PCE; as explained later.

The above iteration ends when y is approximated as the
PCE in 2% (y), or equivalently, £ as follows:

p(D)

@(L) = Z 95“"/%’(5)

=0

(18)



where P(L) depends on the highest polynomial orders,

(1) p(L This recursive approximation process is valid
as bhOWIl in Theorem [3] below, which proves the conver-
gence of y( ) in eq. . to y in probability. The PCE
coeflicients, HZ-L gi=1,...,PE) in eq. directly yield
the estimated Sobol indices of y with respect to each input
in €, as described in Sec. The network PCE algorithm
is summarized in Algorithm [2]

Algorithm 2 Network PCE Algorithm
Input: G=DAG(V,E); at least

)

max P(l), max PZ( +1
1<i<L—1 Y
0<i<p®
1<j<n®

observations of the network output y and all the
variables in zy, ; Iteration counter [ = 1.
Output: Sobol indices of y with respect to each input in
£=2Zs)nv,-
1: Construct 1/12()” mv(_l)) in eq. (13)) using the modified

ij J

Gram-Schmidt algorithm for i =0,1,...,P®) and j =

1,2,...,n(0.
2: Construct ¢(l)(ﬂl( )) for i =0,1,...,P® in eq.
as the tensor product of 1/)( NG <z)

’LJ

for j =

1,2,.. n(l) in eq. .
3: If [ =1, estimate the PCE coefficients, 9() i =
0,1,...,PW in eq. . by solving an equlvalent prob—

lem to eq. . If L =1, skip to Step 6.

4: Estimate the PCE coefficients in eq. and substi-
tute eq. into eq. .

5: Rearrange the terms in eq. to yield the expression
in eq. . Increment [ by 1 and if [ < L, go to Step
1.

6: Estimate the Sobol indices using eqgs. (8) and @D
based on the PCE coefficients GZ(L),i =0,1,...,P0),

in eq. .

An advantage of network PCE over naive PCE lies in
its potential to use much fewer observations for solving
equivalent problems of eq. . The minimally required
number of observations for either model is equal to the
largest number of orthonormal polynomials of any PCE
used in the model. Thanks to the recursive decomposition
procedure of network PCE, it tends to use a much smaller
PCE than naive PCE especially when the number of the
inputs that influence y is large (i.e., dim(&) > 1). To
illustrate this point, assume all PCEs in network PCE use
the same highest polynomial order p) =p, 1=1,2,...,L,
as naive PCE. Then, the minimally required number of
observations for naive PCE increases exponentially in
dim(&), as explained below eq. (1. That for network PCE
(see Input of Algorithm [2)) increases exponentially in the

largest number of variables used for any PCE in Steps 3
and 4 of Algorithm

max (Dy, max  max ’D@D ) (19)
1<ISL-11<j<pn® |7
Here,
Dy :={v; €V : (v;,vy) € E} (20)

denotes the set of all direct predecessors of the output node
vy and

D](-l) — {Ui eV:ivg € ’Ug-l)7 <’Uz‘,Uk:> S E} (21)

denotes the set of all direct predecessors of the nodes in

’Ug-l) in eq. (14). Fig. [2| visualizes the minimally required

number of observations with respect to p and the ratio
1<ISL-11<j<n®

max <|Dy|, D](.I)D
A= dim(@) |

The saving of network PCE (with A < 1) over naive PCE
(A=1) increases as p increases or A decreases.

max max

(22)

D. Sparse network PCE (SN-PCE)

While the proposed network PCE already provides
substantial parsimony over naive PCE, it may still need
to use many orthonormal polynomials to capture all the
main effects and the major interaction effects of the
network variables on the output variance. However, in
practice, many of such effects are insignificant. Therefore,
we propose SN-PCE, which imposes [i-sparsity on the
PCE coefficients to capture only significant pathways of
uncertainty propagation in the network. Specifically, SN-
PCE solves an equivalent problem of eq. (with the
difference lying only in the notations) instead of eq. in
Steps 3 and 4 of Algorithm [2] The resulting parsimonious
model can use even fewer observations than network PCE
to estimate the PCE coefficients and, in turn, the Sobol
indices. Also, because only significant effects appear in the
model (with non-zero PCE coefficients), the model is easier
to interpret than the other models.

E. Theoretical result

Since naive PCE is a direct application of standard PCE
in eq. , the corresponding theoretical result (Theorem
directly follows from [I4] by appropriately invoking As-
sumption[I] below. The result is still presented here mainly
for comparison with the theoretical result on network PCE
(Theorem [3)).

Assumption 1 (adapted from [I4]). The random vector

z = (21,...,0,)7 1 (Q,F) = (A", B")
1) has a continuous joint probability density function
w(x) with a bounded or unbounded support A™ C R"™;
2) possesses absolute ﬁm'te moments of all orders, that
25 V.] — (]17.727 a]n € N07
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Fig. 2. Network PCE () < 1) requires fewer observations to model the network output than naive PCE (A =1) for a larger p (the
highest polynomial order used in both PCEs) and a smaller A. ), defined in eq. , represents the ratio of the largest number
of variables used in any PCE for network PCE to the number of network inputs used in naive PCE.

where x) == le xiﬁ ; and

3) has a joint probability density function u(x), which
a) has a compact support, that is, there exists a

compact subset A" C R™ such that P(x € A™) =

1, or

is exponentially integrable, that is, there exists

a real number o > 0 such that

/ exp (ol |z]]) u(x) dz < oo,
An

where ||-|| : A" — RZ

b)

is an abitrary norm.

Theorem 1. Suppose that for the network output y(€) €
L2(Q,F,P), €= Ts(a)nv, fulfills Assumption . Then, §
in eq. (10) converges to y in probability as P — co.

Proof. This is a direct result of Theorem 11 in [14]. O

Theorem [I]imposes regularity conditions on the network
inputs & and output ¥y, but not on the other network
variables. This black-box approach of naive PCE still
provides a convergent prediction of y as P — co. In
practice, increasing P requires increasing the number of
observations. Thus, the finite-sample inefficiency of naive
PCE compared to network PCE (described in Sec.
is critical when the sample size is limited.

Theoretical results on network PCE impose regularity
conditions on all the network variables as the knowledge of
network structure provides network PCE’s advantage over
naive PCE. Lemma [2] validates the recursive modeling of
a network node using its direct predecessors (described
in Steps 1-5 in Algorithm . Building on Lemma
Theorem [3] proves the convergence of network PCE output

in eq. .

Lemma 2. Suppose that (z> is a function of W(x (z))

forl=1,....L—1 and j = 1 .nW . and that for the
network outpul y, xv, fulfills Assumption ! Then,
!
1) 1/J( 21) (:1: (z)) in eq. . converges to 1/1() (”’v§-”)
@5

in eq. (13)) in probability as P( ) oo, and

~ () NORNG) .
2) ¢; (2 () =1Tj= 11#( ® (Z (l)) in eq. (L5]) con-
verges to 1/)1( ) (24(y)) in eq. (13) in probability as

Pi(;) — 0
Q]
ma))

for all 1 =1,....L—1 and all o{” = (a(?,

()
satisfying Z?:l ‘az(-?’ <pW,

Proof. Under the stated assumptions, w(l()l) (.’z:v(l)) in
@5 J

eq. is a square-integrable function of & 0!

J
The first statement follows from Theorem 11 in [14]. The
second statement follows from the first statement by the
continuous mapping theorem. O

Theorem 3. Suppose that the assumptions in Lemma [3
hold for the network output y(z, 1)) € L2(QLF,P). Then,
there exists an increasing function v : N— N such that
if 0D =70 (PO) for 1 =1,....L=1, 3 in eq
converges to y in probability as p) = 00, or equivalently,
PO & .

Proof. The proof is provided in the article’s online supple-
mentary document. O

The increasing function v() in Theorem 3| prescribes
how fast the highest polynomial order p(t1) = ~® P(l))
should grow in relation to the number of orthonormal poly-
nomials, P®, for I =1,...,L—1 so that @(L) in eq.
converges to y in probability. Furthermore, to make the re-
lation between p(+1) and p(l) more explicit, using eqgs. (20)

and 7 let dV) =
1<5<n®

l=2,...,L, denote the number of nodes represented by
P(y) and P(y) in eq. (12)), respectively. Because

d0 + O
Mg p
P +1_( . )

IDy| and d® =| U DIV,



for I=1,..., L, Stirling’s approximation yields

l l l d®
P =0 (o (pu)

using the big O notation.

For example, if ’y(l) is linear (or superlinear), then p(Hl)
should grow as fast as (or faster than) d()-th power
of p, or equivalently, Hﬁ,:1 dV)_th power of p(1) for
l=1,...,L—1. Intuitively speaking, we should control the
approximation errors for the upstream nodes in the net-
work more tightly to ensure that the approximation errors
for the downstream nodes (especially the output node) are
arbitrarily small. We note that it is beyond the scope of
this paper to establish more detailed characteristics of 7(1).

SN-PCE, which tends to use much smaller P [ =
1,..., L, than network PCE, mitigates the need for rapidly
increasing p(l),l = 1,...,L, while maintaining a similar
approximation accuracy.

IV. APPLICATIONS

For empirical evaluation of the proposed methodology,
we conduct sensitivity analysis of two manufacturing pro-
cesses (welding and injection molding) in [35]. We use the
same modeling equations and notations therein (hence,
some notation conflicts arise although their meanings are
clear from the context). Note that the proposed methodol-
ogy leverages the known directional relationships between
inputs and the output (expressed as a DAG), not modeling
equations, which are often unknown in practice.

We compare four methods, namely, random sampling
[36], orthogonal array sampling [37], naive PCE, and SN-
PCE, for estimating the first-order and total Sobol indices.
The estimation is replicated 50 times to calculate the
sample mean and standard error of the estimated Sobol
indices for each method.

As discussed in Sec. [[I-E] the Sobol indices measure the
influence of each network input on the variance of the
network output. Henceforth, we call some network inputs
influential inputs if their first-order Sobol indices are 10~?
or larger; in other words, the influential inputs explain 10%
or more of the output variance without considering their
interactions with the other inputs.

We use a large sample for random and orthogonal ar-
ray sampling, namely, 10,000 observations unless specified
otherwise. We treat the sample mean from 50 replications
using the orthogonal array sampling as the ground truth if
the standard error is below 1% of the sample mean. Even
with a large sample, such Monte Carlo sampling methods
tend to have large standard errors for estimating small
total Sobol indices [36], [38], as also observed in this study.

A. Welding process

The welding process has several process variables whose
relationships are depicted in Fig. [3] The process output of
interest is the total minimum theoretical energy required
for the welding process, E. This energy depends on the
weld volume V/, specific gravity p, heat capacity C), initial

00000
Noee
G

Fig. 3. This DAG represents the relationships among the vari-
ables in the welding process [35]; the weld volume V' depends
on six welding parameters (weld zone dimensions: e, g, h, [, and
t; weld length L), and the total energy E depends on V and
additional parameters, p, Cp, Ty, Ty, and H.

temperature Tj, final temperature T, and latent heat H
as follows:

E=pV (Cy(Tf —T;)+H).

In turn, the weld volume V depends on six welding
parameters (weld zone dimensions: e, g, h, [, and t; weld
length L) as follows:

V = L(0.75lh 4 gt +0.5(1—9)(t —¢)).

The process inputs’ distributions are presented in Table [}

We first compare the four methods with respect to
the mean squared errors of estimating the Sobol indices
when using the same sample size. Fig. [] shows that SN-
PCE significantly outperforms random and orthogonal
array sampling. Also, SN-PCE estimates the Sobol indices
using a much smaller sample size than naive PCE. In this
example, we use the highest polynomial order of 3 for
both naive PCE and SN-PCE; naive PCE requires at least
364 = (11; 3) observations for dim(€) = 11 and network
PCE (i.e., SN-PCE without sparsity) requires at least
84 = (6’;3) observations because eq. equals 6. SN-PCE
could use even fewer observations because it identifies only
14 orthonormal polynomials (4% of those used in naive
PCE) as necessary to approximate the network output of
this particular process across all the 50 replications.

Table [I| shows the sample means and standard errors of
the estimated Sobol indiceses for the four methods, where
naive PCE and SN-PCE use 500 and 100 observations,
respectively. Despite the vastly different sample sizes used
for each method, the sample means are nearly identical
across the methods (except for the non-influential inputs,
which have total Sobol indices smaller than 10~!). This
indicates the estimation bias is nearly zero for these
methods. The standard errors are also very similar across
the methods for the influential inputs, indicating that SN-
PCE achieves a similar accuracy as the other methods with
a much smaller sample size.

Fig. p| presents a Pareto chart of the first-order Sobol
indices estimated from SN-PCE. Along with Table [T, the
chart confirms that the weld zone dimensions (h,g,t,e,l)
are the most influential inputs for the variance of the
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Fig. 4. SN-PCE yields a smaller mean squared error of estimating the first-order Sobol indices (left) and the total Sobol indices
(right) than the three other methods for the welding process. Also, SN-PCE requires much fewer observations than naive PCE

to estimate the Sobol indices.

process output E. Also, the cumulative sum of the first-
order Sobol indices approaches 100% in the chart, implying
that the interactions between the inputs do not have
significant effects on the variance of E. It echoes the
finding from Table [T that the first-order Sobol indices are
approximately equal to the total Sobol indices across all
the influential inputs.
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Fig. 5. Pareto chart of the first-order Sobol indices estimated
using SN-PCE for the welding process. Higher bar indicates
that the input has a more influence (excluding interactions with
other inputs) on the variance of the process output E.

B. Injection molding process

The injection molding process has more intricate rela-
tionships between process variables than the welding pro-
cess, as depicted in Fig. [ The process output of interest
is the energy consumed in resetting the process, Freset-
This energy depends on the melting energy FE,,q;+, the
injection energy E;,;, and the cooling energy FE,o; as fol-
lows: Ereset = 0.25 (Emelt + Einj +Ecool)~ Here, Eperr =

Pmelt X‘/;hot/Q7 where
1
*(PXQXC X( inj

Vshot = ‘/pa'rt X (1 + m + A)
Here, p (specific gravity), Cp (heat capacity), Tpo (initial
polymer temperature), € (shrinkage parameter), and Tjp;
(injection temperature) are the network inputs. @ (flow
rate), Hy (polymer heat of fusion), Vpart (volume of mold),
and A (buffer) are constant parameters. On the other
hand, Einj = Linj X Vpart and

Pt = Tpol)+pXQfo)»

px‘/partx(c X( inj Tej))

copP ’
where Pj,; (injection pressure), T.; (ejection tempera-
ture), and Tj,; (injection temperature) are the network
inputs. COP (coefficient of performance of the cooling
equipment) is a constant parameter. The network inputs’
distributions are presented in Table [[I}

Fig. 6. This DAG represents the relationships among the
variables in the injection molding process [35]; the yellow
shaded nodes Ey,¢1¢, Ecool, and Ejy,; are the energies consumed
in three subprocesses that depend on different blue shaded

network inputs. The network output Ereset depends on Eyy, ey,
ECOOl7 and Einj-

Ecool =

To adequately model the more intricate network struc-
ture of the injection molding process, we use the highest
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TABLE I
SAMPLE MEANS AND STANDARD ERRORS (ROUNDED TO TWO DECIMAL PLACES) OF THE ESTIMATED FIRST-ORDER AND TOTAL SOBOL INDICES
BASED ON 50 REPLICATIONS FOR THE WELDING PROCESS. THE INPUTS IN THE FIRST COLUMN ARE SORTED IN DESCENDING ORDER OF THE
FIRST-ORDER SOBOL INDICES ESTIMATED FROM THE MONTE CARLO METHOD. FOR EACH REPLICATION,TRANDOM SAMPLING, JORTHOGONAL
ARRAY SAMPLING, {tNAivE PCE, aAnD {i1SN-PCE use 10,000, 10,000, 500, AND 100 OBSERVATIONS, RESPECTIVELY. FOR THE INFLUENTIAL

INPUTS, SN-PCE ATTAINS SIMILAR STANDARD ERRORS AS THE OTHER METHODS DESPITE USING THE SMALLEST SAMPLE SIZE.

Input | Distribution ] Random SamplingT ] Orthogonal Alrmyi ] Naive PCETT ] SN-PCEH
First-order Total First-order Total First-order Total First-order Total
A N(2.6,05) 2.76><10’11 2.85><10’11 2.78><10’1] 2.81><10’1] 2.78 x 10*11 2.80><10’11 2.80><10’1] 2.81 x 10*11
40.02 x 10~ +0.04 x 10~ 40.01 x 107" | £0.03x 107" | 4£0.01x 107! | £0.01x 107" | £0.02x 107! | 4£0.02x 10~
P N(2,0.1) 2.31 x 10*11 2.30 x 10*11 2.34 x 10*11 2.32x 10*11 2.32 10*11 2.33 x 10*11 2.34 x 10*11 2.35 x 10*11
+0.01x 10~ +0.03x 10~ +0.01x 1071 | £0.03x 1071 | £0.01x 1071 | 4£0.01x1071 | £0.02x 107 | £0.02x 10~
. N(15,0.6) 2.29x10*]1 2.24x10*1l 2.27x10*]1 2.32 x 10*]l 2.29x10”1 2.29x10”1 2.25x10*]l 2.26><10’11
’ +0.01 x 10~ +0.03 x 10~ +0.01x107 | £0.04x107% | £0.01x107 | 40.01x107 | £0.02x 1071 | +0.02x 10~
. N(IL1) 1.46><10’11 1A43><10*1l 1.46><10’11 1.50><10’1] 1.45 x 10*11 1.47><10’11 1.46><10’11 1.48 x 10*11
' +0.01 x 10~ +0.04 x 10~ +0.01x107" | 4£0.04x 107" | +£0.01x107" | 40.01x 10~ | #0.01x10"" | 40.01 x 10~
! N(85,05) 1.07 x 10*_11 1.08 x 10*_11 1.08 x 10*_11 112 x 10*_11 1.07 x 10*_11 1.12 % 10*_11 1.08 x 10*_11 1.12 % 1(r_11
+0.01 x 10 +0.04 x 10 +0.01 x 10 +0.04 x 10 +0.00 x 10 +0.00 x 10 +0.01 x 10 +0.01 x 10
I N(500,10) 1.96 x 10*53 4.45 % 10*44 1.95 x 10*53 2.57 x 10*53 1.96 x 10*53 2.00 x 10*53 1.94 x 10*53 1.95 x 10*-‘3
+0.01 x 10~ +43.4x 10~ +0.01x107% | £4.25x107% | £0.01x1073 | 40.01x107% | £0.03x 1072 | +0.03x 10~
c, N(500,5) 9.67 x 10*44 —9.76 x 10*44 9.66 x 10*44 4.94 x 104"2 9.69 x 10*44 9.89 x 10*44 9.77 x 10*44 9.77 x 10*44
+0.07x107% | 443.02x107* | 40.05x107* | £0.04x1072 | £0.05x10~* | 40.05x10™* | £0.15x10~* | 40.15x 10~
1 N(1628,10) 2.75 10*44 —1.64 x 1oji 2.76 x 10*44 1.50 x 10*‘{} 2.75 10*44 2.81 x 10*44 7.55 X 10*5r 7.55 % 1(r5r
+0.02x 10~ +4.35x107% | £0.05x107% | £4.25x107% | £0.01x107% | £0.01x107% | £1.02x107° | £1.02x107°
a2 - 8.32x 107 —1.74x 1073 8.23x 10 2.76 x 10~ % 8.28 x 100 8.45x 100
Ti NG03,03) 1 15 04% 1070 | 4£0.04x 107 | 4£0.05x10~° | £4.25x10~ | £0.04%10~0 | +0.04x 10~ 0 0
o 7.23x10°° —1.78x 1073 7.20x10°° 4.06 x 10~ 7.16x10°° 7.30x10°°
P N(8238,10) +0.05x107% | +4.31x107% | +4.06x107% | £4.25x 1072 | £0.03x107% | +0.03x 1076 0 0
i N(2270.3) 3.32x 10*_?0 —1.77x 10:g 3.30 x 10*_11] 1.94 % 10*; 3.31x 10*1‘{; 341 x 10*1_”10 0 0
+0.02 x 10 +4.32x107% | 4£0.02x 10 +4.25x 1073 | £4.25x 107 | £0.02x 10

polynomial order of 4 for both naive PCE and SN-PCE,
compared to 3 used for the welding process; naive PCE
requires at least 330 = (71'4) observations for dim(§) =7
and network PCE (i.e., SN-PCE without sparsity) requires
at least 126 = (524) observations because eq. equals 5.
Thus, we use 500 and 200 observations for naive PCE and
SN-PCE, respectively, compared to 500 and 100 used for
the welding process. Yet, again, SN-PCE could use even
fewer observations because it identifies only 9 orthonormal
polynomials (3% of those used in naive PCE) as necessary
to approximate the network output of this particular
process across all 50 replications.

TABLE II
SAMPLE MEANS AND STANDARD ERRORS (ROUNDED TO TWO DECIMAL
PLACES) OF THE ESTIMATED FIRST-ORDER SOBOL INDICES BASED ON
50 REPLICATIONS FOR THE INJECTION MOLDING PROCESS. FOR EACH
REPLICATION, {ISN-PCE USES 200 OBSERVATIONS. ALL THE OTHER
SETUPS ARE THE SAME AS IN TABLE [l

Input Distribution Random Samplling;T Orthogonal Axirayt Naive PCEIT SN-PCEn1
Tos | NEOH | it | soereio | sboreint | oorwio!
ry | ves | AN | danent | doorsont | doorsnn
o [ vosaw | EEEN | Eoreer | dhamenrt | doonens
o | MU0 | iman? | avereint | sooaxdo? | sporeio?
o [ veman | EEENS | Aenins | dvorsans | Sorem s
=9 A =9 = =9
¢ | vosoeoz) if(.)?l?lxxlfo:f ;6?3:;?0;9 irlh?gsxxlfoj\g 0
P | N00H | NG | oo | soean | O

Like the welding process, the injection molding process
turns out to have the first-order Sobol indices approxi-
mately equal to the total Sobol indices for the influential
inputs. Thus, we only report the first-order Sobol indices
in Table [ Again, SN-PCE attains similar standard
errors as the other methods for the influential inputs
despite using fewer observations. Fig. |Z| shows that Tj,;

determines nearly 50% of the variance of network output
Ereset- Tej and p have comparable effects (26% and 23%,
respectively), while other inputs, Ty, C)p, €, and Py,
barely influence the variance of E,¢get.
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Fig. 7. Pareto chart of the first-order Sobol indices estimated
using SN-PCE for the injection molding process. Higher bar
indicates that the input has a more influence (excluding inter-
actions with other inputs) on the variance of process output

Ereset .

V. CONCLUSION

This paper proposes SN-PCE to model uncertainty
propagation in a broad class of processes represented as
DAGs. A DAG encodes the dependencies between the
variables in a process, including the process output (sink
node in the DAG) and inputs (source nodes in the DAG).
SN-PCE effectively captures how the inputs influence the
output variance. Theoretically, it is shown that network



PCE (equivalent to SN-PCE without sparsity) is valid
in the sense that its prediction of the output converges
in probability to the true output under reasonable as-
sumptions. Empirically, SN-PCE is shown to accurately
estimate the Sobol indices of the output with respect to
the inputs for two manufacturing processes and a flooding
process. SN-PCE uses substantially fewer observations
than the black-box approaches (Monte Carlo sampling
methods and naive PCE) to accurately identify the in-
fluential inputs, showing promise for efficient sensitivity
analysis in process automation.

Future research may investigate extension of the pro-
posed model to even more general networks. One direction
could be to relax the assumption of mutual independence
of the network inputs. While their dependencies would
complicate the estimation and interpretation of the sen-
sitivity indices, the indices proposed in [29] might help
decode how the dependent network inputs influence the
output. Another research direction would be to allow
cycles (or, feedback loops) in the network, thereby, extend-
ing this work beyond directed acyclic networks. Lastly,
while domain experts can often identify DAGs of their
systems, machine learning can more efficiently identify
complex DAGs from data under the causal Markov and
causal faithfulness conditions [39] 40]. Future research may
investigate the best way to combine network identification
methods with the proposed method in this paper.
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