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We propose a new mathematical model for cholera transmission dynamics using a 
system of reaction-convection-diffusion equations. The model differs from previously 
published partial differential equations (PDEs) based cholera models in that the 
diffusion and convection processes are only incorporated into the bacterial dynamics, 
which are described by a general second-order differential operator. This feature 
allows us to perform a careful study on the movement and dispersal of the 
pathogenic bacteria in a heterogeneous aquatic environment and its impact on 
cholera transmission among human hosts. We rigorously analyze the well-posedness 
and stability of this partially diffusive system, and establish threshold results 
characterizing cholera transmission dynamics.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

Cholera, an ancient disease characterized by severe intestinal infection, remains a serious public health 
burden in developing countries despite a large body of theoretical and clinical studies and tremendous 
efforts in disease prevention, intervention and management [1,46]. Cholera is caused by the bacterium 
Vibrio cholerae. The primary source of cholera infection is the contaminated water, which constitutes the 
environment-to-human (or, indirect) transmission pathway. Meanwhile, the disease can be transmitted from 
the human-to-human (or, direct) route; for example, through body contact with infected people, or con-
sumption of food prepared by infected individuals with dirty hands [15,22]. The persistence of cholera has 
been highlighted by recent outbreaks in Yemen (2016-2018), South Sudan (2014), Haiti (2010-2012), Zim-
babwe (2008-2009), and many other places, which led to high morbidity and prevalence every year [45]. In 
particular, the Yemen cholera outbreak is regarded as the worst cholera epidemic in modern history, with 
more than 1.1 million cases reported by WHO as of May 2018 [47].
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In recent years, a large number of cholera transmission models have been published (see, e.g., [2,3,7,8,12,
15,21,22,24–26,30,31,33,34,39]), including several ones concerned with the spatial spread of cholera. Despite 
the many signs of progress in these studies regarding cholera transmission and spread, the spatial dynamics 
of cholera are not fully understood at present. For example, it is still a nontrivial task to model and analyze 
cholera epidemics in a setting that incorporates spatial variations and multiple transmission pathways of 
cholera. It also remains a challenge to quantify the infection risk of cholera in a spatially heterogeneous 
environment. Meanwhile, the movement and dispersal of the pathogenic bacteria (i.e., vibrios) through 
water flows in fluvial systems are ubiquitous in nature and could make important contribution to the spread 
of cholera. To date, however, relatively few studies have been devoted to addressing these issues.

The authors of [3,25,26] developed partial differential equation (PDE) models to account for cholera 
spreading along a theoretical river based on an extension of Codeço’s ordinary differential equation (ODE) 
framework [8], where only the environment-to-human transmission route was considered. In [34], a PDE 
cholera model based on reaction-diffusion equations was proposed that represents the spatial diffusion of 
the pathogen and human hosts while incorporating both the direct and indirect transmission routes. This 
work was extended in [33] to include a convection process for the pathogenic bacteria; e.g., the movement 
of the vibrios from the upstream to the downstream along a river. As a result, the dynamics of the human 
hosts are described by reaction-diffusion equations, whereas those of the cholera bacteria are described by a 
reaction-convection-diffusion equation. The well-posedness, uniform persistence and global stability of the 
model in [33] were rigorously analyzed in [37,38]. For all these studies, the spatial domain is restricted to 
be one-dimensional (1D), and the convection and diffusion rates are fixed as constants.

While it may be reasonable to consider the motion of the bacteria on a 1D domain approximating a river, 
the assumption of a diffusion process for the human hosts on the same 1D domain is probably not realistic. 
Meanwhile, the bacterial convection and diffusion rates depend on factors such as the location of the river, the 
speed of the water flow, and the geographical properties associated with the fluvial system, all of which would 
vary with space in reality. Thus, it would be more practical to consider spatially dependent convection and 
diffusion rates in order to reflect the spatial heterogeneity of the bacterial movement. Additionally, compared 
to the dispersal of the bacteria, the diffusion of the human hosts is slow and can often be disregarded [6].

The present study aims to partially overcome these challenges by formulating a PDE system in a 
multi-dimensional space with partial diffusion terms and with a focus on the bacterial spatial dynam-
ics. Specifically, we describe the motion of the bacteria by a reaction-convection-diffusion equation with 
spatially dependent convection and diffusion rates. Meanwhile, the dynamics of the human population are 
represented by temporal equations, without the diffusion terms as appeared in previous models [3,26,33,34]. 
Thus, the spatial dynamics of human hosts are not explicitly modeled in our system (though the host vari-
ables still vary with space due to their dependence on the pathogen variable), whereas the spatial dynamics 
of the bacteria are fully taken into account. Our study will now be conducted in a spatial domain of an 
arbitrary dimension instead of being limited to 1D.

The significance of this work is twofold: (1) Biologically, we emphasize the bacterial movement and 
ignore the relatively small mobility of the human population. The absence of human diffusion in our model 
would allow us to specifically focus on the spatial dynamics of the pathogenic bacteria, so that we will 
be able to conduct a deep investigation into the dispersal and movement of the bacteria and their effects 
on cholera transmission in an otherwise homogeneously mixed and distributed human population. The 
incorporation of spatially-varying convection and diffusion rates would further improve our understanding 
of the realistic bacterial dynamics in a fluvial system. (2) Mathematically, our partially diffusive PDE system 
possesses unique challenges in the analysis. In particular, with zero diffusion in several equations, the system 
does not satisfy the uniform elliptic condition and a maximum principle is absent there. Consequently, 
common analytical tools for diffusive PDEs, such as the comparison principle [27,38], are not applicable to 
our model. Meanwhile, instead of using a standard Laplacian that is extensively studied in the literature 
[11,19,20,32,34,40,44], our system is based on a second-order general differential operator.
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The remainder of this paper proceeds as follows. In Section 2, we describe our partially diffusive PDE 
model for cholera dynamics and state the main results. We provide some preliminaries in Section 3 in 
order to establish these results, and present the detailed proof in Section 4. We present some numerical 
simulation results in Section 5 to demonstrate our analytical findings. Finally, we conclude the paper with 
some discussion in Section 6.

2. Statement of main results

Let us consider a spatial domain denoted by Ω ⊂ Rn for n ∈ N and assume that it is bounded with 
smooth boundary ∂Ω. We recall that a second-order differential operator A of the form

Ai(x) =
n∑

k,j=1

aik,j(x)DkDj +
n∑

k=1

aikDk + c(x), (1)

where aik,j(x) = aij,k(x), Dk � ∂
∂xk

satisfies aik,j , aik ∈ C2(Ω), is uniformly elliptic if there exists a constant 
μ > 0 such that for all ξ ∈ Rn and for all x ∈ Ω,

n∑
k,j=1

aik,j(x)ξkξj ≥ μ|ξ|2. (2)

Let us call a system partially diffusive when only some but not all equations in the system have diffusive 
terms. For clarification we shall not consider damping terms corresponding to c(x) to be diffusive because 
all population models in general have damping terms due to death rates as c(x).

In what follows we will focus our attention on cholera modeling. Let us denote by S = S(x, t), I =
I(x, t), R = R(x, t) the number of susceptible, infected, and recovered human hosts at location x and time 
t, respectively. Moreover, we let B = B(x, t) represent the concentration of bacteria (vibrios) in the water 
environment. A vector (S, I, R, B) will be the solution and we denote it, along with its initial data, by

u � (u1, u2, u3, u4) � (S, I,R,B), (S, I,R,B)(x, 0) � φ � (φ1, φ2, φ3, φ4)(x). (3)

We consider a general second-order differentiation operator as a reaction-diffusion term in the equation 
of bacteria, with D(x) and U ∈ C2(Ω̄) as the given diffusion and convection rates, respectively. We shall 
assume that D(x) is continuous and has a strictly positive lower bound M > 0 which follows from the fact 
that D(Ω) is compact:

D(x) ≥ M > 0 ∀ x ∈ Ω. (4)

Remark 2.1. We point out that this restriction (4) is necessary for our diffusion to be at least uniformly 
elliptic. On the other hand, allowing D(x) = 0 for any x should be an interesting and challenging direction 
of research, which is also strongly related to the direction of research on non-homogeneous and density-
dependent equations in fluid mechanics from which some relevant techniques may be borrowed (see [18] and 
references therein).

We also note the PDE models of infectious diseases are still relatively new in comparison to the ODE 
models, and almost all the infectious PDE models of which we are aware simply have a Laplacian instead 
of a general second-order differentiation operator (1) (e.g. [11,19,32,34,40,44]). The only exception is the 
work by Wang and Zhao in [35] and it turns out that our condition (4) is the same as that of [35, (D2) on 
pg. 1655]. We point out nonetheless that while Wang and Zhao obtained local asymptotic stability of the 
disease-free equilibrium (DFE) in [35, Theorems 3.1 (ii) and 4.3 (i)], we obtain global asymptotic stability 
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Table 1
Definition of parameters in model (5).

Parameter Definition
b Recruitment rate of susceptible hosts
d Natural death rate of human hosts
γ Recovery rate of infectious hosts
σ Rate of host immunity loss
δ Natural death rate of bacteria
ξ Shedding rate of bacteria by infectious hosts
β1 Direct transmission parameter
β2 Indirect transmission parameter
K Half saturation rate of bacteria
KB Maximal carrying capacity of bacteria in the environment

of the DFE in Theorem 2.3 (1); i.e. the authors in [35, Theorems 3.1 (ii) and 4.3 (i)] work on a system 
linearized about the DFE while we work directly on the system (5), as we will see.

We will return to discuss the work of [35] by Wang and Zhao in Remark 2.3. We describe the other model 
parameters in Table 1. Let us write ∂t � ∂

∂t and introduce the cholera model of our main concern as follows:

∂tS = b− β1SI − β2S

(
B

B + K

)
− dS + σR, (5a)

∂tI = β1SI + β2S

(
B

B + K

)
− I(d + γ), (5b)

∂tR = γI −R(d + σ), (5c)

∂tB = D(x)ΔB − (U(x) · ∇)B + ξI + gB

(
1 − B

KB

)
− δB. (5d)

We impose its boundary conditions to be of Neumann type for simplicity:

(n · ∇)u4(x, t) = 0, (6)

where n is an outward unit normal vector. Robin type boundary conditions can be treated in a similar 
manner.

We emphasize that (5a)-(5c) have no diffusion, although they have damping terms. Thus, the system (5)
does not satisfy the uniform elliptic condition. Let us denote by

X � C(Ω,R4) �
4∏

i=1
Xi, X+ � C(Ω,R4

+) �
4∏

i=1
X+

i (7)

where Xi � C(Ω, R) and X+
i � {f ∈ Xi : f ≥ 0}, equipped with the usual supremum norm. Because 

no confusion will arise, we write ‖·‖C(Ω) for a norm in X or Xi; in particular, we note that ‖u‖C(Ω) �∑4
i=1‖ui‖C(Ω). The DFE for the system (5) is

(S, I,R,B) = (m∗, 0, 0, 0) where m∗ � b

d
. (8)

Let us postpone technical details to Section 3 on preliminaries and present a first result.

Theorem 2.1. (Local well-posedness) For any φ ∈ X+, there exists a unique classical solution u(x, t, φ) ∈ X+

such that u(x, 0, φ) = φ(x) to the system (5) on [0, T ) for T = T (φ) ∈ (0, ∞]. Moreover, if T < ∞, then 
‖u‖X → +∞ as t → T−.
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We point out that the system (5) is partially diffusive and the diffusive terms are second-order general 
differentiation operator, not just a Laplacian. To the best of the authors’ knowledge, typical literature to 
which readers are always referred for such a result is either [20, Theorem 1] or Lemma 3.2. There arises 
an issue upon applying either of such results to the system (5). Firstly, [20, Theorem 1] is applicable to a 
partially diffusive system but only if the diffusion is simply a Laplacian; i.e. diffusive terms are diΔ with 
di ≥ 0. Secondly, Lemma 3.2 may be extended to a general second-order differentiation operator that is 
uniformly elliptic (see Remark 3.1); however, every equation in the system must have a strictly positive 
diffusive term, which are absent in (5a)-(5c). Upon a closer look at the work of [20], it turns out that 
[20, Theorem 1] is an application of an abstract result [20, Theorem 2, Corollary 4] and the proofs of [20, 
Theorem 2, Corollary 4] do not depend on the specific form of the diffusion. Therefore, we can directly 
apply [20, Corollary 4] in order to prove Theorem 2.1, as we will see.

Due to the blow-up criterion from Theorem 2.1, a uniform bound on the solution leads to a global result 
as follows:

Theorem 2.2. (Global well-posedness) For all φ ∈ X+, there exists a unique solution u(·, t, φ) to (5) such 
that u(x, 0, φ) = φ(x) on a time interval [0, ∞). Moreover, the semiflow Φt : X+ 
→ X+ of (5) defined by 
Φt(φ)(·) � (u1, u2, u3, u4)(·, t, φ) for all x ∈ Ω, t ≥ 0, is point dissipative and the positive orbits of bounded 
subsets of X for Φt are bounded.

Once the global well-posedness result has been established, a next result of interest concerns stability 
depending on the value of a basic reproduction number R0. Yamazaki and Wang in [37,38] considered a 
reaction-convection-diffusion system on a one-dimensional spatial domain:

∂tS = DΔS + b− β1SI − β2S

(
B

B + K

)
− dS + σR, (9a)

∂tI = DΔI + β1SI + β2S

(
B

B + K

)
− I(d + γ), (9b)

∂tR = DΔR + γI −R(d + σ), (9c)

∂tB = DΔB − (U · ∇)B + ξI + gB

(
1 − B

KB

)
− δB, (9d)

where D, D, U are all fixed positive constants, and obtained a complete result of the global attractivity of 
the DFE in case R0 < 1, as well as the uniform persistence of the disease in case R0 > 1. In contrast, 
the system (5) lacks diffusion in (5a)-(5c) and consequently the compactness that is needed in a standard 
argument (e.g. [27, Theorem 7.6.1]). Therefore, similarly to the partially diffusive avian influenza model in 
[32] and the partially diffusive Ebola virus disease model in [40], we turn to the Kuratowski’s measure of 
non-compactness to derive the appropriate R0 that is formally defined in (57) for the system (5) and obtain 
the following results:

Theorem 2.3. (Stability result) Suppose that m∗ = b
d < d+γ

β1
.

(1) (Global attractivity) If R0 < 1, then the DFE (m∗, 0, 0, 0) is globally attractive for the system (5).
(2) (Weak repeller) If R0 > 1, then there exists ε0 > 0 such that any positive solution of the system (5)

emanating from φ ∈ X+ satisfies

lim sup‖(S, I,R,B)(t) − (m∗, 0, 0, 0)‖C(Ω) ≥ ε0. (10)

t→∞
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Biologically, Theorem 2.3 establishes a threshold-type dynamics result for our cholera model (5); i.e., the 
disease would be eliminated if the basic reproduction number is lower than unity, whereas the disease would 
persist (in the weak sense) if the basic reproduction number is higher than unity.

Remark 2.2. An important tool that is typically needed to prove such a result is a comparison principle 
such as [27, Theorem 7.3.4]. However, [27, Theorem 7.3.4] cannot be applied to the system (5) because [27, 
Theorem 7.3.4] requires diffusion in every equation of the system. Upon a closer look at the proof of [27, 
Theorem 7.3.4], the conclusion is derived as an application of a maximum principle [27, Theorem 7.2.5]. 
This raises a number of suspicions whether any modification of such a proof of [27, Theorem 7.3.4] may be 
successfully applied to the system (5) because the non-diffusive equations such as (5a)-(5c) certainly lack 
a maximum principle. Nevertheless, it turns out that an abstract result [20, Proposition 3] may be applied 
here. The trick is that the proof of [20, Proposition 3] does not rely on any maximum principle; instead, 
it merely relies on local existence result [20, Theorem 2]. An analytical lesson to keep in mind from this is 
that a maximum principle is sufficient, and most popular if available, but not necessary in order to prove a 
comparison principle.

Remark 2.3. Let us point out that an ideal result in addition to the Theorem 2.3 would be the uniform 
persistence of the disease and the existence of an endemic equilibrium in case the initial amount of infected 
individuals or the bacteria is not equivalently zero and R0 > 1. Specifically, the following result was proven 
in [38] for the system (9).

Proposition 2.4. [38, Theorem 2.2] Let a spatial domain be [0, 1] and φ ∈ X+. Then the system (9) subjected 
to a Neumann boundary condition for S, I, R and a Robin boundary condition for B admits a unique global 
non-negative solution. Moreover, if a basic reproduction number R0 > 1 and φi(·) �≡ 0 for either i = 2 or 4, 
then there exists at least one positive steady state and additionally a constant η > 0 such that

lim inf
t→∞

ui(x, t) ≥ η, ∀ i = 1, 2, 3, 4, (11)

uniformly for all x ∈ [0, 1].

In the actual statement of [38, Theorem 2.2], the conclusion of lim inft→∞ ui(x, t) ≥ η is said to hold 
only for i = 1, 2, 4; nevertheless, it can readily be extended to i = 3 as well. For completeness, we include 
this proof in the appendix.

We believe that proving such a uniform persistence and an existence of an endemic equilibrium for the 
system (5) in case R0 > 1 will be of significant difficulty. In relevance, we mention that Wang and Zhao 
in [35, Theorem 4.3] also considered a partially diffusive model with a general second-order differentiation 
operator and obtained a local asymptotic stability of the DFE in case R0 < 1 and a weak repeller result in 
case R0 > 1. We emphasize that in contrast, Theorem 2.3 (1) claims not only local asymptotic stability but 
global attractivity of the DFE. The reason why a uniform persistence result for the system (5) seems out of 
reach is rather easy to explain. We are not able to obtain an analogous result to [38, Proposition 2] which is 
a crucial ingredient in the proof of Proposition 2.4. Specifically, [38, Proposition 2] particularly stated that 
if there exists t0 ≥ 0 such that I(·, t0) �≡ 0, then I(x, t) > 0 for all t > t0 and all x ∈ Ω. A typical way to 
prove such a result in the case of a strictly positive diffusion is to bound (9b) from below by

∂tI = DΔI + β1SI + β2S

(
B

B + K

)
− I(d + γ) ≥ DΔI − I(d + γ)

and apply a comparison principle and a maximum principle. However, in the case of zero diffusion as in 
(5b), a maximum principle is absent and only an inequality of
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I(x, t) ≥ I(x, 0)e(d+γ)t

can be attained, from which an assertion of I(x, t) > 0 for all t > t0 and for all x ∈ Ω certainly does not 
follow, given only that I(·, t0) �≡ 0 for some t0 ≥ 0.

We also mention that Vaidya, Wang and Zou considered a partially diffusive avian influenza model [32]
and Yamazaki also considered a partially diffusive Ebola virus disease model [40]; both actually succeeded 
in attaining the uniform persistence results. The common trick in [32] and [40] was that in both cases, 
the non-diffusive equation was easy to directly solve. For example, in the case of the avian influenza PDEs 
model of [32], the only non-diffusive equation was

∂tV = αI − c(x)V,

where V is the avian influenza virus, α > 0 is the rate at which infected birds shed virus particles in their 
feces, c(x) is the viral decay rate and I is the population of infected birds. It is obvious that this equation 
can be directly solved as

V (t) = V (0)e−c(x)t + α

t∫
0

e−c(x)(t−s)I(s)ds

so that positivity of I leads to the positivity of V (see [32, Lemma 3.7 (ii)] and [40, Proposition 4.7 (3)]). 
It is easy to see that same trick will not work for the equations (5a) and (5b) due to their complexity of 
multiples of non-linear terms.

3. Preliminaries

Firstly, we recall some relevant definitions. In general, for any operator T we denote the domain of T by 
D(T ).

Definition 3.1. For a closed linear operator Θ : D(Θ) 
→ X, λ ∈ C is a resolvent value of Θ if λI − Θ has a 
bounded inverse operator that is defined on all of X. The set of resolvent values of Θ is called the resolvent 
set of Θ and is denoted by ρ(Θ). The set C \ ρ(Θ) � σ(Θ) is called the spectrum of Θ. A closed operator 
Θ in X is called resolvent-positive if the resolvent set of Θ, ρ(Θ), contains a ray (η, ∞) and (λI − Θ)−1 is 
a positive operator for all λ > η. A linear operator Φ : Y 
→ X, where Y is a linear subspace of X, is called 
positive if Φx ∈ X+ for all x ∈ Y ∩X+ and Φ is not the zero operator. If Ψ is a resolvent-positive operator 
and Φ : D(Ψ) 
→ X is a positive linear operator, then Θ � Ψ + Φ is called a positive perturbation of Ψ.

Definition 3.2. [27, pg. 56, 129] We recall that the spectral radius r(Θ) of a square matrix Θ is defined 
by r(Θ) � sup{|λ| : λ ∈ σ(Θ)} where σ(Θ) is the spectrum of Θ and its spectral bound is defined by 
s(Θ) � sup{Reλ : λ ∈ σ(Θ)}. Moreover, we recall that for a C0-semigroup S � {S(t); t ≥ 0}, the exponential 
growth bound of S is defined by

w(S) � inf{m ∈ R : ∃ M ≥ 1 so that ‖S(t)‖ ≤ Memt ∀t ≥ 0}.

An n × n matrix M = (Mij) is irreducible if for all I � N = {1, . . . , n}, I �= ∅, there exists i ∈ I and 
j ∈ J � N \ I such that Mij �= 0. Finally, F : Ω×Λ 
→ Rn, where Λ is any non-empty, closed, convex subset 
of Rn, is cooperative if ∂Fi

∂uj
(x, u) ≥ 0 for all (x, u) ∈ Ω × Λ and all i �= j.

Definition 3.3. [43, pg. 2, 3, 11] Let (Y, d) be any metric space and f : Y 
→ Y a continuous map. A 
bounded set A is said to attract a bounded set B ⊂ Y if limn→∞ supx∈B d(fn(x), A) = 0. A subset A ⊂ Y
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is an attractor for f if A is non-empty, compact and invariant (f(A) = A), and A attracts some open 
neighborhood of itself. A global attractor for f is an attractor that attracts every point in Y . Moreover, f
is said to be point dissipative if there exists a bounded set B0 in Y such that B0 attracts each point in Y .

Definition 3.4. [43, pg. 38, 40, 46] Let E be an ordered Banach space with a positive cone P such that 
int(P ) �= ∅. For x, y ∈ E, we write x ≥ y if x − y ∈ P, x > y if x − y ∈ P \ {0}, and x � y if x − y ∈ int(P ).

A linear operator L on E is said to be positive if L(P ) ⊂ P , while strongly positive if L(P \{0}) ⊂ int(P ). 
For any subset U of E, f : U 
→ U a continuous map, f is said to be monotone if x ≥ y implies f(x) ≥ f(y), 
strictly monotone if x > y implies f(x) > f(y), and strongly monotone if x > y implies f(x) � f(y).

Let U ⊂ P be non-empty, closed, and order convex. Then a continuous map f : U 
→ U is said to be 
subhomogeneous if f(λx) ≥ λf(x) for any x ∈ U and λ ∈ [0, 1], strictly subhomogeneous if f(λx) > λf(x)
for any x ∈ U with x � 0 and λ ∈ (0, 1), and strongly subhomogeneous if f(λx) � λf(x) for any x ∈ U

with x � 0 and λ ∈ (0, 1).

The following is a statement from [20] in a special case with zero delay for simplicity.

Lemma 3.1. Let X be any R or C Banach space with its norm denoted by |·|. We denote a distance between 
any x ∈ X and a set Y ⊂ X by d(x; Y ) � inf{|x − y| : y ∈ Y }. Suppose T � {T (t) : t ≥ 0} is a family of 
bounded linear operators from X into X. We consider the following conditions:

• (T1) T (0)x = x, T (t)T (s)x = T (t + s)x for all t, s ≥ 0.
• (T2) For all x ∈ X, the mapping t 
→ T (t)x is continuous for all t ≥ 0.
• (T3) There exists M̂ ≥ 1 and ω ∈ R such that ‖T (t)‖ � sup|x|≤1|T (t)x| satisfies ‖T (t)‖ ≤ M̂eωt for all 

t ≥ 0.

Moreover, we consider the following conditions.

• (H1) D is a closed subset of [0, ∞) ×X and D(t) � {x ∈ X : (t, x) ∈ D} �= ∅ for all t ≥ 0.
• (H3) For each b > 0, there exists K̂(b) > 0 and a continuous non-decreasing function ηb : [0, b) 
→ [0, ∞), 

satisfying ηb(0) = 0, and that if 0 ≤ t1 < t2 ≤ b, x1 ∈ D(t1), x2 ∈ D(t2), then there exists a continuous 
function w : [t1, t2] 
→ X such that w(t1) = x1, w(t2) = x2, w(t) ∈ D(t) for t ∈ (t1, t2), and for all 
s, t ∈ [t1, t2]

|w(t) − w(s)| ≤ ηb(|t− s|) + K̂(b)|t− s| |x2 − x1|
t2 − t1

. (12)

• (H4) F (t, x) is continuous from D(F ) into X where D(F ) = [0, ∞) ×X.

We consider now an abstract integral equation

u(t) = T (t)u0 +
t∫

0

T (t− r)F (r, u(r))dr, 0 ≤ t < b, u(0) = u0 ∈ X. (13)

(1) [20, Theorem 2] Suppose (T1)-(T3), (H1), (H3), (H4) hold, and for all (t, φ) ∈ D,

lim
h→0+

1
h
d

⎛
⎝T (h)φ +

t+h∫
T (t + h− r)F (t, φ)dr;D(t + h)

⎞
⎠ = 0. (14)
t
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Moreover, suppose that for every R > 0, there exists an LR > 0 and a continuous function νR : [0, ∞) 
→
[0, ∞) such that νR(0) = 0 and

|F (t, φ) − F (s, ψ)| ≤ νR(|t− s|) + LR|φ− ψ| (15)

for all (t, φ), (s, ψ) ∈ D such that |φ|, |ψ| ≤ R, 0 ≤ s, t ≤ R. Then (13) has a unique solution u on [0, b)
where b ∈ (0, ∞] such that u(t) ∈ D(t) for all t ∈ [0, b). Moreover, if b < ∞, then limt→b− |u(t)| = +∞.

(2) [20, Corollary 4] Suppose (T1)-(T3), (H1), (H3), (H4) hold, and that K is a closed convex subset of X
and D(t) ≡ K for all t ≥ 0. Suppose further that (15) holds, T (t) : K 
→ K for all t ≥ 0 and

lim
h→0+

1
h
d(φ + hF (t, φ);K) = 0 ∀ (t, φ) ∈ D. (16)

Then (13) has a unique solution u on [0, b) where b ∈ (0, ∞] such that u(t) ∈ K for all t ∈ [0, b). 
Moreover, if b < ∞, then limt→b− |u(t)| = +∞.

(3) [20, Proposition 3] Suppose that X+ is a closed cone in X. We define a partial ordering ≥ on X by 
x ≥ y only if x − y ∈ X+. Assume that X with this ordering is a vector lattice. Denote by

x ∨ y � sup{x, y}, x ∧ y � inf{x, y}, x+ � x ∨ 0, x− � −(x ∧ 0), |x|+ � x+ + x−.

Assume that X is a Banach lattice and that v− and v+ are both continuous functions from [0, b) into 
X such that v−(t) ≤ v+(t) for all t ∈ [0, b). In addition to (T1)-(T3), assume that T is positive; i.e. 
T (t)X+ ⊂ X+ for all t ≥ 0. Let E be a subset of [0, ∞) ×X such that E(t) � {x ∈ X : (t, x) ∈ E} �= ∅
for all t ≥ 0. We assume that F is continuous from E to X, (0, u0) ∈ E,

v−(0) ≤ u0 ≤ v+(0). (17)

We assume that [v−(t), v+(t)] ⊂ E(t) for all t ∈ [0, b]. Moreover, we assume that for all c > 0, there 
exists νc : [0, c] 
→ [0, ∞) which is a continuous and increasing function such that νc(0) = 0 and

|v±(t) − v±(s)| ≤ νc(|t− s|) ∀ s, t ∈ [0, b] such that |t− s| ≤ c.

Furthermore, we assume that F+ and F− are continuous functions from E into X and that v+ and v−

satisfy for 0 ≤ t < t + h < b

v+(t + h) ≥ T (h)v+(t) +
t+h∫
t

T (t + h− r)F+(r, v+(r))dr, (18a)

v−(t + h) ≤ T (h)v−(t) +
t+h∫
t

T (t + h− r)F−(r, v−(r))dr. (18b)

We assume that F satisfies (15) with D replaced by E. Finally, suppose that
•

lim
h→0+

1
h
d(v+(t) − φ + h[F+(t, v+(t)) − F (t, φ)];X+) = 0 (19)

for all t ∈ [0, b), (t, φ) ∈ E such that v−(t) ≤ φ ≤ v+(t),



10 K. Yamazaki et al. / J. Math. Anal. Appl. 501 (2021) 125181
•

lim
h→0−

1
h
d(φ− v−(t) + h[F (t, φ) − F−(t, v−(t))];X+) = 0 (20)

for all t ∈ [0, b), (t, φ) ∈ E such that v−(t) ≤ φ ≤ v+(t).
Then (13) has a solution u on [0, b] for some b ∈ (0, b] such that v−(t) ≤ u(t) ≤ v+(t) for all t ∈ [0, b).

Lemma 3.2. [27, Theorem 7.3.1, Corollary 7.3.2] Suppose that F : Ω × Rn
+ 
→ Rn, n ∈ N, has the property 

that

Fi(x, u) ≥ 0 ∀ x ∈ Ω, u ∈ Rn
+ and ui = 0. (21)

Then for all ψ ∈ C(Ω, Rn
+),

⎧⎪⎪⎨
⎪⎪⎩
∂tui(x, t) = DiΔui(x, t) + Fi(x, u(x, t)), t > 0, x ∈ Ω,

αi(x)ui(x, t) + δi(n · ∇)ui(x, t) = 0, t > 0, x ∈ ∂Ω,

ui(x, 0) = ψi(x), x ∈ Ω,

i ∈ {1, . . . , n}, has a unique non-continuable mild solution u(x, t, ψ) ∈ C(Ω, Rn
+) on [0, T ) where T =

T (ψ) ≤ ∞ such that if T < ∞, then limt→T−‖u(t)‖C(Ω,Rn) = +∞. Moreover,

(1) u is continuously differentiable in time on (0, T ),
(2) it is in fact a classical solution,
(3) if T (ψ) = +∞ for all ψ ∈ C(Ω, Rn

+), then Ψt(ψ) = u(t, ψ) is a semiflow on C(Ω, Rn
+),

(4) if Z ⊂ C(Ω, Rn
+) is closed and bounded, t0 > 0 and ∪t∈[0,t0]Ψt(Z) is bounded, then Ψt0(Z) has a compact 

closure in C(Ω, Rn
+).

Remark 3.1. This lemma remains valid even if the Laplacian is replaced by a general second order differ-
entiation operator (1) if it satisfies (2); in fact, all results from [27, Chapter 7] remain valid for a general 
second order differentiation operator (1) if (2) is satisfied (see [27, pg. 121]).

We collect some useful properties concerning Kuratowski measure of non-compactness:

Lemma 3.3. [43, pg. 3] Let Y be any metric space and denote the Kuratowski measure of non-compactness 
for any bounded set B of Y by

κ(B) � inf{r : B has a finite cover of diameter r}.

Firstly, κ(B) = 0 if and only if B is compact. Moreover, a continuous mapping f : Y 
→ Y is κ-condensing 
(κ-contraction of order 0 ≤ k < 1) if f takes bounded sets to bounded sets and κ(f(B)) < κ(B) (κ(f(B)) ≤
kκ(B)) for any non-empty closed bounded set B ⊂ Y such that κ(B) > 0. Moreover, f is asymptotically 
smooth if for any non-empty closed bounded set B ⊂ Y for which f(B) ⊂ B, there exists a compact set 
J ⊂ B such that J attracts B. It is well known that a compact map is an κ-contraction of order 0, and 
a κ-contraction of order k is κ-condensing. Finally, by [14, Lemma 2.3.5], any κ-condensing maps are 
asymptotically smooth.
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4. Proof

4.1. Proof of Theorem 2.1

In order to apply [20, Corollary 4] to the proof of Theorem 2.1, let us first set up various notations. 
Following [27, pg. 121] we let A0

4 be a differentiation operator

A0
4u4 � D(x)Δu4 − (U(x) · ∇)u4 (22)

with its domain

D(A0
4) � {ψ ∈ C2(Ω) ∩ C1(Ω) : A0

4ψ ∈ C(Ω), (n · ∇)u4(x, t)|∂Ω = 0}. (23)

Then we define A4 to be the closure of A0
4 so that A4 on X4 generates an analytic compact semigroup of 

bounded linear operator T4(t) : X4 
→ X4, t ≥ 0, such that v4(x, t) = (T4(t)φ4)(x) satisfies

∂tv4(t) = A4v4(t), v4(0) = φ4 ∈ D(A4) (24)

where

D(A4) � {ψ ∈ X4 : lim
t→0+

(T4(t) − I)ψ
t

exists } (25)

(see [27, pg. 121] and [36, Theorem 2.2 in Chapter 1]). By [27, Corollary 7.2.3] we know that T4 is positive; 
i.e. T4(t)X+

4 ⊂ X+
4 (recall Remark 3.1). On the other hand, we let

(T1(t)φ1)(x) � e−dtφ1(x), (T2(t)φ2)(x) � e−(d+γ)tφ2(x), (T3(t)φ3)(x) � e−(d+σ)tφ3(x). (26)

Moreover, for all v = (v1, v2, v3, v4) ∈ X+, we define

F1(v) � b− β1v1v2 − β2v1

(
v4

v4 + K

)
+ σv3, F2(v) � β1v1v2 + β2v1

(
v4

v4 + K

)
, (27a)

F3(v) � γv2, F4(v) � ξv2 + gv4

(
1 − v4

KB

)
− δv4. (27b)

We denote by

u(t) �

⎛
⎜⎝
u1
u2
u3
u4

⎞
⎟⎠ (t) and T (t) �

⎛
⎜⎝
T1 0 0 0
0 T2 0 0
0 0 T3 0
0 0 0 T4

⎞
⎟⎠ (t),

so that T is clearly a linear C0-semigroup on X+. Now we can rewrite (5) as

u(t) = T (t)φ +
t∫

0

T (t− s)F (u(s))ds. (28)

We apply Lemma 3.1 (2) now; it essentially suffices to just check the limit (16). We follow the argument in the 
proof of [27, Corollary 7.3.2]. If φi(x) > 0, then φi(x) +hFi(φ(x)) > 0 for all h > 0 sufficiently small. On the 
other hand, if φi(x) = 0, then Fi(φ(x)) ≥ 0 for all i = 1, 2, 3, 4 by (27). Therefore, d(φ + hF (x, φ); X+) = 0
for all h > 0 sufficiently small. This implies (16) and the proof of Theorem 2.1 is complete.
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4.2. Proof of Theorem 2.2

In order to prove Theorem 2.2 we need the following proposition; the original version by Lou and Zhao 
in [19, Lemma 1] was only in the case of a full Laplacian as a diffusion while the generalized version in [38, 
Proposition 1] was only in the one-dimensional domain [0, 1].

Proposition 4.1. Consider a spatial domain Ω ⊂ Rn for n ∈ N that is bounded with smooth boundary ∂Ω
and the following equation:

∂tw(x, t) = D(x)Δw(x, t) − (U(x) · ∇)w(x, t) + g(x) − λw(x, t), (29a)

(n · ∇)w(x, t)|∂Ω = 0 for t > 0, and w(x, 0) = ψ(x) for x ∈ Ω, (29b)

where Ū ∈ C2(Ω̄), D(x) is continuous and D(x) ≥ M > 0 for all x ∈ Ω, g(x) > 0 is a continuous function, 
and n is an outward unit normal vector. Then for all ψ ∈ C(Ω, R+) there exists a unique positives steady 
state w∗ which is globally attractive in C(Ω, R). Moreover, if g(x) ≡ g, then w∗ ≡ g

λ .

Proof. For completeness, we leave this proof in the Appendix. �
Now firstly we realize that denoting by N � S + I + R, we have due to (5a) - (5c)

N(t) = N(0)e−dt + m∗[1 − e−dt] for all x ∈ Ω (30)

from which we immediately conclude that

lim
t→∞

N(t) = m∗ and N(t) ≤ N(0) + m∗ ∀ t > 0, ∀ x ∈ Ω. (31)

By the non-negativity of the local solution due to Theorem 2.1, we can deduce that

max{‖S(t)‖C(Ω), ‖I(t)‖C(Ω), ‖R(t)‖C(Ω)} ≤ ‖N(0)‖C(Ω) + m∗ ∀ t > 0. (32)

This leads to

∂tB ≤ D(x)ΔB − (U(x) · ∇)B + ξ(‖N(0)‖C(Ω) + m∗) + KBg

4 − δB (33)

by (5d) and Young’s inequality. By comparison principle [27, Theorem 7.3.4] and an application of Propo-
sition 4.1, we see that for all φ ∈ C(Ω, R+) there exists t = t(φ) > 0 such that

B(x, t) ≤
2[ξ(‖N(0)‖C(Ω) + m∗) + KBg

4 ]
δ

∀ x ∈ Ω and all t ≥ t. (34)

This implies that solution (S, I, R, B) to (5) exists globally in time due to the blow-up criterion from 
Theorem 2.1. Therefore, (5) defines a solution semiflow Φt : X+ 
→ X+ by Φt(φ) = u(x, t, φ). From (32)
and (34) it follows that for all x ∈ Ω and all t > 0,

B(x, t) ≤ max{ sup
t∈[0,t]

‖B(t)‖C(Ω),
2
δ
[ξ(‖N(0)‖C(Ω) + m∗) + KBg

4 ]} � B. (35)

We conclude that Φt is point dissipative; it can be also shown very similarly that the positive orbits of 
bounded subset of X for Φt are bounded. For details, we refer to the proof of [41, Proposition 3.2].
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4.3. Proof of Theorem 2.3

We linearize the system (5) about the DFE (m∗, 0, 0, 0) as

∂tS = − dS − β1m
∗I + σR− β2m

∗ B

K
, (36a)

∂tI = − (d + γ)I + β1m
∗I + β2m

∗ B

K
, (36b)

∂tR = − (d + σ)R + γI, (36c)

∂tB =D(x)ΔB − (U(x) · ∇)B + ξI + (g − δ)B. (36d)

We can formally write the right side of (36) as

Θ̃(S, I,R,B) �

⎛
⎜⎝

−dS − β1m
∗I + σR− β2m

∗ B
K

−(d + γ)I + β1m
∗I + β2m

∗ B
K

−(d + σ)R + γI
D(x)ΔB − (U(x) · ∇)B + ξI + (g − δ)B

⎞
⎟⎠ . (37)

Now we first consider the infection-related variables I, B (see [32, pg. 2833]):

∂tu2 = −(d + γ)u2 + β1m
∗u2 + β2m

∗u4

K
, (38a)

∂tu4 = D(x)Δu4 − (U(x) · ∇)u4 + ξu2 + (g − δ)u4, (38b)

(n · ∇)u4|∂Ω = 0 ∀ t > 0. (38c)

As we will see, it will be convenient to consider the following more generalized system of PDEs:

∂tu2 = −(d + γ)u2 + β1H1(x)u2 + β2H2(x)u4, (39a)

∂tu4 = D(x)Δu4 − (U(x) · ∇)u4 + ξu2 + gu4H3(x) − δu4, (39b)

(n · ∇)u4|∂Ω = 0 ∀ t > 0, (39c)

where Hi(x), i ∈ {1, 2, 3}, will have conditions to be given subsequently. We notice that the case H1(x) =
m∗, H2(x) = m∗

K , H3(x) = 1 recovers the original system (38). We substitute ui(x, t) = eλtψi(x), i ∈ {2, 4}, 
and divide by eλt to obtain

λψ2 = −(d + γ)ψ2 + β1H1(x)ψ2 + β2H2(x)ψ4, (40a)

λψ4 = D(x)Δψ4 − (U(x) · ∇)ψ4 + ξψ2 + (gH3(x) − δ)ψ4, (40b)

of which we may write the right side as(
G2
G4

)
(ψ2, ψ4) �

(
−(d + γ)ψ2 + β1H1(x)ψ2 + β2H2(x)ψ4

D(x)Δψ4 − (U(x) · ∇)ψ4 + ξψ2 + (gH3(x) − δ)ψ4

)
. (41)

Thus, we can compute

∂G2

∂ψ4
= β2H2(x) ≥ 0, ∂G4

∂ψ2
= ξ ≥ 0, (42)

if H2(x) ≥ 0 so that this system is cooperative but not compact due to the lack of diffusion and consequently 
[27, Theorem 7.6.1] is not applicable. Nevertheless, we can turn to the notion of Kuratowski’s measure of 
non-compactness to obtain the following result; it is inspired by the proof of [16, Lemma 3.2].
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Proposition 4.2. Let Hj(x) for j ∈ {1, 2, 3} be continuous. Suppose that maxx∈Ω H1(x) � H1 < d+γ
β1

and 
H2(x) ≥ 0. Then the eigenvalue problem (40) has a principal eigenvalue denoted by λ(H1, H2, H3) and a 
corresponding eigenfunction ψ∗ = (ψ∗

2 , ψ
∗
4) � 0.

Proof. We define Y � C(Ω, R2) so that for all φ = (φ2, φ4) ∈ Y , we may repeat the similar proof of 
Theorems 2.1, 2.2 to deduce the existence of a solution map Πt : Y 
→ Y of (39). Now we focus on (39a)
which can be solved as

u2(t) = e−[(d+γ)−β1H1(x)]tφ2 + β2H2(x)
t∫

0

u4(s)e−[(d+γ)−β1H1(x)](t−s)ds. (43)

We define

L(t)φ � (e−[(d+γ)−β1H1(x)]tφ2, 0), (44a)

Q(t)φ � (β2H2(x)
t∫

0

u4(s)e−[(d+γ)−β1H1(x)](t−s)ds, u4(t)), (44b)

for all φ = (φ2, φ4) ∈ Y . Then Πt(φ) = L(t)φ + Q(t)φ. Thus, for all bounded set E ⊂ Y , by [9, Proposition 
7.2 (b)], we have

κ(ΠtE) ≤ κ(L(t)E) + κ(Q(t)E). (45)

Since Q(t) : Y 
→ Y is compact for all t > 0, [9, Proposition 7.2 (a)] implies that κ(Q(t)E) = 0 for all t ≥ 0. 
On the other hand,

sup
φ∈Y,φ�≡0

‖L(t)φ‖Y
‖φ‖Y

≤ e−[(d+γ)−β1H1]t sup
φ∈Y,φ�≡0

‖φ2‖X2

‖φ‖Y
≤ e−[(d+γ)−β1H1]t (46)

and therefore

‖L(t)‖ope ≤ e−[(d+γ)−β1H1]t. (47)

Thus,

κ(ΠtE) ≤ e−[(d+γ)−β1H1]tκ(E) (48)

by (45) and (47). Because H1 < d+γ
β1

by hypothesis, we have e−[(d+γ)−β1H1]t < 1 so that

κ(ΠtE) ≤ e−[(d+γ)−β1H1]tκ(E) < κ(E) (49)

for all bounded sets E in Y such that κ(E) > 0. This implies by Lemma 3.3 that Πt is κ-contraction of 
order e−[(d+γ)−β1H1]t ∈ [0, 1) and hence κ-condensing for all t > 0. We already showed that the eigenvalue 
problem is cooperative in (42). Thus, by the generalized Krein-Rutman theorem (e.g. [23, Theorem 2.2], [17, 
Lemma 2.2], [42] also see [9, Theorems 19.2 and 19.3]), the eigenvalue problem has a principal eigenvalue 
denoted by λ(H1, H2, H3) with eigenvector ψ∗ = (ψ∗

2 , ψ
∗
4) � 0 (see [32, Lemma 3.4], [16, Lemma 3.3], [40, 

Lemma 3.3]). This completes the proof of Proposition 4.2. �
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We saw in (38) that the equations of the infection-related variables of the linearized system are

∂tu2 = −(d + γ)u2 + β1m
∗u2 + β2m

∗u4

K
,

∂tu4 = D(x)Δu4 − (U(x) · ∇)u4 + ξu2 + (g − δ)u4,

(n · ∇)u4|∂Ω = 0 ∀ t > 0.

We split the right side of (38) as

(
−(d + γ)u2 + β1m

∗u2 + β2m
∗ u4
K

D(x)Δu4 − (U(x) · ∇)u4 + ξu2 + (g − δ)u4

)

=
((

−(d + γ) 0
0 D(x)Δ − (U(x) · ∇) − δ

)
+
(
β1m

∗ β2
m∗

K
ξ g

))(
u2
u4

)
. (50)

We assume that the population is near the DFE (m∗, 0, 0, 0). Repeating the proof of Theorems 2.1, 2.2, we 
can prove the existence of the solution semiflow Θ(t) to

∂tu2 = −(d + γ)u2 and ∂tu4 = D(x)Δu4 − (U(x) · ∇)u4 − δu4. (51)

We can solve this as

u4(x, t, φ) = e−t[−D(x)Δ+(U(x)·∇)]e−δtφ4(x) = e−δtT4(t)φ4(x) (52)

by definition of T4 in (24). We also defined (T2(t)φ2)(x) = e−(d+γ)tφ2(x) in (26) so that u2(x, t, φ) =
T2(t)φ2(x). Thus, for φ = (φ2, φ4),

Θ(t)φ = (u2, u4)(t) = (T2(t)φ2, e
−δtT4(t)φ4) (53)

by (51) and (52). Because T4(t) is positive by [27, Corollary 7.2.3], it follows that T4(t)φ4 ∈ C(Ω, R+) for 
all φ4 ∈ C(Ω, R+) so that e−δtT4(t)φ4 ∈ C(Ω, R+). Similarly, e−(d+γ)tφ2 ∈ C(Ω, R+) for all φ2 ∈ C(Ω, R+). 
Therefore, Θ(t) is a positive C0-semigroup on Y = C(Ω, R2) and Θ(t)φ represents the spatial distribution 
of u2, u4 at time t > 0. We let C be a positive linear operator on Y defined by

C(φ)(x) �
(
β1m

∗ β2
m∗

K
ξ g

)(
φ2
φ4

)
(x) = (C2(φ), ξφ2 + gφ4)T (x) (54)

for al φ = (φ2, φ4) ∈ Y for all x ∈ Ω; i.e.

C2(φ) = β1m
∗φ2 + β2

m∗

K
φ4. (55)

Thus, at time t > 0 and location x, there will be C2(Θ(t)φ)(x) individuals added per unit time into 
u2 compartment. Hence, the spatial distribution of total new infected individuals caused by the initial 
distribution φ = (φ2, φ4) may be computed as

∞∫
0

C2(Θ(t)φ)dt = β1m
∗

∞∫
0

T2(t)φ2dt + β2
m∗

K

∞∫
0

e−δtT4(t)φ4dt (56)

due to (53). We now define the next generation operator L and the basic reproduction number R0 as
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L(φ) � C

∞∫
0

Θ(t)φdt and R0 � r(L) (57)

where r(L) is the spectral radius of L (see Definition 3.2).

Proposition 4.3. Suppose m∗ < d+γ
β1

. Then R0 − 1 and the principal eigenvalue λ(m∗, m
∗

K , 1) corresponding 

to (40) with H1 ≡ m∗, H2 ≡ m∗

K , H3 ≡ 1 have same signs.

Proof. We let ζ : D(ζ) 
→ Y , where Y = C(Ω, R2), be the generator of Θ(t) from (53) and also denote 
Y + � C(Ω, R2

+). We already verified after (53) that Θ is a positive semigroup. Thus, by [29, Theorem 3.12]
we see that ζ is resolvent-positive (see Definition 3.1) and

(λI − ζ)−1φ =
∞∫
0

e−λtΘ(t)φdt ∀ λ > s(ζ), ∀ φ ∈ Y, (58)

where s(ζ) is the spectral bound of ζ (see Definition 3.2). Now by (53) and (26),

Θ(t)φ = (e−(d+γ)tφ2, e
−δtT4(t)φ4);

thus, we may find ε0 > 0 sufficiently small so that

lim
t→∞

eε0tΘ(t)φ = 0 ∀ φ ∈ Y. (59)

By [29, Theorem 3.13] this implies s(ζ) < 0. Hence, we may take λ = 0 > s(ζ) in (58) to deduce

−Cζ−1φ = C(
∞∫
0

Θ(t)φdt) = L(φ) ∀ φ ∈ Y. (60)

Thus, L = −Cζ−1. We now let A � ζ + C. Then firstly we realize that C defined by (54) is clearly 
a positive linear operator, while we already showed that ζ is a resolvent-positive operator. Thus, A is a 
positive perturbation of ζ by Definition 3.1. Furthermore, ζ being the generator of Θ(t) where

Θ(t)φ = (T2(t)φ2, e
−δtT4(t)φ4) = (e−(d+γ)tφ2, e

−δtT4(t)φ4)

by (53) and (26) and

C(φ) =
(
β1m

∗ β2
m∗

K
ξ g

)(
φ2
φ4

)

by (54), we see that A generates a positive C0-semigroup. By [29, Theorem 3.12] again, this implies that A
is resolvent-positive. The facts that ζ is a resolvent-positive operator such that s(ζ) < 0, and A = ζ + C

is a positive perturbation of ζ while being resolvent-positive itself, impy that s(A) has the same sign as 
r(−Cζ−1) − 1 due to [29, Theorem 3.5]. As L = −Cζ−1 by (60) and R0 = r(L) by (57), we see that

R0 − 1 = r(L) − 1 = r(−Cζ−1) − 1

has a same sign as s(A) = s(ζ + C). Because we split the right side of (38) as
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((
−(d + γ) 0

0 D(x)Δ − (U(x) · ∇) − δ

)
+

(
β1m

∗ β2m
∗ 1
K

ξ g

))(
u2
u4

)

in (50), set Θ(t) as the solution semiflow of (51), ζ as the generator of Θ(t), and C in (54), this implies that 
R0 − 1 has a same sign as λ(m∗, m

∗

K , 1). �
We remark that an immediate corollary of Proposition 4.3 is the following local asymptotic stability of 

the DFE:

Corollary 4.4. Suppose m∗ < d+γ
β1

. If R0 < 1, then the DFE (m∗, 0, 0, 0), is locally asymptotically stable.

Proof. This can be proven similarly to that of [37, Theorem 2.3 (1)]; it serves as an analogous statement to 
[35, Theorem 4.3]. We skip its proof while only mentioning that it follows from [10, Theorem 2.1], because 
we will prove a stronger result in Theorem 2.3 (1), specifically the global stability of the DFE. �
Proof of Theorem 2.3 (1). We are now ready to prove the first part of Theorem 2.3. By hypothesis R0 < 1
so that R0 − 1 < 0. Then λ(m∗, m

∗

K , 1) the principal eigenvalue of the eigenvalue problem (40) with H1 ≡
m∗, H2 ≡ m∗

K , H3 ≡ 1,

λψ2 = − (d + γ)ψ2 + β1m
∗ψ2 + β2

m∗

K
ψ4,

λψ4 =D(x)Δψ4 − (U(x) · ∇)ψ4 + ξψ2 + (g − δ)ψ4,

has the corresponding eigenvector ψ∗ = (ψ∗
2 , ψ

∗
4) � 0 due to Proposition 4.2, and it satisfies λ(m∗, m

∗

K , 1) < 0
due to Proposition 4.3. Hence, we may fix ε0 > 0 sufficiently small so that λ(m∗ + ε0, 1

K (m∗ + ε0), 1) < 0. 
By hypothesis we know that m∗ < d+γ

β1
so that we may choose ε0 > 0 smaller if necessary to satisfy 

m∗ + ε0 < d+γ
β1

. From (31) we know that limt→∞ N(t) = m∗. By non-negativity of S, I, R for all t ≥ 0, for 
this fixed ε0 > 0 and φ ∈ X, we know that there exists t0 = t0(φ) such that for all t ≥ t0 and all x ∈ Ω,

S(x, t) ≤ m∗ + ε0, R(x, t) ≤ m∗ + ε0. (61)

Therefore, for all t ≥ t0 and all x ∈ Ω,

∂tI ≤ β1(m∗ + ε0)I + β2(m∗ + ε0)(
B

K
) − I(d + γ), (62)

∂tB ≤ D(x)ΔB − (U(x) · ∇)B + ξI + (g − δ)B, (63)

due to (5b) and (5d). We consider a system

∂tv2 = β1(m∗ + ε0)v2 + β2

K
v4(m∗ + ε0) − v2(d + γ), (64a)

∂tv4 = D(x)Δv4 − (U(x) · ∇)v4 + ξv2 + (g − δ)v4. (64b)

We substitute (eλtψ2(x), eλtψ4(x)) for (v2, v4)(x, t) in (64) and divide by eλt to deduce its eigenvalue problem 
of

λψ2 = β1(m∗ + ε0)ψ2 + β2

K
ψ4(m∗ + ε0) − ψ2(d + γ), (65a)

λψ4 = D(x)Δψ4 − (U(x) · ∇)ψ4 + ξψ2 + (g − δ)ψ4. (65b)
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By Proposition 4.2 with H1 ≡ m∗ + ε0, H2 ≡ (m∗ + ε0) 1
K , H3 ≡ 1 because m∗ + ε0 < d+γ

β1
, this eigenvalue 

problem has a real eigenvalue λ(m∗ + ε0, (m∗ + ε0) 1
K , 1) with a corresponding eigenvector ψ̂ = (ψ̂2, ψ̂4) � 0

and therefore a solution of

eλ(m∗+ε0,(m∗+ε0) 1
K ,1)(t−t0)ψ̂(x), ∀ t ≥ t0. (66)

We can find η > 1 sufficiently large so that

(I,B)(x, t0) ≤ ηψ̂(x) ∀ x ∈ Ω (67)

because ψ̂ � 0. Now the next step is the comparison principle with which we claim

(I,B)(x, t0) ≤ ηeλ(m∗+ε0,(m∗+ε0) 1
K ,1)(t−t0)ψ̂(x). (68)

The typical strategy here is to rely on [27, Theorem 7.3.4] or its variant; however, although [27, Theorem 
7.3.4] may be applied to a uniformly elliptic second-order differentiation operator (see Remark 3.1), it is 
only for a system that is fully diffusive (see [27, pg. 120]). A typical proof of a comparison principle relies 
on a maximum principle; yet, there is no maximum principle for a non-diffusive equation in general and 
hence in particular (64a). Therefore, it is actually not trivial at all how to apply a comparison principle to 
a coupled system of a partially diffusive system.

In fact, we can appeal to [20, Proposition 3] here. The trick in the proof of [20, Proposition 3] is to not 
rely on a maximum principle but in fact the local existence theorem in X+ [20, Theorem 2] and generalize 
X+ to [v−(t), v+(t)] where the v− and v+ are the lower and upper solutions, respectively.

Let us continue to denote Y = C(Ω, R2) and Y + = C(Ω, R2
+) and verify the main hypothesis [20, 

Equation (2.9)] of [20, Proposition 3]. In order to do so, it suffice to show for all t ∈ [0, b), φ ∈ Y + such that 
v−(t) ≤ φ ≤ v+(t) that

lim
h→0+

inf
y∈Y +

1
h
‖v2(t) − φ2 + h[F+

2 ((v2, v4)(t)) − F2(φ)] − y2‖C(Ω)

+ ‖v4(t) − φ4 + h[F+
4 ((v2, v4)(t)) − F4(φ)] − y4‖C(Ω) = 0. (69)

In fact, (69) can be proven very similarly to the proof of Theorem 2.1. Therefore, by [20, Proposition 3]
we deduce (68), where the right side vanishes to zero as t → ∞ because λ(m∗ + ε0, (m∗ + ε0) 1

K , 1) < 0. 
Consequently, we can fix t1 ≥ t0 sufficiently large so that ‖I(t)‖C(Ω) ≤ 1 and compute from (5c) that

R(t) ≤ e−(d+σ)t[R(t1) + γ

t∫
t1

I(s)e(d+σ)sds] ≤ e−(d+σ)t(m∗ + ε0) + γe−(d+σ)t1

d + σ
→ 0 (70)

due to (61) as t1 → ∞ so that t → ∞. Finally, because we know limt→∞ N(t) = m∗ for all x ∈ Ω from (31), 
we deduce that limt→∞ S(t) = m∗ for all x ∈ Ω since we already showed that (I, R)(t) → (0, 0) as t → ∞
for all x ∈ Ω. This completes the proof of Theorem 2.3 (1). �
Proof of Theorem 2.3 (2). We are now ready to prove the second part of Theorem 2.3. By hypothesis, 
m∗ < d+γ

β1
and R0 > 1 so that R0 − 1 > 0. Thus, λ(m∗, m

∗

K , 1) the principal eigenvalue of the eigenvalue 

problem (40) with H1 ≡ m∗, H2 ≡ m∗

K , H3 ≡ 1,

λψ2 = −(d + γ)ψ2 + β1m
∗ψ2 + β2

m∗

K
ψ4,

λψ4 = D(x)Δψ4 − (U(x) · ∇)ψ4 + ξψ2 + (g − δ)ψ4,
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which has the corresponding eigenvector ψ∗ = (ψ∗
2 , ψ

∗
4) � 0 due to Proposition 4.2 also satisfies 

λ(m∗, m
∗

K , 1) > 0 due to Proposition 4.3. To reach a contradiction, suppose that there exists ψ0 ∈ X+

such that for all δ0 > 0, and hence taking it smaller if necessary, for all δ0 ∈ (0, m∗), it holds that

lim sup
t→∞

‖Φt(ψ0) − (m∗, 0, 0, 0)‖C(Ω) < δ0, (71)

where we recall that Φt is the semiflow from Theorem 2.2. Thus, there exists t1 > 0 sufficiently large such 
that

S(x, t) −m∗ < δ0, m
∗ − δ0 < S(x, t), (72a)

I(x, t) < δ0, R(x, t) < δ0, B(x, t) < δ0, (72b)

for all t ≥ t1 and all x ∈ Ω. We see from (5b) and (5d) that

∂tI ≥ β1(m∗ − δ0)I + β2(m∗ − δ0)(
1

δ0 + K
)B − I(d + γ), (73)

∂tB ≥ D(x)ΔB − (U(x) · ∇)B + ξI + gB

(
1 − δ0

KB

)
− δB (74)

for all x ∈ Ω and all t ≥ t1. Now m∗ < d+γ
β1

by hypothesis so that m∗ − δ0 < d+γ
β1

; hence, by Proposition 4.2
with H1 ≡ m∗ − δ0, H2 ≡ (m

∗−δ0
δ0+K ), H3 ≡ 1 − δ0

KB
, an eigenvalue problem of

∂tv2 = β1(m∗ − δ0)v2 + β2(
m∗ − δ0
δ0 + K

)v4 − v2(d + γ), (75a)

∂tv4 = D(x)Δv4 − (U(x) · ∇)v4 + ξv2 + gv4

(
1 − δ0

KB

)
− δv4, (75b)

specifically

λψ2 = β1(m∗ − δ0)ψ2 + β2
m∗ − δ0
δ0 + K

ψ4 − ψ2(d + γ), (76a)

λψ4 = D(x)Δψ4 − (U(x) · ∇)ψ4 + ξψ2 + gψ4(1 − δ0
KB

) − δψ4, (76b)

has a principal eigenvalue λ(m∗− δ0, m
∗−δ0

δ0+K , 1 − δ0
KB

) with a corresponding eigenvector ψ̂ = (ψ̂2, ψ̂4) � 0 for 
all x ∈ Ω. We emphasize that we also just used the fact that H2 ≡ m∗−δ0

δ0+K > 0 where the strict positivity is 
due to our choice of δ0 ∈ (0, m∗). As λ(m∗, m

∗

K , 1) > 0, for δ0 > 0 sufficiently small we obtain

λ(m∗ − δ0,
m∗ − δ0
δ0 + K

, 1 − δ0
Kb

) > 0. (77)

By the hypothesis that the solution is positive, for η > 0 sufficiently small we can obtain

(I(x, t1, ψ0), B(x, t1, ψ0)) ≥ ηψ̂(x) ∀ x ∈ Ω. (78)

Now we apply [20, Proposition 3] again. We recall that Y = C(Ω, R2) and Y + = C(Ω, R2
+), and verify 

the main hypothesis [20, Equation (2.10)] of [20, Proposition 3]; in order to do so, it suffices to show for 
(v2, v4)(t) ≤ φ that



1
h

inf
y∈Y +

‖φ2 − v2(t) + h[F2(φ) − F−
2 ((v2, v4)(t))] − y2‖C(Ω)

+ ‖φ4 − v4(t) + h[F4(φ) − F−
4 ((v2, v4)(t))] − y4‖C(Ω) = 0. (79)

Similarly to (69), (78) can be proven very similarly to our proof of Theorem 2.1. Therefore, we deduce that

(I,B)(x, t, ψ0) ≥ ηe
λ(m∗−δ0,(m∗−δ0

δ0+K ),1− δ0
KB

)(t−t1)ψ̂(x), (80)

where

lim
t→∞

e
λ(m∗−δ0,(m∗−δ0

δ0+K ),1− δ0
KB

)(t−t1) = ∞

due to (77). As ψ̂ � 0, this implies ‖I(t, ψ0)‖C(Ω), ‖B(t, ψ0)‖C(Ω) grows unbounded. This contradicts our 
assumption (71) and (72) that

lim sup
t→∞

‖Φt(ψ) − (m∗, 0, 0, 0)‖C(Ω) = lim sup
t→∞

‖S(t, ψ0) −m∗‖C(Ω)

+ ‖I(t, ψ0)‖C(Ω) + ‖R(t, ψ0)‖C(Ω) + ‖B(t, ψ0)‖C(Ω) < δ0.

This concludes the proof of Theorem 2.3 (2). �
5. Numerical results

In order to verify our analytical results, we have conducted numerical simulation to our PDE model (5). 
The system (5) can be computed by a standard finite difference method, such as the leapfrog (i.e., centered 
difference in time and space), or simply the forward difference in time and centered difference in space. 
When such explicit finite difference schemes are employed, we have to be careful for the choice of the time 
step size, which needs to be relatively small, to ensure the numerical stability.

Meanwhile, we have also numerically calculated the basic reproduction number associated with our 
PDE model. The equation (57) characterizes the basic reproduction number R0. The formula, however, is 
expressed in terms of an operator and not directly applicable to the numerical evaluation of R0. To overcome 
this difficulty, we transfer the evaluation of the spectral radius of the operator L to the calculation of the 
spectral radius of a corresponding matrix, in the approximate means. That is, we numerically reduce the 
operator eigenvalue problem to a matrix eigenvalue problem that can be easily computed. A numerical 
algorithm for the computation of R0 has been developed and the detail is provided in the Appendix, 
Section A.3.

Using this algorithm, we are able to evaluate R0 and demonstrate the threshold results predicted by our 
mathematical analysis. For illustration, we have chosen a one-dimensional spatial domain, [0, 1]. Figs. 1
and 2 show two typical scenarios, R0 < 1 and R0 > 1 respectively, of the simulation results for the model 
(5). We clearly observe that when R0 = 0.96 (Fig. 1), the number of infected hosts and the concentration 
of the pathogenic bacteria, though started with a non-uniform distribution over the space, both approach 
0 quickly and uniformly, indicating the elimination of the disease. In contrast, when R0 = 1.29 (Fig. 2), 
the infected population and bacterial concentration both remain positive throughout the time and space, 
indicating the persistence of the disease. Furthermore, by running the numerical simulation sufficiently long, 
we find that the solution actually converges to an endemic state, as illustrated in Fig. 3 for I and B at 
x = 0.5. In Theorem 2.3, we proved the weak persistence result when R0 > 1. The numerical findings in 
Figs. 2 and 3 as well as other similar results (based on different diffusion and convection rates and different 
initial conditions), not shown here, provide evidences for a stronger persistence result that there exists an 
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Fig. 1. A typical scenario of the spatiotemporal dynamics of the model (5) when R0 < 1. Here D(x) = 10 +10 sin(πx), U(x) = 5 +5x, 
and R0 = 0.96. (a) The number of infected hosts quickly approaches 0; (b) The concentration of pathogenic bacteria quickly 
approaches 0. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Fig. 2. A typical scenario of the spatiotemporal dynamics of the model (5) when R0 > 1. Here D(x) = 10 +10 sin(πx), U(x) = 5 +5x, 
and R0 = 1.29. (a) The number of infected hosts remains positive; (b) The concentration of pathogenic bacteria remains positive.

Fig. 3. Long-term behavior of the solution to the model (5) when R0 > 1, under the same setting as in Fig. 2. (a) The infected 
number at x = 0.5 converges to a positive endemic state over time; (b) The bacterial concentration at x = 0.5 converges to a 
positive endemic state over time.
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endemic equilibrium that is asymptotically stable when R0 > 1. This is very interesting because, as we 
elaborated in Remark 2.3, proving the uniform persistence and the existence of an endemic equilibrium in 
case R0 > 1 rigorously seems to be very difficult for partially diffusive systems of PDEs such as (5) due to 
the absence of a maximum principle.

6. Conclusion

We have presented a new cholera modeling framework based on a partially diffusive PDE system that 
describes the temporal variation of the human hosts and the dispersal and movement of the pathogenic 
bacteria along a river with spatial heterogeneity. We have conducted a careful mathematical analysis on the 
well-posedness and stability of our model. Additionally we have conducted some numerical simulation to 
verify the analytical results.

It is a nontrivial task to quantify the risk of cholera infection in a spatially heterogeneous environment. In 
this study, we have focused our attention on the characterization of the environmental bacterial dynamics, 
especially their spatial movement in a heterogeneous fluvial system, which plays an important role in shaping 
a cholera epidemic. The spatial variation of the human population dynamics can still be reflected (at least 
partially) in our model, through the interaction between human hosts and environmental bacteria. Our 
investigation has put a special emphasis on the interplay of the biological, environmental and physical 
factors that all contribute to the complexity of cholera transmission and spread. Our model differs from 
previously published cholera PDE models (such as those in [3,26,33,34]) in the following aspects: (1) the 
system is partially diffusive in the sense that the diffusion term only appears in the bacterial equation; (2) 
the convection and diffusion rates for the bacteria are spatially dependent; (3) the spatial domain can have 
an arbitrary dimension (instead of being limited to 1D).

Due to the partial diffusion (so that the uniform elliptic condition and the maximum principle are 
not satisfied) and the complex non-linear terms involved in our model, mathematical treatment of our PDE 
system is challenging. We have utilized several (standard and non-standard) mathematical tools, particularly 
the positive operator theory and Kuratowski’s measure of non-compactness, to analyze this system. We have 
established the local and global well-posedness for our system, and rigorously derived the basic reproduction 
number R0 for this model. We have also established the global asymptotic stability of the DFE when R0 < 1
and the persistence of the solution flow in the weak sense when R0 > 1. In addition, our numerical results 
are consistent with the analytical predictions, and provide evidences for the uniform persistence of the 
solution and the asymptotic stability of the endemic state when R0 > 1.

In our future research, we may consider more general representation of the bacterial convection and 
diffusion rates, which could be depending on both the space and time. We may also explore ways to 
realistically model human movement and explicitly incorporate the spatial heterogeneity into the human 
population. One possibility is to consider the dynamics of the human hosts and the pathogen on two different 
(but adjacent) spatial domains, such as a 1D domain (e.g., a river) for the bacteria, and a 2D domain (e.g., 
a field) for the human hosts, and investigate their interactions. Such a modeling approach has been used 
to study invasions of biological species [4,5], and we hope to pursue the effort along this line for cholera 
modeling.
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Appendix A

A.1. Proof of Proposition 4.1

By hypothesis, Ω ⊂ Rn is bounded so that Ω is closed and bounded. Thus, Ω is compact by Heine-Borel 
theorem, implying that g(Ω) is also compact by the continuity of g; thus,

0 < g � min
x∈Ω

g(x) ≤ g(x) ≤ max
x∈Ω

g(x) � g ∀ x ∈ Ω.

We define F (x, w) � g(x) − λw(x, t). For (29) we can apply Lemma 3.2 because D(x)Δ − (U(x) · ∇) is 
uniformly elliptic due to the hypothesis that D(x) ≥ M > 0 for all x ∈ Ω (see Remark 3.1). Thus, via [27, 
Corollary 7.3.2] we can deduce the existence of a unique solution w(x, t, ψ) ∈ C(Ω, R+) for all ψ ∈ C(Ω, R+)
on some interval [0, σ) where σ = σ(ψ) and limt→σ−‖w(t, ψ)‖C(Ω) = ∞ if σ < ∞. We fix ψ ∈ C(Ω, R+), 
take a function v ≡ N such that

N > max{max
x∈Ω

ψ(x), g
λ
}.

Then it follows from [27, Theorem 7.3.4] (Remark 3.1) that w(x, t) ≤ v(x, t) ≡ N for all x ∈ Ω. By the blow 
up criterion from local well-posedness result, we deduce that w(x, t) exists globally in time. Thus, there 
exists Pt the solution semiflow such that Pt(ψ) = w(t, ψ) for all ψ ∈ C(Ω, R+). For all x ∈ Ω and for all 
t > 0,

g − λw(x, t) ≤ F (x,w) ≤ g − λw(x, t),

and F is trivially cooperative; thus, by [27, Theorem 7.3.4] again we see that the omega limit set ω(ψ) for 
ψ ∈ C(Ω, R+) satisfies

ω(ψ) ⊂ {φ :
g

λ
≤ φ ≤ g

λ
}. (81)

By comparison theorem [27, Corollary 7.3.5, Theorem 7.4.1] again, it follows that Pt(ψ1) � Pt(ψ2) for all 
t > 0 if ψ1 > ψ2; this implies that Pt is strongly monotone (e.g. [43, pg. 38, 40, 46]). Moreover, F is strictly 
subhomogeneous in the sense that F (x, βw) > βF (x, w) for all β ∈ (0, 1) as g(x) > 0. Next, following the 
proof of [13, Theorem 2.2], it follows that Pt is strictly subhomogeneous (see the proof of [38, Proposition 
1] for details). Because we already showed that Pt is strongly monotone and Pt also admits a non-empty 
compact invariant set in intC(Ω, R+), by [43, Theorem 2.3.2], we deduce that Pt has a fixed point w∗(x) � 0
such that ω(ψ) = w∗ ∈ C(Ω, R+) for all ψ ∈ C(Ω, R+). Finally, if g(x) ≡ g for all x ∈ Ω, it follows from 
(81) that w∗ ≡ g

λ .

A.2. Proof of Proposition 2.4

Firstly, say φ2 > 0. Then by [38, Proposition 2], we know I(x, t) > 0 for all t > 0 and all x ∈ [0, 1]. Now 
if for any t0 > 0, u3(·, t0, φ) ≡ 0, then from (9c) we deduce ∂tR|t=t0 = γI|t=t0 > 0 and R(·, t0) ≡ 0. This 
contradicts that R ≥ 0 for all t ≥ 0 from [38, Theorem 2.1]. Thus, for all t0 > 0, u3(·, t0, φ) �≡ 0. But then 
by [37, Proposition 2] we deduce that R(x, t) > 0 for all t > 0 and all x ∈ [0, 1].

Secondly, say φ4 > 0. Then by [38, Proposition 2] we deduce that B(x, t) > 0 for all t > 0 and all 
x ∈ [0, 1]. It is explained in the proof of [38, Proposition 5] that this implies I(x, t) > 0 for all t > 0 and all 
x ∈ [0, 1]. By the same argument in the case φ2 > 0 that we already explained, this leads to R(t, x) > 0 for 
all t > 0, x ∈ [0, 1].
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This implies that upon showing that

p(ψ) � min{ min
x∈[0,1]

ψ2(x), min
x∈[0,1]

ψ4(x)}

is a generalized distance function (see [28, pg. 6172]) in the process of proving [38, Theorem 2], an identical 
proof would have gone through with

p(ψ) � min{ min
x∈[0,1]

ψ2(x), min
x∈[0,1]

ψ3(x), min
x∈[0,1]

ψ4(x)};

this concludes the proof of Proposition 2.4.

A.3. Numerical calculation of R0

Denote −ζ−1(φ) =
[
h2(φ2)
h4(φ4)

]
where the operator ζ is defined in equation (58). Then[

−(d + γ) 0
0 D(x)Δ − U(x) · ∇ − δ

]
·
[
−h2(φ2)
−h4(φ4)

]
=

[
φ2
φ4

]
implies

h2(φ2) = φ2

d + γ
(82)

and

(D(x)Δ − U(x) · ∇ − δ)(h4(φ4)) = −φ4 . (83)

For simplicity, let us consider a 1D domain: x ∈ [0, 1], and denote y(x) = (h4φ4)(x). Then we have

D(x)d
2y(x)
dx2 − U(x)dy(x)

dx
− δy(x) = −φ4(x). (84)

Fix a sufficiently large integer N > 0 and let xn = n/N , Dn = D(xn), Un = U(xn), and yn = y(xn) for 
n = 0, 1, ..., N . Using a standard second-order centered difference method to approximate equation (84), we 
obtain

Dn
yn+1 − 2yn + yn−1

1/N2 − Un
yn+1 − yn−1

2/N − δyn ≈ −φ4(xn), (85)

or, equivalently,

−N

(
DnN − Un

2

)
yn+1 + (2DnN

2 + δ)yn −N

(
DnN + Un

2

)
yn−1 ≈ φ4(xn), (86)

for n = 0, 1, ..., N . Note that the Neumann boundary conditions at x = 0, 1 yield y−1 ≈ y1 and yN+1 ≈ yN−1
up to second order accuracy. Rewrite these N + 1 approximate equations in matrix form

AY ≈ Φ4, (87)

where

A =

⎡
⎢⎢⎢⎢⎣
d0 s0
v1 d1 v1

. . . . . . . . .
vN−1 dN−1 vN−1

⎤
⎥⎥⎥⎥⎦ , Y =

⎡
⎢⎢⎢⎢⎣

y0
y1
...

yN−1

⎤
⎥⎥⎥⎥⎦ , and Φ4 =

⎡
⎢⎢⎢⎢⎣

φ4(x0)
φ4(x1)

...
φ4(xN−1)

⎤
⎥⎥⎥⎥⎦ ,
sN dN yN φ4(xN )
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with dn = 2DnN
2+δ, vn = −N

(
DnN + Un

2
)
, vn = −N

(
DnN − Un

2
)
, and sn = vn+vn for all 0 ≤ n ≤ N . 

Note that vn < 0 and vn < 0 for sufficiently large N , since D(x) ≥ M > 0. By the Gershgorin circle theorem, 
any eigenvalue λA of matrix A satisfies |λA − dp| ≤ |vp| + |vp| = 2DpN

2 for some p ∈ {0, 1, ..., N}, which 
implies Re(λA) ≥ δ. Therefore, A is invertible, and we obtain Y ≈ A−1Φ4.

We know that L(φ) = −Cζ−1(φ) =
[
β1m

∗ β2
m∗

K
ξ g

]
·
[
h2(φ2)
h4(φ4)

]
=

[
β1m

∗

d+γ φ2 + β2
m∗

K y(x)
ξ

d+γφ2 + gy(x)

]
. For any 

eigenvalue λ of the operator L, we have

L(φ) = λφ . (88)

Consequently, we obtain
[

β1m
∗

d+γ φ2(x) + β2
m∗

K y(x)
ξ

d+γφ2(x) + gy(x)

]
= λ

[
φ2(x)
φ4(x)

]
, (89)

which yields
[

β1m
∗

d+γ Φ2 + β2
m∗

K Y
ξ

d+γΦ2 + gY

]
= λ

[
Φ2
Φ4

]
, (90)

where Φ2 = [φ2(x0), φ2(x1), ..., φ2(xN )]T . It then follows from equation (87) that
[

β1m
∗

d+γ IN+1 β2
m∗

K A−1

ξ
d+γ IN+1 gA−1

]
·
[
Φ2
Φ4

]
≈ λ

[
Φ2
Φ4

]
. (91)

Thus, the operator eigenvalue problem (88) can be approximated by the matrix eigenvalue problem (91). 
Let us denote

LN =
[

β1m
∗

d+γ IN+1 β2
m∗

K A−1

ξ
d+γ IN+1 gA−1

]
. (92)

Then the spectral radius of the matrix LN ; i.e., ρ(LN ), approximates the spectral radios of the operator L; 
i.e., ρ(L). Hence, for sufficiently large N , we have

R0 = ρ(L) ≈ ρ(LN ). (93)
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