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1. Introduction

Cholera, an ancient disease characterized by severe intestinal infection, remains a serious public health
burden in developing countries despite a large body of theoretical and clinical studies and tremendous
efforts in disease prevention, intervention and management [1,46]. Cholera is caused by the bacterium
Vibrio cholerae. The primary source of cholera infection is the contaminated water, which constitutes the
environment-to-human (or, indirect) transmission pathway. Meanwhile, the disease can be transmitted from
the human-to-human (or, direct) route; for example, through body contact with infected people, or con-
sumption of food prepared by infected individuals with dirty hands [15,22]. The persistence of cholera has
been highlighted by recent outbreaks in Yemen (2016-2018), South Sudan (2014), Haiti (2010-2012), Zim-
babwe (2008-2009), and many other places, which led to high morbidity and prevalence every year [45]. In
particular, the Yemen cholera outbreak is regarded as the worst cholera epidemic in modern history, with
more than 1.1 million cases reported by WHO as of May 2018 [47].

* Corresponding author.
E-mail addresses: kyamazak@ttu.edu (K. Yamazaki), chayuyang@ufl.edu (C. Yang), Jin-Wang02@utc.edu (J. Wang).

https://doi.org/10.1016/j.jmaa.2021.125181
0022-247X/© 2021 Elsevier Inc. All rights reserved.


https://doi.org/10.1016/j.jmaa.2021.125181
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jmaa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmaa.2021.125181&domain=pdf
mailto:kyamazak@ttu.edu
mailto:chayuyang@ufl.edu
mailto:Jin-Wang02@utc.edu
https://doi.org/10.1016/j.jmaa.2021.125181

2 K. Yamazaki et al. / J. Math. Anal. Appl. 501 (2021) 125181

In recent years, a large number of cholera transmission models have been published (see, e.g., [2,3,7,8,12,
15,21,22,24-26,30,31,33,34,39]), including several ones concerned with the spatial spread of cholera. Despite
the many signs of progress in these studies regarding cholera transmission and spread, the spatial dynamics
of cholera are not fully understood at present. For example, it is still a nontrivial task to model and analyze
cholera epidemics in a setting that incorporates spatial variations and multiple transmission pathways of
cholera. It also remains a challenge to quantify the infection risk of cholera in a spatially heterogeneous
environment. Meanwhile, the movement and dispersal of the pathogenic bacteria (i.e., vibrios) through
water flows in fluvial systems are ubiquitous in nature and could make important contribution to the spread
of cholera. To date, however, relatively few studies have been devoted to addressing these issues.

The authors of [3,25,26] developed partial differential equation (PDE) models to account for cholera
spreading along a theoretical river based on an extension of Codego’s ordinary differential equation (ODE)
framework [8], where only the environment-to-human transmission route was considered. In [34], a PDE
cholera model based on reaction-diffusion equations was proposed that represents the spatial diffusion of
the pathogen and human hosts while incorporating both the direct and indirect transmission routes. This
work was extended in [33] to include a convection process for the pathogenic bacteria; e.g., the movement
of the vibrios from the upstream to the downstream along a river. As a result, the dynamics of the human
hosts are described by reaction-diffusion equations, whereas those of the cholera bacteria are described by a
reaction-convection-diffusion equation. The well-posedness, uniform persistence and global stability of the
model in [33] were rigorously analyzed in [37,38]. For all these studies, the spatial domain is restricted to
be one-dimensional (1D), and the convection and diffusion rates are fixed as constants.

While it may be reasonable to consider the motion of the bacteria on a 1D domain approximating a river,
the assumption of a diffusion process for the human hosts on the same 1D domain is probably not realistic.
Meanwhile, the bacterial convection and diffusion rates depend on factors such as the location of the river, the
speed of the water flow, and the geographical properties associated with the fluvial system, all of which would
vary with space in reality. Thus, it would be more practical to consider spatially dependent convection and
diffusion rates in order to reflect the spatial heterogeneity of the bacterial movement. Additionally, compared
to the dispersal of the bacteria, the diffusion of the human hosts is slow and can often be disregarded [6].

The present study aims to partially overcome these challenges by formulating a PDE system in a
multi-dimensional space with partial diffusion terms and with a focus on the bacterial spatial dynam-
ics. Specifically, we describe the motion of the bacteria by a reaction-convection-diffusion equation with
spatially dependent convection and diffusion rates. Meanwhile, the dynamics of the human population are
represented by temporal equations, without the diffusion terms as appeared in previous models [3,26,33,34].
Thus, the spatial dynamics of human hosts are not explicitly modeled in our system (though the host vari-
ables still vary with space due to their dependence on the pathogen variable), whereas the spatial dynamics
of the bacteria are fully taken into account. Our study will now be conducted in a spatial domain of an
arbitrary dimension instead of being limited to 1D.

The significance of this work is twofold: (1) Biologically, we emphasize the bacterial movement and
ignore the relatively small mobility of the human population. The absence of human diffusion in our model
would allow us to specifically focus on the spatial dynamics of the pathogenic bacteria, so that we will
be able to conduct a deep investigation into the dispersal and movement of the bacteria and their effects
on cholera transmission in an otherwise homogeneously mixed and distributed human population. The
incorporation of spatially-varying convection and diffusion rates would further improve our understanding
of the realistic bacterial dynamics in a fluvial system. (2) Mathematically, our partially diffusive PDE system
possesses unique challenges in the analysis. In particular, with zero diffusion in several equations, the system
does not satisfy the uniform elliptic condition and a maximum principle is absent there. Consequently,
common analytical tools for diffusive PDEs, such as the comparison principle [27,38], are not applicable to
our model. Meanwhile, instead of using a standard Laplacian that is extensively studied in the literature
[11,19,20,32,34,40,44], our system is based on a second-order general differential operator.
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The remainder of this paper proceeds as follows. In Section 2, we describe our partially diffusive PDE
model for cholera dynamics and state the main results. We provide some preliminaries in Section 3 in
order to establish these results, and present the detailed proof in Section 4. We present some numerical
simulation results in Section 5 to demonstrate our analytical findings. Finally, we conclude the paper with
some discussion in Section 6.

2. Statement of main results

Let us consider a spatial domain denoted by £ C R™ for n € N and assume that it is bounded with
smooth boundary 992. We recall that a second-order differential operator A of the form

n n
Ai(z) = > ah;(x)DiDj + > aj Dy + (), (1)
k,j=1 k=1

where aj, ;(x) = a’; (), Dx = a%k satisfies a}ﬁ, ai € C?(9), is uniformly elliptic if there exists a constant
1 > 0 such that for all £ € R™ and for all x € €,

> aj j(@)&g; > plgl. (2)
k,j=1

Let us call a system partially diffusive when only some but not all equations in the system have diffusive
terms. For clarification we shall not consider damping terms corresponding to c¢(z) to be diffusive because
all population models in general have damping terms due to death rates as ¢(x).

In what follows we will focus our attention on cholera modeling. Let us denote by S = S(x,t),I =
I(z,t), R = R(z,t) the number of susceptible, infected, and recovered human hosts at location x and time
t, respectively. Moreover, we let B = B(x,t) represent the concentration of bacteria (vibrios) in the water
environment. A vector (S, I, R, B) will be the solution and we denote it, along with its initial data, by

U £ (Ul,UQ,Ug,U4) £ (Sa [a RvB)a (Sa [a R,B)(IE,O) £ ¢ = (¢1,¢2,¢3,¢4)(1‘). (3)

We consider a general second-order differentiation operator as a reaction-diffusion term in the equation
of bacteria, with D(x) and U € C?(Q) as the given diffusion and convection rates, respectively. We shall
assume that D(x) is continuous and has a strictly positive lower bound M > 0 which follows from the fact

that D(£2) is compact:
D(x)>M >0 VYzel. 4)

Remark 2.1. We point out that this restriction (4) is necessary for our diffusion to be at least uniformly
elliptic. On the other hand, allowing D(z) = 0 for any = should be an interesting and challenging direction
of research, which is also strongly related to the direction of research on non-homogeneous and density-
dependent equations in fluid mechanics from which some relevant techniques may be borrowed (see [18] and
references therein).

We also note the PDE models of infectious diseases are still relatively new in comparison to the ODE
models, and almost all the infectious PDE models of which we are aware simply have a Laplacian instead
of a general second-order differentiation operator (1) (e.g. [11,19,32,34,40,44]). The only exception is the
work by Wang and Zhao in [35] and it turns out that our condition (4) is the same as that of [35, (D2) on
pg. 1655]. We point out nonetheless that while Wang and Zhao obtained local asymptotic stability of the
disease-free equilibrium (DFE) in [35, Theorems 3.1 (ii) and 4.3 (i)], we obtain global asymptotic stability
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Table 1
Definition of parameters in model (5).
Parameter Definition
b Recruitment rate of susceptible hosts
d Natural death rate of human hosts
¥ Recovery rate of infectious hosts
o Rate of host immunity loss
J Natural death rate of bacteria
13 Shedding rate of bacteria by infectious hosts
B Direct transmission parameter
Ba Indirect transmission parameter
K Half saturation rate of bacteria

Kp Maximal carrying capacity of bacteria in the environment

of the DFE in Theorem 2.3 (1); i.e. the authors in [35, Theorems 3.1 (ii) and 4.3 (i)] work on a system
linearized about the DFE while we work directly on the system (5), as we will see.

We will return to discuss the work of [35] by Wang and Zhao in Remark 2.3. We describe the other model
parameters in Table 1. Let us write 9; 2 2 and introduce the cholera model of our main concern as follows:

ot
B
atS:b—ﬁls’I—ﬁQS (m) —dS+UR, (5&)
Ol = 1SI + (25 (B—k%) —I(d+7), (5b)
OiR =T~ R(d+0), (5¢)
0,B = D(x)AB — (U(z) - V)B + (I + gB (1 _ K£> _5B. (5d)
B

We impose its boundary conditions to be of Neumann type for simplicity:
(n-V)ua(z,t) =0, (6)

where n is an outward unit normal vector. Robin type boundary conditions can be treated in a similar
manner.

We emphasize that (5a)-(5¢) have no diffusion, although they have damping terms. Thus, the system (5)
does not satisfy the uniform elliptic condition. Let us denote by

4
xX2o@RrRY 2] X, xt2c@RY) AT (7)
i =1

where X; £ C(Q,R) and X;" £ {f € X; : f > 0}, equipped with the usual supremum norm. Because
no confusion will arise, we write ||| (g, for a norm in X or X;; in particular, we note that |lul/c g, =
221:1 |uillc()- The DFE for the system (5) is

b
(S,I,R, B) = (m*,0,0,0) where m* = 7 (8)

Let us postpone technical details to Section 3 on preliminaries and present a first result.

Theorem 2.1. (Local well-posedness) For any ¢ € X, there exists a unique classical solution u(z,t,¢) € X+
such that u(x,0,d) = ¢(x) to the system (5) on [0,T) for T = T(¢) € (0,00]. Moreover, if T < oo, then
llul|x = +o0 ast — T.
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We point out that the system (5) is partially diffusive and the diffusive terms are second-order general
differentiation operator, not just a Laplacian. To the best of the authors’ knowledge, typical literature to
which readers are always referred for such a result is either [20, Theorem 1] or Lemma 3.2. There arises
an issue upon applying either of such results to the system (5). Firstly, [20, Theorem 1] is applicable to a
partially diffusive system but only if the diffusion is simply a Laplacian; i.e. diffusive terms are d; A with
d; > 0. Secondly, Lemma 3.2 may be extended to a general second-order differentiation operator that is
uniformly elliptic (see Remark 3.1); however, every equation in the system must have a strictly positive
diffusive term, which are absent in (5a)-(5¢). Upon a closer look at the work of [20], it turns out that
[20, Theorem 1] is an application of an abstract result [20, Theorem 2, Corollary 4] and the proofs of [20,
Theorem 2, Corollary 4] do not depend on the specific form of the diffusion. Therefore, we can directly
apply [20, Corollary 4] in order to prove Theorem 2.1, as we will see.

Due to the blow-up criterion from Theorem 2.1, a uniform bound on the solution leads to a global result
as follows:

Theorem 2.2. (Global well-posedness) For all ¢ € X, there exists a unique solution u(-,t,¢) to (5) such
that u(z,0,¢) = ¢(x) on a time interval [0,00). Moreover, the semiflow @, : X+ — X T of (5) defined by
O (D)(-) & (u1,ug,uz,us)(-,t, @) for all x € Q,t >0, is point dissipative and the positive orbits of bounded
subsets of X for ®; are bounded.

Once the global well-posedness result has been established, a next result of interest concerns stability
depending on the value of a basic reproduction number Ro. Yamazaki and Wang in [37,38] considered a
reaction-convection-diffusion system on a one-dimensional spatial domain:

BtSZDAS+b—BlSI—BgS<B+K>—dS+oR, (9a)

O I = DAI + 31 ST + (25 _B_ —I(d+7) (9b)

td = 1 2 B+ K Y)s

O:R = DAR+~I — R(d + o), (9¢)

0B =DAB - (U-V)B+¢&I+gB <1 — K£> — 0B, (9d)
B

where D, D, U are all fixed positive constants, and obtained a complete result of the global attractivity of
the DFE in case Ry < 1, as well as the uniform persistence of the disease in case Rg > 1. In contrast,
the system (5) lacks diffusion in (5a)-(5¢) and consequently the compactness that is needed in a standard
argument (e.g. [27, Theorem 7.6.1]). Therefore, similarly to the partially diffusive avian influenza model in
[32] and the partially diffusive Ebola virus disease model in [40], we turn to the Kuratowski’s measure of
non-compactness to derive the appropriate Ry that is formally defined in (57) for the system (5) and obtain
the following results:

d+vy
B ”

Theorem 2.3. (Stability result) Suppose that m* = g <

(1) (Global attractivity) If Ro < 1, then the DFE (m*,0,0,0) is globally attractive for the system (5).
(2) (Weak repeller) If Ry > 1, then there exists g > 0 such that any positive solution of the system (5)
emanating from ¢ € XT satisfies

lim sup||(S. 7, R, B)(t) — (m*,0,0,0)]l ¢ > co- (10)

t—o0
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Biologically, Theorem 2.3 establishes a threshold-type dynamics result for our cholera model (5); i.e., the
disease would be eliminated if the basic reproduction number is lower than unity, whereas the disease would
persist (in the weak sense) if the basic reproduction number is higher than unity.

Remark 2.2. An important tool that is typically needed to prove such a result is a comparison principle
such as [27, Theorem 7.3.4]. However, [27, Theorem 7.3.4] cannot be applied to the system (5) because [27,
Theorem 7.3.4] requires diffusion in every equation of the system. Upon a closer look at the proof of [27,
Theorem 7.3.4], the conclusion is derived as an application of a maximum principle [27, Theorem 7.2.5].
This raises a number of suspicions whether any modification of such a proof of [27, Theorem 7.3.4] may be
successfully applied to the system (5) because the non-diffusive equations such as (5a)-(5¢) certainly lack
a maximum principle. Nevertheless, it turns out that an abstract result [20, Proposition 3] may be applied
here. The trick is that the proof of [20, Proposition 3] does not rely on any maximum principle; instead,
it merely relies on local existence result [20, Theorem 2]. An analytical lesson to keep in mind from this is
that a maximum principle is sufficient, and most popular if available, but not necessary in order to prove a
comparison principle.

Remark 2.3. Let us point out that an ideal result in addition to the Theorem 2.3 would be the uniform
persistence of the disease and the existence of an endemic equilibrium in case the initial amount of infected
individuals or the bacteria is not equivalently zero and Rg > 1. Specifically, the following result was proven
in [38] for the system (9).

Proposition 2.4. [38, Theorem 2.2] Let a spatial domain be [0,1] and ¢ € X . Then the system (9) subjected
to a Neumann boundary condition for S, I, R and a Robin boundary condition for B admits a unique global
non-negative solution. Moreover, if a basic reproduction number Ro > 1 and ¢;(-) # 0 for either i =2 or 4,
then there exists at least one positive steady state and additionally a constant n > 0 such that

liminf u;(z,¢) >n, Vi=1,2,3,4, (11)
t— o0
uniformly for all x € [0,1].

In the actual statement of [38, Theorem 2.2], the conclusion of liminf; . u;(z,t) > 7 is said to hold
only for i = 1,2,4; nevertheless, it can readily be extended to ¢ = 3 as well. For completeness, we include
this proof in the appendix.

We believe that proving such a uniform persistence and an existence of an endemic equilibrium for the
system (5) in case Ro > 1 will be of significant difficulty. In relevance, we mention that Wang and Zhao
in [35, Theorem 4.3] also considered a partially diffusive model with a general second-order differentiation
operator and obtained a local asymptotic stability of the DFE in case Ry < 1 and a weak repeller result in
case Ro > 1. We emphasize that in contrast, Theorem 2.3 (1) claims not only local asymptotic stability but
global attractivity of the DFE. The reason why a uniform persistence result for the system (5) seems out of
reach is rather easy to explain. We are not able to obtain an analogous result to [38, Proposition 2] which is
a crucial ingredient in the proof of Proposition 2.4. Specifically, [38, Proposition 2] particularly stated that
if there exists to > 0 such that I(-,¢y) # 0, then I(x,t) > 0 for all ¢ > ¢y and all x € Q. A typical way to
prove such a result in the case of a strictly positive diffusion is to bound (9b) from below by

@IDAI+&SI+&S( I(d+~) > DAI — I(d+ )

B+K)

and apply a comparison principle and a maximum principle. However, in the case of zero diffusion as in
(5b), a maximum principle is absent and only an inequality of
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I(xz,t) > I(x,0)eldt)t

can be attained, from which an assertion of I(z,t) > 0 for all ¢t > ¢y and for all 2 € Q certainly does not
follow, given only that I(-,tg) #Z 0 for some ¢y > 0.

We also mention that Vaidya, Wang and Zou considered a partially diffusive avian influenza model [32]
and Yamazaki also considered a partially diffusive Ebola virus disease model [40]; both actually succeeded
in attaining the uniform persistence results. The common trick in [32] and [40] was that in both cases,
the non-diffusive equation was easy to directly solve. For example, in the case of the avian influenza PDEs
model of [32], the only non-diffusive equation was

0V =al —c(x)V,

where V is the avian influenza virus, a > 0 is the rate at which infected birds shed virus particles in their
feces, c(x) is the viral decay rate and I is the population of infected birds. It is obvious that this equation
can be directly solved as

¢
V(t) = V(0)e c@?t 4 a/e_c(x)(t_s)f(s)ds
0

so that positivity of I leads to the positivity of V' (see [32, Lemma 3.7 (ii)] and [40, Proposition 4.7 (3)]).
It is easy to see that same trick will not work for the equations (5a) and (5b) due to their complexity of
multiples of non-linear terms.

3. Preliminaries

Firstly, we recall some relevant definitions. In general, for any operator T' we denote the domain of T" by
D(T).

Definition 3.1. For a closed linear operator © : D(©) — X, A € C is a resolvent value of © if AT — © has a
bounded inverse operator that is defined on all of X. The set of resolvent values of © is called the resolvent
set of © and is denoted by p(©). The set C \ p(©) £ ¢(0) is called the spectrum of ©. A closed operator
© in X is called resolvent-positive if the resolvent set of ©, p(©), contains a ray (n,00) and (A — ©)~ ! is
a positive operator for all A > 7. A linear operator ® : Y +— X, where Y is a linear subspace of X, is called
positive if ®x € X T for all z € Y N X T and ® is not the zero operator. If ¥ is a resolvent-positive operator
and ® : D(V) — X is a positive linear operator, then © = W + @ is called a positive perturbation of .

Definition 3.2. [27, pg. 56, 129] We recall that the spectral radius r(©) of a square matrix © is defined
by 7(©) £ sup{|\| : A € 0(0)} where o(©) is the spectrum of © and its spectral bound is defined by
5(0) £ sup{Re\ : A € 0(©)}. Moreover, we recall that for a Cp-semigroup S 2 {S(t);¢ > 0}, the exponential
growth bound of S is defined by

w(S) =inf{m € R: 3 M > 1 so that ||S(¢)|| < Me™ Vt > 0}.

An n x n matrix M = (M;;) is irreducible if for all I C N = {1,...,n}, I # 0, there exists ¢ € I and
j € J & N\I such that M;; # 0. Finally, F': Q x A — R"™, where A is any non-empty, closed, convex subset
of R™, is cooperative if 2L (2, u) > 0 for all (z,u) € Q x A and all i # j.

B’U,j

Definition 3.3. [43, pg. 2, 3, 11] Let (Y,d) be any metric space and f : Y — Y a continuous map. A
bounded set A is said to attract a bounded set B C Y if lim,, oo sup,cp d(f™(x), A) = 0. A subset ACY
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is an attractor for f if A is non-empty, compact and invariant (f(A4) = A), and A attracts some open
neighborhood of itself. A global attractor for f is an attractor that attracts every point in Y. Moreover, f
is said to be point dissipative if there exists a bounded set By in Y such that By attracts each point in Y.

Definition 3.4. [43, pg. 38, 40, 46] Let E be an ordered Banach space with a positive cone P such that
int(P) # 0. For z,y € B, we writex > yifx —ye Pz >yifz—y € P\ {0}, and x > y if x — y € int(P).
A linear operator L on F is said to be positive if L(P) C P, while strongly positive if L(P\ {0}) C int(P).
For any subset U of E, f : U — U a continuous map, f is said to be monotone if x > y implies f(z) > f(y),
strictly monotone if > y implies f(z) > f(y), and strongly monotone if x > y implies f(x) > f(y).

Let U C P be non-empty, closed, and order convex. Then a continuous map f : U — U is said to be
subhomogeneous if f(Az) > Af(x) for any x € U and A € [0, 1], strictly subhomogeneous if f(Az) > Af(z)
for any x € U with > 0 and A € (0,1), and strongly subhomogeneous if f(Az) > Af(x) for any x € U
with 2 > 0 and A € (0,1).

The following is a statement from [20] in a special case with zero delay for simplicity.

Lemma 3.1. Let X be any R or C Banach space with its norm denoted by |-|. We denote a distance between
any v € X and a set Y C X by d(z;Y) = inf{|lz —y| : y € Y}. Suppose T = {T(t) : t > 0} is a family of

bounded linear operators from X into X. We consider the following conditions:

o (T1)T(0)x =2, TH)T(s)x=T(t+ s)x for all t,s > 0.

o (T2) For all x € X, the mapping t — T(t)x is continuous for all t > 0.

o (T3) There exists M > 1 and w € R such that | T(t)| £ sup <1 |T'(t)x| satisfies |T'(t)]| < Me** for all
t>0.

Moreover, we consider the following conditions.

e (H1) D is a closed subset of [0,00) x X and D(t) £ {x € X : (t,x) € D} # 0 for all t > 0.

o (H3) For each b > 0, there exists K(b) > 0 and a continuous non-decreasing function ny : [0,b) — [0, 00),
satisfying np(0) = 0, and that if 0 < t; < to < b,x1 € D(t1),22 € D(t2), then there exists a continuous
function w : [t1,t2] — X such that w(t1) = z1,w(te) = za,w(t) € D(t) for t € (t1,t2), and for all
s,t € [t1,ta)]

wlt) = ws) < (e = si) + K@) — s 2221 (12)

o (H4) F(t,x) is continuous from D(F') into X where D(F) = [0,00) x X.

We consider now an abstract integral equation
t
u(t) =T (t)uo + /T(t —r)F(r,u(r))dr, 0<t<b, u(0)=1uyecX. (13)
0

(1) [20, Theorem 2] Suppose (T1)-(T3), (H1), (H3), (H4) hold, and for all (t,¢) € D,

t+h

Jim, %d T(h)o + / T(t+h —r)F(t,¢)dr; D(t + h) | =0. (14)
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Moreover, suppose that for every R > 0, there exists an Lr > 0 and a continuous function vg : [0, 00) —
[0,00) such that vg(0) =0 and

|F(t,¢) = F(s,9)| < vr(|t — s[) + Lrlo — | (15)

for all (t,¢),(s,¢) € D such that ||, || < R,0 < s,t < R. Then (13) has a unique solution u on [0, b)
where b € (0,00] such that u(t) € D(t) for allt € [0,b). Moreover, if b < oo, then lim; ;- |u(t)| = +o0o.
[20, Corollary 4] Suppose (T1)-(T3), (H1), (H3), (H4) hold, and that K is a closed convex subset of X
and D(t) = K for all t > 0. Suppose further that (15) holds, T(t) : K — K for allt > 0 and

1
lim —d(¢p+ hF(t,¢); K)=0 V¥V (t,¢) € D. (16)
h—0+ h
Then (13) has a unique solution u on [0,b) where b € (0,00] such that u(t) € K for all t € [0,b).
Moreover, if b < oo, then lim;_-|u(t)| = +o0.

[20, Proposition 3] Suppose that X is a closed cone in X. We define a partial ordering > on X by
x>y only ifv—y € XT. Assume that X with this ordering is a vector lattice. Denote by

rVyEsup{z,y}, Ay 2inf{r,y}, 2. 22V0, 2- 2 —(zA0), |2| 22y +a_.
Assume that X is a Banach lattice and that v— and v are both continuous functions from [0,b) into
X such that v~ (t) < vt (t) for all t € [0,b). In addition to (T1)-(T3), assume that T is positive; i.e.
TH)X*T C Xt forallt > 0. Let E be a subset of [0,00) x X such that E(t) £ {xr € X : (t,7) € E} # 0
for allt > 0. We assume that F' is continuous from E to X, (0,ug) € E,

v™(0) < up < vt (0). (17)

We assume that [v™(t),v"(t)] C E(t) for all t € [0,b]. Moreover, we assume that for all ¢ > 0, there
exists Ue : [0, ¢] — [0,00) which is a continuous and increasing function such that v.(0) = 0 and

[oE(t) — v (s)| < T(|t —s]) Vs,t€[0,b] such that |t —s| < c.

Furthermore, we assume that FT and F~ are continuous functions from & into X and that vt and v™
satisfy for0 <t <t+h<b

t+h

vt (t+h) > T(h)vt(t) + / T(t+h—r)F*(r,oT(r))dr, (18a)
t+h

v (t+h) <T(h)v™ () + / T{t+h—r)F (r,v(r))dr. (18b)

t

We assume that F satisfies (15) with D replaced by E. Finally, suppose that

lim ~d(v*(8) — &+ RF* (£, 0 (8) — F(t, 8)]; X+) = 0 (19)

for allt € [0,b), (t,¢) € E such that v=(t) < ¢ < vt (t),
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i d(6 v (1) + BF(6) — (6,0 () X ) =0 (20)
for allt € [0,b), (t,¢) € E such that v (t) < ¢ < vT(t).
Then (13) has a solution u on [0,b] for some b € (0,b] such that v (t) < u(t) < vt (t) for all t € [0,D).

Lemma 3.2. [27, Theorem 7.3.1, Corollary 7.3.2] Suppose that F : Q x R} — R™,n € N, has the property
that

Fi(z,u) >0 VzeQueR} and u; = 0. (21)

Then for all ¢ € C(Q, R%),

Opui(x,t) = DiAui(z,t) + Fi(x,u(x,t)), t>0,x € Q,
a;(z)ui(x,t) + 0i(n - V)u(x,t) =0, t>0,2 €09,
u1($ﬂ0):1/)z(x)7 era

i € {1,...,n}, has a unique non-continuable mild solution u(x,t,v) € C(9Q, R?) on [0,T) where T =
T(1) < oo such that if T < oo, then lim; ,7-[|u(t)||c@rn) = +00. Moreover,

(1) w is continuously differentiable in time on (0,T),

(2) it is in fact a classical solution,

(3) if T() = +o0 for all € C(QL,R™), then W, (¥) = u(t,v) is a semiflow on C(Q,R%),

(4) if Z C C(Q,RY) is closed and bounded, to > 0 and Use[o,1,)V¢(Z) is bounded, then Wy (Z) has a compact
closure in C(Q,R%).

Remark 3.1. This lemma remains valid even if the Laplacian is replaced by a general second order differ-
entiation operator (1) if it satisfies (2); in fact, all results from [27, Chapter 7] remain valid for a general
second order differentiation operator (1) if (2) is satisfied (see [27, pg. 121]).

We collect some useful properties concerning Kuratowski measure of non-compactness:

Lemma 3.3. [43, pg. 3] Let Y be any metric space and denote the Kuratowski measure of non-compactness
for any bounded set B of Y by

k(B) £ inf{r : B has a finite cover of diameter r}.

Firstly, x(B) = 0 if and only if B is compact. Moreover, a continuous mapping f : Y + Y is k-condensing
(k-contraction of order 0 < k < 1) if f takes bounded sets to bounded sets and k(f(B)) < k(B) (k(f(B)) <
kk(B)) for any non-empty closed bounded set B C'Y such that k(B) > 0. Moreover, [ is asymptotically
smooth if for any non-empty closed bounded set B C'Y for which f(B) C B, there exists a compact set
J C B such that J attracts B. It is well known that a compact map is an k-contraction of order 0, and
a K-contraction of order k is k-condensing. Finally, by [14, Lemma 2.3.5], any k-condensing maps are
asymptotically smooth.
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4. Proof
4.1. Proof of Theorem 2.1

In order to apply [20, Corollary 4] to the proof of Theorem 2.1, let us first set up various notations.
Following [27, pg. 121] we let A} be a differentiation operator

AQuy 2 D(z)Auy — (U(z) - V)uy (22)
with its domain
D(A}) = {p € C*( Q)N CHQ) = Ay € C(Q), (n- V)ua(z,t)|on = 0}. (23)

Then we define A4 to be the closure of A} so that A4 on X, generates an analytic compact semigroup of
bounded linear operator Ty(t) : X4 — Xy, t > 0, such that vg(x,t) = (T4(t)d4)(x) satisfies

8t1}4(t) = A4’U4(t>, U4(0> = (b4 S D(A4> (24)

where

Ny

D(Ay) 2 {e Xy t£%1+ % exists } (25)

(see [27, pg. 121] and [36, Theorem 2.2 in Chapter 1]). By [27, Corollary 7.2.3] we know that Ty is positive;
i.e. Ty(t) X, € X (recall Remark 3.1). On the other hand, we let

(Ti(t)¢1)(x) & e Upy(x), (Ta(t)d2)(x) & e Wy (x), (Ts(t)es)(x) 2 e~ HF)igy(a). (26)

Moreover, for all v = (v1,vs,v3,v4) € X, we define

v v
Fi(v) £ b= Bro1vg — Bovn (U4 jK) +ovz, Fa(v) 2 Broivs + farur <v4 —ﬁK) ) (27a)
F3(v) & s, Fy(v) & &g + guy <1 - 7;;4 ) — vy, (27Dh)
B

We denote by

uy 7 0 0 O
U 0 T, 0 O

u(t) = U£2’> (t) and T(t) £ 0 02 s 0 (t),
Uy 0 0 0 T4

so that T is clearly a linear Cp-semigroup on X+. Now we can rewrite (5) as

t

u(t) =T(t)p + /T(t — 8)F(u(s))ds. (28)

0

We apply Lemma 3.1 (2) now; it essentially suffices to just check the limit (16). We follow the argument in the
proof of [27, Corollary 7.3.2]. If ¢;(x) > 0, then ¢;(z) + hF;(é(z)) > 0 for all h > 0 sufficiently small. On the
other hand, if ¢;(x) = 0, then Fj(¢(x)) > 0 for all i = 1,2,3,4 by (27). Therefore, d(¢ + hF(z,¢); XT) =0
for all h > 0 sufficiently small. This implies (16) and the proof of Theorem 2.1 is complete.
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4.2. Proof of Theorem 2.2

In order to prove Theorem 2.2 we need the following proposition; the original version by Lou and Zhao
in [19, Lemma 1] was only in the case of a full Laplacian as a diffusion while the generalized version in [38,
Proposition 1] was only in the one-dimensional domain [0, 1].

Proposition 4.1. Consider a spatial domain  C R™ for n € N that is bounded with smooth boundary OS2
and the following equation:

atw(xv t) = E(Z)Aw(xa t) - (U(CB) : V)w(x, t) + g(:L') - )\w(a:, t)a (293)
(n-V)w(x,t)|ag =0 for t >0, and w(x,0) = (z) for x € Q, (29b)
where U € C2(Q), D(x) is continuous and D(x) > M > 0 for all z € Q, g(x) > 0 is a continuous function,

and n is an outward unit normal vector. Then for all b € C(Q,R,) there exists a unique positives steady

state w* which is globally attractive in C(Q,R). Moreover, if g(x) = g, then w* = g

Proof. For completeness, we leave this proof in the Appendix. O
Now firstly we realize that denoting by N £ S + I + R, we have due to (5a) - (5¢)
N(t)=NO0)e ¥ +m*[1—e ¥ forallzecQ (30)
from which we immediately conclude that
tlirgloN(t):m*andN(t)§N(0)+m*Vt>07Vmeﬁ. (31)

By the non-negativity of the local solution due to Theorem 2.1, we can deduce that

max{|[S()llc): HOllc@) 1ROlc@?}t < INO)c@ +m™  Vi>0. (32)
This leads to
K
0B < D()AB — (U(x) - V)B +E(INO) o +m") + 22 — 5B (33)

by (5d) and Young’s inequality. By comparison principle [27, Theorem 7.3.4] and an application of Propo-
sition 4.1, we see that for all ¢ € C(Q,R) there exists f = #(¢) > 0 such that

201N (0)]| oy +m*) + EB2]

<

VzeQandallt>% (34)

This implies that solution (S,I, R, B) to (5) exists globally in time due to the blow-up criterion from
Theorem 2.1. Therefore, (5) defines a solution semiflow ®; : X — X by ®,(¢) = u(z,t,¢). From (32)
and (34) it follows that for all € Q and all ¢ > 0,

B(z,t) < max{ sup |B(t)]c ) %[é(IIN(O)Hc@ +m) + ==} £ B. (35)

te(0,t]

We conclude that &, is point dissipative; it can be also shown very similarly that the positive orbits of
bounded subset of X for ®; are bounded. For details, we refer to the proof of [41, Proposition 3.2].
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4.8. Proof of Theorem 2.5

We linearize the system (5) about the DFE (m*,0,0,0) as

B

8tS:*dS*ﬂ1m*I+O'R7B2m*§, (36&)
B

Ol = = (d+ )T+ Bum’T + fom” 2., (36b)

OR=—(d+o0)R+~I, (36¢)

8B =D(2)AB — (U(z) - V)B + €I + (g — 6)B. (36d)

We can formally write the right side of (36) as

—dS — 61777,*[ +0oR — ﬂgm*g
6(S,I,R,B) £ —(d+ NI+ pimr T+ fom” 37
( »B) —(d+o)R+~I (37)
D(x)AB — (U(x)-V)B+&I+(g—06)B
Now we first consider the infection-related variables I, B (see [32, pg. 2833]):

Opuz = —(d +7)uz + fimTuz + 52m*%, (38a)
Opug = D(z)Auy — (U(x) - V)ug + Eus + (g — 0)uy, (38b)
(n-Vugloa =0 ¥Yt>0. (38c¢)

As we will see, it will be convenient to consider the following more generalized system of PDEs:
Opug = —(d +y)ug + BrHi(z)uz + B2 Ha(w)uy, (39a)
Opug = D(z)Auy — (U(x) - V)ug + Eus + gugHs(x) — duy, (39b)
(n-V)uslog =0 V>0, (39¢)

where H;(x),i € {1,2,3}, will have conditions to be given subsequently. We notice that the case Hi(x) =

m*, Ha(x) m?*, Hs(x) = 1 recovers the original system (38). We substitute u;(z,t) = eMy;(2),i € {2,4},
and divide by e* to obtain
Mg = —(d + V)2 + B1H1(2)h2 + P2 Ha(x) Y, (40a)
Mpy = D(2) Ay — (U(z) - V)ha + Ea + (9H5(2) — 0)1ha, (40b)

of which we may write the right side as

G a —(d+¥)2 + BrHi(x)ps + BoHa(x)1)
( ) (2, 94) (D(m)Aw DG Pyt € + (g (a) - 5>¢4) - (41)

Thus, we can compute

0G>5
_— = >
aw4 BQH2($) = 0,

if Ho(x) > 0 so that this system is cooperative but not compact due to the lack of diffusion and consequently

I e, (42)

[27, Theorem 7.6.1] is not applicable. Nevertheless, we can turn to the notion of Kuratowski’s measure of
non-compactness to obtain the following result; it is inspired by the proof of [16, Lemma 3.2].
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Proposition 4.2. Let H;(x) for j € {1,2,3} be continuous. Suppose that max, g Hy(z) £ H < d;{—;’ and
Hy(x) > 0. Then the eigenvalue problem (40) has a principal eigenvalue denoted by A\(Hy, Ha, H3) and a
corresponding eigenfunction ¥* = (Y3,105) > 0.

Proof. We define Y £ C(Q,R?) so that for all ¢ = (¢2,¢s4) € Y, we may repeat the similar proof of
Theorems 2.1, 2.2 to deduce the existence of a solution map II; : ¥ — Y of (39). Now we focus on (39a)
which can be solved as

t
us(t) = e —[(d+~)— B1H1(a¢)]t¢2 + By Hy(x /u4 —[(d4+) =B H1(2)](t=5) 1o (43)
0
We define
L(t)(b é (e_[(d+7)_ﬁlHl(x)]t¢27 0)7 (443)
t
Q)¢ £ (B2 Ha(x) / ua(s)e (N =AHEIE) gg 0, (1)), (44b)
0

for all ¢ = (P2, ¢4) € Y. Then II;(¢p) = L(t)¢p + Q(t)¢. Thus, for all bounded set E C Y, by [9, Proposition
7.2 (b)], we have

R(ILE) < K(L(HE) + £(Q(H) E). (45)

Since Q(t) : Y — Y is compact for all ¢ > 0, [9, Proposition 7.2 (a)] implies that x(Q(t)E) = 0 for all ¢ > 0.
On the other hand,

sup IL@®elly < e ld-a e g 2l x, < - ldtn) A H ]t (46)
peviozo lolly sevezo [0lly —
and therefore
L) ape < e~l@m=P1TLE (47)
Thus,
K(ILE) < e~ l@tN=Aiilt () (48)

by (45) and (47). Because H; < d;—l'y by hypothesis, we have e~ (@) =ALH1lt < 1 g5 that

K(ILE) < e N=Piilt (B < (E) (49)

for all bounded sets E in Y such that x(E) > 0. This implies by Lemma 3.3 that II; is k-contraction of
order e~l(d+—AiH1]t ¢ [0,1) and hence k-condensing for all ¢ > 0. We already showed that the eigenvalue
problem is cooperative in (42). Thus, by the generalized Krein-Rutman theorem (e.g. [23, Theorem 2.2], [17,
Lemma 2.2], [42] also see [9, Theorems 19.2 and 19.3]), the eigenvalue problem has a principal eigenvalue
denoted by A(Hi, Ha, Hs) with eigenvector ¢* = (¢3,1}) > 0 (see [32, Lemma 3.4], [16, Lemma 3.3], [40,
Lemma 3.3]). This completes the proof of Proposition 4.2. O
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We saw in (38) that the equations of the infection-related variables of the linearized system are

* « W
Oug = —(d 4 v)ug + frm*ug + Bom E‘l,

Oyuy = D(x)Auy — (U(x) - V)ug + Eus + (g — 0)ua,
(TL . V)U4|aQ =0 Vt>D0.

We split the right side of (38) as

< —(d+y)us + firm*uz + fam* 3 )
(2)Aug — (U(z) - V)ug + Euaz + (9 — 6)ua

(7 pea- v -s) = (87 #F)) () )

We assume that the population is near the DFE (m*, 0,0, 0). Repeating the proof of Theorems 2.1, 2.2, we
can prove the existence of the solution semiflow O(¢) to

Opug = —(d + v)ug and dyuy = D(x)Auy — (U(z) - V)ug — dugy. (51)
We can solve this as
ug(z,t,¢) = e~ PEAHU@ V=0, () = =Ty (1) pa () (52)

by definition of Ty in (24). We also defined (Ta(t)¢o)(z) = e~ Mtpy(z) in (26) so that wug(z,t,¢) =
Tg(t)¢2($) Thus, for ¢ = ((;52,(;54)7

O(t)¢ = (uz,ua)(t) = (Ta(t)go, e~ *"Tu(t)da) (53)

by (51) and (52). Because Ty(t) is positive by [27, Corollary 7.2.3], it follows that Ty(t)¢s € C(Q,R) for
all ¢4 € C(Q,R ) so that e 9Ty (t)ps € C(Q,R ). Similarly, e~ (4tMtp, € C(Q,R ) for all ¢ € C(Q,R ).
Therefore, O(t) is a positive Cy-semigroup on Y = C(Q,R?) and O(t)¢ represents the spatial distribution
of us,uy at time ¢t > 0. We let C' be a positive linear operator on Y defined by

coa 2 (P77 P) (22) (@) = (€Calo) o0 + 900" o) 54
for al ¢ = (¢o, ¢ps4) € Y for all z € Q; i.e.
Ca(9) = ¢4 (55)

Thus, at time ¢ > 0 and location z, there will be C3(O(t)¢)(x) individuals added per unit time into
ug compartment. Hence, the spatial distribution of total new infected individuals caused by the initial
distribution ¢ = (¢2, ¢4) may be computed as

/ Co(O(1)8)dt = Bum* / L (t)bodt + o / e~ (1) dadt (56)
0 0 0

due to (53). We now define the next generation operator L and the basic reproduction number R as
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oo

L(¢) 2 C / O(t)¢pdt and Ry £ r(L) (57)
0

where (L) is the spectral radius of L (see Definition 3.2).

Proposition 4.3. Suppose m* < dg—l'y, Then Ro — 1 and the principal eigenvalue A(m*, ’"7’*7 1) corresponding

to (40) with Hy = m*, Hy = %*,H?) = 1 have same signs.
Proof. We let ¢ : D(¢) — Y, where Y = C(2,R?), be the generator of ©(t) from (53) and also denote

Y+ £ C(Q,R%). We already verified after (53) that © is a positive semigroup. Thus, by [29, Theorem 3.12]
we see that ( is resolvent-positive (see Definition 3.1) and

M -0 lp = /e"\t@(t)gbdt YA>s((),Voey, (58)
0

where s(¢) is the spectral bound of ¢ (see Definition 3.2). Now by (53) and (26),
O(t)¢ = (e~ "7 a, ™" Ty(t)64);
thus, we may find ¢y > 0 sufficiently small so that
lim e'O(t)p =0 VoY, (59)

By [29, Theorem 3.13] this implies s(¢) < 0. Hence, we may take A = 0 > s(¢) in (58) to deduce
~0¢ o =C( [ lt)odn) = Li@) Yoe. (60)
0

Thus, L = —C¢™'. We now let A £ ¢ + C. Then firstly we realize that C defined by (54) is clearly
a positive linear operator, while we already showed that { is a resolvent-positive operator. Thus, A is a
positive perturbation of ¢ by Definition 3.1. Furthermore, ¢ being the generator of ©(t) where

O(t)p = (Ta(t)da, e "' Tu(t)pa) = (e Ty, e 21Ty (t)ba)

by (53) and (26) and

- (%))

by (54), we see that A generates a positive Cp-semigroup. By [29, Theorem 3.12] again, this implies that A
is resolvent-positive. The facts that ¢ is a resolvent-positive operator such that s(¢) < 0, and A = ¢+ C
is a positive perturbation of ¢ while being resolvent-positive itself, impy that s(A) has the same sign as
r(—C¢™1) — 1 due to [29, Theorem 3.5]. As L = —C¢~! by (60) and Ro = r(L) by (57), we see that

Ro—1=r(L)—1=r(-C¢ 1) —1

has a same sign as s(A) = s(¢ + C). Because we split the right side of (38) as
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(<_(d0+7) D(m)A—((?(x)-V)—é)+<ﬁlgn* 5277;*%» (Zi)

in (50), set O(t) as the solution semiflow of (51), ¢ as the generator of ©(t), and C in (54), this implies that
Ro — 1 has a same sign as A\(m*, %*7 1. O

We remark that an immediate corollary of Proposition 4.3 is the following local asymptotic stability of
the DFE:

Corollary 4.4. Suppose m* < ‘1;—17. If Ro < 1, then the DFE (m*,0,0,0), is locally asymptotically stable.

Proof. This can be proven similarly to that of [37, Theorem 2.3 (1)]; it serves as an analogous statement to
[35, Theorem 4.3]. We skip its proof while only mentioning that it follows from [10, Theorem 2.1], because
we will prove a stronger result in Theorem 2.3 (1), specifically the global stability of the DFE. O

Proof of Theorem 2.3 (1). We are now ready to prove the first part of Theorem 2.3. By hypothesis Ry < 1
so that Rg — 1 < 0. Then A(m*, 2~ 1) the principal eigenvalue of the eigenvalue problem (40) with H; =

'y K0
— m” —
m*7H2 = 7,H3: 1,

m*

Mgy = — (d +7)h2 + Bim™ P + B2 I g,

My =D(2)Avpg — (U(x) - V)tha + &2 + (g — 6)1)a,

has the corresponding eigenvector ¥* = (¢35, ¢} ) > 0 due to Proposition 4.2, and it satisfies A\(m*, m?*, 1)<0
due to Proposition 4.3. Hence, we may fix ey > 0 sufficiently small so that A(m* + €9, %(m* + €),1) < 0.
By hypothesis we know that m* < d;'—l'y so that we may choose ¢y > 0 smaller if necessary to satisfy
m* + e < dg—;’. From (31) we know that lim; ,, N(t) = m*. By non-negativity of S, I, R for all ¢ > 0, for
this fixed ¢y > 0 and ¢ € X, we know that there exists tg = to(¢) such that for all £ >ty and all z € Q,

S(x,t) <m* + e, R(x,t) <m" + . (61)

Therefore, for all t > ¢y and all z € Q,

O < Sa(m* + )T + Balm* + o))~ I(d+7), (62)
03 < D(0)AB — (U(x) - V)B+ €I +(9 - 0)B, (63)

due to (5b) and (5d). We consider a system
_ * 62 *
Opva = B1(m* + €g)va + ?m(m +eg) —va(d + ), (64a)
Opvg = D(z)Avy — (U(x) - V)vg + Eva + (g — 0)vg. (64b)

We substitute (eMs (1), eMipy(z)) for (ve,vy)(,t) in (64) and divide by e to deduce its eigenvalue problem
of

AMpo = Br(m™ + €)1 + %W(m* +€0) —Pa(d+ ), (65a)

Mg = D(x)Ahy — (U(x) - V)tha + &z + (9 — 6)¢a. (65b)
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By Proposition 4.2 with Hy = m* + eg, Hy = (m* + Go)K,Hg = 1 because m* + ¢y < ﬁ 1Y this eigenvalue

problem has a real eigenvalue A(m* + g, (m* + €)=, 1) with a corresponding eigenvector ) = (g, 14) >0
and therefore a solution of

MM o, (m” o) e D(E=to) i () W ¢ > ¢, (66)
We can find n > 1 sufficiently large so that
(I, B)(x,to) < nib(z) Yzel (67)
because zﬁ > 0. Now the next step is the comparison principle with which we claim
(1, B)(x,tg) < pe(m™Feotm™Feo)ie DE10) (). (68)

The typical strategy here is to rely on [27, Theorem 7.3.4] or its variant; however, although [27, Theorem
7.3.4] may be applied to a uniformly elliptic second-order differentiation operator (see Remark 3.1), it is
only for a system that is fully diffusive (see [27, pg. 120]). A typical proof of a comparison principle relies
on a maximum principle; yet, there is no maximum principle for a non-diffusive equation in general and
hence in particular (64a). Therefore, it is actually not trivial at all how to apply a comparison principle to
a coupled system of a partially diffusive system.

In fact, we can appeal to [20, Proposition 3] here. The trick in the proof of [20, Proposition 3] is to not
rely on a maximum principle but in fact the local existence theorem in X+ [20, Theorem 2] and generalize
X+ to [v™(t),v"(¢)] where the v~ and v are the lower and upper solutions, respectively.

Let us continue to denote ¥ = C(Q,R?) and Y+ = C(Q,R%) and verify the main hypothesis [20,
Equation (2.9)] of [20, Proposition 3]. In order to do so, it suffice to show for all ¢ € [0,b), € Y such that
v (t) < ¢ < vt (t) that

1
Jim,inf = va(®) = 02 + B{ES (02,0 (1) = Fa(6)] — vell ey

+ [[va(t) = ¢4+ BF ((v2,v4) (1) — Fa(0)] — vall e @) = 0. (69)

In fact, (69) can be proven very similarly to the proof of Theorem 2.1. Therefore, by [20, Proposmon 3]
we deduce (68), where the right side vanishes to zero as t — oo because A(m* + g, (m* + €)=, 1) < 0.
Consequently, we can fix {1 > to sufficiently large so that [[1(¢)||c(q) < 1 and compute from (5c) that

’ ye—(d+o)ts
R(t) < ef(dJra)t[R(tl) Jr,y/I(S)e(dJra)sds] < 6*(d+a)t(m* + o)+ T 0 (70)
g

t1
due to (61) as t; — 0o so that ¢ — oco. Finally, because we know lim;_, o, N(t) = m* for all z € Q from (31),

we deduce that lim; ., S(t) = m* for all z € Q since we already showed that (I, R)(t) — (0,0) as t — oo
for all 2 € Q. This completes the proof of Theorem 2.3 (1). O

Proof of Theorem 2.3 (2). We are now ready to prove the second part of Theorem 2.3. By hypothesis,
m* < Y and Rg > 1 so that Ry — 1 > 0. Thus, A(m* m- 1) the principal eigenvalue of the eigenvalue

B1 'y K 0
problem (40) with Hy = m*, Hy = ~ H3=1,

_K7

My = —(d + )2 + Sim” ¢47

Mpy = D(2) Ay — (U(z) - V)hy + 51/)2 + (g — 6)ta,
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which has the corresponding eigenvector ¥* = (15,95) > 0 due to Proposition 4.2 also satisfies

A(m*, %*7 1) > 0 due to Proposition 4.3. To reach a contradiction, suppose that there exists g € X+

such that for all 6y > 0, and hence taking it smaller if necessary, for all dg € (0, m*), it holds that
H?ISHPH‘I%((/JO) - (m*v Oa Ovo)HC(ﬁ) < 607 (71)
— 00

where we recall that ®; is the semiflow from Theorem 2.2. Thus, there exists ¢; > 0 sufficiently large such
that

S(x,t) —m* < dy, m* — g < S(z,1), (72a)
I(z,t) < 09, R(z,t) < o, Bz, t) < do, (72b)

for all t > 1 and all z € Q. We see from (5b) and (5d) that

O 2 Bu(m™ = Bo) + fa(m” — do) (5——2)B ~ 1(d +7), (73)
do
B > D(z)AB — (U(z) - V)B +¢I + gB (1 - K_B> — 4B (74)

for all z € Q and all t > ;. Now m* < dJ” by hypothesm so that m* — gy < d+7 ; hence, by Proposition 4.2

with Hy = m* — 8, Hy = (%=30), Hs = 1 — K_B’ an eigenvalue problem of

do+K
Bt = Bu(m” — b0)va + Bo( B0, — ua(d +7) (750)
hvg = [ (m* 0)v2 2 S0+ K — U2 Y) a
)
0wy = D(x)Avy — (U(x) - V)vg + v + guy <1 — K—O) — Oy, (75b)
B

specifically
M = By (m* — So)ba + B ST K ?/14 — ¥a(d+17), (76a)
Nbi = D(@)Ads = (U(2) - V)oa + 2 + (1 = 72) =, (76D)
has a principal eigenvalue A(m* — dy, 7(’; J:f{" ,1— —) with a corresponding eigenvector ¢ = (1&2, 1/34) > 0 for

all 2 € Q. We emphasize that we also Just used the fact that Hy = =% > 0 where the strict positivity is

do+K
due to our choice of dg € (0, m*). As A(m 1) > 0, for d¢ > 0 sufficiently small we obtain

7K’

m* — dg do

Alm™ = do, 5 o+ KK,

=) >0. (77)

By the hypothesis that the solution is positive, for n > 0 sufficiently small we can obtain

~

(1(55775171/)0),B($7t17?/)0)) > 777/)($) Ve ﬁ (78)

Now we apply [20, Proposition 3] again. We recall that Y = C(Q,R?) and Y+ = C(9, R?%), and verify
the main hypothesis [20, Equation (2.10)] of [20, Proposition 3]; in order to do so, it suffices to show for
(1)2, U4)(t) < d) that
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1. _
b nf l9s —va(t) + HEAS) — Fy (02, 00)(0)] = el
+ [|fa — va(®) + h[Fu(9) — Fy (v2,v4)(1))] — vall oy = 0- (79)

Similarly to (69), (78) can be proven very similarly to our proof of Theorem 2.1. Therefore, we deduce that

m* =3¢

* ] A
(I, B)(x, t,4bg) > ne ™ ~20 G 1= 500 ). (80)

where

" m*—s s
lim eh(m —507(WQ)11—#)§)U—751)
t—o00

=0

due to (77). As ¢ > 0, this implies 1L(t, ¥o)llc@y: 1 B(t, ¥o)llo@) grows unbounded. This contradicts our
assumption (71) and (72) that

lim supl|® (1) — (m", 0,0, 0|y = lim supl|S(t, o) = m" o)

t—o0

+ (¢, %o)lom) + I1B(E Yol o + 1B Yo)llo@) < do-

This concludes the proof of Theorem 2.3 (2). O
5. Numerical results

In order to verify our analytical results, we have conducted numerical simulation to our PDE model (5).
The system (5) can be computed by a standard finite difference method, such as the leapfrog (i.e., centered
difference in time and space), or simply the forward difference in time and centered difference in space.
When such explicit finite difference schemes are employed, we have to be careful for the choice of the time
step size, which needs to be relatively small, to ensure the numerical stability.

Meanwhile, we have also numerically calculated the basic reproduction number associated with our
PDE model. The equation (57) characterizes the basic reproduction number Rg. The formula, however, is
expressed in terms of an operator and not directly applicable to the numerical evaluation of Ry. To overcome
this difficulty, we transfer the evaluation of the spectral radius of the operator L to the calculation of the
spectral radius of a corresponding matrix, in the approximate means. That is, we numerically reduce the
operator eigenvalue problem to a matrix eigenvalue problem that can be easily computed. A numerical
algorithm for the computation of Ry has been developed and the detail is provided in the Appendix,
Section A.3.

Using this algorithm, we are able to evaluate Ry and demonstrate the threshold results predicted by our
mathematical analysis. For illustration, we have chosen a one-dimensional spatial domain, [0, 1]. Figs. 1
and 2 show two typical scenarios, Ry < 1 and Ry > 1 respectively, of the simulation results for the model
(5). We clearly observe that when Rg = 0.96 (Fig. 1), the number of infected hosts and the concentration
of the pathogenic bacteria, though started with a non-uniform distribution over the space, both approach
0 quickly and uniformly, indicating the elimination of the disease. In contrast, when Ry = 1.29 (Fig. 2),
the infected population and bacterial concentration both remain positive throughout the time and space,
indicating the persistence of the disease. Furthermore, by running the numerical simulation sufficiently long,
we find that the solution actually converges to an endemic state, as illustrated in Fig. 3 for I and B at
x = 0.5. In Theorem 2.3, we proved the weak persistence result when Ry > 1. The numerical findings in
Figs. 2 and 3 as well as other similar results (based on different diffusion and convection rates and different
initial conditions), not shown here, provide evidences for a stronger persistence result that there exists an
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250

(a)

100
t (days) 0

Fig. 1. A typical scenario of the spatiotemporal dynamics of the model (5) when Rg < 1. Here D(z) = 10+ 10sin(wz), U(z) = 545z,
and Ro = 0.96. (a) The number of infected hosts quickly approaches 0; (b) The concentration of pathogenic bacteria quickly
approaches 0. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)
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Fig. 2. A typical scenario of the spatiotemporal dynamics of the model (5) when Rg > 1. Here D(z) = 10+ 10sin(wz), U(z) = 545z,
and Ro = 1.29. (a) The number of infected hosts remains positive; (b) The concentration of pathogenic bacteria remains positive.
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Fig. 3. Long-term behavior of the solution to the model (5) when Ry > 1, under the same setting as in Fig. 2. (a) The infected
number at © = 0.5 converges to a positive endemic state over time; (b) The bacterial concentration at x = 0.5 converges to a

positive endemic state over time.
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endemic equilibrium that is asymptotically stable when Ry > 1. This is very interesting because, as we
elaborated in Remark 2.3, proving the uniform persistence and the existence of an endemic equilibrium in
case Ry > 1 rigorously seems to be very difficult for partially diffusive systems of PDEs such as (5) due to
the absence of a maximum principle.

6. Conclusion

We have presented a new cholera modeling framework based on a partially diffusive PDE system that
describes the temporal variation of the human hosts and the dispersal and movement of the pathogenic
bacteria along a river with spatial heterogeneity. We have conducted a careful mathematical analysis on the
well-posedness and stability of our model. Additionally we have conducted some numerical simulation to
verify the analytical results.

It is a nontrivial task to quantify the risk of cholera infection in a spatially heterogeneous environment. In
this study, we have focused our attention on the characterization of the environmental bacterial dynamics,
especially their spatial movement in a heterogeneous fluvial system, which plays an important role in shaping
a cholera epidemic. The spatial variation of the human population dynamics can still be reflected (at least
partially) in our model, through the interaction between human hosts and environmental bacteria. Our
investigation has put a special emphasis on the interplay of the biological, environmental and physical
factors that all contribute to the complexity of cholera transmission and spread. Our model differs from
previously published cholera PDE models (such as those in [3,26,33,34]) in the following aspects: (1) the
system is partially diffusive in the sense that the diffusion term only appears in the bacterial equation; (2)
the convection and diffusion rates for the bacteria are spatially dependent; (3) the spatial domain can have
an arbitrary dimension (instead of being limited to 1D).

Due to the partial diffusion (so that the uniform elliptic condition and the maximum principle are
not satisfied) and the complex non-linear terms involved in our model, mathematical treatment of our PDE
system is challenging. We have utilized several (standard and non-standard) mathematical tools, particularly
the positive operator theory and Kuratowski’s measure of non-compactness, to analyze this system. We have
established the local and global well-posedness for our system, and rigorously derived the basic reproduction
number R for this model. We have also established the global asymptotic stability of the DFE when Ry < 1
and the persistence of the solution flow in the weak sense when Ry > 1. In addition, our numerical results
are consistent with the analytical predictions, and provide evidences for the uniform persistence of the
solution and the asymptotic stability of the endemic state when Rg > 1.

In our future research, we may consider more general representation of the bacterial convection and
diffusion rates, which could be depending on both the space and time. We may also explore ways to
realistically model human movement and explicitly incorporate the spatial heterogeneity into the human
population. One possibility is to consider the dynamics of the human hosts and the pathogen on two different
(but adjacent) spatial domains, such as a 1D domain (e.g., a river) for the bacteria, and a 2D domain (e.g.,
a field) for the human hosts, and investigate their interactions. Such a modeling approach has been used
to study invasions of biological species [4,5], and we hope to pursue the effort along this line for cholera
modeling.
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Appendix A
A.1. Proof of Proposition 4.1

By hypothesis, @ C R” is bounded so that € is closed and bounded. Thus, Q is compact by Heine-Borel

theorem, implying that g(£2) is also compact by the continuity of g; thus,

0<g=ming(z) < g(z) <maxg(z) =g Vre
- €N €N

We define F(z,w) £ g(z) — Mw(z,t). For (29) we can apply Lemma 3.2 because D(z)A — (U(z) - V) is
uniformly elliptic due to the hypothesis that D(x) > M > 0 for all x € Q (see Remark 3.1). Thus, via [27,
Corollary 7.3.2] we can deduce the existence of a unique solution w(x,t,v) € C(Q,R) for all b € C(Q, Ry)
on some interval [0,0) where o = o()) and limy .- [|w(t, )|/ = oo if o < co. We fix ¢ € C(Q,R,),
take a function v = N such that

N > max{max (), g}.
e A
Then it follows from [27, Theorem 7.3.4] (Remark 3.1) that w(z,t) < v(x,t) = N for all x € Q. By the blow
up criterion from local well-posedness result, we deduce that w(z,t) exists globally in time. Thus, there
exists P; the solution semiflow such that P;(v)) = w(t,¢) for all b € C(Q,R,). For all z € Q and for all
t>0,

g —w(z,t) < F(z,w) <g— Aw(z,t),
and F is trivially cooperative; thus, by [27, Theorem 7.3.4] again we see that the omega limit set w(1)) for
Y € C(Q,R,) satisfies
w(tp) c{¢:

<¢<

}- (81)

>
> Q]

By comparison theorem [27, Corollary 7.3.5, Theorem 7.4.1] again, it follows that P;(¢1) > Pi(12) for all
t > 0 if 41 > 1)o; this implies that P; is strongly monotone (e.g. [43, pg. 38, 40, 46]). Moreover, F is strictly
subhomogeneous in the sense that F(z, fw) > SF(z,w) for all 5 € (0,1) as g(x) > 0. Next, following the
proof of [13, Theorem 2.2], it follows that P; is strictly subhomogeneous (see the proof of [38, Proposition
1] for details). Because we already showed that P; is strongly monotone and P; also admits a non-empty
compact invariant set in intC(Q, R, ), by [43, Theorem 2.3.2], we deduce that P; has a fixed point w*(z) > 0
such that w(y) = w* € C(Q,R,) for all ¢ € C(Q,R,). Finally, if g(x) = g for all z € Q, it follows from
(81) that w* = {.

A.2. Proof of Proposition 2./

Firstly, say ¢o > 0. Then by [38, Proposition 2], we know I(z,t) > 0 for all ¢ > 0 and all = € [0, 1]. Now
if for any to > 0,us(-,to,¢) = 0, then from (9¢) we deduce O R|i=t, = VI|t=t, > 0 and R(-,to) = 0. This
contradicts that R > 0 for all ¢ > 0 from [38, Theorem 2.1]. Thus, for all ¢y > 0, u3(-,t9, ) £ 0. But then
by [37, Proposition 2] we deduce that R(z,t) > 0 for all ¢ > 0 and all x € [0, 1].

Secondly, say ¢4 > 0. Then by [38, Proposition 2] we deduce that B(x,t) > 0 for all ¢ > 0 and all
x € [0,1]. It is explained in the proof of [38, Proposition 5] that this implies I(x,t) > 0 for all ¢ > 0 and all
x € [0,1]. By the same argument in the case ¢ > 0 that we already explained, this leads to R(t,x) > 0 for
allt >0,z € [0,1].
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This implies that upon showing that

p(¥) = min{ min 9(z), min Y4(z)}

z€[0,1] z€[0,1]

is a generalized distance function (see [28, pg. 6172]) in the process of proving [38, Theorem 2|, an identical
proof would have gone through with

p(¢) = min{ min vo(z), min Ys(z), min va(e)};
this concludes the proof of Proposition 2.4.
A.83. Numerical calculation of R
Denote —(71(¢) = {Zigzig] where the operator ¢ is defined in equation (58). Then
—(d+7) 0 —ha(d2) | _ [d2] .
0 D@A-U) V—06| |—ha(es)| = || mPlies
P2
h = 82
2(62) = 77 (52)
and
(D(@)A = U(z) - V = 0)(ha(a)) = —¢a. (83)

For simplicity, let us consider a 1D domain: z € [0, 1], and denote y(x) = (has)(z). Then we have

Py(z) dy(z)
da? (z) dx

D(x) — 0y(x) = —a(x). (84)

Fix a sufficiently large integer N > 0 and let z, = n/N, D, = D(z,), U, = U(x,), and y,, = y(z,) for
n=20,1,..., N. Using a standard second-order centered difference method to approximate equation (84), we

obtain
Yn+1 — 2yn + Yn—1 Yn+1 — Yn—1
Dn —Un— 57— 0 n ~ — n)s
or, equivalently,
U, 9 U,
—-N DnN - 7 Yn+1 + (2DnN + 5)yn - N DnN + 7 Yn—1 ~ ¢4(Jjn)a (86)

forn =0,1,..., N. Note that the Neumann boundary conditions at x = 0, 1 yield y_1 ~ y; and ynt+1 =~ yn-1
up to second order accuracy. Rewrite these IV + 1 approximate equations in matrix form

AY =~ ‘134, (87)
where
dy  So Yo P4(0)
v di v Y1 ¢4(I1)
A= , Y= , and 4= ,
UN—1 dN-1 UN—1 YN—1 da(zn_1)

SN dn YN ¢4(xN)
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with d,, = 2D,N?+6, v, = =N (D,N + %), v, = =N (D, N — 42), and s,, = 0,47, forall0 <n < N,
Note that v, < 0 and T,, < 0 for sufficiently large N, since D(x) > M > 0. By the Gershgorin circle theorem,
any eigenvalue A4 of matrix A satisfies [Aa — d,| < |vp| + || = 2D,N? for some p € {0,1,..., N}, which
implies Re(Aa) > &. Therefore, A is invertible, and we obtain Y ~ A=1®,.

ey _ [Bim* B [ha(ee)] _ -~ + B2 %y ()
We know that L(¢) = —C(1(¢) = { 15 2gK} [h4(¢4)] = d+;+7¢2+g;( e For any

eigenvalue \ of the operator L, we have

L(¢) = Ao. (88)
Consequently, we obtain
%f:f: $2(2) + B2 B y(x) _ |:¢2<LI3):| (89)
a5 02(x) + gy(z) ZIC
which yields
@f; P2+ BB Y | _ {@2] (90)
5P+ gy Qa4
where @5 = [pa(20), d2(21), ..., d2(xn)]T. Tt then follows from equation (87) that
B AT [ )
d+’Y A2 =22 1
IN+1 gA™! 04 04 1)

Thus, the operator eigenvalue problem (88) can be approximated by the matrix eigenvalue problem (91).
Let us denote

Iy B
Ly = d-‘r’Y + K

(92)
d+7 Inia gA™!

Then the spectral radius of the matrix Ly; i.e., p(Ly), approximates the spectral radios of the operator L;
i.e., p(L). Hence, for sufficiently large N, we have

Ro = p(L) = p(Ln). (93)
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