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1. Introduction

Complete intersections are a fundamental object of study in commutative algebra and algebraic geometry.
In projective space Py, a complete intersection Y of codimension ¢ is defined by an ideal of codimension
t which can be generated by exactly ¢ elements of the ring k[zo,...,z,]. In this case, there are hypersur-
faces Hy,..., H; such that Y is the scheme-theoretic intersection of the H;’s. Complete intersections have
coordinate rings that are Cohen—Macaulay. The defining ideal of a complete intersection in P" is generated
by a regular sequence and so the minimal free resolution of the coordinate ring is a Koszul complex [15,
Theorem 14.7].

Unfortunately, in a product of projective spaces, the nice properties of complete intersections in P" are
not completely captured homologically. A zero dimensional scheme X C P! x P! is a scheme-theoretic
complete intersection or virtual complete intersection if there are two polynomials f and g such that the
ideal sheaf generated by f and g equals the ideal sheaf of X. On the other hand, X is an ideal-theoretic
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complete intersection (in this paper we will just say complete intersection) if Ix, the set of all functions in
the Cox ring vanishing on X, is generated by two elements. In P”, these two notions are the same, but in
P! x P!, they are not (see Example 1.1 below). This is where the virtual resolutions of [2] help. By allowing
some irrelevant homology in a free complex, we expand the notion of a complete intersection via a virtual
resolution, while still reaping the benefits of many properties of complete intersections. The goal of this
paper is to state conditions on whether a set of points in P! x P! do or do not form a virtual complete
intersection (see Definition 1.3).

Example 1.1. Consider the zero-dimensional reduced scheme X C P! x P! consisting of the two points
([1:0],[0:1]) and ([0 : 1],[1 : 0]). The set of all functions vanishing on X is

Ix = (xoz1,ZoY0, T1Y1, Yoy1)-

However, the two polynomials xgyo and x1y; generate the same ideal sheaf as Iy does. Therefore X is a
scheme-theoretic complete intersection or virtual complete intersection, but not an ideal-theoretic complete
intersection.

Points in P! x P! have been studied in the past, but often from a point of view of studying the saturated
defining ideals of these points in the Cox ring of P' x P!. Some results include several classifications of
when both reduced and fat points in P! x P! are arithmetically Cohen—Macaulay [5-8,12,10,13,11]. Further
characterizations of points in more general products of projective spaces can be found in [8,12,4,13,11,17].
In [5], Giuffrida, Maggioni, and Ragusa prove that points in P! x P! are defined by the ideal generated by
two forms of bidegree (a,0) and (0,b), and further, if f and g are two forms of any bidegree in P! x P!, then
the ideal (f, g) is not saturated, except in this case. In this paper, we study when points have a complete
intersection ideal that saturates to the defining ideal of the set of points, which is equivalent to being a
virtual complete intersection. It turns out that all sets of points that are virtual complete intersections are not
arithmetically Cohen—Macaulay, with the exception of points that are complete intersections (Corollary 3.7).
While the results in this paper concentrate on points in P! x P!, perhaps recent results of [4], which uses
techniques of liaison, could help find VCIs in any product of projective spaces.

1.1. Setup

Let k be an algebraically closed field. In this paper we are concerned mostly with reduced zero-dimensional
schemes in the product of projective spaces P! x P! over k. The Cox ring of P! x P! is the Z2-graded ring
S :=k[zo, z1, Yo, y1] where deg(x;) = (1,0) and deg(y;) = (0,1). The irrelevant ideal of S is B := (zg, 1) N
(yo,y1) = (ToYo, Toy1, T1Yo, T1y1). In this setting, closed subschemes are in one-to-one correspondence with
B-saturated bihomogeneous ideals [3, Proposition 6.A.7]. The B-saturation of an ideal I is

I:B* = U]:Bk:{s€S|sBkCIforsomek}.
k>0

If I C S is an ideal, then V(I) denotes the subscheme of X consisting of all B-saturated bihomogeneous
prime ideals that contain I. On the other hand, if X is a subvariety of P! x P!, then Iy denotes the
B-saturated bihomogenous ideal of polynomials in S that vanish at every point in X.

We will call reduced subschemes of P! x P! “sets of points in P! x P'” The maximum number of points
on a single horizontal ruling in a set of points X is denoted as m, and the maximum number of points on
a single vertical ruling is denoted as n.

Definition 1.2 (/2, Definition 1.1]). A virtual resolution for a module S/I in the biprojective space P! x P!
is a Z%-graded complex of free S-modules
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such that for every homology modules H;(F,), it is true that ann(H;(F)) 2 B’ for some ¢ > 0, and the

associated sheaves 57} and coker(pq) are isomorphic.

Definition 1.3. Let X be a set of points in P! x P! with defining ideal Ix. We say X is a virtual complete
intersection (VCI) if S/Ix has a virtual resolution that is a Koszul complex K(f, g) of bihomogeneous forms
f and g, where bihomogenous means every term in the polynomial has the same z-degree and y-degree.

In other words, a set of points X C P! x P! is called a virtual complete intersection or scheme-theoretic
complete intersection generated by 2 forms f, g € S with deg(f) = (a,b) and deg(g) = (¢, d) if there exists
a sheaf surjection

0+— Zx «— Opr X]pl(—a, —b) D O]P’lx]pl(—c7 —d).

Given two curves of P! x P! having no common component, C of bidegree (a, b) defined by equation f = 0,
and D of bidegree (¢, d) of equation g = 0, let X = C' N D be their scheme-theoretic complete intersection.
The ideal (f, g) C S is not saturated (except in the cases b = ¢ = 0 or a = d = 0), but we have the exact
(Koszul) sequence of sheaves

04— Tx +— O(—a, —b) & O(—c, —d) +— O(—a —¢,—b — d) +— 0.

Next, we review the notion of configurations as introduced in [9, §3.2] and show that the property of
being a VCI is not a combinatorial invariant. Points in P! x P! may be placed on a grid, according to their
coordinates in each copy of P!, in the following way. There are two projections m;: P! x P! — P!:

mi(a,b) =a and ma(a,b) =0.

Making a grid of horizontal and vertical lines, the vertical lines correspond to the first copy of P! and the
horizontal lines correspond to the second copy of P!. Two points p,q € P! x P! lie on the same vertical
line if 7 (p) = m1(q). They lie on the same horizontal line if m3(p) = m2(¢q). By permuting the horizontal
and vertical lines, we arrange the points so that the number of points on each horizontal and vertical line
decreases from top to bottom and from left to right, forming a configuration.

For example, letting a; denote a point in the first copy of P! and b; denote a point in the second copy of
P!, the set of points

{(alv bl)a (a2> bl)v (a3; bl)a ((1,1, b2)7 (a47 b2)a (a2a b3)7 ((L5, b4)}

in P! x P!, can be represented as in Fig. 1 (here the points are labeled, but in what follows they will not
be labeled). Note that the configuration of a set of points is not unique: in Fig. 1, switching the horizontal
rulings with coordinates bs and b3 also yields a valid configuration. Thus, we consider two sets of points in
P! x P! to be equivalent up to configuration if they have the same configurations after permutation and
relabeling of the rulings.

Unfortunately, the property of being a VCI depends on the coordinates of the points, not just on their
configuration. This is not so surprising as the Betti numbers of points in P! x P! also depend on more than
just the configuration. To illustrate this point, we use the cross ratio.

Definition 1.4 (/1, Section 3.2, Definition 12]). If four points in P! have homogeneous coordinates [a : a'],
[b:V],[c:],[d:d], their cross ratio is:
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(a1,01) |(az,b1) |(as,b1)

(a1,b2) (a4,b2)
L4

(az,bs) (as,bs)
L 2

Fig. 1. An example of a configuration.

Fig. 2. A four-point configuration whose the minimal free resolution depends on the coordinates.

(ca’ —ac')(db — bd")
(da’ — ad')(cb — b))

If a point is [1 : 0] or [0 : 1], then the terms involving this point are dropped from both the numerator
and the denominator.

In Fig. 2, the total Betti numbers of the minimal free resolution depends on the cross ratio. Let I be
the ideal of bihomogeneous forms vanishing at the points. When the cross ratios of the coordinates are the
same after projection to each copy of P!, the minimal free resolution of S/I (omitting the twists of the free
modules) is

St e— 80 «— 88 «+— S +—0.
When the cross ratios of the two copies of P! are different, the minimal free resolution is
St e— 80 «— 8T «+— S2+—0.

Moreover, for any collection of points with a subconfiguration of this kind, the minimal free resolution will
depend on the value of the coordinates. By contrast, this configuration is always a VCI, regardless of the
cross ratios (by Theorem 3.1).

Proposition 1.5. Given the configuration of four points in Fig. 2, the minimal resolution of these points
depends on whether or not the cross ratios are equal after projection to each copy of PL.

Proof. We may change coordinates so that three of the four points are [0 : 1],[1 : 1],[1 : 0] and the last
point is [1 : ¢], where ¢ is the cross ratio [1, Section 3.2, Definition 12]. Now consider the form zoy; — z1yo.
If the cross ratios on both copies of P! are the same, the form xgy; — z1yo vanishes, which explains the
degree differences in the minimal free resolutions in the two cases - one has a (1,1) graded piece whereas
the other has two (1,2) forms. Since the Hilbert function is recoverable from the minimal free resolution,
the minimal free resolution changes accordingly. O
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Fig. 3. Whether this configuration is a VCI depends on the coordinates of points.

Virtual resolutions are also not invariant under configurations when the total number of points is large
relative to the maximum number of points lying on a single horizontal ruling and a single vertical ruling,
which we respectively denote by m and n.

Remark 1.6. When |X| > mn, VClIs are not always determined by configuration. That is, the same config-
uration may be a VCI with some coordinates, but not with others. For example, the configuration below
is a VCI when either the four rightmost points or the four bottommost points lie on a (1, 1)-form. If these
points do not lie on such a conic, the configuration is not a VCI. This example is explored in more detail in
Theorem 3.6, after the necessary machinery has been developed.

However, the configuration above is far from being an Arithmetically Cohen—Macaulay set of points or a
complete intersection in [9, Theorem 4.11, Theorem 5.13], whose criteria depend only on the combinatorial
configuration and not the actual coordinates of the points. Hence the question of when sets of points form
VClIs is another interesting and subtle question.

1.2. Summary of main results

Complete intersections are always VCI, however, VCIs form a strictly larger set of points than complete
intersections. Our main results are summarized below.

1. A set of points is a VCI when it has the same number of points in each vertical (or each horizontal)
ruling (Theorem 3.1).
2. A set of points X is not a VCI when
(a) |X| < mn, and there is at least one point in X that is on a horizontal ruling with m points and a
vertical ruling with n points (Theorem 3.2).

(b) |X| < mn and ged(m, n) does not divide | X| (Theorem 4.1).

(¢) The degrees of two forms that intersect at X are known and one of the conditions in Proposition 4.4
holds.

3. VClIs are not solely determined by the configuration of the points, which is a characterization of where
points lie in relation to each other: when |X| > mn, the actual coordinates of points can play a role in
determining whether or not X is a VCI (Remark 1.6, Theorem 3.6).

4. When all points lie on at most three vertical or horizontal rulings, we provide a complete classification
of VCIs (Section 5).

Example 1.7. Consider Fig. 4 of the three points

X ={([1:0,[0:1]),([L:1],[0:1]),([0:1],[1:1])} c P* x PL.
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Fig. 4. A 3-point variety that is generated by two forms geometrically but not a complete intersection.

Letting Ix be the B-saturated ideal of bihomogenous polynomials vanishing at X, the minimal free
resolution of S/Ix is

S(Ov _2)
SV S(_lv _2)
S(—1,-1) @
0¢—S«— @& +— 5(=2,-2) +— §(-3,-2) 0.
S(_27 _1) &b
® S(—3,—1)2
S(=3,0)

It is well known that X is not Arithmetically Cohen-Macaulay by the criterion in [9, Theorem 4.11].
Therefore X does not form a complete intersection. As the picture indicates, however, X is a VCI as it is
the intersection of the varieties of two forms

f=zy and g= 360(331 - Jio)(yl - yo)-

Therefore, K(f,g) is a virtual resolution of S/Ix, where

-9
S(=1,-1
K(f,g)::[(ﬂ—SM E & ;MS(ZS,Q)(—O].
S(~2,-1

Although the points do not form a complete intersection, they nonetheless share similar properties with
complete intersections. The saturation of (f, g) by the irrelevant ideal B is equal to Ix so V(f)NV(g) = X
scheme-theoretically.

All theorems proved in this paper are from the virtual viewpoint. That is, we are looking for ideals
generated by two forms that saturate to the defining ideal of points. This is a slightly different problem
than the one studied in [9], which is concerned with when sets of points X C P! x P! have B-saturated
ideals Ix so that S/Ix is Cohen—Macaulay. By the Auslander—Buchsbaum formula, this occurs exactly
when the minimal free resolution of S/Ix is of length 2. It could be asked when sets of points are “virtually
arithmetically Cohen—Macaulay.” This question has already been answered: all sets of points in P! x P!
have virtual resolutions of length 2 [2, Theorem 1.5]. As such in this paper, we concentrate only on when
sets of points are VCIs.

1.8. Outline

In Section 2, it is proved that every set of points forms a VCI when considered set-theoretically. Then,
in Sections 3 and 4, we examine the scheme-theoretic case of reduced points. The majority of the proofs
of our main theorems are in these sections. We name many conditions which are guaranteed to either give
rise to or never give rise to VClIs. Finally, Section 5 is an application of these results, giving a complete
classification of VCIs that lie on at most three horizontal (or vertical) rulings.
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2. Set-theoretic VCIs

In this section, we consider zero-dimensional subschemes of P! x P1. We show that set-theoretically, all
such subschemes (hence all corresponding configurations) are virtual complete intersections.

Theorem 2.1. For any zero-dimensional subscheme X of P! x P!, there is an ideal J so that v/J = /Ix
and S/J has a virtual resolution that is a length two Koszul complex.

Proof. Let Supp(X) be the underlying set of points in P! x P1. We will show that there is an ideal generated
by two bihomogenous forms f and g so that Supp(V(f,g)) = Supp(X).

Let & be the number of distinct vertical rulings containing points of Supp(X), and let ¢; be the (1, 0)-form
defining the ith of these vertical rulings. Set f = €1 --- £, so V(f) is the smallest union of vertical rulings
containing the set of points.

Next, let n be the maximum number of points of Supp(X) that lie on a single vertical ruling. For each
vertical ruling i, let g; be a (0,n) form that is the product of n (0,1)-forms such that Supp(X NV (¢;)) =
Supp(V(g;) NV (£;)). That is, we multiply the forms defining horizontal rulings containing points of the set
on V(¢;), and repeat some of them so that the degree is (0,n). Set g = Zle fl‘t’l

Now we check that Supp(X NV (¢4;)) = Supp(V(g) NV (¥;)). Let p be contained in the left hand side,
which we saw is equal to Supp(V(g;) NV (¢;)). We have ¢;(p) = 0 and [ij(p) =0 for j # i, so g(p) = 0. This
shows Supp(X NV (4;)) € Supp(V(g) NV (£)).

To show Supp(X NV (¢;)) 2 Supp(V(g) N V(¥;)), suppose ¢ is contained in the right hand side. Then
g(q) = 0 forces g;(q¢) = 0 since 7]; vanishes if and only if ¢ # j. Therefore ¢ € Supp(V(g;) NV (4;)) =
Supp(X NV (¢;)), and thus Supp(X NV (¢;)) = Supp(V(g) NV (£)).

Taking the union over all 4 yields Supp(X) = Supp(V(f) NV (g)) = Supp(V(f,g)) as desired. O

Example 2.2. We demonstrate the procedure described in the proof of Theorem 2.1 to show that the con-
figuration of six points in Fig. 5 is a set-theoretic virtual complete intersection.
Set
ly = xo, by =19 — 11, b3 =g — 221.

We can then choose the g; to be

g1 = (71 — o) (z0 — 221) Y},

92 = zo(w0 — 271)yo (Yo — 11)?,

93 = zo(zo — x1)yo (Yo — y1) (Yo — 2u1)-

Letting f = (10203 and g = g1 + g2 + g3, then V(f,g) is exactly the 6 points in the figure, however,
([0:1],]0: 1]) is counted with multiplicity 2 and ([1 : 1],[1 : 1]) is counted with multiplicity 3.
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P
'[O:l] [1:1] [2:1]

Fig. 5. Configuration from Example 2.2, forms from Remark 2.3.

Remark 2.3. Notice that this procedure makes the sum of the multiplicities of points on each horizontal
ruling equal. Perhaps an easier way to visualize that this configuration is a set theoretic VCI is visualizing
the points with the above multiplicities as the scheme-theoretic intersection of the dotted curves indicated
in Fig. 5,

V(zo(zo — 1)(wo — 211))

which is the vanishing set of a (3,0) form, and the dashed curves,

V((y0)(227yo + 23y1 — 3om1y1)(Toy1 — T1Y0))

which is the vanishing set of a (3,3) form. By [16, §4.2.1] (see Theorem 3.3), the intersection should have
order 9, but the curves intersect at ([0 : 1], [0 : 1]) with multiplicity 3 and at ([1 : 1],[1 : 1]) with multiplicity
2, so the intersection set is indeed 6 points.

3. Determination of VClIs

We now consider reduced zero-dimensional subschemes of P! x P!, which we refer to as “sets of points.”
This requires that the homogeneous ideal generated by the two forms equal Iy after saturation by B, instead
of first taking the radical and then saturating by B, which leads to a richer classification of configurations
into VCIs, non-VClIs, and coordinate dependent cases.

In the previous section, we proved that set-theoretically all configurations are VCIs by assigning multiplic-
ities so that along each ruling, there are the same total multiplicity of points. When this condition is satisfied
without having to artificially “boost up” the multiplicity of any point, we have a natural environment for
VClIs.

Theorem 3.1. If X has the same number of points in each vertical (or each horizontal) ruling, it is a VCL.

Proof. By symmetry, it is enough to prove the vertical case. The proof is nearly identical to the proof of
Theorem 2.1. In the notation of that proof, we construct f and g as before, noting that each V'(I;) contains
n points of Supp(X), so V(g;)NV (l;) is supported on n distinct points each having multiplicity 1. Therefore,
the computations in the set-theoretic case of the support are exactly the same as in the scheme-theoretic
case, showing that X =V (f) NV (g) = V(f,g), and thus that X isa VCI. O

Notice that Example 1.7 illustrates this theorem. On the other hand, Theorem 3.2 below names conditions
that guarantee when a set of points can never be a VCI.

Theorem 3.2. Let X be a set of points in P! x P1. Let m be the mazimum number of points of X on a single
horizontal ruling, and let n be the maximum number of points on a single vertical ruling. If | X| < mn, and
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there is at least one point in X that is on a horizontal Tuling with m points and a vertical ruling with n
points, then X is not a VCL

Before proving Theorem 3.2, we introduce the generalized Bézout’s theorem and two technical lemmas
to serve as tools for providing bounds on multidegrees.

Theorem 3.3 (Generalized Bézout’s theorem, [16, §4.2.1]). Let f,g € S be two bihomogeneous forms in
P! x PL. If f and g of multidegree (a,b) and (c,d) respectively, are in general position, i.e., f,g have no
common factor, then |V (f) NV (g)| = ad + be, counting multiplicities.

This theorem will be used extensively to help combinatorially determine virtual complete intersections.

Lemma 3.4. Given a configuration of finitely many points X in P! x P1, let m be the maximum number of
points on a single horizontal ruling and n be the mazximum number of points on a single vertical ruling. If
K(f,g) is a virtual resolution of S/Ix , where polynomials f and g are of degrees (a,b) and (¢, d), respectively,
then max(a,c) > m and max(b,d) > n.

Proof. Assume, for the sake of contradiction, that both a and ¢ are less than m. Without loss of generality,
we can change coordinates to assume that the m points are on the horizontal ruling with coordinates [1 : 0]
and assume none of the m points lie on the vertical ruling [0 : 1]. We can restrict f to the horizontal ruling
[1: 0] by substituting yo = 1,y1 = 0, ¢ = 1 yielding a single variable polynomial of degree a with m roots.
By the assumption that a < m, this restriction of m must be identically 0, and so V(f) contains the entire
ruling [1 : 0]. By an identical argument on g using ¢ < m, we have V(g) also containing the entire ruling
[1:0]. Therefore, V(f) NV (g) contains that entire ruling, and so cannot be the original finite set of points.
Thus our assumption that both a and ¢ are less than m was false, and so max(a,c) > m. The proof that
max(b,d) > n is analogous. O

Lemma 3.5. Let X be a set of points in P! x P1. Let m and n be as in Lemma 3.4. If K(f,g) is a virtual
resolution for S/Ix, where f and g have multidegrees (a,b) and (c,d) respectively, and | X| < mn, then,

1. FEither (i) a>m and b > n, or (i) ¢ > m and d > n.
2. In case (i), V(g) contains the horizontal ruling containing the m points, and the vertical ruling on the
containing the n points. In case (ii), the same is true of f.

Proof. By Lemma 3.4, we have
max(a,c) > m and max(b,d) > n.

Without loss of generality, suppose a > ¢ and d > b. Then, a > m and d > n. However, in this case ad > mn,
so ad + bc > mn, which contradicts |X| < mn. Therefore, we must have a > ¢ and b > d, so a > m and
b > n. This proves (1).

If g does not contain the entire line of the m collinear points, then g restricted to that line is a nonzero
polynomial with m roots, and so has degree at least m. This means that ¢ > m, which gives the contradiction
|X| = ad 4+ be > be > mn. Similarly, if g does not contain the ruling with n points, then its restriction to
that line must have degree at least n giving the contradiction |X| = ad + bc > ad > mn. This completes
the proof. O

Proof of Theorem 3.2. Assume that |X| < mn, and there is at least one point in X that lies both on a
horizontal ruling with m points and a vertical ruling with n points. If K(f,g) is a virtual resolution for
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S/Ix, where f has multidegree (a,b) and g has multidegree (¢, d), then by the first part of Lemma 3.5, we
may assume a > m and b > n. Suppose V(g) includes s horizontal lines and ¢ vertical lines. Now using the
second part of Lemma 3.4, s and ¢ are at least one, and by assumption, the intersection of these s + t lines
contains at least one point of X. Factoring ¢, and changing coordinates if necessary so that no points have
coordinate [0 : 1], yields

g = Ahogo, where hg = (21 — oy wo) (21 — o) - - - (1 — o) (Y1 — Biyo) - -+ (y1 — Beyo)

is the product of the s + ¢t components, and gy is a bihomogeneous polynomial of multidegree (p,q) =
(c —s,d—1t). Let Y = V(hg,f) € X be the points covered by the s 4+ ¢t components of g. We have
Y| < ms + nt — 1, because we are certainly double counting the point lying on the intersection of the
vertical and horizontal rulings. The remaining set of points, X \ Y, must be precisely V(go, f), whose
cardinality is aq + bp according to Theorem 3.3.

Applying Theorem 3.3 again to f and g, it follows that

a(s+q) +b(t+p) =|X| <ms+nt—1+aq+ bp.
Simplifying the inequality above yields
as + bt < ms+nt — 1.

Since a > m, b > n, and both s and t are at least one, we have a contradiction. Thus, X cannot be a
VCI. O

Using Lemma 3.4, we can now flesh out Remark 1.6 into a theorem.

Theorem 3.6. There exist sets of points X1,Xs C P! x P! such that X1 and Xy are equivalent up to
configuration, but Xy is a VCI and Xs is not.

Proof. Consider the configuration of six points in Fig. 3, and suppose it is the VCI of f and g with
multidegree (a,b) and (c,d) respectively. Through the six points of Fig. 3 there is a form of degree (0,5)
and a form of degree (5,0). If any of the degrees were 0, say a, then V(f) would be parallel lines, and since
there are five distinct coordinates, f would have degree (0,5). There is no choice of ¢ and d that satisfies
ad + bc = 6, so none of the degrees are 0.

By Lemma 3.4, since m = 2 and n = 2, we can assume that a > 2 and b or d is at least 2. But we also
have ad + bc = 6 by Theorem 3.3, and since none of the degrees are 0, we find that the only possibility is
that the degrees of f and g are (2,1) and (2,2) (or vice versa).

Without loss of generality, let f have degree (2,1). By Theorem 3.3, f will intersect each vertical ruling in
exactly one point unless it contains the whole ruling. Since there are two points in our configuration sharing
a vertical ruling (and symmetrically a horizontal ruling), f must have a degree (1,0) component passing
through that ruling, and therefore must have a degree (1,1) component passing through the remaining four
points. Conics in the projective plane (i.e. forms of degree (1,1)) are determined by three points, though,
so this is impossible in most cases. Thus, in these cases the set of points could not be a VCI.

However, in the cases where the remaining four points do lie on a conic, the points may be a VCI. For
instance, letting k = C for a moment, if the points have coordinates:

¥ {([1 1, :1]), (21, (10 2)), (3 1], [1: 3]),}
([4:1],[1:4]),(1:0],[1:1]),(1:0][1:0]) [’

then K(f,g) is a virtual resolution of S/Ix, where
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f=xox1yo — x%yl and g = 243:%3;8 - xgyoyl — 50x§y0y1 + x%y% — 9x0x1yf + 35x%y%. O

Theorem 3.2 enables us to give a complete classification of VCI points in P* x P! that lie in a configuration
that forms a Ferrers diagram. A Ferrers diagram of points in an m by n grid will be called a rectangle. As
mentioned in Section 1, [9] show a set of points is arithmetically Cohen—-Macaulay exactly when it forms a
Ferrers diagram. The corollary below states that if X is arithmetically Cohen—Macaulay, then it is a VCI if
and only if it is a complete intersection.

Corollary 3.7. If X is a set of points in P! x P! forming a Ferrers diagram, then X is a virtual complete
intersection if and only if it is a rectangle.

Proof. Defining m and n as before, if X forms a Ferrers diagram that is not a rectangle, then the number
of points is strictly lower than mn. Further, the corner of the diagram is one of m points on its horizontal
ruling and n points on its vertical ruling, so applying Theorem 3.2 proves that X is not a VCI.

The converse was proved in [9, Theorem 5.13], but we reproduce it here for completeness. If the configu-
ration is a rectangle, then let f denote the (m, 0)-form whose vanishing set consists of the m vertical rulings
the points lie on, and let g denote the (0, n)-form whose vanishing set consists of the n horizontal rulings
the points lie on. Then (f, g) is a regular sequence, indicating X is a complete intersection. O

4. Bounds on multidegrees and size of a configuration

In some cases, the property of being a VCI cannot be directly determined based on the maximum number
of points on a single vertical/horizontal ruling. In this section, we provide characterizations for VCIs by
more closely examining the relationship between the multidegrees of f and g and the total number of points
in the configuration.

Theorem 4.1. If | X| < mn and ged(m,n) does not divide | X|, then X is not a VCIL
Before proving Theorem 4.1, we first prove the following lemma.

Lemma 4.2. Let f be a bihomogeneous polynomial of multidegree (a,b) and g of multidegree (c,d). Let K(f,g)
be a virtual resolution for S/Ix with |X| < mn. By Lemma 3.5, without loss of generality, we can assume
that a > m and b > n. Then,

1. a=m, b=mn, and
2. V(g) has vertical components exactly on rulings with n points of X and has horizontal components
ezxactly on rulings with m points of X.

Proof. As in the proof of Theorem 3.2, let s be the number of factors of g of the form z1 — az( (i.e. the
number of horizontal lines in V' (g)) and ¢ be the number of factors of the form y; — Byo) (i-e. the number
of vertical lines in V(g)), where «, § are constants. Set Y to be the points of g covered by those lines, and
let (p, ¢) be the multidegree of the remaining components of g. By Lemma 3.5, we have s,¢ > 1 and

as + bt = |Y| < ms + nt.

By hypothesis, a > m and b > n. Either of these being strict would contradict the above, so a = m and
b = n. This implies

ms + nt =Y.
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Thus, each vertical component of V(g) must contain n points of X and each horizontal component must
contain m points of X, because Theorem 3.2 guarantees no point can lie on both a horizontal and vertical
component. O

Note that when |X| < mn, the values of s and t are determined by the configuration of X: in this case,
we must have s = m and t = n.

Proof of Theorem 4.1. Suppose | X| < mn with ged(m, n) not dividing |X|. Assume K(f, g) is a virtual res-
olution for S/Ix. From Lemma 4.2, it can be assumed f has multidegree (m,n). Letting g have multidegree
(¢,d), Theorem 3.3 implies | X| = dm + cn. This is divisible by ged(m,n), which is a contradiction. O

Proposition 4.3. If K(f,g) is a virtual resolution for S/Ix with |X| < mn, gcd(m,n) =1, and (m,n) the
multidegree of f, then the multidegree of g is (c,d), where 0 < ¢ < m and 0 < d < n are unique integers
satisfying:

c=n"1X| mod m, and d=m""X| mod n.
Proof. By Theorem 3.3,
dm + cn = | X]|.
Considering modulo m and n, we have:
c=n"'X| modm and d=m™'X| modn.

Since both ¢n and dm are less than mn we must have ¢ < m and d < n. Thus ¢ and d must have the desired
values. 0O

Proposition 4.4. Assume X is a finite set of points with | X| < mn, ged(m,n) = 1, and let
c=n"YX| modm and d=m"'X| modn.

Let s and t be defined as in the proof of Theorem 3.2, and set p :== d — s and q := ¢ —t. If any of the
following are true, X will not be a VCI.

1. dm +cn # | X|

2.d<sorc<t

3. There is a horizontal ruling with strictly between q and m points of X, or a vertical ruling with strictly
between p and n points of X.

Proof. We will prove the contrapositive of (1). Assume that K(f,g) is a virtual resolution for S/Ix. Then
by Lemma 4.2, deg(f) = (m,n) and by Proposition 4.3, deg(g) = (¢,d). Thus Theorem 3.3 guarantees
| X| = dm + cn.

If X is a VCI of f and g, then g has s horizontal line components, so d > s. Similarly since it has ¢
vertical line components, then ¢ > ¢. Thus (2) is proved.

By Lemma 4.2, any horizontal ruling with fewer than m points of X cannot be contained in V(g).
However, a polynomial of multidegree (p,q) cannot vanish on more than p points of a horizontal ruling
without containing the entire ruling. Analogously, g cannot vanish on between ¢ and n points of a vertical
ruling, completing (3). O
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Note that when X is a VCI of f and g with |X| < mn and deg(f) = (m,n), we have determined not
only the multidegree of g but also the multidegree of components that are not degree 1 lines, that is, p and
q are intrinsically determined.

Using these restrictions on VCls, it is possible to classify all possible configurations of VCIs when the
parameters are small and eliminate a sizable number of cases in general. Nevertheless, it is important to
keep in mind Remark 1.6, which illustrates the limit of the applicability of combinatorics of configurations
to determine VCIs when the size of the configuration gets sufficiently large (with respect to m and n).

5. Complete classifications of points on at most three rulings

In this section, we give a complete classification of VCIs when all points lie on at most three rulings. The
case where all points lie on a single ruling is automatically a VCI (in fact, a complete intersection), and we
state the conditions for 2-ruling VCIs in Theorem 5.1, 3-ruling VCIs in Theorem 5.2.

Theorem 5.1. If all points lie on two horizontal rulings, they form a VCI if and only if either:

1. no two of them lie on the same vertical ruling, or
2. both horizontal rulings contain the same number points.

Proof. If no two points lie on the same vertical ruling, then each vertical ruling contains exactly one point,
so the configuration is a VCI by Theorem 3.1. If both horizontal rulings contain the same number of points,
we can match point p; in one ruling with point p; in the other; then the configuration is the VCI of two
horizontal lines through the two rulings and the product of (1, 1) forms each passing through one pair of p;
and pj.

Inversely, suppose two points lie on the same vertical ruling, and the two horizontal rulings have different
numbers of points. Then the maximum number of points on the same horizontal ruling times 2 (the maximum
number of points on the same vertical ruling) is greater than the total number of points. So by Theorem 3.2,
this configuration is not a VCI. 0O

Theorem 5.2. If all points lie on three horizontal rulings, the configuration is a VCI if and only if it satisfies
one of the following conditions:

1. All horizontal rulings contain the same number of points.

2. All vertical rulings contain the same number of points.

3. On two of the horizontal rulings all points are in pairs on the same vertical ruling, and no vertical
rulings contain 3 points.

4. Two of the horizontal rulings contain the same number of points, k, and all points lie on a (k,1)-curve.

Proof. All four conditions are sufficient. Conditions (1) and (2) follow from Theorem 3.1. Configurations
satisfying condition (3) can always be decomposed into two rectangular blocks and be seen as an intersection
of two forms that resemble the structure in Fig. 6. That is, V(f) consists of the two paired horizontal rulings
and vertical rulings through each remaining point, and V(g) consists of vertical rulings through each pair
of points and a horizontal ruling through the remaining points.

Condition (4) can always be decomposed into the intersection of a (k,1)-curve, and the union of two
horizontal lines and one vertical line through each point of X on the remaining ruling, as demonstrated in
Fig. 7. By Theorem 3.3, the (k,1)-curve will intersect the two horizontal rulings in exactly the k points
each, and will intersect each vertical ruling in exactly one point, as desired. The vertical rulings need to be
carefully chosen so that their intersections with the curve lie on the same horizontal ruling.
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Fig. 7. f is the solid parabola; g is the product of dashed lines.

We now show that these are the only cases. Assume X is a VCI that satisfies none of the conditions
above. Let n be the maximum number of points on a single vertical ruling so n may be 1,2 or 3. We will
show that in each case X must satisfy one of the conditions above.

Notice that if » = 1, then condition (2) is satisfied. If n = 3, one of the 3 points on such a ruling will
also be on the horizontal ruling with the maximal number m of points. Theorem 3.2 implies X will not be
a VCI unless all three horizontal rulings contain m points, in which case (1) holds.

We now consider the most difficult case of n = 2. Assume the three horizontal rulings contain oo > 8 >
points, respectively. Notice that a, 8,7 are not all equal since otherwise X satisfies condition (1). Since X
is a VCI, K(f,g) is a virtual resolution of S/Ix for some f, g of multidegrees (a,b) and (¢, d). According to
Lemma 3.4, max{a,c} > « and max{b,d} > 2. Without loss of generality, suppose a > ¢. Then a > «. This
means d < 3 since 3a > | X| = ad + be > da.

There are two cases:

Case 1: b > 2. If d = 0, then V(g) is the union of vertical rulings. By Theorem 3.3, the number of
intersection points of V(f) and each vertical ruling in V' (g) is b, so the configuration must satisfy (2).

Therefore, d > 0. Notice that g having a high degree in y-dimension implies a low degree in z-dimension.
In particular, degree ¢ < 3, because

a+28>a+p+v=|X|=ad+bc>a+2c (5.1)

(using a > o and b > 2 in the last step).

If ¢ < B, then V(g) must contain the entirety of the horizontal rulings of « points and S points. This
is because when restricting to those rulings g would be a polynomial of degree ¢, and so could vanish at
points only if it vanished on the whole ruling. Thus, we have d > 2, and so a + 8 + v = ad + bc > 2a + 2c.
From this we find ¢ < v, and again using the same argument, V(g) vanishes on all 3 horizontal rulings,
which violates the fact that d < 3.

On the other hand, if ¢ = 3, then using the inequality (5.1) and recalling b > 2,d > 0, we have

c=p=r, a=q, b=2, and d=1.
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In this case, a > 8 = ¢, so V(g) must contain the entire horizontal ruling of «a points. Since d = 1, the rest
of V(g) can only consist of vertical rulings, and there must be 8 of them. Each vertical ruling intersects
V(f) at 2 points by Theorem 3.3, and so the configuration satisfies (3).

Case 2: b < 2. Since max{b,d} > 2, d must equal 2. If b = 0, then V(f) is the union of multiple vertical
rulings. Since the number of intersections of V(g) and each vertical ruling is always ¢, the configuration
must satisfy (2). Thus, b = 1. As before, notice that

a+pf+v=|X|=ad+bc>2a+c.

Then, ¢ < ~. If ¢ < =, then V(g) has to contain all three horizontal rulings, which contradicts d = 2.
Therefore, ¢ = v, and o = 8 > . In this case, V(g) must contain the entire horizontal rulings of « points
and f points. Since d = 2, the rest of V(g) can only be vertical rulings, and there must be « of them, and
recalling b = 1, the configuration satisfies (4). O
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