
Journal of Pure and Applied Algebra 225 (2021) 106473
Contents lists available at ScienceDirect

Journal of Pure and Applied Algebra

www.elsevier.com/locate/jpaa

Virtual complete intersections in P 1 × P 1

Jiyang Gao a, Yutong Li b, Michael C. Loper c,∗, Amal Mattoo d

a Department of Mathematics, Massachusetts Institute of Technology, 182 Memorial Dr, Cambridge, 
MA 02139, United States of America
b Department of Mathematics and Statistics, Haverford College, 370 Lancaster Ave, Haverford, 
PA 19041, United States of America
c School of Mathematics, University of Minnesota, 206 Church St SE, Minneapolis, MN 55455, United 
States of America
d Department of Mathematics, Harvard College, 1 Oxford St, Cambridge, MA 02138, United States of 
America

a r t i c l e i n f o a b s t r a c t

Article history:
Received 28 May 2019
Received in revised form 8 May 2020
Available online 18 June 2020
Communicated by G.G. Smith

MSC:
13D02; 14M25

The minimal free resolution of the coordinate ring of a complete intersection in 
projective space is a Koszul complex on a regular sequence. In the product of 
projective spaces P1 × P1, we investigate which sets of points have a virtual 
resolution that is a Koszul complex on a regular sequence. This paper provides 
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1. Introduction

Complete intersections are a fundamental object of study in commutative algebra and algebraic geometry. 
In projective space P r

k
, a complete intersection Y of codimension t is defined by an ideal of codimension 

t which can be generated by exactly t elements of the ring k[x0, . . . , xr]. In this case, there are hypersur-
faces H1, . . . , Ht such that Y is the scheme-theoretic intersection of the Hi’s. Complete intersections have 
coordinate rings that are Cohen–Macaulay. The defining ideal of a complete intersection in P r is generated 
by a regular sequence and so the minimal free resolution of the coordinate ring is a Koszul complex [15, 
Theorem 14.7].

Unfortunately, in a product of projective spaces, the nice properties of complete intersections in P r are 
not completely captured homologically. A zero dimensional scheme X ⊂ P 1 × P 1 is a scheme-theoretic 
complete intersection or virtual complete intersection if there are two polynomials f and g such that the 
ideal sheaf generated by f and g equals the ideal sheaf of X. On the other hand, X is an ideal-theoretic 
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complete intersection (in this paper we will just say complete intersection) if IX , the set of all functions in 
the Cox ring vanishing on X, is generated by two elements. In P r, these two notions are the same, but in 
P 1×P 1, they are not (see Example 1.1 below). This is where the virtual resolutions of [2] help. By allowing 
some irrelevant homology in a free complex, we expand the notion of a complete intersection via a virtual 
resolution, while still reaping the benefits of many properties of complete intersections. The goal of this 
paper is to state conditions on whether a set of points in P 1 × P 1 do or do not form a virtual complete 
intersection (see Definition 1.3).

Example 1.1. Consider the zero-dimensional reduced scheme X ⊂ P 1 × P 1 consisting of the two points 
([1 : 0], [0 : 1]) and ([0 : 1], [1 : 0]). The set of all functions vanishing on X is

IX = 〈x0x1, x0y0, x1y1, y0y1〉.

However, the two polynomials x0y0 and x1y1 generate the same ideal sheaf as IX does. Therefore X is a 
scheme-theoretic complete intersection or virtual complete intersection, but not an ideal-theoretic complete 
intersection.

Points in P 1×P 1 have been studied in the past, but often from a point of view of studying the saturated 
defining ideals of these points in the Cox ring of P 1 × P 1. Some results include several classifications of 
when both reduced and fat points in P 1×P 1 are arithmetically Cohen–Macaulay [5–8,12,10,13,11]. Further 
characterizations of points in more general products of projective spaces can be found in [8,12,4,13,11,17]. 
In [5], Giuffrida, Maggioni, and Ragusa prove that points in P 1 × P 1 are defined by the ideal generated by 
two forms of bidegree (a, 0) and (0, b), and further, if f and g are two forms of any bidegree in P 1×P 1, then 
the ideal 〈f, g〉 is not saturated, except in this case. In this paper, we study when points have a complete 
intersection ideal that saturates to the defining ideal of the set of points, which is equivalent to being a 
virtual complete intersection. It turns out that all sets of points that are virtual complete intersections are not 
arithmetically Cohen–Macaulay, with the exception of points that are complete intersections (Corollary 3.7). 
While the results in this paper concentrate on points in P 1 × P 1, perhaps recent results of [4], which uses 
techniques of liaison, could help find VCIs in any product of projective spaces.

1.1. Setup

Let k be an algebraically closed field. In this paper we are concerned mostly with reduced zero-dimensional 
schemes in the product of projective spaces P 1 × P 1 over k. The Cox ring of P 1 × P 1 is the Z2-graded ring 
S := k[x0, x1, y0, y1] where deg(xi) = (1, 0) and deg(yi) = (0, 1). The irrelevant ideal of S is B := 〈x0, x1〉 ∩
〈y0, y1〉 = 〈x0y0, x0y1, x1y0, x1y1〉. In this setting, closed subschemes are in one-to-one correspondence with 
B-saturated bihomogeneous ideals [3, Proposition 6.A.7]. The B-saturation of an ideal I is

I : B∞ =
⋃
k≥0

I : Bk = {s ∈ S|sBk ⊂ I for some k}.

If I ⊂ S is an ideal, then V (I) denotes the subscheme of X consisting of all B-saturated bihomogeneous 
prime ideals that contain I. On the other hand, if X is a subvariety of P 1 × P 1, then IX denotes the 
B-saturated bihomogenous ideal of polynomials in S that vanish at every point in X.

We will call reduced subschemes of P 1 ×P 1 “sets of points in P 1 ×P 1.” The maximum number of points 
on a single horizontal ruling in a set of points X is denoted as m, and the maximum number of points on 
a single vertical ruling is denoted as n.

Definition 1.2 ([2, Definition 1.1]). A virtual resolution for a module S/I in the biprojective space P 1 ×P 1

is a Z2-graded complex of free S-modules
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F• := [F0
ϕ1←− F1

ϕ2←− F2
ϕ3←− · · · ]

such that for every homology modules Hi(F•), it is true that ann(Hi(F )) ⊇ B� for some � > 0, and the 

associated sheaves S̃/I and ˜coker(ϕ1) are isomorphic.

Definition 1.3. Let X be a set of points in P 1 × P 1 with defining ideal IX . We say X is a virtual complete 
intersection (VCI) if S/IX has a virtual resolution that is a Koszul complex K(f, g) of bihomogeneous forms 
f and g, where bihomogenous means every term in the polynomial has the same x-degree and y-degree.

In other words, a set of points X ⊂ P 1 × P 1 is called a virtual complete intersection or scheme-theoretic 
complete intersection generated by 2 forms f , g ∈ S with deg(f) = (a, b) and deg(g) = (c, d) if there exists 
a sheaf surjection

0 ←− IX ←− OP1×P1(−a,−b) ⊕OP1×P1(−c,−d).

Given two curves of P 1 ×P 1 having no common component, C of bidegree (a, b) defined by equation f = 0, 
and D of bidegree (c, d) of equation g = 0, let X = C ∩D be their scheme-theoretic complete intersection. 
The ideal 〈f, g〉 ⊂ S is not saturated (except in the cases b = c = 0 or a = d = 0), but we have the exact 
(Koszul) sequence of sheaves

0 ←− IX ←− O(−a,−b) ⊕O(−c,−d) ←− O(−a− c,−b− d) ←− 0.

Next, we review the notion of configurations as introduced in [9, §3.2] and show that the property of 
being a VCI is not a combinatorial invariant. Points in P 1 ×P 1 may be placed on a grid, according to their 
coordinates in each copy of P 1, in the following way. There are two projections πi : P 1 × P 1 → P 1:

π1(a, b) = a and π2(a, b) = b.

Making a grid of horizontal and vertical lines, the vertical lines correspond to the first copy of P 1 and the 
horizontal lines correspond to the second copy of P 1. Two points p, q ∈ P 1 × P 1 lie on the same vertical 
line if π1(p) = π1(q). They lie on the same horizontal line if π2(p) = π2(q). By permuting the horizontal 
and vertical lines, we arrange the points so that the number of points on each horizontal and vertical line 
decreases from top to bottom and from left to right, forming a configuration.

For example, letting ai denote a point in the first copy of P 1 and bi denote a point in the second copy of 
P 1, the set of points

{(a1, b1), (a2, b1), (a3, b1), (a1, b2), (a4, b2), (a2, b3), (a5, b4)}

in P 1 × P 1, can be represented as in Fig. 1 (here the points are labeled, but in what follows they will not 
be labeled). Note that the configuration of a set of points is not unique: in Fig. 1, switching the horizontal 
rulings with coordinates b2 and b3 also yields a valid configuration. Thus, we consider two sets of points in 
P 1 × P 1 to be equivalent up to configuration if they have the same configurations after permutation and 
relabeling of the rulings.

Unfortunately, the property of being a VCI depends on the coordinates of the points, not just on their 
configuration. This is not so surprising as the Betti numbers of points in P 1 ×P 1 also depend on more than 
just the configuration. To illustrate this point, we use the cross ratio.

Definition 1.4 ([1, Section 3.2, Definition 12]). If four points in P 1 have homogeneous coordinates [a : a′],
[b : b′], [c : c′], [d : d′], their cross ratio is:
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(a1, b1) (a2, b1) (a3, b1)

(a1, b2) (a4, b2)

(a2, b3) (a5, b3)

Fig. 1. An example of a configuration.

Fig. 2. A four-point configuration whose the minimal free resolution depends on the coordinates.

(ca′ − ac′)(db′ − bd′)
(da′ − ad′)(cb′ − bc′) .

If a point is [1 : 0] or [0 : 1], then the terms involving this point are dropped from both the numerator 
and the denominator.

In Fig. 2, the total Betti numbers of the minimal free resolution depends on the cross ratio. Let I be 
the ideal of bihomogeneous forms vanishing at the points. When the cross ratios of the coordinates are the 
same after projection to each copy of P 1, the minimal free resolution of S/I (omitting the twists of the free 
modules) is

S1 ←− S6 ←− S8 ←− S3 ←− 0.

When the cross ratios of the two copies of P 1 are different, the minimal free resolution is

S1 ←− S6 ←− S7 ←− S2 ←− 0.

Moreover, for any collection of points with a subconfiguration of this kind, the minimal free resolution will 
depend on the value of the coordinates. By contrast, this configuration is always a VCI, regardless of the 
cross ratios (by Theorem 3.1).

Proposition 1.5. Given the configuration of four points in Fig. 2, the minimal resolution of these points 
depends on whether or not the cross ratios are equal after projection to each copy of P 1.

Proof. We may change coordinates so that three of the four points are [0 : 1], [1 : 1], [1 : 0] and the last 
point is [1 : c], where c is the cross ratio [1, Section 3.2, Definition 12]. Now consider the form x0y1 − x1y0. 
If the cross ratios on both copies of P 1 are the same, the form x0y1 − x1y0 vanishes, which explains the 
degree differences in the minimal free resolutions in the two cases - one has a (1, 1) graded piece whereas 
the other has two (1, 2) forms. Since the Hilbert function is recoverable from the minimal free resolution, 
the minimal free resolution changes accordingly. �
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Fig. 3. Whether this configuration is a VCI depends on the coordinates of points.

Virtual resolutions are also not invariant under configurations when the total number of points is large 
relative to the maximum number of points lying on a single horizontal ruling and a single vertical ruling, 
which we respectively denote by m and n.

Remark 1.6. When |X| ≥ mn, VCIs are not always determined by configuration. That is, the same config-
uration may be a VCI with some coordinates, but not with others. For example, the configuration below 
is a VCI when either the four rightmost points or the four bottommost points lie on a (1, 1)-form. If these 
points do not lie on such a conic, the configuration is not a VCI. This example is explored in more detail in 
Theorem 3.6, after the necessary machinery has been developed.

However, the configuration above is far from being an Arithmetically Cohen–Macaulay set of points or a 
complete intersection in [9, Theorem 4.11, Theorem 5.13], whose criteria depend only on the combinatorial 
configuration and not the actual coordinates of the points. Hence the question of when sets of points form 
VCIs is another interesting and subtle question.

1.2. Summary of main results

Complete intersections are always VCI, however, VCIs form a strictly larger set of points than complete 
intersections. Our main results are summarized below.

1. A set of points is a VCI when it has the same number of points in each vertical (or each horizontal) 
ruling (Theorem 3.1).

2. A set of points X is not a VCI when
(a) |X| < mn, and there is at least one point in X that is on a horizontal ruling with m points and a 

vertical ruling with n points (Theorem 3.2).
(b) |X| < mn and gcd(m, n) does not divide |X| (Theorem 4.1).
(c) The degrees of two forms that intersect at X are known and one of the conditions in Proposition 4.4

holds.
3. VCIs are not solely determined by the configuration of the points, which is a characterization of where 

points lie in relation to each other: when |X| > mn, the actual coordinates of points can play a role in 
determining whether or not X is a VCI (Remark 1.6, Theorem 3.6).

4. When all points lie on at most three vertical or horizontal rulings, we provide a complete classification 
of VCIs (Section 5).

Example 1.7. Consider Fig. 4 of the three points

X = {([1 : 0], [0 : 1]), ([1 : 1], [0 : 1]), ([0 : 1], [1 : 1])} ⊂ P 1 × P 1.
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Fig. 4. A 3-point variety that is generated by two forms geometrically but not a complete intersection.

Letting IX be the B-saturated ideal of bihomogenous polynomials vanishing at X, the minimal free 
resolution of S/IX is

0 ←− S ←−

S(0,−2)
⊕

S(−1,−1)
⊕

S(−2,−1)
⊕

S(−3, 0)

←−

S(−1,−2)
⊕

S(−2,−2)
⊕

S(−3,−1)2

←− S(−3,−2) ←− 0.

It is well known that X is not Arithmetically Cohen–Macaulay by the criterion in [9, Theorem 4.11]. 
Therefore X does not form a complete intersection. As the picture indicates, however, X is a VCI as it is 
the intersection of the varieties of two forms

f = x1y1 and g = x0(x1 − x0)(y1 − y0).

Therefore, K(f, g) is a virtual resolution of S/IX , where

K(f, g) := [0 ←− S

[
f g

]
←−−−−−

S(−1,−1)
⊕

S(−2,−1)

[−g
f

]
←−−−− S(−3,−2) ←− 0].

Although the points do not form a complete intersection, they nonetheless share similar properties with 
complete intersections. The saturation of 〈f, g〉 by the irrelevant ideal B is equal to IX so V (f) ∩V (g) = X

scheme-theoretically.

All theorems proved in this paper are from the virtual viewpoint. That is, we are looking for ideals 
generated by two forms that saturate to the defining ideal of points. This is a slightly different problem 
than the one studied in [9], which is concerned with when sets of points X ⊂ P 1 × P 1 have B-saturated 
ideals IX so that S/IX is Cohen–Macaulay. By the Auslander–Buchsbaum formula, this occurs exactly 
when the minimal free resolution of S/IX is of length 2. It could be asked when sets of points are “virtually 
arithmetically Cohen–Macaulay.” This question has already been answered: all sets of points in P 1 × P 1

have virtual resolutions of length 2 [2, Theorem 1.5]. As such in this paper, we concentrate only on when 
sets of points are VCIs.

1.3. Outline

In Section 2, it is proved that every set of points forms a VCI when considered set-theoretically. Then, 
in Sections 3 and 4, we examine the scheme-theoretic case of reduced points. The majority of the proofs 
of our main theorems are in these sections. We name many conditions which are guaranteed to either give 
rise to or never give rise to VCIs. Finally, Section 5 is an application of these results, giving a complete 
classification of VCIs that lie on at most three horizontal (or vertical) rulings.
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2. Set-theoretic VCIs

In this section, we consider zero-dimensional subschemes of P 1 × P 1. We show that set-theoretically, all 
such subschemes (hence all corresponding configurations) are virtual complete intersections.

Theorem 2.1. For any zero-dimensional subscheme X of P 1 × P 1, there is an ideal J so that 
√
J =

√
IX

and S/J has a virtual resolution that is a length two Koszul complex.

Proof. Let Supp(X) be the underlying set of points in P 1×P 1. We will show that there is an ideal generated 
by two bihomogenous forms f and g so that Supp(V (f, g)) = Supp(X).

Let k be the number of distinct vertical rulings containing points of Supp(X), and let �i be the (1, 0)-form 
defining the ith of these vertical rulings. Set f = �1 · · · �k, so V (f) is the smallest union of vertical rulings 
containing the set of points.

Next, let n be the maximum number of points of Supp(X) that lie on a single vertical ruling. For each 
vertical ruling i, let gi be a (0, n) form that is the product of n (0, 1)-forms such that Supp(X ∩ V (�i)) =
Supp(V (gi) ∩ V (�i)). That is, we multiply the forms defining horizontal rulings containing points of the set 
on V (�i), and repeat some of them so that the degree is (0, n). Set g =

∑k
i=1

fgi
li

.
Now we check that Supp(X ∩ V (�i)) = Supp(V (g) ∩ V (�i)). Let p be contained in the left hand side, 

which we saw is equal to Supp(V (gi) ∩ V (�i)). We have gi(p) = 0 and f
�j

(p) = 0 for j 
= i, so g(p) = 0. This 
shows Supp(X ∩ V (�i)) ⊆ Supp(V (g) ∩ V (�i)).

To show Supp(X ∩ V (�i)) ⊇ Supp(V (g) ∩ V (�i)), suppose q is contained in the right hand side. Then 
g(q) = 0 forces gi(q) = 0 since f

�j
vanishes if and only if i 
= j. Therefore q ∈ Supp(V (gi) ∩ V (�i)) =

Supp(X ∩ V (�i)), and thus Supp(X ∩ V (�i)) = Supp(V (g) ∩ V (�i)).
Taking the union over all i yields Supp(X) = Supp(V (f) ∩ V (g)) = Supp(V (f, g)) as desired. �

Example 2.2. We demonstrate the procedure described in the proof of Theorem 2.1 to show that the con-
figuration of six points in Fig. 5 is a set-theoretic virtual complete intersection.

Set

�1 = x0, �2 = x0 − x1, �3 = x0 − 2x1.

We can then choose the gi to be

g1 = (x1 − x0)(x0 − 2x1)y3
0 ,

g2 = x0(x0 − 2x1)y0(y0 − y1)2,

g3 = x0(x0 − x1)y0(y0 − y1)(y0 − 2y1).

Letting f = �1�2�3 and g = g1 + g2 + g3, then V (f, g) is exactly the 6 points in the figure, however, 
([0 : 1], [0 : 1]) is counted with multiplicity 2 and ([1 : 1], [1 : 1]) is counted with multiplicity 3.
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[0 : 1]

[1 : 1]

[2 : 1]

[0 : 1] [1 : 1] [2 : 1]

Fig. 5. Configuration from Example 2.2, forms from Remark 2.3.

Remark 2.3. Notice that this procedure makes the sum of the multiplicities of points on each horizontal 
ruling equal. Perhaps an easier way to visualize that this configuration is a set theoretic VCI is visualizing 
the points with the above multiplicities as the scheme-theoretic intersection of the dotted curves indicated 
in Fig. 5,

V (x0(x0 − x1)(x0 − 2x1))

which is the vanishing set of a (3, 0) form, and the dashed curves,

V ((y0)(2x2
1y0 + x2

0y1 − 3x0x1y1)(x0y1 − x1y0))

which is the vanishing set of a (3, 3) form. By [16, §4.2.1] (see Theorem 3.3), the intersection should have 
order 9, but the curves intersect at ([0 : 1], [0 : 1]) with multiplicity 3 and at ([1 : 1], [1 : 1]) with multiplicity 
2, so the intersection set is indeed 6 points.

3. Determination of VCIs

We now consider reduced zero-dimensional subschemes of P 1 × P 1, which we refer to as “sets of points.” 
This requires that the homogeneous ideal generated by the two forms equal IX after saturation by B, instead 
of first taking the radical and then saturating by B, which leads to a richer classification of configurations 
into VCIs, non-VCIs, and coordinate dependent cases.

In the previous section, we proved that set-theoretically all configurations are VCIs by assigning multiplic-
ities so that along each ruling, there are the same total multiplicity of points. When this condition is satisfied 
without having to artificially “boost up” the multiplicity of any point, we have a natural environment for 
VCIs.

Theorem 3.1. If X has the same number of points in each vertical (or each horizontal) ruling, it is a VCI.

Proof. By symmetry, it is enough to prove the vertical case. The proof is nearly identical to the proof of 
Theorem 2.1. In the notation of that proof, we construct f and g as before, noting that each V (li) contains 
n points of Supp(X), so V (gi) ∩V (li) is supported on n distinct points each having multiplicity 1. Therefore, 
the computations in the set-theoretic case of the support are exactly the same as in the scheme-theoretic 
case, showing that X = V (f) ∩ V (g) = V (f, g), and thus that X is a VCI. �

Notice that Example 1.7 illustrates this theorem. On the other hand, Theorem 3.2 below names conditions 
that guarantee when a set of points can never be a VCI.

Theorem 3.2. Let X be a set of points in P 1×P 1. Let m be the maximum number of points of X on a single 
horizontal ruling, and let n be the maximum number of points on a single vertical ruling. If |X| < mn, and 
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there is at least one point in X that is on a horizontal ruling with m points and a vertical ruling with n
points, then X is not a VCI.

Before proving Theorem 3.2, we introduce the generalized Bézout’s theorem and two technical lemmas 
to serve as tools for providing bounds on multidegrees.

Theorem 3.3 (Generalized Bézout’s theorem, [16, §4.2.1]). Let f, g ∈ S be two bihomogeneous forms in 
P 1 × P 1. If f and g of multidegree (a, b) and (c, d) respectively, are in general position, i.e., f, g have no 
common factor, then |V (f) ∩ V (g)| = ad + bc, counting multiplicities.

This theorem will be used extensively to help combinatorially determine virtual complete intersections.

Lemma 3.4. Given a configuration of finitely many points X in P 1 × P 1, let m be the maximum number of 
points on a single horizontal ruling and n be the maximum number of points on a single vertical ruling. If 
K(f, g) is a virtual resolution of S/IX , where polynomials f and g are of degrees (a, b) and (c, d), respectively, 
then max(a, c) ≥ m and max(b, d) ≥ n.

Proof. Assume, for the sake of contradiction, that both a and c are less than m. Without loss of generality, 
we can change coordinates to assume that the m points are on the horizontal ruling with coordinates [1 : 0]
and assume none of the m points lie on the vertical ruling [0 : 1]. We can restrict f to the horizontal ruling 
[1 : 0] by substituting y0 = 1, y1 = 0, x0 = 1 yielding a single variable polynomial of degree a with m roots. 
By the assumption that a < m, this restriction of m must be identically 0, and so V (f) contains the entire 
ruling [1 : 0]. By an identical argument on g using c < m, we have V (g) also containing the entire ruling 
[1 : 0]. Therefore, V (f) ∩ V (g) contains that entire ruling, and so cannot be the original finite set of points. 
Thus our assumption that both a and c are less than m was false, and so max(a, c) ≥ m. The proof that 
max(b, d) ≥ n is analogous. �
Lemma 3.5. Let X be a set of points in P 1 × P 1. Let m and n be as in Lemma 3.4. If K(f, g) is a virtual 
resolution for S/IX , where f and g have multidegrees (a, b) and (c, d) respectively, and |X| < mn, then,

1. Either (i) a ≥ m and b ≥ n, or (ii) c ≥ m and d ≥ n.
2. In case (i), V (g) contains the horizontal ruling containing the m points, and the vertical ruling on the 

containing the n points. In case (ii), the same is true of f .

Proof. By Lemma 3.4, we have

max(a, c) ≥ m and max(b, d) ≥ n.

Without loss of generality, suppose a ≥ c and d ≥ b. Then, a ≥ m and d ≥ n. However, in this case ad ≥ mn, 
so ad + bc ≥ mn, which contradicts |X| < mn. Therefore, we must have a ≥ c and b ≥ d, so a ≥ m and 
b ≥ n. This proves (1).

If g does not contain the entire line of the m collinear points, then g restricted to that line is a nonzero 
polynomial with m roots, and so has degree at least m. This means that c ≥ m, which gives the contradiction 
|X| = ad + bc ≥ bc ≥ mn. Similarly, if g does not contain the ruling with n points, then its restriction to 
that line must have degree at least n giving the contradiction |X| = ad + bc ≥ ad ≥ mn. This completes 
the proof. �
Proof of Theorem 3.2. Assume that |X| < mn, and there is at least one point in X that lies both on a 
horizontal ruling with m points and a vertical ruling with n points. If K(f, g) is a virtual resolution for 
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S/IX , where f has multidegree (a, b) and g has multidegree (c, d), then by the first part of Lemma 3.5, we 
may assume a ≥ m and b ≥ n. Suppose V (g) includes s horizontal lines and t vertical lines. Now using the 
second part of Lemma 3.4, s and t are at least one, and by assumption, the intersection of these s + t lines 
contains at least one point of X. Factoring g, and changing coordinates if necessary so that no points have 
coordinate [0 : 1], yields

g = λh0g0,where h0 = (x1 − α1x0)(x1 − α2x0) · · · (x1 − αsx0)(y1 − β1y0) · · · (y1 − βty0)

is the product of the s + t components, and g0 is a bihomogeneous polynomial of multidegree (p, q) =
(c − s, d − t). Let Y = V (h0, f) ⊆ X be the points covered by the s + t components of g. We have 
|Y | ≤ ms + nt − 1, because we are certainly double counting the point lying on the intersection of the 
vertical and horizontal rulings. The remaining set of points, X \ Y , must be precisely V (g0, f), whose 
cardinality is aq + bp according to Theorem 3.3.

Applying Theorem 3.3 again to f and g, it follows that

a(s + q) + b(t + p) = |X| ≤ ms + nt− 1 + aq + bp.

Simplifying the inequality above yields

as + bt ≤ ms + nt− 1.

Since a ≥ m, b ≥ n, and both s and t are at least one, we have a contradiction. Thus, X cannot be a 
VCI. �

Using Lemma 3.4, we can now flesh out Remark 1.6 into a theorem.

Theorem 3.6. There exist sets of points X1, X2 ⊂ P 1 × P 1 such that X1 and X2 are equivalent up to 
configuration, but X1 is a VCI and X2 is not.

Proof. Consider the configuration of six points in Fig. 3, and suppose it is the VCI of f and g with 
multidegree (a, b) and (c, d) respectively. Through the six points of Fig. 3 there is a form of degree (0, 5)
and a form of degree (5, 0). If any of the degrees were 0, say a, then V (f) would be parallel lines, and since 
there are five distinct coordinates, f would have degree (0, 5). There is no choice of c and d that satisfies 
ad + bc = 6, so none of the degrees are 0.

By Lemma 3.4, since m = 2 and n = 2, we can assume that a ≥ 2 and b or d is at least 2. But we also 
have ad + bc = 6 by Theorem 3.3, and since none of the degrees are 0, we find that the only possibility is 
that the degrees of f and g are (2, 1) and (2, 2) (or vice versa).

Without loss of generality, let f have degree (2, 1). By Theorem 3.3, f will intersect each vertical ruling in 
exactly one point unless it contains the whole ruling. Since there are two points in our configuration sharing 
a vertical ruling (and symmetrically a horizontal ruling), f must have a degree (1, 0) component passing 
through that ruling, and therefore must have a degree (1, 1) component passing through the remaining four 
points. Conics in the projective plane (i.e. forms of degree (1, 1)) are determined by three points, though, 
so this is impossible in most cases. Thus, in these cases the set of points could not be a VCI.

However, in the cases where the remaining four points do lie on a conic, the points may be a VCI. For 
instance, letting k = C for a moment, if the points have coordinates:

X =
{

([1 : 1], [1 : 1]), ([2 : 1], [1 : 2]), ([3 : 1], [1 : 3]),
([4 : 1], [1 : 4]), ([1 : 0], [1 : 1]), ([1 : 0], [1 : 0])

}
,

then K(f, g) is a virtual resolution of S/IX , where
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f = x0x1y0 − x2
1y1 and g = 24x2

1y
2
0 − x2

0y0y1 − 50x2
1y0y1 + x2

0y
2
1 − 9x0x1y

2
1 + 35x2

1y
2
1 . �

Theorem 3.2 enables us to give a complete classification of VCI points in P 1×P 1 that lie in a configuration 
that forms a Ferrers diagram. A Ferrers diagram of points in an m by n grid will be called a rectangle. As 
mentioned in Section 1, [9] show a set of points is arithmetically Cohen–Macaulay exactly when it forms a 
Ferrers diagram. The corollary below states that if X is arithmetically Cohen–Macaulay, then it is a VCI if 
and only if it is a complete intersection.

Corollary 3.7. If X is a set of points in P 1 × P 1 forming a Ferrers diagram, then X is a virtual complete 
intersection if and only if it is a rectangle.

Proof. Defining m and n as before, if X forms a Ferrers diagram that is not a rectangle, then the number 
of points is strictly lower than mn. Further, the corner of the diagram is one of m points on its horizontal 
ruling and n points on its vertical ruling, so applying Theorem 3.2 proves that X is not a VCI.

The converse was proved in [9, Theorem 5.13], but we reproduce it here for completeness. If the configu-
ration is a rectangle, then let f denote the (m, 0)-form whose vanishing set consists of the m vertical rulings 
the points lie on, and let g denote the (0, n)-form whose vanishing set consists of the n horizontal rulings 
the points lie on. Then (f, g) is a regular sequence, indicating X is a complete intersection. �
4. Bounds on multidegrees and size of a configuration

In some cases, the property of being a VCI cannot be directly determined based on the maximum number 
of points on a single vertical/horizontal ruling. In this section, we provide characterizations for VCIs by 
more closely examining the relationship between the multidegrees of f and g and the total number of points 
in the configuration.

Theorem 4.1. If |X| < mn and gcd(m, n) does not divide |X|, then X is not a VCI.

Before proving Theorem 4.1, we first prove the following lemma.

Lemma 4.2. Let f be a bihomogeneous polynomial of multidegree (a, b) and g of multidegree (c, d). Let K(f, g)
be a virtual resolution for S/IX with |X| < mn. By Lemma 3.5, without loss of generality, we can assume 
that a ≥ m and b ≥ n. Then,

1. a = m, b = n, and
2. V (g) has vertical components exactly on rulings with n points of X and has horizontal components 

exactly on rulings with m points of X.

Proof. As in the proof of Theorem 3.2, let s be the number of factors of g of the form x1 − αx0 (i.e. the 
number of horizontal lines in V (g)) and t be the number of factors of the form y1 − βy0) (i.e. the number 
of vertical lines in V (g)), where α, β are constants. Set Y to be the points of g covered by those lines, and 
let (p, q) be the multidegree of the remaining components of g. By Lemma 3.5, we have s, t ≥ 1 and

as + bt = |Y | ≤ ms + nt.

By hypothesis, a ≥ m and b ≥ n. Either of these being strict would contradict the above, so a = m and 
b = n. This implies

ms + nt = |Y |.
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Thus, each vertical component of V (g) must contain n points of X and each horizontal component must 
contain m points of X, because Theorem 3.2 guarantees no point can lie on both a horizontal and vertical 
component. �

Note that when |X| < mn, the values of s and t are determined by the configuration of X: in this case, 
we must have s = m and t = n.

Proof of Theorem 4.1. Suppose |X| < mn with gcd(m, n) not dividing |X|. Assume K(f, g) is a virtual res-
olution for S/IX . From Lemma 4.2, it can be assumed f has multidegree (m, n). Letting g have multidegree 
(c, d), Theorem 3.3 implies |X| = dm + cn. This is divisible by gcd(m, n), which is a contradiction. �
Proposition 4.3. If K(f, g) is a virtual resolution for S/IX with |X| < mn, gcd(m, n) = 1, and (m, n) the 
multidegree of f , then the multidegree of g is (c, d), where 0 ≤ c < m and 0 ≤ d < n are unique integers 
satisfying:

c = n−1|X| mod m, and d = m−1|X| mod n.

Proof. By Theorem 3.3,

dm + cn = |X|.

Considering modulo m and n, we have:

c ≡ n−1|X| mod m and d ≡ m−1|X| mod n.

Since both cn and dm are less than mn we must have c < m and d < n. Thus c and d must have the desired 
values. �
Proposition 4.4. Assume X is a finite set of points with |X| < mn, gcd(m, n) = 1, and let

c = n−1|X| mod m and d = m−1|X| mod n.

Let s and t be defined as in the proof of Theorem 3.2, and set p := d − s and q := c − t. If any of the 
following are true, X will not be a VCI.

1. dm + cn 
= |X|
2. d < s or c < t

3. There is a horizontal ruling with strictly between q and m points of X, or a vertical ruling with strictly 
between p and n points of X.

Proof. We will prove the contrapositive of (1). Assume that K(f, g) is a virtual resolution for S/IX . Then 
by Lemma 4.2, deg(f) = (m, n) and by Proposition 4.3, deg(g) = (c, d). Thus Theorem 3.3 guarantees 
|X| = dm + cn.

If X is a VCI of f and g, then g has s horizontal line components, so d ≥ s. Similarly since it has t
vertical line components, then c ≥ t. Thus (2) is proved.

By Lemma 4.2, any horizontal ruling with fewer than m points of X cannot be contained in V (g). 
However, a polynomial of multidegree (p, q) cannot vanish on more than p points of a horizontal ruling 
without containing the entire ruling. Analogously, g cannot vanish on between q and n points of a vertical 
ruling, completing (3). �
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Note that when X is a VCI of f and g with |X| < mn and deg(f) = (m, n), we have determined not 
only the multidegree of g but also the multidegree of components that are not degree 1 lines, that is, p and 
q are intrinsically determined.

Using these restrictions on VCIs, it is possible to classify all possible configurations of VCIs when the 
parameters are small and eliminate a sizable number of cases in general. Nevertheless, it is important to 
keep in mind Remark 1.6, which illustrates the limit of the applicability of combinatorics of configurations 
to determine VCIs when the size of the configuration gets sufficiently large (with respect to m and n).

5. Complete classifications of points on at most three rulings

In this section, we give a complete classification of VCIs when all points lie on at most three rulings. The 
case where all points lie on a single ruling is automatically a VCI (in fact, a complete intersection), and we 
state the conditions for 2-ruling VCIs in Theorem 5.1, 3-ruling VCIs in Theorem 5.2.

Theorem 5.1. If all points lie on two horizontal rulings, they form a VCI if and only if either:

1. no two of them lie on the same vertical ruling, or
2. both horizontal rulings contain the same number points.

Proof. If no two points lie on the same vertical ruling, then each vertical ruling contains exactly one point, 
so the configuration is a VCI by Theorem 3.1. If both horizontal rulings contain the same number of points, 
we can match point pi in one ruling with point p′i in the other; then the configuration is the VCI of two 
horizontal lines through the two rulings and the product of (1, 1) forms each passing through one pair of pi
and p′i.

Inversely, suppose two points lie on the same vertical ruling, and the two horizontal rulings have different 
numbers of points. Then the maximum number of points on the same horizontal ruling times 2 (the maximum 
number of points on the same vertical ruling) is greater than the total number of points. So by Theorem 3.2, 
this configuration is not a VCI. �
Theorem 5.2. If all points lie on three horizontal rulings, the configuration is a VCI if and only if it satisfies 
one of the following conditions:

1. All horizontal rulings contain the same number of points.
2. All vertical rulings contain the same number of points.
3. On two of the horizontal rulings all points are in pairs on the same vertical ruling, and no vertical 

rulings contain 3 points.
4. Two of the horizontal rulings contain the same number of points, k, and all points lie on a (k, 1)-curve.

Proof. All four conditions are sufficient. Conditions (1) and (2) follow from Theorem 3.1. Configurations 
satisfying condition (3) can always be decomposed into two rectangular blocks and be seen as an intersection 
of two forms that resemble the structure in Fig. 6. That is, V (f) consists of the two paired horizontal rulings 
and vertical rulings through each remaining point, and V (g) consists of vertical rulings through each pair 
of points and a horizontal ruling through the remaining points.

Condition (4) can always be decomposed into the intersection of a (k, 1)-curve, and the union of two 
horizontal lines and one vertical line through each point of X on the remaining ruling, as demonstrated in 
Fig. 7. By Theorem 3.3, the (k, 1)-curve will intersect the two horizontal rulings in exactly the k points 
each, and will intersect each vertical ruling in exactly one point, as desired. The vertical rulings need to be 
carefully chosen so that their intersections with the curve lie on the same horizontal ruling.
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Fig. 6. f is the product of solid lines; g of dashed lines.

Fig. 7. f is the solid parabola; g is the product of dashed lines.

We now show that these are the only cases. Assume X is a VCI that satisfies none of the conditions 
above. Let n be the maximum number of points on a single vertical ruling so n may be 1, 2 or 3. We will 
show that in each case X must satisfy one of the conditions above.

Notice that if n = 1, then condition (2) is satisfied. If n = 3, one of the 3 points on such a ruling will 
also be on the horizontal ruling with the maximal number m of points. Theorem 3.2 implies X will not be 
a VCI unless all three horizontal rulings contain m points, in which case (1) holds.

We now consider the most difficult case of n = 2. Assume the three horizontal rulings contain α ≥ β ≥ γ

points, respectively. Notice that α, β, γ are not all equal since otherwise X satisfies condition (1). Since X
is a VCI, K(f, g) is a virtual resolution of S/IX for some f, g of multidegrees (a, b) and (c, d). According to 
Lemma 3.4, max{a, c} ≥ α and max{b, d} ≥ 2. Without loss of generality, suppose a ≥ c. Then a ≥ α. This 
means d < 3 since 3α > |X| = ad + bc ≥ dα.

There are two cases:
Case 1: b ≥ 2. If d = 0, then V (g) is the union of vertical rulings. By Theorem 3.3, the number of 

intersection points of V (f) and each vertical ruling in V (g) is b, so the configuration must satisfy (2).
Therefore, d > 0. Notice that g having a high degree in y-dimension implies a low degree in x-dimension. 

In particular, degree c ≤ β, because

α + 2β ≥ α + β + γ = |X| = ad + bc ≥ α + 2c (5.1)

(using a ≥ α and b ≥ 2 in the last step).
If c < β, then V (g) must contain the entirety of the horizontal rulings of α points and β points. This 

is because when restricting to those rulings g would be a polynomial of degree c, and so could vanish at β
points only if it vanished on the whole ruling. Thus, we have d ≥ 2, and so α + β + γ = ad + bc ≥ 2α + 2c. 
From this we find c < γ, and again using the same argument, V (g) vanishes on all 3 horizontal rulings, 
which violates the fact that d < 3.

On the other hand, if c = β, then using the inequality (5.1) and recalling b ≥ 2, d > 0, we have

c = β = γ, a = α, b = 2, and d = 1.
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In this case, α > β = c, so V (g) must contain the entire horizontal ruling of α points. Since d = 1, the rest 
of V (g) can only consist of vertical rulings, and there must be β of them. Each vertical ruling intersects 
V (f) at 2 points by Theorem 3.3, and so the configuration satisfies (3).

Case 2: b < 2. Since max{b, d} ≥ 2, d must equal 2. If b = 0, then V (f) is the union of multiple vertical 
rulings. Since the number of intersections of V (g) and each vertical ruling is always c, the configuration 
must satisfy (2). Thus, b = 1. As before, notice that

α + β + γ = |X| = ad + bc ≥ 2α + c.

Then, c ≤ γ. If c < γ, then V (g) has to contain all three horizontal rulings, which contradicts d = 2. 
Therefore, c = γ, and α = β > γ. In this case, V (g) must contain the entire horizontal rulings of α points 
and β points. Since d = 2, the rest of V (g) can only be vertical rulings, and there must be γ of them, and 
recalling b = 1, the configuration satisfies (4). �
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