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Abstract—We consider updating strategies for a local cache
which downloads time-sensitive files from a remote server
through a bandwidth-constrained link. The files are requested
randomly from the cache by local users according to a popularity
distribution which varies over time according to a Markov
chain structure. We measure the freshness of the requested time-
sensitive files through their Age of Information (Aol). The goal
is then to minimize the average Aol of all requested files by
appropriately designing the local cache’s downloading strategy.
To achieve this goal, the original problem is relaxed and cast
into a Constrained Markov Decision Problem (CMDP), which
we solve using a Lagrangian approach and Linear Programming.
Inspired by this solution for the relaxed problem, we propose a
practical cache updating strategy that meets all the constraints
of the original problem. Under certain assumptions, the practical
updating strategy is shown to be optimal for the original problem
in the asymptotic regime of a large number of files. For a finite
number of files, we show the gain of our practical updating
strategy over the traditional square-root-law strategy (which is
optimal for fixed non time-varying file popularities) through
numerical simulations.

I. INTRODUCTION AND PROBLEM STATEMENT

Consider a local cache connected by a capacity-constrained
link to a remote network server, as shown in Figure 1. The
server stores IV time-sensitive files that change in a continuous
manner. The local cache maintains a copy of each file, and,
upon request, sends the copy to a local user. By the capacity-
constrained link from the local cache to the server, the cache
cannot maintain the latest version of each item, and the copy
it sends to the user can be outdated. The goal of our study
is to measure the freshness of the copies sent to the users
in terms of their age of information (Aol), and to propose a
cache updating strategy that minimizes the average Aol of the
downloaded copies. Our main focus is on a setup where the
popularities of the various files vary over time.

Existing works for cache updating with time-sensitive files
and time-varying environments mainly aim at minimizing the
average Aol when channel states change randomly [1], [2],
energy arrivals are random [3], or packet arrivals are random
[4]. A few works consider time-varying popularities for cache
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Fig. 1. Local cache system.

updating, e.g., [5]-[7]. Similar to our work, [5], [6] propose
policies for downloading files to a local cache over a capacity-
limited link, but their figure of merit is not the Aol. Only [7]
considers both time-varying popularities and Aol.

Nevertheless the setting in [7] differs from ours in that in [7]:
i) the cache (as opposed to the server-cache link) is capacity-
limited; ii) the goal is to minimize the missed-files probability
in the cache (as opposed to the average Aol), iii) the current
popularity value depends on the past requests weighted by
their Aol (as opposed to being determined by a stationary
Markov chain independent of the files’ Aol as assumed in this
paper); and finally iv) the considered Aol is different from ours
since their age is defined as the request rate within a given
time-interval.

Our paper can actually be regarded as an extension of our
previous work [8] to time-varying file popularities. It is also
related to [9], which extended [8] to variable update durations.

We now explain our model in more detail. Consider the
system in Fig. 1, which comprises a remote server holding N
files n =1,..., N that are subject to version updates, a local
cache downloading the latest versions through a bandwidth
limited network, and users requesting files from the local
cache. In each time slot ¢ € {1,...,T}, the local cache can
download the current version of no more than M files from the
remote server due to the bandwidth constraint. For each file
ne{l,...,N}, let {un,} € {0,1} be the download decision
at time ¢, i.e., u,, = 1, if file n is downloaded at time ¢, and
Up,¢ = 0 otherwise. The bandwidth constraint requires that

N
> tps <M, V. (1)
n=1

We denote by X, ; the Aol of file n in slot ¢, i.e., the
number of slots that have passed since the local cache has
downloaded file n. For convenience of exposition, we assume
that all the files in the local cache are updated at time one so
that X,, 1 = 1, Vn. Afterwards for ¢ > 1, the Aol evolves as

1
Xpip1 =4
o {Xn,t +1,

n,t — 1;
ot ®)

Un,t = 0.
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In each slot ¢, the number of requests for file n depends on
its current popularity mode R, ; € R := {1,--- , R}, where
R > 0. The expected number of requests of file n is determined
by a function w, : R — R, so that the expected number of
requests for file n at time slot ¢ is given by w,(Ry ) > 0.
It is assumed that for each file n, the sequence {R,}7_;
evolves according to an R-state Markov chain with transition
probabilities P, := Pr(R, 41 =1'|Ry = 1) for (r,7') €
R2.

Let IT be a set of (cache updating) strategies, such that
the design of the downloading decisions {u,, .} at slot ¢ only
depend on the current and past popularity modes {R,, ; }-<;
and Aols {X,, ;}-<¢ as well as on the statistics {P,, }. The
future popularity modes {R,, ; } - cannot be used. The goal
in this article is to design a strategy 7 € II that minimizes
the expected total Aol of all requested files averaged over an
infinite-time horizon. The corresponding optimization problem
can be written as:

Problem 1 (Original problem):

T N
N . 1
" = argmin lim Er T;Z:lwn(Rn,t)Xn,t ., (3a)

N
St Uny <M, Vi (3b)
n=1

Problem 1 can be cast into a Markov Decision Process
(MDP) where the state contains both the current Aols X; =
[ X1, ,Xn4)T and popularities Ry = [Ry -, Rn4]T
of all the files, and Eq. (3b) can be cast as a constraint on the
action space A := {uy| ZT]:/:I Up, < M}. The cardinality of
the action space A of this MDP grows exponentially in M,
and thus even for moderate values of M its solution cannot
be found using standard algorithms such as Relative Value
Iteration [10].

We therefore slightly relax the hard bandwidth-constraint
(3b) and derive an optimal solution for the relaxed optimization
problem, see solution 7%, to Problem 2 in Section II. Motivated
by this solution, in Section II-D we propose a practical updating
strategy 7= which satisfies the original constraint (3b). In Section
ITI, we prove that, under mild conditions, the strategy 7 is

optimal for Problem 1 when N goes to infinity for a fixed N/M.

Numerical illustrations are provided in Section IV. Concluding
remarks are drawn in Section V.

II. PROBLEM RESOLUTION

A. Relaxed problem description

Similarly to [2], [4], [8], [11], [12], we relax Constraint (3b)
into an expected infinite-time horizon constraint. This leads to
the following relaxed optimization problem:

Problem 2 (Relaxed problem):

T N
ES . . 1
7wk = argmin lim En T;;wn(Rnt)Xn,t] . (4a)
1 T N
st. lim Er T;;um < M. (4b)

Problem 2 can be cast into the framework of Constrained
Markov Decision Processes (CMDP) [13]. Its action space
however is even larger than that of Problem 1. What makes
Problem 2 tractable is that it can be decoupled into independent
sub-problems with smaller action spaces, as we now explain.

The CMDP associated with Problem 2 is a countable-state
CMDP with finite set of actions. Consequently, [14] asserts
that Problem 2 can be solved, and that the optimal policy 7%
can be determined by introducing the Lagrangian function

L(m, W) = )
1 T N
Th_I}l’éo ]Eﬂ- T ; ; (wn<Rn7t)Xn,t + Wunﬂf) -WM|.

associated with the cost function (4a) and the constraint (4b).

In the remainder of this subsection and the next-following
Subsection II-B, we minimize the Lagrangian for a fixed value
of W. In Subsection II-C we then determine the appropriate
value(s) of W which lead to the solution of Problem 2.

To minimize the Lagrangian for a fixed value W, we first
notice that Eq. (5) is separable over the various files. This is
easier to see after swapping the order of the summations over
t and n in Eq. (5) (the order can be swapped because the sum
over n is finite). As a consequence (see [15, Chapter 4] for
more details), the minimizing policy 7% (W) in (5) for given
W factorizes as

(W) = Q" (W), 6)

n,k

where 72" (W) denotes the solution to the following optimiza-
tion problem for file n only:
Problem 3 (per-File relaxed problem):

T (W)

[I>

Z (Wn(Rn,t)Xn,t + Wun,t) (7)

t=1

1
mell T—oo T

T
argmin lim E;

B. An algorithmic solution for Problem 3

We solve the optimization problem (7) for a fixed file
index n and Lagrange multiplier W. For simplicity, we omit
the subscript n. W is also omitted except when it appears in
a mapping expression.

Problem 3 can be cast into an MDP with a two-dimensional
state (X, R;), action u; € {0,1}, and instantaneous cost

C(Xt, Rt, Ut) = W(Rt)Xt + W'Ltt. (8)

According to Eq. (2), if u; = 1, the file is downloaded in slot ¢
and the Aol drops to 1 in the next slot; otherwise, the Aol
grows by 1. The state transition relationship thus is

PI'((Xt,Rt) — (I,T)) = PR“,,-, if Uy = 1,
PI'((Xt7Rt) — (Xt + 1,7")) = PR“,” if uy = 0.

(9a)
(9b)

Definition 1: A policy 7 is called stationary, if for each time
t and Aol-popularity-mode pair (X; = z, R; = r), the action
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u; = 1 is chosen with a probability ¢, , that only depends on
the Aol-popularity-mode pair (x,r) but not on the time ¢.

The next theorem states that the optimum solution 7%, is a
stationary policy with a specific threshold structure.

Theorem 1: There exists an optimal stationary policy 77

and a set of thresholds {7, },cr such that 7} downloads the
file with probability 1 in state r if z > 7, and it keeps idle
with probability 1 if x < 7,.
The proof is similar to [2, Lemma 1] but where instead of the
Aol and the channel quality, the Aol and the popularity mode
should be considered for the two-dimensional state. Many other
papers prove the optimality of threshold policies, but usually
with a one-dimensional state [4], [12].

By Theorem 1, there exists a stationary optimal policy such
that the Aol is bounded as X, ,x = max,cr 7, Where the
maximum exists because R is finite. Inspecting, (7), one sees in
particular that there must exist a stationary optimal (threshold)
policy with

Xmax < max

W+ w(r)
| 10

S|
where [.] is the ceiling operator. The term X, is finite because
w(r) > 0 and because R is finite. Above inequality (10) is
obtained by showing that for any policy violating (10), it is
possible to find an improved policy that in popularity state
R = r updates file n whenever its age X > W:i‘;’(r) Notice
that, in the following subsections, we will often write X (W)
instead of X,,;, to make the dependence on n and W explicit.

We can thus restrict to finding the optimal stationary policy
that solves the CMDP with a restricted finite state space
{1,..., Xu} x R. Different algorithms for finding such a
policy are described in [10]. In this paper, we resort to
the Linear Programming (LP) approach developed in [13],
and rewrite Problem 3 in terms of the two steady-state
distributions {y4} and {v,}. Here, u,, stands for the
steady-state probability of having Aol X = z and popularity
state [t = r, whereas the so called occupation measure v,
stands for the steady-state probability of simultaneously having
(X =z, R =r) and taking the “download action” u = 1. As a
consequence, the probability of updating a file for a given Aol
X = x and popularity state R = r equals £, , = Vg /g . We
set 0/0 = 1 by convention. But notice that this convention has
no effect on the solution of the optimization problem because
state (z,r) is reached with probability p, , = 0. With these
definitions, and because the cost w(r)x only depends on the
state and the constraint u is nonzero only for a single action,
we can apply [13, Theorem 4.3] to obtain:

Theorem 2 (Equivalent to Theorem 4.3 in [13]): Let Xup
be defined as in (10). The optimal stationary policy {&; ,.}z.r
solving Problem 3 is given by

*

==, (11)
13

where v, ,. and i ,. are obtained by the following LP problem:
Xub R
{/J’w T wr} _arg min }ZZ xﬂm T+WV1 T)
Ba,roVa,r rz=1r=1
(12a)
ub
Sty = Z Z Ve Por (12b)
rz=1r'=1
R
M, = Z(,Ufm—l,r’ - Vm—l,r’)Pr/,rvvx > 17 (12C)
=1
ub R
DD tar =1 (12d)
r=1r=1
Ver < Par (12¢)
0 < pigr,0 <y, Va1 (12)

Before going further, we have some remarks:

o As mentioned in [13, Theorem 4.3], any solution of the LP
described in Theorem 2 leads to a stationary optimal policy
through Eq. (11). Conversely, any stationary optimal policy
for Problem 3 is also a solution to Theorem 2.

o The set of constraints in the above-mentioned LP is just
a straightforward application of [13, Theorem 4.3] except
for Eq. (12e). This constraint has been added since the
LP is written with respect to the occupation measure and
the steady-state distribution (which is a sum of all the
occupation measures). So, by construction, v, , < fig ..

C. An algorithmic solution for Problem 2

In Section II-B, we described an LP approach to ob-
tain an optimal policy 7" (W) = {£} (or equivalently,
{uir (W), v (W)}e ) for Problem 3 for any file n and
Lagfange multiplier W. By Eq. (6), the product of these
policies minimizes the Lagrangian function in Eq. (5) for
the given multiplier W. So, at each time ¢, for given Aol
vector (X1 4,...,Xn) = [21,-- , 2] and popularity vector
(Rit,...,Rny) = [r1,--- ,rn], the optimal policy 7} (V)
that minimizes the Lagrangian (5) for parameter W updates
each file n independently of all the other files with probability

Var.rn (W)
o, (W) = Joiage.

Tn 771(

on downloading files in this optimal policy is

The average proportion of time spent

N X3H(W) R

Z Z Z Vn * (13)
and the expected average Aol
N X5 (W)
£ Z Z Zw )y (W). (14)
=1 z=1 r=1

Thus, for a given Lagrange multiplier W and the optimal
stationary policy m}.(W), the Lagrangian in (5) can be
compactly written as:

L(75(W), W) =a*(W)+Wd* (W) - MW.  (15)

Authorized licensed use limited to: Rutgers University. Downloaded on July 24,2021 at 21:07:24 UTC from IEEE Xplore. Restrictions apply.



2020 IEEE Information Theory Workshop (ITW)

It remains to find optimal value of W. As in [16], notice that
for each W and any policy 7:

a*(W) + Wd* (W) = MW < an + Wdx — MW,  (16)

where a, and d. denote the average proportion of time spent
on downloading files and the expected average Aol under policy
7. By (16), if for some W the constraint d*(W) = M, then
it has the smallest expected Aol a*(W) among all policies
respecting constraint d,, < M. Since d*(W) is non-increasing
in W [16, Lemma 3.3], if the desired value of W above exists,

it coincides with

W* & inf{W|d*(W) < M}. A7)

In this case, the optimal policy for Problem 2 is given by
T = 7R (W*).

In case W +— d*(W) is discontinuous around W*, then we
need to define two intermediate policies as follows. We recall
that policy 75 (W) is a finite product of policies 75" (W),
each defined by the finite set {&37(W)}hico<xn (w).rer-
When we consider W € [0, W*], according to (10), we can
define X7, | = maxyyejo,w+) X, (W). We now consider the
zero-padded set {37 (W) }i<o<x,, . rer- As each &7 (W)
is bounded by 1, there exists a subsequence {Wis,}r>1
left-converging to W* s.t. £" s = iMoo gg;:(Wls,g)
exists. Similarly, by considering W larger than W* and
Xibes = maxy ey 7 Xop (W), there exists a subse-
quence {Wys}e>1 right-converging to W* s.t. £ o =
limg o0 €5 (Wis, ) exists. Consequently, with an abuse of
notation (we do not mention the selected subsequences anymore
as well as the integer index ¢), we can define

T 1= lim (W) (18)
and
Thrs i= liIVI[lf* 5 (W). (19)

Notice that 73, and 7p,, may depend on the selected
subsequence but this has no impact on the final result of
this subsection.

As the mapping 7 — d is continuous, the following limits
exist:

dys = WhTHI/Il/ drr (W) (20)
and
des = ‘/Vlinﬂl/* dﬂ'}(W) (21

According to (16), see [16, Theorem 4.4] and [14] for details,
the following mixed policy is optimal

Tr*R = )\ﬂ-},ls + (1 - A)”},rs? (22)

with M_d
A= 23
dls - drs ( )

Notice that the mixed policy in Eq. (22) means that at time
t =0, each of the two pure policies 7}, and 7 is chosen
with probability A and 1 — ). The selected policy is then played

until the end of the process in slot ¢ = 7T'. Such a policy is
obviously not stationary, and moreover, Constraint (4b) is not
necessarily satisfied for all realizations of the decision process.
An optimal stationary policy for Problem 2 can however easily
be found based on 7% given above. The idea is to define the
new steady-state probabilites and occupation measures

[N D VT VD Tic 24)
S D VS (BN 7 (25)

where {117\, v, wrst and {pok vk} denote the steady-
state probablhtles ‘and the occupation measures associated with
the policies 7y and 7y, respectively. Consider now the
corresponding stationary policy 75, which updates at each time
t the ﬁle n _independently of all other files with a probablhty

cn,x A

o = ﬁw, if X, =« and R, ; = r. By setting Xub =

max (X[ 1, X[, ), one can show this policy achieves the
following average Aol

N X, R
DD D walvi F - N 26)
n=1gz=1r=1
and the following average downloading time
N X, R
SN S =N =M @)

n=1z=1r=1

Consequently, this policy offers the same Aol as the mixed
policy 7% and satisfies the constraint, and is thus optimal.

D. An algorithmic solution for Problem 1

For our original Problem 1, we propose a (sub-optimal)
policy 7 that behaves as the policy 7}, derived above, except
that at time-instances ¢ where 75 downloads more than M
files, 7 randomly choose M files among those that were to be
updated by strategy 5.

III. OPTIMALITY IN AN ASYMPTOTIC REGIME

As shown in the following theorem, for NV /M fixed and
N — oo, the Aol of the practical policy 7 defined in Section
II-D converges to the Aol of the optimal policy 7* that solves
the original Problem 1.

Theorem 3: Assume that the N files have the same popularity
statistics P, and the same expected number of requests given
a popularity mode w(r). Assume also a fixed ratio 6 := N/M
independent of N. Assume that the Markov chain induced by
policy 7}, is ergodic. The policy 7 defined in Section II-D is
then asymptotically optimal in the sense
Q7 — O~

i (28)
0=N/M

=0,

A+

where 7v* is the optimal policy for Problem 1.

Proof: Omitted for space limitation. See [17]. |

Notice that the condition of ergodicity for the Markov chain

is mild here since the randomness of the popularity mode may

lead to aperiodic and positive recurrent states for the Markov

chain induced by 7.
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Theorem 3 can easily be extended to the case of a finite
number of classes of users, where a class is formed by all the
users with the same popularity statistics and the same expected
number of requests given a popularity mode w(r). The setup
in Theorem 3 corresponds to a single class.

IV. NUMERICAL RESULTS

We consider two popularity modes R = {1, 2} such that for
some ¢ € (0, 1) all files n have following transition matrix

n q
Pl
The expected number of requests of file n in the two states
is wy(1) = 0.2, and w,(2) = 1.8wW,, where W, x 1/n®
follows a Zipf distribution with coefficient @ = 1.5. Due to
Eq. (29), the steady-state probablity for both popularities are
identical, so w,, is the average number of requests for file n.
In Fig. 2, we plot the average Aol versus g with different
M and N = 64 for the proposed policy 7, the relaxed policy
7r, and the square-root law [8] designed with the average
popularity. Notice that the Aol obtained with the relaxed policy
7r is a lower bound. We also recall that the square-root law
does not take into account the time-varying characteristic of
the popularity mode.

1;‘1}, Yne{l,...,N}. (29

Average Aol performance as a function of ¢
=== Proposed I I I I

——sfm Lower Bound

Square root Law

M =38

Average Aol

M =16
I I

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Popularity transfer probability, ¢

Fig. 2. Aol vs g for different M and N = 64.

We first observe that the proposed policy achieves a better
Aol than the square-root law for any ¢ # 0.5. For ¢ = 0.5 the
current popularity mode does not provide any information on
the next one, therefore the proposed policy provides marginal
gain. When ¢ deviates more from 0.5, the gain becomes larger
since the future popularity mode is better predicted and it
is thus more important to take it into account. Moreover, the
square-root law does not depend on q since the average number
of requests over infinite horizon does not depend on ¢ in our
simulations. We further observe that when M increases, the
Aol decreases since more updates can be done. Finally, the
gap between the proposed policy and the relaxed one (which
does not satisfy the hard constraint (1)) slightly depend on q.

V. CONCLUSION

The paper formulates a cache updating problem that aims
to minimize the average Aol of the requested files under a
bandwidth constraint on the server-cache link and assuming
time-varying file popularities. We relaxed the hard bandwidth
constraint and formulated the problem as a Constrained Markov
Decision Process, which we then decoupled and solved through
Linear Programming. Inspired by this approach, we proposed
a practical updating strategy that satisfies the hard bandwidth
constraint, and we showed that the proposed strategy is
asymptotically optimal for a large number of files and under
certain assumptions. Numerical results showed that for a fixed
number of files the proposed strategy outperforms in many
configurations the square-root law policy previously proposed
for fixed popularities.
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