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We present a new mechanism for thermally produced dark matter, based on a semi-annihilation-like
process, ¥ + y + SM — y + SM, with intriguing consequences for the properties of dark matter. First, its
mass is low, <1 GeV (but =5 keV to avoid structure-formation constraints). Second, it is strongly
interacting, leading to kinetic equilibrium between the dark and visible sectors, avoiding the structure-
formation problems of y + y + y — y + y models. Third, in the 3 — 2 process, one dark matter particle is
consumed, giving the standard-model particle a monoenergetic recoil. We show that this new scenario is
presently allowed, which is surprising (perhaps a “minor miracle”). However, it can be systematically tested
by novel analyses in present and near-term experiments. In particular, the Co-SIMP model for thermal-relic

dark matter can explain the XENONIT excess.

DOI: 10.1103/PhysRevLett.125.131301

Introduction.—For dark matter (DM) models, thermal
production mechanisms are highly predictive frameworks
[1-3]. Charting possible realizations is important, as it
leads to insights that guide experimental efforts to fully test
particle dark matter. A thermal production process, if
confirmed experimentally, would provide a new probe of
the physical conditions of the early Universe.

The best studied thermal candidate is the weakly
interacting massive particle (WIMP) [4-8]. In the
simplest case, the annihilation cross section to all final
states is determined from the relic abundance as (ov) =
(2.2 x 10726 cm? s71)(0.12/Qpyh?) [9]. The “WIMP win-
dow” is defined by the smallest mass allowed by annihi-
lation constraints (20 GeV if neutrinos are neglected [10];
10 MeV if they are dominant [11]) and the largest mass
allowed by unitarity (150 TeV [12,13]).

It is important to consider other possibilities [14-25].
Recent work [18,25] has made the simple but ingenious
point that the process y +y +y — y +y is efficient in
the early Universe if the interactions are strong, setting the
relic abundance while involving only dark-matter processes,
hence the name strongly interacting massive particle (SIMP).
The observed DM abundance requires (o3,02,)Mpy ~
108 GeV~—3 [18,26]. Assuming a scaling behavior of
(0320%)) = /M3, implies an MeV-scale dark matter
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mass [18]. A dark matter sector that converts DM rest mass
into kinetic energy that is kinetically decoupled from the
standard model (SM) will heat itself up [27]. The DM free-
streaming length would then be too long, as the DM particles
would be too fast. To dissipate the heat into the SM sector and
to slow down the DM particles, an elastic SM-SIMP
interaction, y + SM — y + SM, has to be postulated [18].
However, in the mass range relevant for the SIMPs, it is hard
to do that without inducing new y 4+ y — y + y interactions
[25,28] that conflict with cluster observations [29-32]
(though there may be ways out [33-37]).

We take a different approach and suppose that the DM
decouples through y + y + SM — y + SM. Figure 1 shows
this number-changing interaction for the DM, which
also keeps it in kinetic equilibrium with the SM plasma,
avoiding overheating the DM. A Z; symmetry guarantees
DM stability and leads to the dominance of the above
interaction. As detailed below, what we call the Co-SIMP
mechanism leads to a dark-matter candidate with vastly
different properties and phenomenology from other thermal
relics. Despite the Co-SIMP’s low mass and strong
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FIG. 1. The Co-SIMP freezeout process, which also keeps DM
in kinetic equilibrium with the SM. This process gives novel
monoenergetic-recoil signals in detectors.
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interactions, it seems to have evaded all present constraints.
However, testing Co-SIMPs is within reach.

In the following, we define the Co-SIMP model, calcu-
late the corresponding freezeout process and its conse-
quences, then predict present-day signals based on Fig. 1,
as well as signals expected from loop-induced elastic
interactions, and conclude.

Co-SIMP interactions.—Given the Co-SIMP interaction
in Fig. 1, the dark sector must have a Z; symmetry (this
could be generalized to Zy with N > 3) to ensure DM
stability, similar to Ref. [15]. To prevent a WIMP-like
freezeout (y +y — y +SM+SM), we require Mpy <2Mgy.
Direct couplings to photons or neutrinos are prohibited to
avoid 2 — 3 processes such as y+y - y+v+vy. The
final state of the freezeout process is, for Mpy < Mgy, a
semirelativistic y and a nonrelativisitic SM particle. For the
lower mass bound, we take Mpy > 5 keV to avoid
structure-formation constraints [38,39]. More specific con-
straints are discussed below.

The Co-SIMP upper mass bound varies depending on the
DM interaction operator. For a leptophilic model, coupled
via Op = €,L57° | A?, we require Mpy S MeV. For a
nucleophilic model coupled via O, = iiny’/A?, O, =

P
pprd/ A2, or O, = 7% /A, we require Mpy < GeV. We
focus on the leptophilic and nucleophilic scenarios.
(A more exotic possibility arises if coupling to weak gauge
bosons via Oy = FlyF""y* /A3, or top quarks only, is
allowed, in which case the DM mass can be as large as
~100 GeV. In the case of coupling to W bosons, a
particular construction of the UV completion is required
in order to avoid direct photon couplings).

Our focus is on defining a new framework for thermal
DM,; see the Supplemental Material [40] for further explo-
ration of constraints, as well as possible UV completions,
which are crucial for investigating Co-SIMP interactions at
colliders and other high-energy environments.

Co-SIMP  freezeout.—The Boltzmann equation for
freezeout via y + y + SM — y + SM is

2
H(T)zYly, = — pm  "pwm
s Upy = —T32\ > -
DM,eq 'DM.eq

= <G32 Ur231> (nzDM - nDMnDM,eq)nSM.eq- ( 1)

The space-time interaction density is approximated as y3, ~
(032V7) NP eqMisMeq N the nonrelativistic regime. The

Hubble rate is H(T) and s the entropy density. Defining
= MDM/T and Y{)M = dYDM/dZ,

A
Yi)M = _%(YZDM - YDMYDM,eq)- (2)

The dimensionless quantities are

2 \2
o= (3 ) IS

with Ypy = npu/s, Yo = noy /s being the symmetric
SM particle abundance, and 7 the baryon-to-photon ratio.
Application of the boundary-layer method [26,98] yields
the asymptotic relic abundance

The freezeout temperature is defined by z;, =~ logis, —
5/2log zs, — 1.65, which gives z;, ~10. Note the
dependence of the interaction factor on v2,, which results
from an incoming flux of two particles on target. At leading
order, in exothermic processes o3,v%; ~ const [17]. The
loop-induced process yy — y -+ 2y is subdominant over the
Co-SIMP parameter space (its impact in the late universe is
discussed in the Supplemental Material [40]).

The relic density is Qpy ~ Ypm(00)MprmSo/ Peric- FOr
the typical case, Mpy < Mgy, the cross section of the

number-changing interaction is

107\ /MeV\3/ 0.12
0302 )0 R 1012< )( > ( ) GeV3.
< 32 rel>f.. n MDM QDMhz
(5)

For the edge case, Mpy =~ Mgy, the decoupling of
Co-SIMP interactions takes place at higher temperatures,
such that the Co-SIMP freezeout happens dominantly
through interactions with the symmetric component of
the SM particle bath, leading to

10MeV\3/ 0.12
Mpm Qpvh?

(032071) 1.0, %5 X 10 ( ) GeV™>. (6)
These are the central predictions of the new Co-SIMP
thermal production mechanism.

Considerations related to light-element dissociation
during big bang nucleosynthesis (BBN) [99-101] do not
constrain Co-SIMPs, because the energy released into SM
particles is much smaller than for WIMP freezeout.
However, in the leptophilic case, because the Co-SIMP
can have Mpy < m,, the number of relativistic degrees of
freedom N is affected, in fact being reduced from the
standard value. We discuss this in detail in the Supplemental
Material [40], considering both BBN and cosmic microwave
background (CMB) observations. Because of this negative
contribution, if experiments find a Co-SIMP with a small
mass, it would indicate a complex early history. For
example, a cancellation with a positive contribution to
AN, could take place to explain the current data, which
are consistent with AN ¢ =~ 0 [102].

In the nucleophilic case, the Co-SIMP masses are above
the MeV scale, so that BBN observables and AN are not
affected.

Testing the Co-SIMP process.—Strikingly, the Co-SIMP
freezeout process (y+y+SM — y+SM) happens directly
in detectors with a significant rate, unlike for WIMPs
(x +x = SM + SM) [103]. This is possible because of the

131301-2



PHYSICAL REVIEW LETTERS 125, 131301 (2020)

strong DM interactions, the high DM density due to the low
DM mass, and the high SM density of ordinary materials.

The 3 — 2 process produces energetic SM particles in a
detector, like WIMP direct detection, but with important
differences. First, the kinetic energy of the SM particle,
provided by the consumption of one DM particle, is
monoenergetic. This follows directly from the fact that
in the CM frame, the outgoing particles have equal
momenta. The SM recoil energy is

N 3Miy(Mpy + 2Msw) (3Mpy + 2Msy)
R ~
8Msm(2Mpy + Msy)?

. ()

which reduces to Eg ~3/2M%,, /Mgy (note Ex << Mpy)
for the typical case, Mpy < Mgy, and to Ep = 5/8Mpy
for the edge case, Mpy; & 2Mgy;- The kinetic energy of the
incoming DM particle is negligible in this reaction. Second,
though the kinetic energy of the SM particle will be at most
barely relativistic, it can be well above the energy produced
by a recoiling WIMP of comparable mass. For the WIMP
case, the recoil energy is Eg ~ 2v*u*/Mgy;, with u being
the reduced mass [104], which is a factor v2 ~ 106 smaller
than for the Co-SIMP case. Those two points make for a
signal that could stand out from backgrounds. (Other
scenarios with large energy deposits involve DM deexci-
tation [105-109].) Third, even if elastic scatterings in the
detector overburden slow the Co-SIMPs down, the
expected signal spectrum shape is unaltered because it
depends on the loss of DM rest mass, not kinetic energy.
The event rate per detector volume is

R
_ K 24,2
Y32 = ve (032V51) oMM

- 0.8 nsm 0.1 MeV 2 <6321}Eel>
~ m3day \N,cm™ Mpym 10'© Gev~— )’
(8)

where ngy; and npy; are the SM and DM number densities,
N, is the Avogadro number, and we use the observed DM
mass density.

Figure 2 shows the monoenergetic spectrum in
XENONIT caused by the leptophilic Co-SIMP process.
We include energy resolution, which is 3.5% in this energy
range [110]. Superposed are their measured electron recoil
data. This shows that a bump hunt could be highly efficient
for testing the Co-SIMP scenario.

Figure 3 shows the Co-SIMP parameter space, including
current constraints. For the Borexino experiment [111], we
convolve the predicted signal with the energy resolution
and compare it to the measured data in Ref. [112]. The
uncertainty scale is set by the square root of the number of
measured events in a bin of width somewhat larger than
the energy resolution. This is appropriate because the
backgrounds are well modeled. For XENONIT, we have
an analogous procedure. We use data from their double
electron capture (DEC) search [110] and their S2-only light

5100 " Mpm =250 keV
o : (T32vrel.?) = 4 x 107 GeV ™
< o - y
R~ = [ o”“ "o b
|> 102k ¢ 0yt b wM" LA
2 E i iy fy P AR E
0 50 100 150 200

Energy [keV]

FIG. 2. Monoenergetic electron recoil spectrum caused by the
Co-SIMP process for Mpy = 250 keV (hence E = 101 keV),
including energy resolution, compared to XENONIT data. For
better visibility, (63,v%,) is chosen so that the signal is 10 times

greater than needed for a 90% C.L. exclusion (1.280).

DM search [113]. At intermediate energies, we use data
from their electron recoil study [114], conservatively
requiring that the signal be less than the measured events
in a bin because the background analysis is still prelimi-
nary. (In the Supplemental Material [40], we repeat the
analysis taking into account the xenon orbital effects, which
weakens the bounds somewhat for low Co-SIMP masses).

Figure 3 also shows the projected sensitivity for 1 ton-yr
of XENONIT, assuming a dedicated line search, with
well-modeled backgrounds, in their entire electron recoil
energy range. Similarly, we show the sensitivity of the
proposed DARWIN experiment in 200 ton-yr [115]. Other
relevant experiments to search for the Co-SIMP process are
KamLAND [116] and JUNO [117].

Figure 4 shows the parameter space for the nucleophilic
scenario. It is challenging to test the nucleophilic Co-SIMP
process directly in large volume detectors due to lower
event rates at larger DM masses. However, loop-induced
elastic interactions, discussed below, are efficient for testing
nucleophilic interactions.

Elastic interactions.—Figure 5 shows that an elastic Co-
SIMP scattering process is induced at the two-loop level:
SM + y — SM + y. Given, for example, the electrophilic
O, interaction operator, the induced coupling coefficient c¢
of the interaction yyee can be computed. After performing
the top loop integral, one obtains the following expression
(with x = /1 — 4M%,,/k*), which is regularized with a
cutoff at the scale A and analytically approximated, with
Mg\ being the mass of the propagating electron:

o — Mgy / d*k log x+1 x
¢ (4n)’A* ) (2n)* x—1)\k* - M3y
M M3 A? + M
~ Siv[ 5 (1 - DZM) log< +2 SM). 9)
(@n)*A A aMDy,

To make connection to the freezeout process, we compute
the 3 — 2 cross section, given the electron Co-SIMP
coupling operator O,, following Ref. [17], and obtain

(63,02,) ~ V/3/(4nMpyA*). We can now express the loop
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FIG. 3. Current bounds and projected sensitivities for electro-
philic Co-SIMPs. The parameter space is largely open, despite the
low DM mass and strong couplings. The relic density at Mpy <
m, is affected by the baryon asymmetry, leading to a change of
the slope. We show bounds based on the Co-SIMP process in
detectors (colored regions), along with projected sensitivities
(dashed lines). A low-threshold detector based on superconduct-
ing aluminum could test nearly all the parameter space (white
dashed line). In the pink region, the relic density is too high; at its
boundary, it is correct.

coefficient as a function of the 3 — 2 cross section, which
yields (c4GeV) ~ 5 x 107/ Mpy{c3,02,) GeV*.  This
leads to DM-electron scattering cross sections of o§ ~
1077 cm? at Mpy~100 keV and o§ ~ 107 cm?  at
Mpy ~MeV. Those cross section values are currently
unconstrained by direct detection experiments, but are within
the reach of future experimental efforts [118-120].

Figure 3 shows the expected sensitivity of a low thresh-
old detector to the electrophilic scenario. An efficient
technology seems to be detectors based on superconducting
materials, for example, aluminum [121,122] (here with
1 kg-yr). Two other technologies for direct detection
experiments with a low energy threshold [119,120] are
discussed in the Supplemental Material [40].

Figure 4 shows current constraints on the nucleophilic
Co-SIMP scenario from a gram-scale cryogenic calorimeter
experiment [ 123]. In addition, we find that a detector based
on superfluid helium [124-126], could test a significant
fraction of the open parameter space, (here with 1 kg-yr and
a threshold of ~meV). For an EFT approach to superfluid
helium DM sensitivity see Refs. [127-129]. Other tech-
niques, based on polar materials [130,131] could provide
comparable sensitivity to nucleophilic Co-SIMPs; see
Ref. [132] for an overview of possible targets. The loop-

(032 Vie”) [GeV™]
=

103 \ y
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Y {4 2
1kg—yr == Oh” > 0.12
1? ‘-ﬁ—--f—z"’ .
1073 1072 107! 1
MDM [GCV]

FIG. 4. Current bounds and projected sensitivities for nucleo-
philic Co-SIMPs. The change in the relic abundance slope is now
related to the proton mass. Limits from the XENONIT experi-
ment constrain the Co-SIMP process directly (dark green region).
A detector based on superfluid helium could test a large fraction
of the currently viable parameter space (blue dashed line).

induced elastic cross section is computed analogously to
the leptophilic case, but where the larger mass increases the
numerator.

Other possible searches.—In the Supplemental Material
[40], we discuss a variety of other constraints on Co-SIMPs,
none of which are yet as strong and secure as those above.
The Co-SIMP process and loop-induced processes can
produce x-rays, but we find that the current sensitivities
of x-ray satellites [133,134] are insufficient to be competi-
tive with direct-detection searches. However, future
missions, such as Athena [135], will test relevant para-
meter space. A variant of the Co-SIMP process,
et + e = y+y+y, could cool supernovae and presu-
pernova stars [136,137], but its effectiveness is limited by an
accompanying opacity due to y + e — y + y + e. We esti-
mate the Co-SIMP self-scattering elastic cross section
induced at two loops, but we find that it is low in the
majority of the parameter space and consistent with

SM SM

FIG.5. Elastic dark matter scattering process with SM particles,
induced at the two-loop level.
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observations [29-32]. (However, in the nucleophilic sce-
nario, it seems to provide the strongest bound on Co-SIMPs
with low masses.) Finally, spectroscopy of SM bound states
[138] could test the Co-SIMP. Particularly, true muonium
[139,140], with a very compact wave function, would be
ideal to test the leptophilic scenario [141], once experimen-
tal observations can be performed.

Above, we focus on the most model-independent tests of
the Co-SIMP model, i.e., those most closely connected to
the Co-SIMP production mechanism and at comparable or
lower /s to freezeout. In future work, it would be
interesting to explore constraints from higher-energy inter-
actions, though this would require first specifying the UV
completion of our framework.

A key question is if or how Co-SIMPs are constrained by
collider missing-energy searches, which are generally quite
powerful [142—144]. Those searches will be ineffective if
the produced Co-SIMPs interact with cross sections larger
than ¢ ~ 10-30 cm? and thus do not lead to a missing
energy signature [145]. Thus, we estimate the
semielastic scattering cross section 6, ...y, . ¥ Mpy s/

(2567° A*) ~ \/sMpy(63,0%,)/ (647%+/3), where we used
the previously derived relation between the effective
operator scale and the interaction cross section. For
Mpy < m, this leads t0 0,4, 1 ~5x107%

VE,/(100 GeV) cm? and for Mpy & m, 10 6,4 oy yi R
1078, /E, /(100 GeV) ecm?. For the nucleophilic case, the
cross sections are about an order of magnitude larger since
/s is bigger. Thus, even if Co-SIMPs are copiously
produced, as expected, existing bounds do not apply,
and new analyses would be needed.

A related question concerns cosmic-ray interactions with
DM, as in Refs. [146—150], where large cross sections for
light dark matter were ruled out, at least under the
assumption of energy-independent elastic interactions
(see Ref. [150] for a model with energy dependence).
Constraints for Co-SIMPs will depend on the UV
completion, and are reserved for future work.

Conclusions.—It is of high importance to point out
thermal production mechanisms of DM, since they lead
to highly predictive models and could provide additional
information about the conditions of the early Universe. We
present a new possibility to thermally produce DM. The
new ingredient is that the production mechanism predicts
the cross section for a process that consumes one DM
particle and converts its rest mass into kinetic energy of the
catalyzing SM particle.

This mechanism leads to novel signatures, such as
through the Co-SIMP freezeout process occurring in
detectors, including large ones for neutrinos. At loop level,
an elastic scattering process is induced that can be tested in
conventional dark matter detectors. Large fractions of the
parameter space remain still untested but seem within reach

of future dark matter searches, especially through expected
sensitivity improvements in the coming years.
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