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We present a new mathematical model to investigate the transmission dynamics of
cholera under disease control measures that include education programs and water sani-
tation. The model incorporates the impact of education programs into the disease trans-
mission rates and that of water sanitation into the environmental pathogen dynamics.
We conduct a detailed analysis to the autonomous system of the model and establish
the local and global stabilities of its equilibria that characterize the threshold dynam-
ics of cholera. We then perform an optimal control study on the general model with
time-dependent controls and explore effective approaches to implement the education
programs and water sanitation while balancing their costs. Our analysis and simulation
highlight the complex interaction among the direct and indirect transmission pathways
of the disease, the intrinsic growth of the environmental pathogen and the impact of mul-
tiple control measures, and their roles in collectively shaping the transmission dynamics
of cholera.
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1. Introduction

Cholera is an old disease that has been recognized since the 1600s. Today, the world
is in the midst of the seventh recorded cholera pandemic, the longest one to date.1,2
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The disease is caused by the bacteria Vibrio cholerae and is contracted by ingesting
contaminated water or food. Modern technology has essentially eradicated cholera
from Europe and North America, but many developing countries still experience
serious outbreaks. Throughout the world, there are about 2.9 million cases and
95,000 deaths due to cholera per year according to the World Health Organization.3

Countries such as Yemen, Haiti, Zimbabwe, the DRC and areas of East Africa have
seen particularly large outbreaks recently.2 The reason for such cholera epidemics
is complicated and involves environmental, climatic and socioeconomic factors; e.g.,
droughts and famines that displace populations, heavy rain that leads to increased
contamination of water systems, and violent conflicts that lead to deterioration of
infrastructure.2,4 In general, countries and regions where access to clean drinking
water is not as prevalent are more likely to suffer from serious cholera outbreaks.

The recent spike in reported cholera cases and the persistence of cholera empha-
sizes the need for public health measures to control the disease. Common interven-
tion methods for cholera include, among others, rehydration therapy, vaccination,
and antibiotic treatment. For example, oral cholera vaccines based on killed whole
cells of Vibrio cholerae O1 and O139 have been successfully deployed in protecting
populations at high risk, and there is renewed interest in mass vaccination under
outbreak and emergency settings.5,6 Non-pharmaceutical interventions also play
an important role in reducing the disease morbidity and mortality. Water sanita-
tion, in particular, is essential in controlling the multiplication and growth of the
pathogenic bacteria in the aquatic environment and providing safe drinking water.

Meanwhile, employment of disease awareness programs is an effective approach
to educate the general public on the risk and severity of cholera, offer advice on the
prevention of the disease, and motivate people to make necessary changes of their
routine behavior so as to reduce the possibility of infection.7,8 Consequently, people
who are conscious of the infection risk will naturally avoid contacts with infected
individuals and ingestion of contaminated water/food in order to reduce exposure to
the causative pathogen.9 They may also attempt to adjust their routine schedules
in work, travel and recreation, to pay more attention to sanitation and hygiene
practice, and to receive vaccination or other preventive treatment, so as to protect
themselves and their family members.10,11 Such disease education programs can
be effectively implemented on site by health professionals, and augmented through
broadcasting by television, radio stations and social media, with the common goal
of communicating basic knowledge of the disease to the public and directing people
toward appropriate prevention and intervention strategies.12

Mathematical modeling is a useful tool to quantify, and better understand,
how control measures impact the transmission and spread of cholera. Several stud-
ies have recently been performed to incorporate control measures such as antibi-
otics, vaccination, water sanitation, and various other treatments into cholera mod-
els.13–16 Particularly, modeling and simulation have been conducted for the effects
of awareness programs on cholera transmission.17,18 In these studies, however, the
education programs are implemented without considering other disease control
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measures, and are mostly assumed to have constant strength throughout the disease
epidemic. From a practical point of view, the strength and duration of a disease
awareness program should depend on the disease prevalence as well as the available
resources, and would most likely vary with time. Consequently, the best way to
implement an education program would be determined by the interplay between
the demands and the costs of the program, and this constitutes an optimal control
problem. To our knowledge, such a detailed study for cholera dynamics involving the
education programs and other control measures have not been conducted thus far.

In addition, the growth of the pathogenic bacteria in the aquatic environment
is an important factor in shaping the overall pattern of cholera epidemics and
endemism. Earlier mathematical models assume that the bacterium Vibrio cholerae,
the causative agent for cholera, cannot sustain itself without the contribution of
human hosts.19,20 This assumption leads to a simple linear representation of the
environmental bacterial dynamics, with a positive term representing human contri-
bution and a negative term representing the natural removal of the bacteria. On the
other hand, several cholera models21–23 have incorporated nonlinear intrinsic growth
dynamics of the pathogenic bacteria, based on recent ecological findings that Vib-
rio cholerae indeed can independently survive and multiply in the environment,24,25

which leads to deeper understanding of the relationship between the environmental
bacterial dynamics and cholera transmission and spread among human hosts. How-
ever, some fundamental questions such as how the intrinsic growth of the bacteria
interact with cholera control measures, particularly the water sanitation, and how
such interaction impacts the disease incidence and prevalence, remain unanswered
at present.

Built on previous studies, this paper aims to conduct a detailed investigation on
cholera transmission dynamics, with an emphasis on the interplay among the intrin-
sic bacterial growth, the direct and indirect transmission routes, and the multiple
disease control measures including the education programs and water sanitation.
To that end, we propose a new mathematical model based on differential equations.
Our model incorporates both the direct, human-to-human route and the indirect,
environment-to-human route that characterize the dual transmission pathways of
cholera.4,26 We represent the impact of the education programs through the variable
transmission rates, which are decreasing when the disease prevalence and bacterial
concentration are increasing. Our model also includes a time-dependent function
representing the impact of water sanitation. Meanwhile, the intrinsic dynamics of
the bacteria are described by a logistic growth model. We conduct a rigorous anal-
ysis on the autonomous system of this model, and establish the local and global
dynamics of its equilibria characterizing the threshold for disease eradication and
persistence. We then perform an optimal control study on the general model with
time-dependent controls and explore the most effective means to implement the
education programs and water sanitation while balancing the costs of these control
measures.
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We organize the remainder of this paper as follows. We present the model formu-
lation in Sec. 2, analyze the autonomous system in Sec. 3, and perform the optimal
control study in Sec. 4. We conclude the paper with some discussion in Sec. 5.

2. Cholera Model

To describe the transmission dynamics of cholera under disease control measures,
we consider the following system of differential equations:

dS

dt
= µN − β1(I, t)SI − β2(B, t)

SB

κ + B
− µS,

dI

dt
= β1(I, t)SI + β2(B, t)

SB

κ + B
− (γ + µ)I,

dR

dt
= γI − µR,

dB

dt
= rB

(
1 − B

K

)
+ ξI − δ(t)B,

(2.1)

where S, I and R are the numbers of susceptible, infected and recovered individuals,
respectively, and B is the concentration of the cholera bacteria in the environment.
We assume that the total population, N = S + I + R is a constant and µ is
both the natural birth and natural death rate. All newborns enter the susceptible
class. Susceptible individuals contract the disease from two transmission routes;
the direct (human-to-human) and indirect (environment-to-human) transmission
rates are described by the the functions β1(I, t) and β2(B, t), respectively. To rep-
resent the impact of disease awareness programs, we assume that these functions
are decreasing functions in I and B, respectively. This is because, as people become
more educated about the risks that can lead to cholera infection, they would ide-
ally begin to reduce contact with infected people and avoid ingesting contaminated
water and food. We assume that the indirect transmission is subject to a saturat-
ing effect of the environmental bacteria with the parameter κ representing the half
saturation rate. Additionally, the recovery rate from cholera is denoted by γ.

The concentration of the environmental bacteria is described by a logistic growth
model with the intrinsic growth rate r and the carrying capacity K. The parameter
ξ represents the shedding rate of bacteria from infected individuals back into the
environment. Another control is incorporated into the model with the function δ(t),
which represents the rate of removal of the bacteria due to water sanitation.

To make biological sense, we assume that the three functions β1(I, t), β2(B, t)
and δ(t) are positive, bounded, and differentiable. Meanwhile, let B = BM be the
positive root of rB(1 − B

K ) + ξN = 0; i.e.,

BM =
K +

√
K2 + 4ξKN/r

2
.
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It is then straightforward to verify that the following biologically feasible domain

Ω =
{
(S, I, R, B) ∈ R4

+ |S + I + R = N, B ≤ BM

}

is positively invariant for the vector flows of system (2.1).

3. Equilibrium Analysis

The model in Eq. (2.1) is a nonautonomous system and its analysis is difficult
in general. Instead, we start our investigation by considering the simplified model
where the three control functions are independent of time; i.e.,

β1(I, t) = β1(I) > 0, β2(B, t) = β2(B) > 0, δ(t) = δ > 0. (3.1)

Equation (3.1) indicates that the strength of the education programs only depends
on the disease prevalence and pathogen concentration, and the rate of water sanita-
tion is a constant throughout the time. Meanwhile, since β1 and β2 are decreasing
functions of I and B, respectively, we have

β′
1(I) ≤ 0, β′

2(B) ≤ 0. (3.2)

With the assumption (3.1), the model in (2.1) is reduced to an autonomous
system and we proceed to conduct an equilibrium analysis based on the basic
reproduction number, R0. Clearly, the disease-free equilibrium (DFE) of the sys-
tem is (N, 0, 0, 0). To find an expression for R0, we use the next-generation matrix
approach in Ref. 27. This process begins with separating the equations for the infec-
tion compartments I and B into two vectors, the first one representing the rate of
new infection, and the second one representing the rate of transfer into and out of
the compartments. Thus, we have

⎡

⎢⎢⎣

dI

dt

dB

dt

⎤

⎥⎥⎦ = F̂ − V̂ =

⎡

⎢⎢⎢⎣

β1(I)SI + β2(B)
SB

κ + B

rB

(
1 − B

K

)
+ ξI

⎤

⎥⎥⎥⎦
−

[
(γ + µ)I

δB

]
.

From this, we obtain the Jacobians of F̂ and V̂ evaluated at the DFE,

F =

⎡

⎢⎣
β1(0)N

β2(0)N
κ

ξ r

⎤

⎥⎦ and V =

[
γ + µ 0

0 δ

]
,

which gives us the next-generation matrix as follows:

FV −1 =

⎡

⎢⎢⎣

β1(0)N
γ + µ

β2(0)N
δκ

ξ

γ + µ

r

δ

⎤

⎥⎥⎦.
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Then,

R0 = ρ(FV −1) =
1
2

⎛

⎝β1(0)N
γ + µ

+
r

δ
+

√(
β1(0)N
γ + µ

− r

δ

)2

+
4β2(0)Nξ

δκ(γ + µ)

⎞

⎠, (3.3)

where ρ denotes the spectral radius. Equation (3.3) clearly shows that R0 depends
on both the direct and indirect transmission routes, as well as the intrinsic growth
of the environmental bacteria. Specifically, let us define

Rh =
β1(0)N
γ + µ

, Re =

√
β2(0)Nξ

δκ(γ + µ)
, Rb =

r

δ
, (3.4)

where Rh and Re represent the contribution of the direct and indirect transmis-
sion modes, respectively, to the basic reproduction number, and Rb represents the
contribution of the intrinsic bacterial growth. The basic reproduction number for
the autonomous system of model (2.1) is shaped by these three major components.
Furthermore, it is straightforward to verify that

R0 > max
(
Rh, Re, Rb

)
. (3.5)

This shows that if the value of any of the three components (Rh, Re and Rb) is
higher than unity, it would yield R0 > 1. Biologically, this result implies that a
cholera epidemic can be triggered by any (or, a combination) of the three factors:
strong direct transmission, strong indirect transmission, and high bacterial growth.
In particular, if we regard R0 as a function of the intrinsic bacterial growth rate r,
then direct calculation yields

∂R0

∂r
=

1
2δ

⎡

⎣1 +
r
δ − β1(0)N

γ+µ√(β1(0)N
γ+µ − r

δ

)2 + 4β2(0)Nξ
δκ(γ+µ)

⎤

⎦ > 0,

indicating that the infection risk, measured by the value of R0, increases monotoni-
cally with the bacterial growth rate. Our proposed disease control measures, includ-
ing the education programs and water sanitation, aim to weaken the strengths of
these three factors (direct and indirect transmissions, and bacterial growth) and
thus reduces the risk of cholera infection.

3.1. Disease-free equilibrium

Based on the standard theory of the next-generation matrices and basic reproduc-
tion numbers,27 we know that for R0 < 1, the DFE of the system is locally asymp-
totically stable and for R0 > 1, the DFE is unstable. We will, in fact, establish a
stronger result given below.

Theorem 3.1. The DFE of the autonomous system associated with model (2.1) is
globally asymptotically stable for R0 ≤ 1 and unstable otherwise.
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Proof. Let X = [I, B]T . We can verify that

X ′ ≤ (F − V )X. (3.6)

Indeed,

(F − V )X =

⎛

⎜⎝

⎡

⎢⎣
β1(0)N

β2(0)N
κ

ξ r

⎤

⎥⎦ −
[
γ + µ 0

0 δ

]⎞

⎟⎠

[
I

B

]

=

⎡

⎢⎣
β1(0)NI − (γ + µ)I +

β2(0)NB

κ

ξI + rB − δB

⎤

⎥⎦.

Using the facts that S ≤ N , (κ + B) ≥ κ, and rB(1 − B
K ) ≤ rB, it follows that the

inequality (3.6) holds.
Next, based on the inequality in (3.5) and some direct calculations, we can obtain

that u =
[ ξ

δ , R0 − β1(0)N
γ+µ

]
is a left positive eigenvector for V −1F corresponding to

the eigenvalue of R0. We then construct the Lyapunov function

L(t) = uV −1X(t).

From this, we have

L′ = uV −1X ′ ≤ uV −1(F − V )X = (uV −1F − uV −1V )X = (R0 − 1)uX.

To prove the global stability, we need to pay special attention to the set of points
that satisfy L′ = 0. We can break the discussion into three cases based on the value
of R0. Cases 1 and 2 show that the DFE is globally asymptotically stable when
R0 ≤ 1 and Case 3 shows that the DFE is unstable when R0 > 1.

Case 1. R0 < 1. In this case, L′ ≤ 0. To satisfy L′ = 0, it must be true that
uX = 0, thus X = 0 since u is positive. That means I = B = 0, which implies
that the largest invariance set for L′ = 0 is the singleton (N, 0, 0, 0); i.e., the DFE.
Hence, based on LaSalle’s invariance principle, the DFE is globally asymptotically
stable when R0 < 1.

Case 2: R0 = 1. In this case, by equating our expression of R0 to 1, we can do
some algebra to obtain

β2(0)ξ =
(γ + µ − β1(0)N)(δ − r)κ

N
, (3.7)

where γ + µ − β1(0)N > 0 and δ − r > 0 since R0 = 1 > max
{β1(0)N

γ+µ , r
δ

}
. Then,

L′ = 0 ⇒ uV −1X ′ = 0 ⇒ dI

dt
ξ +

dB

dt
(γ + µ − β1(0)N) = 0.
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Substituting the equations for dI
dt and dB

dt from our system (2.1), we obtain

ξβ1(0)I(S − N) + ξβ2(0)
SB

κ + B
+ (γ + µ − β1(0)N)

(
r − δ − rB

K

)
B = 0.

(3.8)

Substituting (3.7) into (3.8) yields

ξβ1(0)I(S − N) + B(γ + µ − β1(0)N)
(

(δ − r)
κ(S − N) − BN

N(κ + B)
− rB

K

)
= 0.

(3.9)

Since S ≤ N , we must have B = 0 and either S = N or I = 0 for equality (3.9)
to hold. Either way, this means that the largest invariance set of L′ = 0 is the
singleton (N, 0, 0, 0). Again, LaSalle’s invariance principle yields that the DFE is
globally asymptotically stable when R0 = 1.

Case 3. R0 > 1. In this case, by continuity, L′ will also be greater than 0 in some
neighborhood of the DFE. Then, by the Lyapunov Stability theorem, the DFE will
be unstable.

3.2. Endemic equilibrium

Next, we will turn our attention to a nontrivial equilibrium point. Such a point
would satisfy

µN = β1(I)SI + β2(B)
SB

κ + B
+ µS, (3.10)

(γ + µ)I = β1(I)SI + β2(B)
SB

κ + B
, (3.11)

0 = γI − µR, (3.12)

0 = rB

(
1 − B

K

)
+ ξI − δB. (3.13)

From Eq. (3.13), we can write I as a function of B as follows:

I(B) =
r

ξK
B2 +

δ − r

ξ
B. (3.14)

Note that for our system to have biological meaning, we only consider the case
when I and B are positive. We will consider two cases: when δ > r and when δ ≤ r.

First, when δ > r, the function I(B) is an increasing function for B > 0. We
can combine Eqs. (3.10) and (3.11) into one equation by substituting (γ + µ)I for
β1(I)SI + β2(B) SB

κ+B . This yields

S(B) = N − γ + µ

µ
I(B). (3.15)
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Since I(B) is an increasing function, S(B) is a decreasing function. Next, we rewrite
Eq. (3.11) so that everything is a function of B and obtain

(γ + µ)I(B) = β1(I(B))S(B)I(B) + β2(B)
S(B)B
κ + B

. (3.16)

Substituting Eq. (3.14) to Eq. (3.16), we can cancel B from both sides and rearrange
to obtain

β2(B)S(B)
(κ + B)

(
r

ξK B + δ−r
ξ

) + β1(I(B))S(B) = γ + µ. (3.17)

Now we determine whether there is a unique positive B that is a solution to this
equation. Denote the left-hand side of Eq. (3.17) by f(B). Then, f(B) is a decreas-
ing function, because we know β1(B), β2(B), and S(B) are decreasing and the
denominator is increasing and positive due to the assumption δ > r. Therefore, in
order to guarantee a unique solution, we must have f(0) > γ + µ; i.e.,

β2(0)ξN
κ(δ − r)

+ β1(0)N > γ + µ,

which is equivalent to the condition R0 > 1. To see this, we use our previous
expression for R0 and manipulate the algebra as follows:

R0 > 1 ⇔
(

β1(0)N
γ + µ

− r

δ

)2

+
4β2(0)Nξ

δκ(γ + µ)
>

(
2 − β1(0)N

γ + µ
− r

δ

)2

⇔ β2(0)Nξ

δκ(γ + µ)
> 1 − β1(0)N

γ + µ
− r

δ
+

β1(0)Nr

δ(γ + µ)

⇔ β2(0)ξN > δκ(γ + µ) − δκβ1(0)N − rκ(γ + µ) + β1(0)Nrκ

⇔ β2(0)ξN > κ(δ − r)(γ + µ − β1(0)N)

⇔ β2(0)ξN
κ(δ − r)

+ β1(0)N > γ + µ.

Next we consider the case when δ ≤ r. In this case, since we only consider when
I and B are greater than zero, I(B) will still be increasing for B > B1 where B1 is
the positive horizontal intercept of I(B). Then, the calculations from the previous
case will still hold. Thus, Eq. (3.17) and the observation that f(B) is decreasing
are still valid.

Observe that as B approaches B1 from the right, f(B) goes to infinity because
the denominator (κ + B)

(
r

ξK B + δ−r
ξ

)
approaches 0. On the other hand, based on

Eq. (3.15), there is a B2 > B1 such that S(B) ≤ 0 for B ≥ B2, which indicates
that f(B) ≤ 0 for B ≥ B2. Thus, δ ≤ r implies that there is a unique nontrivial
equilibrium B∗ ∈ (B1, B2). Lastly, note that δ ≤ r implies R0 > r

δ ≥ 1.
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Hence, the existence and uniqueness of the endemic equilibrium can be summa-
rized in the theorem below.

Theorem 3.2. The autonomous system associated with model (2.1) has a unique
endemic equilibrium if and only if R0 > 1.

We have conducted detailed stability analysis on this endemic equilibrium.
Regarding its local stability, we have the following theorem and the proof is provided
in Appendix A.

Theorem 3.3. When R0 > 1, the endemic equilibrium of the autonomous system
associated with model (2.1) is locally asymptotically stable provided that condition
(A.5) holds.

We have also analyzed the global asymptotical stability of the endemic equilib-
rium. We state the theorem below, with the proof given in Appendix B.

Theorem 3.4. When R0 > 1, the endemic equilibrium of the autonomous system
associated with model (2.1) is globally asymptotically stable in the interior of the
domain Ω if β1(0) ≤ γ

2N .

Note that β1(I) is assumed to be a decreasing function of I. Thus, the sufficient
condition β1(0) ≤ γ

2N in Theorem 3.4 provides an upper bound for the direction
transmission rate β1 to ensure the global asymptotical stability of the endemic
equilibrium.

4. Optimal Control

Through a detailed equilibrium analysis, we have resolved the main dynamics of the
simplified, autonomous system of our cholera model (2.1). Particularly, Theorems
3.1 and 3.4 establish R0 = 1 as a sharp threshold for disease eradication and disease
persistence. Now we consider the original, nonautonomous system (2.1) with time-
dependent functions β1(I, t), β2(B, t) and δ(t). These three functions are directly
related to the human-to-human transmission, the environment-to-human transmis-
sion, and the environmental bacterial growth, respectively. Per our discussion in the
previous section, the infection risk (measured by the basic reproduction number R0)
of the autonomous system is shaped by these three factors. Since the autonomous
system can be regarded as an approximation, in the time-average sense, of the time-
dependent system (2.1), it is natural to expect that these three components (direct
and indirect transmissions, and bacterial growth) also play a critical role for system
(2.1) and that a reduction in the strength of these components, represented by the
three functions β1(I, t), β2(B, t) and δ(t), respectively, would reduce the infection
risk.

As stated before, β1(I, t) and β2(B, t) represent the impact of education pro-
grams, whereas δ(t) describes the effect of water sanitation. We are interested in
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knowing how the changes of these functions with respect to time would impact
the disease transmission and spread. Meanwhile, since each of these disease con-
trol measures comes with a cost, we are also interested in seeing how the costs
of the control are factored into this process. Thus, the goal of our study on the
nonautonomous system (2.1) is to explore a way that the effects and the costs of
the disease control measures can best be balanced based on the functions β1(I, t),
β2(B, t) and δ(t). We achieve this goal through an optimal control study.

There are many ways to design biologically meaningful, time-dependent disease
control functions. In our model formulation, the direct transmission rate β1(I, t) is a
decreasing function of I, and the strength of the incorporated control measure would
naturally be inversely correlated to that of the direction transmission. Similarly, the
indirect transmission rate β2(B, t) is a decreasing function of B, and the strength
of the respective control measure would naturally be negatively correlated to that
of the indirection transmission. For a simple choice to reflect these properties, we
set the two transmission functions as

β1(I, t) = a1 − b1(t)I/N and β2(B, t) = a2 − b2(t)B/K,

where a1 and a2 are positive constants representing the upper bounds of the trans-
mission rates and b1(t) and b2(t) are time-dependent, nonnegative functions that
specify the impact of the education programs in reducing the disease transmission
rates. We study the system on a time interval [0, T ] with the control set

Γ =
{
(δ(t), b1(t), b2(t)) | 0 ≤ δ(t) ≤ δmax, 0 ≤ b1(t) ≤ a1, 0 ≤ b2(t) ≤ a2

}
. (4.1)

Our goal is to minimize the total number of infections and the costs of the controls
over the time period [0, T ]; i.e.,

min
(b1,b2,δ)∈Γ

∫ T

0

[
I(t) + c1b1(t)2 + c2b2(t)2 + c3δ(t)2

]
dt, (4.2)

where the positive constants ci, 1 ≤ i ≤ 3, are the costs parameters for the respective
education programs and water sanitation. These cost parameters serve as balancing
coefficients that transform the integral of the three control terms into the amount
of dollars in a practical sense. We have used quadratic terms to represent the costs,
which is common in optimal control studies.14,28,29

For the control set Γ, we note that it is closed and connected and the integrand
of (4.2) is convex. We also note that our model is linear in the control variables.
Based on the standard optimal control theorems,30,31 we obtain the following result.

Theorem 4.1. There exists (δ∗(t), b∗1(t), b∗2(t)) ∈ Γ such that the objective func-
tional in (4.2) is minimized.

Furthermore, the uniqueness of the optimal control solution is guaranteed for
small time period T due to the Lipschitz property of the model equations and
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the boundedness of the state variables.30 To determine the optimal control solu-
tion, Pontryagin’s Maximum/Minimum Principle31 provides a useful tool for con-
structing the optimal control system which is then numerically solved. This proce-
dure basically transfers the problem of minimizing (4.2) into one of minimizing the
Hamiltonian with respect to the controls.

As before, the fact that the total population size N remains constant allows us
to eliminate the equation for R. These equations of our original system (2.1) are
referred to as the state equations. We define the corresponding adjoint functions
as λS , λI , and λB . The Hamiltonian H is constructed by multiplying each adjoint
function with the right-hand side of its corresponding state equation, and adding
the integrand of the objective functional to the sum of these products. In this case,
we have

H = I(t) + c1b1(t)2 + c2b2(t)2 + c3δ(t)2

+ λS

(
µN −

(
β2(B, t)

B

κ + B
+ β1(I, t)I

)
S − µS

)

+ λI

((
β2(B, t)

B

κ + B
+ β1(I, t)I

)
S − (γ + µ)I

)

+ λB

(
rB

(
1 − B

K

)
+ ξI − δ(t)B

)
. (4.3)

To achieve the optimal control, the adjoint functions must satisfy

dλS

dt
= −dH

dS
,

dλI

dt
= −dH

dI
,

dλB

dt
= −dH

dB
.

That is

dλS

dt
= (λS − λI)

(
a2B

κ + B
− b2(t)B2

K(κ + B)
+ a1I − b1(t)

I2

N

)
+ µλS , (4.4)

dλI

dt
= −1 + (λS − λI)

(
a1S − 2b1(t)

IS

N

)
+ λI(γ + µ) − λBξ, (4.5)

dλB

dt
= (λS − λI)

a2κKS − b2(t)SB(2κ + B)
K(κ + B)2

+ λB

(
2rB

K
+ δ(t) − r

)
, (4.6)

with the final time conditions: λS(T ) = 0, λI(T ) = 0, and λB(T ) = 0. Meanwhile,
the optimal control is characterized by

δ∗(t) = max
[
0, min(δ̃(t), δmax)

]
, (4.7)

b∗1(t) = max
[
0, min(b̃1(t), a1)

]
, (4.8)

b∗2(t) = max
[
0, min(b̃2(t), a2)

]
, (4.9)
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where δ̃(t) = λBB
2c3

, b̃1(t) = (λI−λS)I2S
2c1N , and b̃2(t) = (λI−λS)B2S

2c2(κ+B)K come from the
conditions

∂H
∂δ

= 0,
∂H
∂b1

= 0,
∂H
∂b2

= 0,

respectively.
In short, this optimal control model consists of the state system (2.1) with its

initial conditions, the adjoint Eqs. (4.4)–(4.6) with the final conditions, and the
optimal controls characterized by (4.7)–(4.9). A numerical method is necessary to
solve these coupled equations. Since the state system has initial conditions, but the
adjoint system has final conditions, it is not possible to numerically solve the entire
system all at once. Instead, such a problem can be solved by applying the forward-
backward sweep method.28 This consists of solving the state system forward in time,
then solving the adjoint system backward in time, and then updating the control
functions. Each step uses the information gained from the preceding step, and the
process is repeated until it converges sufficiently. In our case, we use a fourth-order
Runge–Kutta method to compute the state and adjoint equations in each iteration.

The parameter values used in our simulation are listed in Table 1.
Figure 1 compares the infected population under two cases: with the optimal

control and without any control. Here, the number of infected individuals is relative
to the (normalized) total population N = 10,000. We assume that the costs for all
the three control measures are low and comparable to each other; for simplicity, we
set the cost parameters as c1 = c2 = c3 = 1. It is clear from the graph that when
the optimal control is implemented, the peak value of the infected population is
significantly reduced (approximately 30% reduction), and the number of infected
individuals eventually approaches zero, in contrast to the case without any control
where the infection persists at a positive level. Meanwhile, Fig. 1 also shows the
bacterial concentration with and without the optimal control. We see that when
there is no control, the bacterial concentration quickly increases and then stabilizes
at a high level. In contrast, when the optimal control is incorporated, the bacterial

Table 1.

Parameter Symbol Value Unit Source
Normalized total population N 10,000 person —
Natural human birth/death rate µ 6.3 × 10−5 1/day Ref. 13
Recovery rate γ 0.05 1/day Ref. 13
Half-saturation rate of bacteria κ 106 cell/ml Ref. 14
Carrying capacity of bacteria K 108 cell/ml Ref. 14
Bacterial intrinsic growth rate r 0.1 1/day —
Human shedding rate ξ 20 cell/ml/day Ref. 13
Cost parameter for education program b1 c1 varied dollar ·day ·person2 —
Cost parameter for education program b2 c2 varied dollar ·day —
Cost parameter for water sanitation δ c3 varied dollar ·day —
Upper bound of direct transmission rate a1 0.05 1/person/day Ref. 13
Upper bound of indirect transmission rate a2 0.2 1/day Ref. 13
Upper bound of water sanitation rate δmax 0.3 1/day —
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Fig. 1. Optimal control results with c1 = c2 = c3 = 1. Left: the infected population with and
without the optimal control; Right: the bacteria concentration with and without the optimal
control.

Fig. 2. Optimal control profiles with c1 = c2 = c3 = 1.

concentration sharply decreases to, and then remains at, a level very close to zero,
consistent with the observation that the disease prevalence approaches zero in the
long run.

The profiles of the optimal control functions are displayed in Fig. 2. We observe
that each optimal control starts at its maximum and stays at that level for a certain
period of time, a common pattern that has been observed in many optimal control
studies13–15,29; afterwards it starts decreasing and goes to zero eventually. For the
profile of b1(t), which is related to the human-to-human transmission, it stays at the
maximum level for about 100 days before decreasing, and this turning point seems
to be correlated to the time that the number of infected individuals is approaching
zero (see Fig. 1). For the profile of b2(t), which is related to the environment-to-
human transmission, it stays at its maximum for a much shorter period (about 25
days) before decreasing to zero, possibly due to the fact that the environmental
bacterial concentration quickly approaches a level very close to zero during the first
20–25 days (see Fig. 1). Additionally, for the profile of δ(t), which is related to
water sanitation, there is a significant transient period between the time it stays
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Fig. 3. Optimal control profiles with c1 = c2 = 10 and c3 = 0.1.

at the maximum and the time it decreases to zero. This transient period, where
the strength of water sanitation remains at a relatively high level, is needed to
ensure that the bacterial concentration stays at a very low level so that the disease
transmission risk is minimized.

It is natural to expect that when the costs of these control methods are changed,
the optimal control profiles will also change. Figure 3 shows the control profiles
where the costs of the education programs are increased by 10 times (compared to
the previous setting) while the cost of water sanitation is decreased by 10 times; i.e.,
c1 = c2 = 10 and c3 = 0.1. Compared to Fig. 2, we see that the lengths of time for
the maximum strength of the two education programs are both shortened, due to the
increased costs, whereas the period for the maximum strength of water sanitation
is extended because of the decreased cost. An opposite pattern is displayed in Fig. 4
where the costs of the education programs are decreased by 10 times and the cost
of water sanitation is increased by 10 times; i.e., c1 = c2 = 0.1 and c3 = 10. In
both figures, we see that the changes for the b2(t) profile are moderate, whereas the
b1(t) and δ(t) profiles are more sensitive to the costs and exhibit more significant
changes.

Fig. 4. Optimal control profiles with c1 = c2 = 0.1 and c3 = 10.
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Fig. 5. Optimal control results with c1 = 100, c2 = 500 and c3 = 1000. Left: infection population
with and without the optimal control; Right: bacteria population with and without the optimal
control.

Fig. 6. Optimal control profiles with c1 = 100, c2 = 500 and c3 = 1000.

In addition, if the costs of these control measures are prohibitively high, then the
disease control would have little impact on the reduction of the infected population
and the bacterial concentration. Figures 5 and 6 illustrate such a scenario where
c1 = 100, c2 = 500 and c3 = 1000. In this case, the optimal control solution tries to
adjust to the high costs by significantly reducing the strength and duration of the
control measures, leading to little or no improvement in terms of disease prevalence
and pathogen burden.

Finally, we have also tested the scenarios of applying one individual control at
a time. To do that, each time we set two of the three control variables, b1(t), b2(t)
and δ(t), to be identically zero so that only one control is effective in the model.
Then, we follow a similar procedure of optimal control analysis and simulation
for that single control and output the results. We find that generally the outcome
of a single optimal control is not as good as that from the optimal combination
of the three controls. For example, Fig. 7 illustrates a case where only the direct
transmission control b1(t) is implemented, with a low cost c1 = 1, and b2(t) =
δ(t) ≡ 0. We see that the peak value of the prevalence is reduced by approximately
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Fig. 7. Optimal control results with one single control b1(t) on the education program, where
c1 = 1. Left: the infected population with and without the optimal control; Right: the bacteria
concentration with and without the optimal control.

Fig. 8. Optimal control results with one single control δ(t) on the water sanitation, where c3 = 1.
Left: the infected population with and without the optimal control; Right: the bacteria concen-
tration with and without the optimal control.

15% with the optimal control, though the infection persists at the endemic level
in the long run. The bacterial concentration, as can be naturally expected, shows
almost no difference with or without this single control. Compared to Fig. 1, it is
clear that the impact of this single control is not as significant as that of the three
controls combined. Meanwhile, Fig. 8 shows a typical case where only the water
sanitation control δ(t) is implemented, with a low cost c3 = 1, and b1(t) = b2(t) ≡ 0.
We observe that the bacterial concentration quickly decays to 0, a pattern similar
to that in Fig. 1, but there is only a very minor improvement in reducing the
infection peak under this control. These results demonstrate that each individual
control targets a specific part of cholera transmission dynamics and that a strategic
combination of these three control measures generally achieves the best outcome.
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5. Conclusion

Cholera has become a threat to populations in developing countries, highlighting
the need for disease control or even eradication. In this paper, we have presented a
new mathematical model to investigate the transmission dynamics of cholera under
disease control measures that include education programs and water sanitation. The
inclusion of such controls provides a two-pronged approach, where the education
programs target the direct and indirect transmission rates while water sanitation
reduces the population growth of the environmental bacteria. We have conducted
a detailed equilibrium analysis and optimal control study on this model, and our
results indicate that water sanitation and public awareness programs are both fea-
sible intervention methods for reducing disease prevalence and controlling a cholera
epidemic.

Our study has incorporated the multiple transmission pathways (both the direct
and indirect routes), the multiple disease intervention methods (both the education
programs and water sanitation), and the environmental bacterial dynamics, into a
single cholera modeling framework. A focus of this paper is to explore the complex
interactions among the environment-to-human transmission route, the human-to-
human transmission route, and the intrinsic growth of the environmental pathogen,
and to understand how the disease awareness programs and water sanitation impact
these three critical components of cholera epidemics and reduce the transmission
and spread of cholera. In particular, our equilibrium analysis of the autonomous
system shows that the disease transmission risk, measured by the basic reproduction
number, is shaped by the interplay of the dual transmission pathways and the
intrinsic bacterial dynamics.

We have put an emphasis on the optimal control study of our cholera control
measures. Optimal control study has become an important part of mathematical
and computational epidemiology that can provide useful guidelines for designing
effective disease intervention strategies while balancing the costs of the control
measures. There are, however, relatively few studies devoted to the optimal control
of cholera, and no results have been published yet for the optimal implementa-
tion of the education programs and optimal combination of those programs and
other intervention methods such as water sanitation. This paper partially fills this
knowledge gap. Our simulation results show that the education programs and water
sanitation can effectively reduce the disease prevalence and environmental bacterial
concentration, that these control measures should start at their maximum strength
whenever resources allow in order to best control the disease, and that the cost fac-
tors play an important role in determining the optimal control profiles. Our results
also demonstrate that an optimal combination of these multiple control measures
generally achieves a better outcome than using a single control method. These find-
ings could provide useful guidelines to public health administrations in the design
of more effective prevention and intervention strategies for cholera.
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Overall, the analysis and simulation presented in this paper lead the way to
a deeper understanding of cholera transmission. Future work along this line could
incorporate other epidemiological, environmental and socioeconomic factors, such
as the age structure of the host population, the seasonal fluctuation of the disease
incidence, and the spatial heterogeneity of the pathogen and host settings, for an
improved modeling framework and for a more holistic study of cholera dynamics.
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Appendix A. Proof of Theorem 3.3

We use the Routh–Hurwitz criteria to show that the endemic equilibrium of the
autonomous system is locally asymptotically stable. The criteria provide simple
algebraic conditions that are necessary and sufficient for the stability of polynomials.
To apply this, start with the Jacobian of the system, evaluated at the endemic
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equilibrium X∗ = (S∗, I∗, R∗, B∗),

J =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−β1(I∗)I∗ −
β2(B∗)B∗

κ + B∗ − µ −a 0 −b

β1(I∗)I∗ +
β2(B∗)B∗

κ + B∗ a − (γ + µ) 0 b

0 γ −µ 0

0 ξ 0 r − δ − 2rB∗

K

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where

a = S∗β1(I∗) + S∗Iβ′
1(I

∗), b =
β2(B∗)S∗κ

(κ + B∗)2
+

β′
2(B∗)S∗B∗

(κ + B∗)
.

Then, the characteristic polynomial is det(λI − J) =

(λ + µ) det

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

−β1(I∗)I∗ −
β2(B∗)B∗

κ + B∗ − µ −a −b

β1(I∗)I∗ +
β2(B∗)B∗

κ + B∗ a − (γ + µ) b

0 ξ r − δ − 2rB∗

K

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

= (λ + µ)(λ3 + xλ2 + yλ + z),

where for ease of presentation, we write the entries of the above 3 × 3 matrix in a
general form

⎡

⎢⎢⎣

a11 a12 a13

a21 a22 a23

a31 a32 a33

⎤

⎥⎥⎦.

It follows that the value of x, y, z are

x = −(a11 + a22 + a33), (A.1)

y = a22a33 − ξa23 − a12a21 + a11(a22 + a33), (A.2)

z = ξ(a11a23 − a13a21) − a11a22a33 + a12a21a33. (A.3)

To satisfy the Routh–Hurwitz criteria for stability, we show that

x > 0, y > 0, z > 0, and xy > z.

Note that from Eq. (3.11), we have Sβ1(I∗) − (γ + µ) = −β2(B∗) S∗B∗

I∗(κ+B∗) . Then

a22 = −β2(B∗)
S∗B∗

κ + B∗ + S∗I∗β′
1(I

∗) < 0,
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since β2(B∗) > 0 and β′
1(I∗) ≤ 0. Similarly, based on Eq. (3.13), we can rewrite

r − δ to obtain

a33 = r − δ − 2rB∗

K
= − ξI

B∗ − rB∗

K
< 0.

It is obvious to see that a11 < 0. Therefore, we can conclude that

x = −(a11 + a22 + a33) > 0.

Next, we show that a11a22 − a12a21 > 0. To begin, rewrite a11 = −µN/S∗ and
a21 = (γ + µ)I∗/S∗. Then, a11a22 − a12a21

=
µN

S∗

(
β2(B∗)

S∗B∗

κ + B∗ − S∗I∗β′
1(I

∗)
)

+
(γ + µ)I∗

S∗ (S∗β1(I∗) + S∗I∗β′
1(I

∗))

= β2(B∗)
S∗B∗µN

S∗(κ + B∗)
+

(γ + µ)I∗S∗β1(I∗)
S∗ − µNI∗β′

1(I
∗) + I∗2(γ + µ)β′

1(I
∗)

= β2(B∗)
S∗B∗µN

S∗(κ + B∗)
+

(γ + µ)I∗S∗β1(I∗)
S∗ − β′

1(I
∗)I∗(µN − I∗(γ + µ))

= β2(B∗)
S∗B∗µN

S∗(κ + B∗)
+

(γ + µ)I∗S∗β1(I∗)
S∗ − β′

1(I
∗)I∗µS∗ > 0.

The last inequality comes from subtracting Eq. (3.11) from Eq. (3.10). Now, using
that a11a22 − a12a21 > 0, we can rewrite y as

y = A + ξ
β′

2(B∗)S∗B∗

(κ + B∗)
, (A.4)

where one can verify that A does not include the term β′
2(B).

To ensure that y > 0, we introduce another assumption

β′′
2(B) ≤ 2

κ
β′

2(B). (A.5)

This condition provides an additional regulation for the indirect transmission func-
tion β2(B) that connects its first and second derivatives. It can be regarded as
providing a lower bound for β′

2(B) so that β2(B) remains biologically meaningful.
In fact, Eq. (A.4) indicates that if β′

2(B) approaches negative infinity, y would also
be negative. Alternatively, condition (A.5) may be interpreted as setting an upper
bound for β′′

2 (B) such that it remains nonpositive (since β′
2(B) ≤ 0), to represent

possible saturation effects on the indirect transmission rate. Now, consider a Taylor
series expansion of β2 at 2B,

β2(2B) = β2(B) + Bβ′
2(B) +

B2

2
β′′

2 (B̃),
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where B̃ is between B and 2B. With condition (A.5), we obtain

B2

2
β′′

2 (B̃) ≤ B2

κ
β′

2(B̃) ≤ B2

κ
β′

2(B)

because β2(B) is a decreasing function and B < B̃. Based on this, we have

κβ2(B) + B(κ + B)β′
2(B) > κβ2(B) > 0,

which is equivalent to a23 > 0. It then follows that y > 0.
For z = ξ(a11a23 − a13a21)− a11a22a33 + a12a21a33, we know that ξa11a23 is the

only negative term in this equation, so we can show z > 0 by proving ξa11a23 −
a11a22a33 = a11(ξa23 − a33a22) > 0. Since a33 = r − δ − 2rB∗

K = − ξI∗

B∗ − rB∗

K < 0,
we can conclude that a33a22 − ξa23 > 0 by the following

(
−ξI∗

B∗ − rB∗

K

)
(S∗β′

1I
∗ + Sβ1 − (γ + µ)) − ξ

β2S∗κ

(κ + B∗)2

= −ξI∗
2

B
Sβ′

1 −
S∗β1ξI∗

B∗ +
ξ(γ + µ)I∗

B∗ − rB∗S∗β′
1I

∗

K
− rB∗S∗β1

K

+
rB∗(γ + µ)

K
− ξβ2S∗κ

(κ + B∗)2

= −ξI∗
2

B∗ S∗β′
1 −

S∗β1ξI∗

B∗ +
ξβ1S∗I∗

B∗ +
ξβ2S∗

(κ + B∗)
− rB∗S∗β′

1I
∗

K
− rB∗S∗β1

K

+
rB∗β1S∗

K
+

rB∗2β2S

I∗(κ + B∗)K
− ξβ2S∗κ

(κ + B∗)2

>

(
ξβ1S∗I∗

B∗ − ξβ1S∗I∗

B∗

)
+

(
ξβ2S∗

κ + B∗ − ξβ2S∗κ

(κ + B∗)2

)

+
(

rB∗β1S∗

K
− rB∗S∗β1

K

)

>
ξβ2S∗κ + ξβ2S∗B∗

(κ + B∗)2
− ξβ2S∗κ

(κ + B∗)2
> 0,

which implies that z > 0. Lastly, we want to show xy > z. We observe that

xy − z = (a11 + a22 + a33)[ξa23 − a33(a11 + a22)]

+ ξ(a21a13 − a11a23) + (a11 + a22)(a12a21 − a11a22). (A.6)

The last two terms are positive based on the former calculations. If the first term
a33(a11 +a22)− ξa23 > 0, then we can conclude that xy− z > 0. Note that we have
already proved that a33a22 − ξ β2S∗κ

(k+B∗)2 > 0, hence

a33(a11 + a22) − ξa23 ≥ a33a22 − ξa23 = a33a22 − ξ
β2S∗κ

(κ + B∗)2
− ξ

β′
2S

∗B∗

κ + B∗ > 0.

Therefore, it follows that xy > z. Consequently, the Routh–Hurwitz criteria yield
that the endemic equilibrium is locally asymptotically stable.
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Appendix B: Proof of Theorem 3.4

To show the global stability, we use the geometric approach by Li and Muldowney,32

which can be summarized in the following lemma.

Lemma B.1. Let dX
dt = f(X) be a dynamical system defined by a C1 function

f : D → Rn. Assume that D ⊂ Rn is simply connected and that there exists a
compact absorbing set K ⊂ D. Additionally, assume that X∗ is the only equilibrium
of the dynamical system in D. Then, X∗ is globally asymptotically stable in D
provided that

q̄2 = lim sup
t→∞

sup
X0∈K

1
t

∫ t

0
m(Q(X(s, X0)))ds < 0. (B.1)

Essentially, the condition q̄2 < 0 provides a Bendixson criterion in D. In the
above equation, m(A) is the Lozinskii measure of a matrix A with respect to a
matrix norm; i.e.,

m(A) = lim
h→0+

|I + hA|− 1
h

and Q is a function defined by Q = PfP−1 + PJ [2]P−1, where P (X) is a matrix-
valued C1 function in D, Pf is the entry-wise derivative of P along the direction of
f , and J [2] is the second additive compound matrix associated with the Jacobian
matrix of the system. Particularly, for a 3×3 matrix A =

[
aij

]
, the second additive

compound matrix is defined as

A[2] =

⎛

⎜⎜⎝

a11 + a22 a23 −a13

a32 a11 + a33 a12

−a31 a21 a22 + a33

⎞

⎟⎟⎠.

We refer to Ref. 33 for a survey of general compound matrices.
We can now prove Theorem 3.4. First, Theorem 3.1 states that the DFE is

unstable when R0 > 1. Since the DFE is located on the boundary of the domain Ω,
it follows that the system is uniformly persistent when R0 > 1. The compactness
of Ω and the uniform persistence of the system implies that there exists a compact
absorbing set. Meanwhile, Theorem 3.2 ensures that there is a unique endemic
equilibrium in the interior of Ω when R0 > 1.

Based on Lemma B.1, we only need to verify the condition (B.1) for our system.
The Jacobian of the system without the equations for R (since R = N − S − I) is
given by
⎡

⎢⎢⎢⎢⎢⎢⎢⎣

−β1(I)I − β2(B)B
κ + B

− µ −Sβ1(I) − SIβ′
1(I) −β2(B)Sκ

(κ + B)2
− β′

2(B)SB

(κ + B)

β1(I)I +
β2(B)B
κ + B

Sβ1(I) + SIβ′
1(I) − (γ + µ)

β2(B)Sκ

(κ + B)2
+

β′
2(B)SB

(κ + B)

0 ξ r − δ − 2rB

K

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

.
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For ease of notation, we will denote a = Sβ1(I) + SIβ′
1(I), b = β2(B)Sκ

(κ+B)2 + β′
2(B)SB
(κ+B) ,

and c = β1(I)I + β2(B)B
κ+B . The second additive compound matrix is

J [2] =

⎡

⎢⎢⎢⎢⎢⎣

a − c − 2µ − γ b b

ξ −c − µ + r − δ − 2rB

K
−a

0 c a − γ − µ + r − δ − 2rB

K

⎤

⎥⎥⎥⎥⎥⎦
.

Now we take P = diag[1, I
B , I

B ] so that PfP−1 = diag[0, I′

I − B′

B , I′

I − B′

B ]. Then,
we can write Q = PfP−1 + PJ [2]P−1 as

Q =

[
Q11 Q12

Q21 Q22

]
,

where

Q11 = a − c − 2µ − γ,

Q12 =
[
B

I
b,

B

I
b

]
,

Q21 =
[
ξI

B
, 0

]T

,

Q22 =

⎡

⎢⎢⎣

−c − µ + r − δ − 2rB

K
− B′

B
+

I ′

I
−a

c a − γ − µ + r − δ − 2rB

K
− B′

B
+

I ′

I

⎤

⎥⎥⎦.

Define a vector norm for any (x, y, z) ∈ R3 as |(x, y, z)| = max(|x|, |y| + |z|). The
Lozinskii measure induced by this norm is m(Q) = sup(g1, g2) where

g1 = m1(Q11) + |Q12|, g2 = m1(Q22) + |Q21|

and where in this case |Q| is the L1 matrix norm, and m1 is the Lozinskii measure
with respect to the L1 norm. In particular, for our system, we obtain

g1 =
B

I
b + a − γ − 2µ − β1I − β2B

κ + B
,

g2 =
ξI

B
+ r − δ − 2rB

K
− B′

B
+

I ′

I
− µ + max(0, a + |a|− γ).
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Note that I′

I = β1(I)S + β2(B)SB
I(κ+B) − γ − µ. Also, because κ

κ+B ≤ 1, we know that
β2(B)SBκ
I(κ+B)2 ≤ β2(B)SB

I(κ+B) . Therefore,

g1 =
Bβ2(B)Sκ

I(κ + B)2
+ β1(I)S − γ − 2µ +

β′
2(B)SB2

I(κ + B)
− β1(I)I + β′

1(I)IS − β2(B)B
κ + B

≤ I ′

I
− µ +

β′
2(B)SB2

I(κ + B)
− β1(I)I + β′

1(I)IS − β2(B)B
κ + B

≤ I ′

I
− µ. (B.2)

Then, under the assumption that N ≤ γ
2β1(0)

, and substituting B′

B = r−δ+ ξI
B − 2rB

K ,
we obtain

g2 =
I ′

I
− µ − rB

K
+ max(0, a + |a|− γ) ≤ I ′

I
− µ, (B.3)

because if a > 0, then 2a − γ = 2S(β1(I) + Iβ′
1(I)) − γ ≤ 2Nβ1(0) − γ ≤ 0. This

uses the fact that N is an upper bound on S, 0 is a lower bound on B, and β1(0)
is an upper bound for β1(I) since it is a decreasing function. Meanwhile, if a ≤ 0,
then the inequality in (B.3) automatically holds.

Therefore, based on (B.2) and (B.3), it is clear that m(Q) ≤ I′

I − µ. Since
0 ≤ I(t) ≤ N , for sufficiently large t, ln(I(t))−ln(I(0))

t ≤ µ
2 will be true. Therefore,

1
t

∫ t

0
m(Q)ds ≤ 1

t

∫ t

0

(
I ′

I
− µ

)
ds =

ln(I(t)) − ln(I(0))
t

− µ ≤ −µ

2
,

which implies that

q̄2 = lim sup
t→∞

1
t

∫ t

0
m(Q)ds ≤ −µ

2
< 0.

Thus, by Lemma B.1, the endemic equilibrium is globally asymptotically stable.


