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The extensive computational burden limits the usage of convolutional neural networks (CNNs) in
edge devices for image semantic segmentation, which plays a significant role in many real-world
applications, such as augmented reality, robotics, and self-driving. To address this problem, this paper
presents an attention-guided lightweight network, namely AGLNet, which employs an encoder-decoder
architecture for real-time semantic segmentation. Specifically, the encoder adopts a novel residual
module to abstract feature representations, where two new operations, channel split and shuffle, are
utilized to greatly reduce computation cost while maintaining higher segmentation accuracy. On the
other hand, instead of using complicated dilated convolution and artificially designed architecture,
two types of attention mechanism are subsequently employed in the decoder to upsample features
to match input resolution. Specifically, a factorized attention pyramid module (FAPM) is used to
explore hierarchical spatial attention from high-level output, still remaining fewer model parameters.
To delineate object shapes and boundaries, a global attention upsample module (GAUM) is adopted
as global guidance for high-level features. The comprehensive experiments demonstrate that our
approach achieves state-of-the-art results in terms of speed and accuracy on three self-driving
datasets: CityScapes, CamVid, and Mapillary Vistas. AGLNet achieves 71.3%, 69.4%, and 30.7% mean
IoU on these datasets with only 1.12M model parameters. Our method also achieves 52 FPS, 90 FPS,
and 53 FPS inference speed, respectively, using a single GTX 1080Ti GPU. Our code is open-source and
available at https://github.com/xiaoyufenfei/Efficient- Segmentation-Networks.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

a timely fashion. Therefore, those state-of-the-art networks re-
quiring enormous resources are not suitable for computationally

Recently, building deeper and larger convolutional neural net-
works (CNNs) is a primary trend for solving robot vision tasks,
such as image classification [1-3], object detection [4-6], and
semantic segmentation [7-9]. To improve the representation abil-
ity of visual data, most accurate CNNs usually have hundreds
even thousands of convolutional layers and feature channels,
e.g., ResNet family [1,10,11]. In spite of achieving higher perfor-
mance, these advances are at the sacrifice of running time and
inference speed. Especially in the context of many real-world
scenarios, such as augmented reality, robotics, and self-driving,
the computationally cheaper networks with smaller model size
are often required to carry out online estimation and decision in
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limited mobile platforms (e.g., drones, robots, and smartphones),
which have limited energy overhead, restrictive memory con-
straints, and reduced computational capabilities. This kind of
limitation is particularly prominent on the computationally heavy
task of semantic segmentation [8,9,12-14], which plays a signif-
icant role in robot vision [15,16]. The goal here aims at helping
robotics to understand surroundings by partitioning an input im-
age into a serious of disjoint regions, where each one is associated
with a pre-defined semantic label including stuff (e.g., sky, road,
buildings) and discrete objects (e.g., person, car, traffic light).

In order to adapt to real-world applications, many lightweight
style convolutional neural networks have been designed to lever-
age the segmentation accuracy and implementing efficiency,
which can be roughly divided into two categories: network com-
pression [17-20] and convolution factorization [21-23]. The first
category prefers to reduce model size by compressing pre-trained
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Fig. 1. The detailed architecture of AGLNet. We use SS-nbt to extract dense Features in encoder. Then FAPM and GAUM are employed to estimate precise segmentation
results with localization details. The purple and red lines represent the deconvolution and Bilinear upsampling, respectively. (Best viewed in color).
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Fig. 2. Comparison with state-of-the-art networks in terms of available trade-off between accuracy and efficiency. From left to right are (a) segmentation accuracy
vs. frames per second, and (b) segmentation accuracy vs. model size. ‘Ours’ and ‘Ours’’ denote training AGLNet with or without using coarse annotation data in

CityScapes. (Best viewed in color).

networks, including hashing [17], pruning [18], and quantiza-
tion [19,20]. Quantization networks [19,20] utilize less bits to
encode model parameters instead of changing network architec-
ture by pruning network weights [18]. To further remove the
redundancy, an alternative approach to lighten CNNs depends
on sparse coding theory [24,25], where the model weights are
always sparse, thus only small number of parameters are in-
volved in inference calculation. On the contrary, motivated from
the convolution factorization principle (CFP) [10,22,23,26] that
decomposes a standard convolution, the second category focuses
on directly training a lightweight network from the perspective
of reducing convolutional operation. For example, group convolu-
tion and depthwise separable convolution [2,10] are widely used
in MobileNet [23,27] and ShuffleNet families [26,28]. ENet [21]
employs ResNet [1] as backbone to perform efficient inference.
Zhao et al. [29] propose a cascade network that incorporates high-
level label guidance to improve performance. In [13,22,30], an
encoder-decoder architecture is adopted to restore object details,
which greatly reduce the number of parameters while main-
taining the accuracy. Although these advances have conducted
preliminary research on designing lightweight architecture net-
works for semantic segmentation, pursuing the best accuracy
in very limited computational budgets still remains an open
research problem for real-time semantic segmentation in robot
vision.

In this paper, we aim at solving this trade-off as a whole,
considering accuracy and run-time efficiency issues equally rel-
evant. We introduce a novel lightweight network, called AGLNet,
using an attention-guild encoder-decoder architecture for real-
time semantic segmentation. As shown in Fig. 1, our AGLNet

is composed of two parts: encoder and decoder network. Mo-
tivated from CFP [10,22,23,26], the core unit of encoder is a
computationally efficient residual module, adopting Split and
Shuffle in a non-bottleneck structure (SS-nbt), that leverages
identity mapping and 1-D factorized convolutions with channel
split and shuffle. While the identity mapping allows the con-
volutions to learn residual functions that facilitate training, the
split and shuffle operations enhance the information exchange
within the feature channels while remaining similar computa-
tional costs compared to 1D factorized convolutions [22]. In the
decoder, instead of using complicated dilated convolution [30,
31] and artificially designed architecture, two types of atten-
tion mechanism are employed to upsample features to match
the resolution of input image. As illustrated in Fig. 1, a factor-
ized attention pyramid module (FAPM) is used to extract dense
features through exploring hierarchical spatial attention from
low-resolution high-level output, where the factorized convolu-
tion is utilized to further lighten the entire network. Additionally,
to delineate object shapes and boundaries, a global attention
upsample module (GAUM) from low-level features is adopted as a
global guidance for high-level semantics, in spite of adding a bit
of computational burden, but achieving significant performance
improvement. More specifically, the spatial attention is calculated
from low-level features to assign weights for each pixel location
of high-level features. Thereafter, channel attention are encoded
to reweight channel features, where abundant category infor-
mation can be used to select most important feature channels.
Fig. 2 also shows the leaderboard of most recent light-weight
networks for semantic segmentation on CityScapes dataset in
terms of accuracy and efficiency. It can be seen that, although our
method performs slower than ESPNet [30] and FPENet [32], we
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improve 10% segmentation accuracy. Compared with DABNet [33]
and EDANet [34], our approach reaches the best balance between
accuracy and efficiency. In summary, the major contributions of
our AGLNet are four-folds:

e [n contrast to previous lightweight networks [13,22,29,30]
that usually employ symmetrical architecture, our AGLNet
adopts an asymmetrical encoder-decoder network struc-
ture. The encoder produces the downsampling features us-
ing SS-nbt unit, leading to the smaller network size while
maintaining powerful representation ability. Subsequently,
the decoder upsamples features with the guidance of atten-
tion mechanism, helping to improve segmentation accuracy
while remaining high inference efficiency.

e The SS-nbt unit of AGLNet adopts a split-transform-merge
scheme to design residual layer, where 1D factorized con-
volution with channel split and shuffle operations leverages
network parameters and feature representation, approach-
ing the representational power of large and dense layers,
but at a considerably lower computational complexity. In
addition, channel shuffle is also differentiable, indicating
that our AGLNet can be trained in an end-to-end manner.

e Two types of lightweight attention mechanisms, called FAPM
and GAUM, are employed in decoder to improve segmen-
tation performance. The hierarchical architecture of FAPM
enlarges receptive fields of high-level features, allowing us
to gather multiple scale context. On the other hand, the
spatial and channel attentions are encoded in GAUM to
aggregate the low-level spatial details and recalibrate the
significance of feature channels efficiently.

e We test AGLNet on three self-driving datasets: CityScapes,
CamVid, and Mapillary Vistas. The comprehensive exper-
iments demonstrate that our approach achieves available
state-of-the-art results in terms of speed and accuracy.
Specifically, AGLNet achieves 71.3% and 69.4% mean loU on
the CityScapes and CamVid test set, and 30.7% on the Map-
illary Vistas validation set, respectively, with only 1.12M
model parameters and 52 FPS, 90 FPS, and 53 FPS inference
speed on three datsets using a single GTX 1080Ti GPU.

The remainder of this paper is organized as follows. After a
brief discussion of related work in Section 2, the detailed architec-
ture of AGLNet is introduced in Section 3. The proposed network
has been evaluated on three self-driving datasets: CityScapes [35],
CamVid [36], and Mapillary Vistas [37], and the experiments can
be found in Section 5. Finally, the concluding remarks and future
work are given in Section 6.

2. Related work

In this section, we review the related advances for real-time
semantic segmentation in robot vision using efficient CNN archi-
tecture.

2.1. Real-time semantic segmentation in robot vision

To aid robot decision, real-time segmental segmentation re-
quires very fast running speed to produce high-quality estima-
tions. As a pioneer work, ENet [21] designs a bottleneck module
in residual layer to shrink the model. SegNet [13] employs a
small network structure and the skipped connections to achieve
high speed. ICNet [29] and ContextNet [38] utilize image pyramid
as inputs to build cascaded networks that incorporates high-
level label guidance to improve performance. On the contrary,
FPENet [39] encodes multi-scale context using efficient feature
pyramid to save computational costs. ESPNet [30] adopts di-
lated convolutions with spatial pyramid to enhance efficiency.

BiSeNet [40] extracts high-level semantics and low-level spatial
features using context and spatial paths, accelerating inference
speed by transferring the computation of depth to two sub-
networks. In [22,41], a symmetrical encoder-decoder architec-
ture is employed, which greatly reduce the number of parame-
ters while maintaining the accuracy. Different from these meth-
ods, AGLNet designs a lightweight network in an asymmetrical
encoder-decoder architecture, where the encoder utilizes split-
transform-merge strategy to construct residual layer, and decoder
employs two types of attention module, FAPM and GAUM, to
achieve available trade-off between segmentation accuracy and
implementing efficiency.

2.2. Convolutional factorization

Most state-of-the-art efficient networks [23,26-28,30,31] use
convolutional factorization that decomposes a standard convo-
lution into several steps to reduce computational complexity.
They usually factorize a 2D convolution into two 1D convo-
lution (e.g., decomposing n x n to 1 x n and n x 1), such
as group convolution [3,26,42], depth-wise separable convolu-
tion [23], and its dilated version [30,31]. More specifically, group
convolution [3,26,42] splits the input feature channels into groups
and each group is convolved independently. As a special case
of group convolution, depth-wise separable convolution [23] is
widely used in many efficient networks [27,28], where a stan-
dard convolution is decomposed into two steps: depth-wise and
1 x 1 pointwise convolution. The first step performs light-weight
filtering where each input channel is considered as a group, and
the second step learns a linear combinations among all input
channels. To learn representations from a large effective recep-
tive field, some lightweight networks [30,31] extend depth-wise
convolutions using depth-wise ‘dilated’ separable convolutions.
Other representable networks [22] reduce model size through
factoring one 2D convolution (e.g., 3 x 3) to two 1D convo-
lution (e.g., 1 x 3 and 3 x 1). Unlike these efficient network,
our AGLNet employs SS-nbt unit to avoid pointwise convolu-
tion, saving a large number of computational costs. In contrast
to ShuffleNets [26,28] that only perform convolution on half
number of input feature channels, our AGLNet makes full use
of all input channels with multiple branches of convolution to
improve network representation ability. Additionally, our SS-nbt
unit enhances the information exchange within feature channels
while maintaining similar computational costs compared to 1D
factorized convolutions.

2.3. Visual attention

Motivated from the application of speech recognition [43],
visual attention is widely-used in computer vision community
in recent years [44-49]. Attention mechanism can be used as
global context to guide the feed-forward network for improving
performance [46,50). For example, in [45], the attention of CNN is
encoded relying on the scale of the input image. In [46,47], feature
channel attention is applied to achieve state-of-the-art results
for image recognition task. Some attention networks [40,47,51]
embeds global average pooling branch to enlarge the receptive
field, and enhances the consistency of dense pixel-wise classifi-
cation. EncNet [52] also introduces a global pooling scheme [47]
to capture high-level semantics and predicts scaling factors that
are conditional on these encoded semantics. FPENet [39] adds the
attention module to the decoder branches. Unlike these models,
our AGLNet employs two types of attention module, FAPM and
GAUM, which encode the spatial- and channel-based attention,
as global context to improve segmentation performance.
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An early version of this work was first published in [53].
This journal version extends previous one in three aspects: (1)
The previous version still use standard convolution in decoder,
leading to the heavy network and slow down the implement-
ing efficiency. Conversely, we apply factorized 1D convolution
instead of 2D standard convolution, further reducing the model
complexity. (2) In contrast to [53] that only utilizes FAPM, our
AGLNet employs GAUM as a global guidance to recovery precise
resolution details. (3) We have performed more exhaustive evalu-
ations and ablation experiments, and reported more comparisons
and improved results.

3. AGLNet

In this section, we first introduce the core unit, SS-nbt, with
split and shuffle operations in encoder. Thereafter, two proposed
attention modules, FAPM and GAUM, are employed for seman-
tic segmentation task. Finally, we describe the whole encoder-
decoder network architecture of AGLNet.

3.1. SS-nbt

We focus on solving the efficiency limitation that is essentially
present in the residual block, which is used in recent accu-
rate CNNs for image classification [1,11,26] and semantic seg-
mentation [12,21,22]. To reduce computation, the group con-
volutions [11,26] and depthwise separable convolutions [2,9,23]
are adopted as standard steps in residual block. As shown in
Fig. 3, the recent years has witnessed multiple successful in-
stances of lightweight residual layer [21,23]. For instance, the
bottleneck module (Fig. 3(a)) comes from the standard residual
layer of ResNet [1], which requires less computational resources
by reducing input channels. Although it is commonly adopted
in state-of-the-art networks [21,23], the performance descend
drastically when network depth increases. Another two outstand-
ing residual module are non-bottleneck-1D (Fig. 3(b)) and Shuf-
fleNet (Fig. 3(c)), where the first one is a 1D version of standard
convolution while the second one utilizes pointwise convolu-
tions (i.e., 1 x 1 convolution) in bottleneck structure. However,
the contrary opinion of [26] claims that pointwise convolution
accounts for most of the computational complexity, which is
especially disadvantageous for lightweight models.

To balance performance and efficiency given limited com-
putational budgets, we introduce two simple operators, called
channel split and shuffle, in residual layer. We refer to this
proposed module as split-shuffle-non-bottleneck (SS-nbt), as de-
picted in Fig. 3(d). Motivated from [10,20], a split-transform-merge
strategy is employed in the design of our SS-nbt, approaching
the representational power of large and dense layers, but at a
considerably lower computational complexity. At the beginning
of each SS-nbt, the input is split into two lower-dimensional
branches, where each one has half channels of the input. To avoid
pointwise convolution, the transformation is performed using a
set of factorized 1D filter kernels (e.g., 1 x 3, 3 x 1), and the
convolutional outputs of two branches are merged using con-
catenation so that the number of channels keeps the same. Note
we use some factorized dilated 1D convolution to increase the
receptive fields. Actually, the input feature can be split into arbi-
trary number of branches instead of two branches. The extremely
case is the branch numbers are equal to the channel number of
input feature, where each branch only contains one channel of
input feature. Along with the increase of split branches, however,
yields repeated access of feature memory, probably slowing down
the computational efficiency [27,28]. To facilitate training, the
stacked output is added with input through the branch of iden-
tity mapping. The same channel shuffle operation [26] is finally

used to enable information communication between two split
branches. After the shuffle, the next SS-nbt unit begins. It is clear
that our residual module is not only efficient, but also accurate.
Firstly, factorized convolution involves less model parameters,
lead to high computational efficiency in each SS-nbt unit. In
contrast to ShuffleNets [26,28] that only perform convolution on
half number of input channels, high efficiency allows us to use
more feature channels, yielding more powerful representation of
visual data. Secondly, in each SS-nbt unit, the merged feature
channels are randomly shuffled, and then join into next unit. The
channel shuffle operation can be regarded as a kind of feature
reuse along with visual data flows forward to the deepest layer
of the network, which to some extent enlarges network capacity
without significantly increasing complexity.

3.2. FAPM

In this section, we consider how to provide pixel-wise at-
tention for high-level features in a very efficient fashion. In the
scenario of real-time semantic segmentation, the pyramid struc-
ture [29-31] has been used at several grid scales to abstract
features, where dilated convolution is often performed using
filter kernels with different size. In spite of increasing receptive
field effectively in pixel-level, dilated convolution often results in
gridding artifacts that may be harmful for the local consistency
of filter responses. Additionally, such structure neglects encoding
channel- and pixel-wise attention for high-level features, and,
most importantly, lacks considering lightweight architecture of
convolution.

Based on above observations, we propose the factorized at-
tention pyramid module (FAPM), as shown in Fig. 4. Our FAPM is
consist of two attention parts: pyramid feature attention (PFA)
and global pooling attention (GPA), both of which construct
pixel-wise attention to improve performance. To increase recep-
tive field, the PFA adopts a hierarchical U-shape structure [54],
which integrates contextual features from three different pyra-
mid scales. As green arrows shown in Fig. 4, to reduce computa-
tional burden, we first utilize factorized convolution (e.g., 1 x 7
and 7 x 1forscale 1,1 x 5and 5 x 1 for scale 2, and 1 x 3 and
3 x 1 for scale 3) with stride 2 for each pyramid scale to down-
sample feature resolution. These downsampled feature maps are
transferred still using factored filter kernels with stride 1 to better
extract context cues from each individual pyramid scale. Since
high-level feature maps have small resolution, using larger filter
kernel size (e.g., 1 x 7 and 7 x 1) does not increase too much
computational budgets. Thereafter, the transferred features are
sequentially enlarged through bilinear upsampling, as red arrows
shown in Fig. 4, and then added to the counterpart of different
scales step-by-step. Finally, the pixel-level attention produced
from PFA is multiplied by the transferred feature maps, generated
from original features of CNNs using 1 x 1 pointwise convolution.
On the other side, to further enhance performance, a GPA branch
is introduced to integrate global context prior attention. More
specifically, GPA branch first utilizes global average pooling to
encode channel attention, then an 1 x 1 convolution is applied to
learn the linear combination of input channels. At the end of this
branch, bilinear upsampling is once again employed to match the
resolution of input feature maps.

Benefiting from the hierarchical architecture of PFA, FAPM
can capture multi-scale context cues, and produce pixel-level
attention for convolutional features. Unlike [9] and [55] that stack
multi-scale feature maps, our context information is abstracted
using factorized convolution, and pixel-wisely multiplied with
original convolutional features, without introducing too much
computational budgets.
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3.3. GAUM

The commonly-used architecture in encoder-decoder network
for semantic segmentation is U-shape model [12,54-56], which
is designed to aggregate features extracted from intermediate
convolution layers to recover original input resolution. Some
approaches adopts naive decoder structure using simple bilinear
upsampling [8,55] or transposed convolution [54], where the
low-level spatial information is often ignored leading to coarse
segmentation output. The alternative methods [12,56] make an
effort to refine object shapes and boundaries by aggregating
low-level and upsampled features, leading to complicated de-
coder modules that are at the sacrifice of running time and
speed. Other networks [32,57] resort to employ global attention
that squeezes high-level context and embeds it into low-level
features as a guidance. Although low-level features are rich in
spatial details while high-level features contain abundant con-
text semantics, it is very difficult to aggregate different scale

features due to their different feature resolutions and channels.
Motivated from [58], this section introduces a novel information
fusion module, GAUM, which encodes spatial- and channel-wise
attention to improve representation ability of visual data, still
maintaining low computational costs.

As shown in Fig. 5(a), the GAUM is mainly composed by
two parts: spatial attention block (SAB) and channel attention
block (CAB). As purple arrow shown in Fig. 5(a), a transposed
convolution is first applied to enlarge resolution of high-level fea-
tures. These upsampled feature maps are sequentially multiplied
by the outputs of SAB and CAB, where the first one reweights
the filter responses for each pixel localization, and second one
assigns different weight for each feature channel. Finally, the
weighted features are fused with upsampled features by element-
wise addition. Immediately below, we elaborated on the details
of SAB and CAB, respectively.
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3.3.1. SAB

Considering that the category-based distribution is uneven on
the different image pixels, we propose SAB to make the network
pay more attention to informative features. Let X be the input
feature maps, f stands fora 1 x 1 convolution, and * denotes con-
volutional operation. Then the spatial attention map § is defined
as:

S=o(Xxf), (1)

where o(-) represents sigmoid function. After transformation, the
shape of X changes from C x H x W to 1 x H x W. Finally, we
element-wise multiply the input X and the spatial weight map §
to get our weighted feature maps X;:

X, =X®S, (2)

where ® denotes the element-wise manipulation.

3.3.2. CAB

Our channel attention mainly concerns that different channel
features have totally different weights. Let X,(i. j) stands for the
values of X; at pixel position (i, j). Firstly, a global average pool-
ing is performed on X;, which encodes the channel-wise global
spatial information into a channel descriptor:

1 H W
G=n D D Xili)), (3)

i=1 j=1

As a result, the shape of X; changes from C x H xW to 1 x 1 xC.
Similar to SAB, G is first directly fed into an 1 x 1 convolutional
layer, and then passed through a sigmoid function, resulting in
the channel attention map C:

C=0(Gxf), (4)

The final weighted feature maps are obtained by multiplying
feature map X, and the attention map C:

Xsc=X,C=X®5®C, (5)

The abstracted spatial attention map produced from low-level
features encodes the importance of each pixel, which focuses on
localizing the objects and refining the corresponding shapes and
boundaries with spatial details. Conversely, the squeezed chan-
nel attention map generated from upsampled high-level features
reflects the importance of each channel, which focuses on the
global context to provide content information. The GAUM extracts
these two kinds of attention, through which semantic concepts
and spatial details are efficiently embedded into each upsampling
stage of our AGLNet.

3.4. Network architecture of AGLNet

The entire network architecture is shown in Fig. 1. Our AGLNet
follows a lightweight encoder-decoder architecture with FAPM
and GAUM. Unlike [13,54], our approach employs an asymmetric
sequential architecture, where a encoder produces downsampled
feature maps, and a subsequent decoder upsamples the feature
maps to match input resolution. In order to preserve spatial
information and reduce number of parameters, the total down-
sampling rate is 8. The detailed structure of the proposed model
is shown in Table 1.

Besides SS-nbt unit and FAPM, the encoder also includes
downsampling unit, which is performed by stacking two parallel
outputs of a single 3 x 3 convolution with stride 2 and a Max-
pooling. Downsampling enables more deeper network to gather
context, while at the same time helps to reduce computation. In
the similar spirit of [ 10], we postpone downsampling in encoder,
maintaining more spatial information that is benefit to improve

Table 1

Detailed architecture of proposed AGLNet. Input image size is 512 x 1024 x 3.
“Output size” denotes the dimension of output feature maps, C is the number
of classes.

Stage Layer Operator Mode Channel OQutput size
1 Downsampling Unit - 32 256 x 512
2-4 3x SS-nbt Unit dilated 1 32 256 x 512
5 Downsampling Unit - 64 128 x 256
6-7 2x SS-nbt Unit dilated 1 64 128 x 256
8 Downsampling Unit - 128 64 x 128

Encoder 9 SS-nbt Unit dilated 1 128 64 x 128
10 SS-nbt Unit dilated 2 128 64 x 128
11 SS-nbt Unit dilated 5 128 64 x 128
12 SS-nbt Unit dilated 9 128 64 x 128
13 SS-nbt Unit dilated 2 128 64 x 128
14 SS-nbt Unit dilated 5 128 64 x 128
15 SS-nbt Unit dilated 9 128 64 x 128
16 SS-nbt Unit dilated 17 128 64 x 128
17 FAPM - 128 64 x 128
18 GAUM - 64 128 x 256
19 GAUM - 32 256 x 512

Decoder
20 1 x 1 Conv stride 1 C 256 x 512
21 Bilinear interpolation x2 C 512 x 1024

performance. Moreover, the usage of dilated convolutions [22,59]
allows our architecture to have large receptive field, further lead-
ing to an improvement in accuracy. Compared to the use of larger
kernel sizes, this technique has been proven more effective in
terms of computational cost and parameters. For the decoder, two
GAUMs are used to aggregate features and recover the resolution
step-by-step. Then a 1 x 1 convolutional layer is applied to
map the feature channels to the numbers of object categories,
and a 2x bilinear upsampling is used to produce the pixel-level
classifier.

4. End-to-end training of AGLNet

In training our AGLNet, one major problem is category unbal-
ancing, where there is large variation in the number of training
samples in each class. A typical example is the category of “traffic
sign” and “road” in CityScapes dataset, in which the object in-
stants of first class occupy a very small number of image regions,
while those of the second one occupy a large number of pixels.
Therefore, we train AGLNet in end-to-end manner using weighted
cross entropy loss function. Let zx(x, #) denotes the unnormalized
log probabilities for pixel ¥ with kth category given network
parameters #, then the soft-max function pg(x, #) is defined as:

exp{z(x, 0)}
Yoi explzie(x, 0))

where K is the total number of pre-defined object categories.
In the inference process, the kth semantic category is assigned
to pixel x if it achieves the highest predicted probability k* =
arg maxy pr(x, 6).

For the task of semantic segmentation, the loss is always
summed up over all the pixels in a mini-batch. For notation
simplify, let N be the total number of pixels in a training batch,
y; denote the ground-truth semantic label for pixel x;, and pj
indicate the estimated probability pi(x;, @) when pixel x; belongs
to category k, our training target is to find an optimal model
parameters #* that minimizes the weighted cross-entropy loss
L(x,0):

0 = mﬂin C(x, 0), (7)

pr(x. 0) = (6)

For CityScapes dataset [35], unbalanced training samples often
result in the preference on common categories that appears fre-
quently and less improvement on the hard objective at training
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stage. In order to solve this problem, we utilize the Online Hard
Example Mining (OHEM) scheme [60] to define our weighted loss
function:

1
£(x.0) = —
Z?Izl I:C:I 8(yi = k. pik <m)
N K (8)
x Y 8(yi = k. pi < n)log pu,
i=1 k=1

where n € (0, 1] is a pre-defined threshold, and §(-) denotes a
indicator function, which equals one when the inside condition
holds, and otherwise equals zero.
For CamVid dataset [36], on the other hand, the weighted loss
function is defined as:
N K
£(x,0) == > waqix0g pi. 9)
i=1 k=1
where g = q(y; = k|x;) is the ground-truth distribution when
semantic label of pixel x; is k, and wy, represents a weight coeffi-
cient, which is always defined as inverse ratio with respect to the
counted number of training samples for kth category in training
data [10,21].

5. Experiments

This section reports the experimental results of our method
on two challenging self-driving datasets: CityScapes [35] and
CamVid [36]. Some ablation studies are also conducted to better
understand the underlying behavior of our network for semantic
segmentation in robot vision.

5.1. Datasets

We test AGLNet on Mapillary Vistas [37], CityScapes [35] and
CamVid [36] datasets, which are commonly-used benchmarks
for real-time semantic segmentation. All datasets focus on city
street scenes for self-driving, where a car is treated as an au-
tonomous robot to perceive surroundings, including recognizing,
localizing and segmenting object instances in input images. The
Mapillary Vistas dataset is a large dataset for panoptic segmen-
tation. It includes 65 object categories (28 for stuff and 37 for
objects), and the images have wide range of resolutions. This
dataset is densely annotated, in which 18K/2K/5K images are used
for training, validation, and testing, respectively. The Cityscapes
dataset [35] contains 30 classes and only 19 classes (e.g., road, car,
pedestrian, bicycle, sky, etc.) of them are used for semantic seg-
mentation evaluation. This dataset contains 5000 high-resolution
(2048 x 1024) pixel-level finely annotated images, which are
divided into 2975/500/1525 images for training, validation and
testing respectively. It also contains another set of nearly 20,000
images with coarse annotation. On the other hand, CamVid [36]
is a smaller dataset, only involving 11 object categories with 701
images. All images are collected from 5 videos with resolution
960 x 720, where the split principles are 367 for training, 101
for validation, and 233 for testing. For fair comparison, we down-
sample the original image size to 1024 x 512 and 480 x 360,
respectively, as input resolution for two datasets.

5.2. Baselines

To show the advantages of our approach, we selected 9 state-
of-the-art models as baselines, including ENet [21], ERFNet [22],
ESPNet [30], ESPNet V2 [31], CGNet [41], EDANet [34], FSCN-
Net [61], FPENet [32], and DABNet [33]. Experimental results
of some baseline models are produced using default parameter

Table 2

Individual category results of different methods on the Cityscapes test sets.
Method Roa Sid Bui Wal Fen Pol TLi TSi Veg Ter
ENet [21] 96.3 742 85.0 32.1 332 434 34.1 440 886 614

ERFNet [22] 97.7 810 89.8 425 48.0 56.2 59.8 653 914 68.2
CGNet [41] 959 739 899 439 46.0 529 559 63.8 917 68.3
EDANet [34] 97.8 80.6 89.5 420 46.0 523 59.8 65.0 914 68.7
ESPNet [30] 95.7 733 86.6 328 364 47.0 469 554 89.8 66.0
ESPNet V2 [31] 97.3 78.6 88.8 435 42.1 493 526 60.0 905 66.8
FSCNN [61] 974 778 87.4 397 418 350 394 50.5 885 63.3
DABNet [33] 97.8 80.7 90.2 479 48.1 564 61.8 67.0 92.0 69.5
FPENet [32] 964 717 84.6 27.1 288 432 392 344 893 613

Ours 97.8 810 91.0 513 506 58.3 63.0 685 923 713
Ours? 99.2 82.5 92.4 52.0 52.0 59.3 64.5 69.4 93.0 73.0
Method Sky Ped Rid Car Tru Bus Tra Mot Bic mloU
ENet [21] 90.6 655 384 90.6 369 505 48.1 38.8 554 583
ERFNet [22] 942 76.8 57.1 92.8 508 60.1 51.8 47.3 61.7 68.0
CGNet [41] 94.1 76.7 542 913 413 559 328 41.1 609 648

EDANet [34] 936 757 543 924 409 587 56.0 504 64.0 67.3
ESPNet [30] 925 685 459 899 400 47.7 40.7 364 549 60.3
ESPNet V2 [31] 93.3 729 53.1 918 53.0 659 532 442 599 66.2
FSCNN [61] 927 657 46.4 910 57.0 70.3 56.5 40.9 526 628
DABNet [33] 943 80.3 59.2 937 46.0 57.1 35.0 504 66.8 68.1
FPENet [32] 92.3 68.1 42.7 898 29.1 389 275 29.1 545 552

Our 942 80.1 59.6 938 484 68.1 42.1 524 678 70.1
Ours® 95.2 81.4 60.3 95.3 493 69.6 435 53.4 69.3 71.3

4Methods trained using both fine and coarse data.

Table 3

Speed and accuracy comparison of AGLNet on Cityscapes test dataset. Except to
the lightweight baselines, we also compared with some heavy models, including
FCN [8], PSPNet [55] and DeepLab [9].

Method Input size  Extra data  #Params FLOPs FPS mloU (%)
SegNet [13] 640 x 360 ImN 295M 286G 167 57
FCN-8S [8] 512 x 1024 no - 136.2G 2 63.1
Deeplab [9] 512 x 1024 ImN 262.1M 457.8G 0.25 63.1
RefineNet [12] 512 x 1024 ImN 118.1M 526G 9.1 736
OCNet [62] 512 x 1024 ImN 62.6M 549G 8.7 80.1
PSPNet [55] 713 x 713 ImN + Coa. 250.8M 4122G 0.78 81.2
ENet [21] 512 x 1024 no 036M 44G 65 583
ERFNet [22] 512 x 1024 no 2.1M 26.86G 49 68.0
CGNet [41] 512 x 1024 no 0.5M 701G 64 648
EDANet [34] 512 x 1024 no 0.68M 895G 102 67.3
ESPNet [30] 512 x 1024 no 036M  4.7G 113 60.3
ESPNetv2 [31] 512 x 1024 ImN 125M 585G 65 66.2
FSCNN [61] 512 x 1024 Coa. 1.14M 176G 230 628
DABNet [33] 512 x 1024 no 0.76M 1046 99 68.1
FPENet [32] 512 x 1024 no 0.12M 1.58G 110 55.2
Ours 512 x 1024 no 1.12M 13.88G 52 70.1
Ourst 512 x 1024 Coa. 1.12M 13.88G 52 71.3

“ImN” and “Coa.” mean pre-training model using ImageNet dataset [63] or the
coarse annotation set of Cityscapes dataset. “~” indicates that the corresponding
result is not provided by the methods. We reproduce some models, and evaluate
speed under the same setting with our AGLNet for fair comparison.

settings given by the authors, while others are directly reported
from the published literature. All the baselines are evaluated
and measured by the mean intersection-over-union (mloU) class
score [22,61], which is calculated as the mean portion of the inter-
section between the ground truth and the predictions, averaged
across all semantic classes for all datasets.

5.3. Implementation details

AGLNet is implemented on the hardware platform of DELL
workstation with a single GTX 1080Ti GPU, and trained in an
end-to-end manner using Adam optimizer [61] for CityScapes
dataset, and the Rectified Adam (RAdam) [64] combined with
LookAhead [65] for CamVid dataset. For two datasets, we favor
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Fig. 6. The visual comparison on Cityscapes val set. From top to bottom are input images, ground truth, segmentation outputs from AGLNet, ENet [21], ERFNet [22],
CGNet [41], EDANet [34], ESPNet [30]. ESPNetv2 [31], FSCNNet [61], DABNet [33] and FPENet [32]. (Best viewed in color).

a large minibatch size (set as 8) to make full use of the GPU
memory. The initial learning rate is set as 5 x e % and 3 x e 2
for two dataset. The ‘poly’ learning rate policy [14] is adopted
in our training process, where the learning rate is updated by
(1—- %)P"”}” with power 0.9, together with momentum and
weight decay, are set to 0.9, 1074, and the maximum number
of training epochs, is set to 500 and 1000, for two datasets, re-
spectively. For data augmentation, we adopted random horizontal
flipping, left-right flipping, and random scaling between 0.5 and
2 on the input images during training. Finally, we randomly crop
the image into fixed size for training. All images of two datasets
were normalized to zero mean and unit variance.

5.4. Evaluation results on CityScapes

For fair comparison, all the baselines are performed using the
same hardware platform with a single NVIDIA GTX 1080Ti GPU.
Tables 2 and 3 compare our AGLNet with selected state-of-the-
art networks. The results show that AGLNet outperforms these
baselines in terms of segmentation accuracy wile still achieves
real-time implementing efficiency. Among all the approaches,

our method only has 1.12M model size, while achieves 52 FPS
inference speed and 70.1% mloU without using extra training
data. Only using extra coarse annotated training data, the seg-
mentation accuracy improves 1.2% to 71.3% mloU. From Table 3,
it is observed that 16 out of the 19 object categories obtains best
mloU scores, especially for some categories, achieving remarkable
improvement (e.g., 8.1% for ‘Wal’ and 2.1% for ‘Mot’) than the
second ranked method. Regarding to the efficiency, AGLNet has
nearly half size but a bit more faster than ERFNet [29]. Other
lightweight baselines are faster than our AGLNet, yet at the sac-
rifice of segmentation accuracy. For example, FSCNN achieves
the highest implementing speed, but delivers poor segmentation
accuracy of 8.5% drop than our AGLNet. We also compare with
some heavy models and report the results on Table 3. It shows
that our approach achieves higher performance than [8,9] that
are not able to perform real-time estimation. Fig. 6 shows some
qualitative results on the CityScapes val set. It is demonstrated
that, compared with baselines, our AGLNet not only correctly
classifies object with different scales, but also produces consistent
qualitative results for all classes.
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Fig. 7. The visual comparison on CamVid test set. From top to bottom are input images, ground truth, segmentation outputs from AGLNet, ENet [21], ERFNet [22],
CGNet [41], EDANet [34], ESPNet [30]. ESPNetv2 [31], FSCNNet [61], DABNet [33] and FPENet [32]. (Best viewed in color).

Table 4
Accuracy result of each individual category on CamVid test dataset.
Method Sky Building Pole Road Sidewalk Tree Sign Fence Car Pedestrain Bicyclist mloU (%)
ENet [21] 91.2 749 234 921 737 68.1 30.1 209 773 41.1 45.8 58.1
ERFNet [22] 920 813 378 95.0 81.1 75.0 450 362 843 583 58.2 67.7
CGNet [41] 90.8 79.8 28.1 953 819 732 416 329 813 529 539 64.7
EDANet [34] 89.8 794 243 940 81.0 711 373 314 769 51.1 535 62.7
ESPNet [30] 92.0 75.0 250 915 738 684 295 237 745 424 45.2 58.2
ESPNetv2 [31] 91.0 71.0 18.1 90.1 67.2 61.3 200 21.1 697 288 334 52.0
FSCNN [61] 90.2 743 15.0 917 726 679 289 174 70.1 319 356 54.2
DABNet [33] 91.1 81.0 294 938 787 74.1 430 37.2 817 56.2 56.5 65.7
FPENet [32] 91.0 763 310 938 783 688 321 251 777 456 45.6 60.5
QOurs 91.8 82.6 39.0 95.4 83.1 76.1 45.3 39.5 87.0 61.5 62.7 69.4

5.5. Evaluation results on CamVid

We also evaluate AGLNet on CamVid [36] dataset, and re-
port the results in Tables 4 and 5. Compared with the selected
state-of-the-art baselines, AGLNet shows the superior perfor-
mance in terms of running speed and segmenting accuracy.

From Table 4, except one class “sky”, AGLNet achieves the best
performance in rest categories. Note AGLNet performs faster on
CamVid dataset (52 vs. 90 FPS) than Cityscapes dataset, due to its
smaller input image resolutions (1024 x 512 of Cityscapes and
480 x 360 of CamVid). Several visual examples of segmentation
outputs are shown in Fig. 7.
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Input image Ground truth Without FAPM With FAPM
Fig. 8. Visualization results of FAPM on Cityscapes val set. (Best viewed in color).
Input image Ground truth Without GAUM With GAUM
Fig. 9. Visualization results of GAUM on Cityscapes val set. (Best viewed in color).
Table 5 Table 7
Comparison with state-of-the-art networks on the CamVid test dataset. Ablation study results of AGLNet on Cityscapes val dataset.
Method #Params (M) FPS mloU (%) Model FAPM GAUM train val mloU (%) Params (M)
ENet [21] 0.36 98.8 58.1 AGLNet v 66.12 091
ERFNet [22] 2.10 139.1 67.7 AGLNet v v 67.62 0.95
CGNet [41] 0.50 99.1 64.7 AGLNet v v 69.19 1.08
EDANet [34] 0.68 175.1 62.7 AGLNet v 7 v 59.39 112
ESPNet [30] 0.36 190.3 58.2 AGLNet? v y v y 2450 112
ESPNetv2 [31] 125 1185 52.0
FSCNN [61] 1.14 245.1 54.2 Paiiiis: Medel Size
DABNet [33] 0.76 164.5 65.7 " ) : e 5
FPENet [32] 0.12 116.5 605 Methods trained using both train and val data.
Ours 112 90.1 69.4
so, Table 6 still demonstrates that our method performs bet-
Table 6

Comparison with state-of-the-art methods on the Mapillary Vistas validation set
in terms of mIOU scores.

Method Input size Extra data # Params FLOPs FPS mloU (%)
FPENet [32] 1024 x 2048 no 0.76M 20.9 103 28.33
DABNet [33] 1024 x 2048 no 0.12M 310 75 2960
Ours 1024 x 2048 no 1.12M 24.12 53  30.70

5.6. Evaluation results on mapillary Vistas

We then demonstrate that our method scales nicely when
augmenting the number and classes on Mapillary Vistas dataset
in Table 6. To verify our method on this dataset, we select DAB-
Net [33] and FPENet [32] as baselines. Compared with Cityscapes
and CamVid datasets, our method only obtains 30.7% mloU score
due to large number of classes in Mapillary Vistas dataset. Even

ter than FPENet [32] in terms of mloU (30.7% vs 28.33%). Al-
though DABNet [33] runs nearly twice faster than our network,
our approach still achieves 1.1% improvement in segmentation
accuracy.

5.7. Ablative studies

To investigate the effectiveness of two attention module of our
proposed AGLNet, we conduct ablative studies on Cityscapes val
dataset, where FAPM and GAUM are separately added, and com-
bined together to our system. Table 7 reports the contributions
of each component and their combinations in terms of mloU.
It is observed that introducing more attention module leads to
the improvement of performance. Compared with the baseline
that no attention module is adopted, only using FAPM leads to
the result of 67.62% mloU, which brings 1.5% improvement. On
the other hand, employing GAUM individually outperforms the
baseline by 3.07%, yielding 69.19% segmentation accuracy. This is
due to the fact that, compared with FAPM, GAUM takes advantage
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of semantics of high-level feature and spatial details of low-
level features as interact guidance to improve the performance.
Another interesting observation is that, using GAUM has a bit
larger model size than using FAPM (e.g., 0.95 vs. 1.08). This is
probably because we use two GAUM units in our AGLNet. When
both attention module is explored, our AGLNet achieves high-
est segmentation accuracy, which improves to 69.39%. We also
employ val set to train AGLNet using both FAPM and GAUM. It
achieves 74.5% mloU, which indicates that more training data is
beneficial to further improve the performance.

Some segmentation outputs of visual examples are illustrated
in Figs. 8 and 9, which has the consistent results with Table 7.
Specifically, the effects of FAPM can be visualized in Fig. 8. Some
details and object boundaries are more clearer (e.g., ‘building’ and
‘sidewalk’ in first and third example) and missing tiny objects
are correctly classified (e.g., ‘bicycle’ and ‘traffic sign’ in second
example). FAPM enhances the discrimination ability by capturing
multi-scale context information. Meanwhile, Fig. 9 demonstrate
that, with our GAUM, some misclassified category are now cor-
rectly classified, such as the ‘car’ in first example and ‘tree’ in
third example. The semantic consistency have been improved
obviously.

6. Conclusion remarks and future work

This paper has described a AGLNet model, which designs
a lightweight encoder-decoder network for real-time semantic
segmentation of self-driving images. The encoder adopts channel
split and shuffle operations in residual layer, enhancing infor-
mation communication in the manner of feature reuse. On the
other hand, the decoder employs two attention blocks, FAPM and
GAUM, where the first one adopts spatial pyramid architecture
to enlarge receptive fields without introducing significant com-
putational budgets, and the second one employs the interaction
of high-level and low-level features as guidance to improve per-
formance. The entire network is trained end-to-end. To evaluate
our method, the experiments are conducted on two popular
self-driving datasets: Cityscapes and CamVid. The experimental
results show our AGLNet achieves best trade-off on CityScapes
dataset in terms of segmentation accuracy and implementing
efficiency. In the future, we would like to make an effort to
quantize model parameters, leading to faster running speed for
real-time semantic segmentation.

CRediT authorship contribution statement

Quan Zhou: Conceptualization, Methodology, Writing - origi-
nal draft. Yu Wang: Software, Validation, Investigation, Data cura-
tion. Yawen Fan: Writing - review & editing, Visualization. Xiaofu
Wu: Writing - review & editing, Supervision. Suofei Zhang: Writ-
ing - review & editing, Project administration. Bin Kang: Writing -
review & editing. Longin Jan Latecki: Writing - review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

The authors would like to thank the associated editor and
all the anonymous reviewers for their valuable comments and
insightful suggestions. This work was jointly supported in part by
the National Natural Science Foundation of China under Grants
61876093, 61801242, 61671253, the National Natural Science
Foundation of Jiangsu Province under Grant BK20181393, the
National Science Foundation under Grant 11S-1302164, and in the
part by the China Scholarship Council under Grant 201908320072.

References

[1] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recog-
nition, in: IEEE International Conference on Computer Vision and Pattern
Recognition, 2016, pp. 770-778.

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,

V. Vanhoucke, A. Rabinovich, Going deeper with convolutions, in: IEEE

International Conference on Computer Vision and Pattern Recognition,

2015, pp. 1-9.

A. Krizhevsky, I. Sutskever, G.E. Hinton, Imagenet classification with

deep convolutional neural networks, in: Annual Conference on Neural

Information Processing Systems, 2012, pp. 1097-1105.

S. Ren, K. He, R. Girshick, J. Sun, Faster R-CNN: towards real-time object

detection with region proposal networks, in: Annual Conference on Neural

Information Processing Systems, 2015, pp. 91-99.

J. Redmon, S. Divvala, R. Girshick, A. Farhadi, You nly look once: unified,

real-time object detection, in: IEEE International Conference on Computer

Vision and Pattern Recognition, 2016, pp. 779-788.

R. Girshick, Fast R-CNN, in: IEEE International Conference on Computer

Vision, 2015, pp. 1440-1448.

R. Girshick, ]J. Donahue, T. Darrell, ]. Malik, Rich feature hierarchies for

accurate object detection and semantic segmentation, in: IEEE Interna-

tional Conference on Computer Vision and Pattern Recognition, 2014, pp.

580-587.

L. Jonathan, S. Evan, D. Trevor, Fully convolutional networks for seman-

tic segmentation, IEEE Trans. Pattern Anal. Mach. Intell. 39 (4) (2017)

640-651.

LC. Chen, G. Papandreou, 1. Kokkinos, K. Murphy, AL Yuille, DeepLab:

Semantic image segmentation with deep convolutional nets, atrous con-

volution, and fully connected CRFs, IEEE Trans. Pattern Anal. Mach. Intell.

40 (4) (2018) 834-848.

[10] C. Szegedy, V. Vanhoucke, S. loffe, ]. Shlens, Z. Wojna, Rethinking the in-
ception architecture for computer vision, in: IEEE International Conference
on Computer Vision and Pattern Recognition, 2016, pp. 2818-2826.

[11] S. Xie, R. Girshick, P. Dollar, Z. Tu, K. He, Aggregated residual transfor-
mations for deep neural networks, in: [EEE International Conference on
Computer Vision and Pattern Recognition, 2017, pp. 5987-5995.

[12] L. Guosheng, M. Anton, S. Chunhua, I. Reid, RefineNet: multi-Path Re-
finement Networks for High-Resolution Semantic Segmentation, in: IEEE
International Conference on Computer Vision and Pattern Recognition,
2017, pp. 5168-5177.

[13] B. Vijay, A. Kendall, R. Cipolla, Segnet: A deep convolutional encoder-
decoder architecture for image segmentation, IEEE Trans. Pattern Anal.
Mach. Intell. 39 (12) (2017) 2481-2495.

[14] H. Zhao, ]. Shi, X. Qi, X. Wang, J.Y. Jia, Pyramid scene parsing network, in:
IEEE International Conference on Computer Vision and Pattern Recognition,
2016, pp. 6230-6239.

[15] ].D. Chen, Y.K. Cho, Z. Kira, Multi-view incremental segmentation of 3-
D point clouds for mobile robots, IEEE Robot. Autom. Lett. 4 (2) (2019)
1240-1246.

[16] K.Q. Li, W.B. Tao, L.M. Liu, Online semantic object segmentation for vision
robot collected video, IEEE Access 7 (2) (2019) 107602-107615.

[17] W. Chen, ]. Wilson, S. Tyree, K. Weinberger, Y. Chen, Compressing neural
networks with the hashing trick, in: International Conference on Machine
Learning, 2015, pp. 2285-2294.

[18] S. Han, H. Mao, W.]. Dally, Deep compression: Compressing deep neural
networks with pruning, trained quantization and huffman coding, in:
International Conference on Learning Representations, 2016, pp. 1-14.

[19] J. Wu, C. Leng, Y. Wang, Q. Hu, ]. Cheng, Quantized convolutional neu-
ral networks for mobile devices, in: IEEE International Conference on
Computer Vision and Pattern Recognition, 2016, pp. 5168-5177.

[20] M. Rastegari, V. Ordonez, ]. Redmon, A. Farhadi, Xnor-net: Imagenet
classification using binary convolutional neural networks, in: European
Conference on Computer Vision, 2016, pp. 525-542.

[21] A. Paszke, A. Chaurasia, S. Kim, E. Culurciello, Enet: A deep neural network
architecture for real-time semantic segmentation, 2016, arXiv preprint
arXiv:1606.02147.

[22] E. Romera, J.M. Alvarez, L.M. Bergasa, R. Arroyo, ERFNet: Efficient residual
factorized convnet for real-time semantic segmentation, IEEE Trans. Intell.
Transp. Syst. 19 (1) (2018) 263-272.

[23] A.G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M.
Andreetto, H. Adam, MobileNets: efficient convolutional neural networks
for mobile vision applications, 2017, arXiv preprint arXiv:1704.04861.

[24] W. Wen, C. Wu, Y. Wang, Y. Chen, H. Li, Learning structured sparsity
in deep neural networks, in: Annual Conference on Neural Information
Processing Systems, 2016, pp. 2074-2082.

[25] B. Liu, M. Wang, H. Foroosh, M. Tappen, M. Pensky, Sparse convolutional
neural networks, in: IEEE International Conference on Computer Vision and
Pattern Recognition, 2015, pp. 806-814.

[2

3

[4

[5

6

[7

8

[9



12

[26]

[27]

[28]

[29]

[30]

[31]

[32]
[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

Q. Zhou, Y. Wang, Y. Fan et al. / Applied Soft Computing Journal 96 (2020) 106682

X. Zhang, X. Zhou, M. Lin, ]J. Sun, Shufflenet: An extremely efficient
convolutional neural network for mobile devices, in: IEEE International
Conference on Computer Vision and Pattern Recognition, 2018, pp.
6848-6856.

M. Sandler, A. Howard, M.L. Zhu, A. Zhmoginov, L.C. Chen, Mobilenet V2:
Inverted residuals and linear bottlenecks, in: IEEE International Conference
on Computer Vision and Pattern Recognition, 2019, pp. 4510-4520.

N. Ma, XY. Zhang, H.T. Zheng, ]. Sun, Shufflenet v2: Practical guidelines
for efficient cnn architecture design, in; European Conference on Computer
Vision, 2018, pp. 116-131.

H.S. Zhao, XJ. Qi, X.Y. Shen, J.P. Shi, ].Y. Jia, Icnet for real-time semantic
segmentation on high-resolution images, 2018, arXiv preprint arXiv:1704.
08545v2.

S. Mehta, M. Rastegari, A. Caspi, L. Shapiro, H. Hajishirzi, ESPNet: Efficient
spatial pyramid of dilated convolutions for semantic segmentation, 2018,
arXiv preprint arXiv:1803.06815v3.

S. Mehta, M. Rastegari, L. Shapiro, H. Hajishirzi, ESPNet V2: A light-weight,
power efficient, and general purpose convolutional neural network, 2019,
arXiv:1811.11431v3.

M.Y. Liu, HJ. Yin, Feature pyramid encoding network for real-time
semantic segmentation, 2019, arXiv preprint arXiv:1909.08599v1.

G. Li, LY. Yun, JH. Kim, J.LK. Kim, DABNet: depth-wise asymmetric
bottleneck for real-time semantic segmentation, 2019, arXiv:1907.11357v1.
S.Y. Lo, H.M. Hang, S.W. Chan, J.H. Lin, Efficient dense modules of asymmet-
ric convolution for real-time semantic segmentation, 2018, arXiv preprint
arXiv:1809.06323v2.

M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson, U.
Franke, S. Roth, B. Schiele, The scapes dataset for semantic urban scene
understanding, in: IEEE International Conference on Computer Vision and
Pattern Recognition, 2016, pp. 3213-3223.

G.J. Brostow, ]. Shotton, J. Fauqueur, R. Cipolla, Segmentation and recog-
nition using structure from motion point clouds, in: European Conference
on Computer Vision, 2008, pp. 44-57.

S.R.B. G. Neuhold, P. Kontschieder, The mapillary vistas dataset for seman-
tic understanding of street scenes, in: IEEE International Conference on
Computer Vision, 2017, pp. 4990-4999.

R.P. Poudel, UBS. Liwicki, C. Zach, Contextnet: Exploring context and
detail for semantic segmentation in real-time, 2018, arXiv preprint arXiv:
1805.04554.

M.Y. Liu, HJ. Yin, Feature pyramid encoding network for real-time
semantic segmentation, 2019, arXiv preprint arXiv:1909.08599v1.

C.Q. Yu, ]J.B. Wang, C. Peng, CX. Gao, G. Yu, N. Sang, Bisenet: Bilateral
segmentation network for real-time semantic segmentation, in: European
Conference on Computer Vision, 2018, pp. 325-341.

TY. Wu, S. Tang, R. Zhang, Y.D. Zhang, CGNet: A light-weight context
guided network for semantic segmentation, 2018, arXiv preprint arXiv:
1811.08201v1.

G. Huang, S.C. Liu, LV. der Maaten, K.Q. Weinberger, Condensenet: An
efficient densenet using learned group convolutions, in: IEEE Interna-
tional Conference on Computer Vision and Pattern Recognition, 2018, pp.
2752-2761.

J.K. Chorowski, D. Bahdanau, D. Serdyuk, K. Cho, Y. Bengio, Attention-
based models for speech recognition, in: Annual Conference on Neural
Information Pracessing Systems, 2015, pp. 577-585.

K. Xu, B. Jimmy, K. Ryan, Show attend and tell: Neural image caption
generation with visual attention, in: International Conference on Machine
Learning, 2015, pp. 2048-2057.

L-C. Chen, Y. Yang, J. Wang, W. Xu, A.L. Yuille, Attention to scale: Scale-
aware semantic image segmentation, in: IEEE International Conference on
Computer Vision and Pattern Recognition, 2016, pp. 3640-3649.

[46]

[47]
[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]
[62]

[63]

[64]

[65]

F. Wang, M.Q. Jiang, C. Qian, S. Yang, C. Li, H.Q. Zhang, X.G. Wang,
X.0. Tang, Residual attention network for image classification, in: IEEE
International Conference on Computer Vision and Pattern Recognition,
2017, pp. 6450-6458.

J. Hu, L. Shen, G. Sun, Squeeze-and-excitation networks, 2017, arXiv
preprint arXiv:1709.01507.

H. Lu, D. Wang, Y. Li, . Li, X. Li, H. Kim, S. Serikawa, I. Humar, CONet: A
cognitive ocean network, IEEE Wirel. Commun. 26 (3) (2019) 90-96.

X. Xu, H. Lu, ]. Song, Y. Yang, H.T. Shen, X. Li, Ternary adversarial
networks with self-supervision for zero-shot cross-modal retrieval, IEEE
Trans. Cybern. 50 (6) (2020) 2400-2413.

V. Mnih, N. Heess, A. Graves, Recurrent models of visual attention, in:
Annual Conference on Neural Information Processing Systems, 2014, pp.
1-9.

CQ. Yu, JB. Wang, C. Peng, CX. Gao, G. Yu, N. Sang, Learning a
discriminative feature network for semantic segmentation, in: IEEE Inter-
national Conference on Computer Vision and Pattern Recognition, 2018,
pp. 325-341.

H. Zhang, K. Dana, J.P. Shi, ZY. Zhang, X.G. Wan, A. Tyagi, A. Agrawal,
Context encoding for semantic segmentation, 2018, arXiv preprint arXiv:
1803.08904.

Y. Wang, Q. Zhou, ]. Liu, J. Xiong, GW. Gao, X.F. Wu, LJ. Latecki,
LEDNet: A lightweight encoder-decoder network for real-time semantic
segmentation, in: IEEE International Conference on Image Processing, 2019,
pp. 177-186.

0. Ronneberger, F. Philipp, B. Thomas, U-net: Convolutional networks for
biomedical image segmentation, in: International Conference on Medical
Image Computing and Computer Assisted Intervention, 2015, pp. 225-233.
H. Zhao, ]. Shi, X. Qi, X. Wang, ].Y. Jia, Pyramid scene parsing network, in:
IEEE International Conference on Computer Vision and Pattern Recognition,
2016, pp. 6230-6239.

C. Peng, Z. Xiangyu, Y. Gang, L. Guiming, S. Jian, Large kernel matters:
Improve semantic segmentation by global convolutional network, in: IEEE
International Conference on Computer Vision and Pattern Recognition,
2017, pp. 1743-1751.

H.C. Li, P.F. Xiong, ]. An, L.X. Wang, Pyramid attention network for semantic
segmentation, 2018, arXiv:1805.10180.

Z.L. Zhang, X.Y. Zhang, C. Peng, X.Y. Xue, ]. Sun, Exfuse: Enhancing feature
fusion for semantic segmentation, in: European Conference on Computer
Vision, 2018, pp. 269-284.

F. Yu, V. Koltun, Multi-scale context aggregation by dilated convolutions,
in: International Conference on Learning Representations, 2016, pp. 1-10.
A. Shrivastava, A. Gupta, R. Girshick, Training region-based object detectors
with online hard example mining, in: IEEE International Conference on
Computer Vision and Pattern Recognition, 2016, pp. 761-769.

R.P. Poudel, S. Liwicki, Fast-scnn: fast semantic segmentation network,
2019, arXiv:1902.04502v1.

Y.H. Yuan, ].D. Wang, OCNet: Object context network for scene parsing,
2018, arXiv:1809.00916v1.

J. Deng, W. Dong, R. Socher, L-J. Li, K. Li, L. Fei-Fei, ImageNet: A large-
scale hierarchical image database, in: IEEE International Conference on
Computer Vision and Pattern Recognition, 2009, pp. 248-255.

LY. Liu, HM. Jiang, P.C. He, W.Z. Chen, X.D. Liu, J.F. Gao, JW. Han,
On the variance of the adaptive learning rate and beyond, 2019, arXiv:
1908.03265v1.

M. Zhang, ]. Lucas, ]. Ba, G.E. Hinton, Lookahead Optimizer: k steps forward,
1 step back, in: Annual Conference on Neural Information Processing
Systems, 2019, pp. 9593-9604.



