Information Processing and Management 58 (2021) 102443

Contents lists available at ScienceDirect

Information Processing and Management

journal homepage: www.elsevier.com/locate/ipm o

Check for

Rank-based self-training for graph convolutional networks ipdaies”_

Daniel Carlos Guimaries Pedronette **, Longin Jan Latecki ®

a Department of Statistics, Applied Mathematics and Computing (DEMAC), Sdo Paulo State University (UNESP), Rio Claro, Brazil
b Department of Computer and Information Sciences, Temple University, Philadelphia, USA

ARTICLE INFO ABSTRACT

Keywords: Graph Convolutional Networks (GCNs) have been established as a fundamental approach for
Graph convolutional networks representation learning on graphs, based on convolution operations on non-Euclidean domain,
Self—l;cram;nzlg defined by graph-structured data. GCNs and variants have achieved state-of-the-art results on
Rank mode

classification tasks, especially in semi-supervised learning scenarios. A central challenge in semi-
supervised classification consists in how to exploit the maximum of useful information encoded
in the unlabeled data. In this paper, we address this issue through a novel self-training approach
for improving the accuracy of GCNs on semi-supervised classification tasks. A margin score
is used through a rank-based model to identify the most confident sample predictions. Such
predictions are exploited as an expanded labeled set in a second-stage training step. Our model is
suitable for different GCN models. Moreover, we also propose a rank aggregation of labeled sets
obtained by different GCN models. The experimental evaluation considers four GCN variations
and traditional benchmarks extensively used in the literature. Significant accuracy gains were
achieved for all evaluated models, reaching results comparable or superior to the state-of-the-
art. The best results were achieved for rank aggregation self-training on combinations of the
four GCN models.

Semi-supervised learning

1. Introduction

Mainly grounded by deep-learning approaches, classification methods experimented a remarkable development in last decade.
However, in spite of the huge advances achieved, performing classification tasks based on scarce labeled data still remains a
challenging task, since deep models often require large amount of data for training. In this scenario, semi-supervised classification
re-emerge as a promising approach, capable of also exploiting useful information encoded in the unlabeled data. Actually, semi-
supervised learning (SSL) is halfway between supervised and unsupervised, being suitable to operate with large amounts of unlabeled
data and a small quantity of labeled data (Chapelle, Schlkopf, & Zien, 2010; Triguero, Garcia, & Herrera, 2015). A direct and central
motivation for semi-supervised learning relies on the fact that labeled data is typically much harder to obtain compared to unlabeled
data (Tian, Yu, Xue, & Sebe, 2004).

One of the earliest approaches of semi-supervised learning is self-training, also known as self-labeling or self-supervision (Chapelle
et al., 2010; Scudder, 1965). The main idea consists in a wrapper approach that repeatedly exploits a supervised learning method.
Firstly, the supervised method is trained based on labeled data only. Subsequently, the unlabeled data is labeled according to the
trained supervised model. Then, a selected sub-set of predictions is exploited as additional labeled data to re-train the supervised
method (Chapelle et al.,, 2010). Naturally, the possible combinations between supervised models and approaches to select the
additional labeled data open a broad and promising range of self-training approaches (Triguero et al., 2015).

* Corresponding author.
E-mail address: daniel.pedronette@unesp.br (D.C.G. Pedronette).

https://doi.org/10.1016/j.ipm.2020.102443
Received 31 July 2020; Received in revised form 30 October 2020; Accepted 22 November 2020
0306-4573/© 2020 Published by Elsevier Ltd.

http://www.elsevier.com/locate/ipm
http://www.elsevier.com/locate/ipm
mailto:daniel.pedronette@unesp.br
https://doi.org/10.1016/j.ipm.2020.102443
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ipm.2020.102443&domain=pdf
https://doi.org/10.1016/j.ipm.2020.102443

D.C.G. Pedronette and L.J. Latecki Information Processing and Management 58 (2021) 102443

On the other hand, graphs have been employed as a representation tool in a wide range of real-world scenarios, mainly due to
their expressive power (Sun, Lin, & Zhu, 2020). Graph analytics approaches enable a better understanding of what is behind the
data, being useful in diverse applications and domains. Tasks as node classification, node recommendation, and link prediction often
can benefit from graph-based representations in several areas, from social networks to physical and biological systems (Cai, Zheng,
& Chang, 2018). Additionally, the semi-supervised learning literature also exploits graphs as a way to encode the geometry of both
labeled and unlabeled data in order to improve supervised methods (Chapelle et al., 2010).

For graph-based semi-supervised learning, a remarkable recent development has been achieved by Graph Neural Networks
(GNNs) (Wu, Pan, Chen, Long, Zhang, & Yu, 2019) and, more specifically, by Graph Convolutional Networks (GCNs) (Kipf & Welling,
2017). The GCN models integrate local node features and graph topology in the convolutional layers (Li, Han, & Wu, 2018). In
fact, graph convolution enables the extension of standard convolution from Euclidean to non-Euclidean domain, defined by graph-
structured data (Sun et al., 2020). Recently, GCNs (Kipf & Welling, 2017) and subsequent variants (Bianchi, Grattarola, Livi, & Alippi,
2019; Klicpera, Bojchevski, & Giinnemann, 2019; Pei, Wei, Chang, Lei, & Yang, 2020; Velickovic, et al., 2018; Wu, Souza, Zhang,
Fifty, Yu, & Weinberger, 2019) have achieved state-of-the-art results in diverse applications, specially involving semi-supervised
classification tasks. Many variants propose changes in the network structure, mostly by including or removing components. For
instance, in Wu, Souza, Zhang, Fifty, Yu, and Weinberger (2019), the weight matrices between consecutive layers are collapsed and
non-linearities removed. in Bianchi et al. (2019), a convolutional layer based on auto-regressive moving average filter is inserted.

In a distinct and promising research direction, other recent works (Bai, Zhang, & Torr, 2019; Klicpera, Weil3enberger, &
Giinnemann, 2019; Li et al., 2018; Sun et al., 2020) have exploited traditional machine learning strategies for further improving
GCN capacities. Mainly motivated by the recent impressive GCN results, some relevant techniques in machine learning have been
revisited in conjunction with GCN models (Li et al., 2018). in Bai et al. (2019), hypergraphs are exploited to learn deep embeddings
on the high-order graph-structured data. A diffusion process is employed in Klicpera, Weildenberger, and Giinnemann (2019) for
aggregating information from a larger neighborhood. The neighborhood is constructed based on the sparsification of a generalized
form of graph diffusion.

In this context, some few self-training approaches have been investigated for GCNs very recently (Li et al., 2018; Sun et al., 2020;
Zhou, Zhang, & Huang, 2019). The GCN model is described as a special form of Laplacian smoothing in Li et al. (2018), discussing
scenarios of success and fails of the model. While the smoothing is pointed as the key reason for successful scenarios, potential
over-smoothing can occur for many convolutional layers. A self-training approach is proposed to overcome such limitations. In a
more recent work (Sun et al., 2020), the method is extended to multiple self-training stages. An aligning mechanism is used on the
output of a deep-clustering approach. The clusters are used to assign pseudo-labels for each unlabeled data point in the embedding
space.

In this paper, we propose a novel Rank-Based Self-Training approach for Graph Convolutional Networks. Our work focuses on the
selection of data points in the embedding space to be used as additional labeled data. How to accurately select effective predictions
is a challenging task for self-training approaches, few exploited in recent related work (Li et al., 2018; Sun et al., 2020). Typically,
the selection is performed by considering the top softmax scores per class (Li et al., 2018; Sun et al., 2020). We propose to employ
a margin-based selection score inspired by active learning approaches (Settles, 2009). The nodes are represented according to the
score in a rank-based model for the whole dataset, allowing to handle unbalanced additional labeled data per class. Based on the
rank model, an expanded labeled set is defined for a second-stage training and classification. The main contributions, differences
and novelties with respect to related works can be summarized as follows:

The proposed self-training approach is not restricted to a specific GCN model. Different from recent related self-training
methods (Li et al., 2018; Sun et al., 2020; Zhou et al., 2019), which are focused on a GCN model, the proposed method
was validated on four GCN models (Bianchi et al., 2019; Kipf & Welling, 2017; Klicpera, Bojchevski, & Giinnemann, 2019;
Wu, Souza, Zhang, Fifty, Yu, & Weinberger, 2019) with a log-soft-max as the last layer. Actually, the rank-based formulation
is versatile and can be easily extended to other learning tasks;

The proposed margin score addresses the challenging task of self-labeled data selection, which has a central problem in self-
training methods. Most of approaches consider the softmax score of the predicted class to estimate the confidence of prediction.
In contrast, the proposed margin confidence considers not only the class predicted, but the relationship between the first and
second higher scores. The motivation is based on the conjecture that even a high softmax score can provide a low accurate
estimation when first and second top prediction scores are similar. The proposed score provides a simple, yet effective label
prediction estimation;

Our approach employ a global ranking of nodes, being able to handle data with unbalanced classes. In contrast, other self-
training methods (Li et al., 2018; Sun et al., 2020; Zhou et al., 2019) often select a fixed number of nodes per class as the
expanded labeled set. However, a forced equal amount per class can add low-accurate predictions to certain classes;

A rank aggregation approach is proposed to exploit and fuse the information from distinct GCN models and training executions.
Based on the fused confidence which consider different models, an aggregated and more effective ranking of nodes is computed
in order to obtain a more accurate expanded labeled set. To the best of our knowledge, it is the first approach which fuses
information from distinct GCN models in a self-training setting.

The proposed approach was evaluated for semi-supervised classification tasks on citation datasets broadly used as benchmark
in the literature (Bai et al., 2019; Bianchi et al., 2019; Kipf & Welling, 2017; Klicpera, Bojchevski, & Giinnemann, 2019; Li et al.,
2018; Sun et al., 2020; Wu, Souza, Zhang, Fifty, Yu, & Weinberger, 2019). The experiments indicate significant accuracy gains of the

D.C.G. Pedronette and L.J. Latecki Information Processing and Management 58 (2021) 102443

proposed self-training method applied to four different GCN models. Accuracy results on semi-supervised classification outperform
most of state-of-art methods.

The remainder of this paper is organized as follows. Section 2 discusses related work and a formal definition of the problem
setting. Section 3 presents the proposed self-training approach. Section 4 describes the conducted experimental evaluation and,
finally, Section 5 discusses the conclusions.

2. Problem definition and preliminaries
2.1. Graph-based semi-supervised learning

In this section, we first discuss a formal definition of the semi-supervised learning classification task using graph convolution
networks, mostly following (Kipf & Welling, 2017; Li et al., 2018).

Let G denotes an undirected graph represented by ¢ = (V, &£, X), where V is the node set, £ is the edge set and X is a feature
matrix. The node set is given by V = {v;,v,,...,v,} and the edge set is defined by a set of pairs (v;,v;) € £, which can be represented
by a non-negative adjacency matrix A = [g;;] € R"™". The feature matrix is defined as X = [x,X,,...,x,]T € R"™, where x, is a
d-dimensional feature vector which represents the node v;.

Let ¥ = {y,.)5....,y.} be a set of labels which can be assigned to nodes v; € V. In this way, the node set can be more
specifically defined as ¥V = {v,,v,,...,v;,0;,1,...,0,}, which denotes a partially labeled dataset, where V; = {v;} ,L_ is the labeled

=1

data items subset and V; = {x; }If’= L+l is the unlabeled data items subset. For semi-supervised classification, as a general rule, we
have |V, | < |Vy|. Formally, the training set can be seen as a labeling function / : V; — Y, where y; = [(v;)Vv; € V;. The goal is to

learn a function [: Vy — Y to predict the labels of unlabeled nodes in V;.
2.2. Graph convolutional networks

Recently, much effort has been made on exploiting deep learning approaches for graph data (Cai et al., 2018). In this context,
Graph Convolutional Networks (GCN) represent a relevant graph-based neural network model, introduced in Kipf and Welling
(2017). In a simplified way, GCN learns the embedding (representation) of each node by iteratively aggregating the embeddings of
its neighbors, encoding the graph structure directly on a neural network model. A two-layer GCN model is used for semi-supervised
node classification in Kipf and Welling (2017), taking into account a graph represented by a symmetric adjacency matrix A.

The network model can be depicted as a function both on the feature data X and on the adjacency matrix A, as:

7= f(X,A), (€Y

where Z denotes an embedding matrix, such that Z = [z,, z,, ..., z,]7 € R"™ and z is a c-dimensional embedded representation
learned for the node v;.

The degree matrices are computed as a pre-processing step, defined as A = D~1/2AD~!/2, where A = A + 1 and D is the degree
matrix of A. Then, the function f(-) which represents the two-layer GCN model assumes the form:

Z = log(softmax(ARe LU AXW©®)wD)y) @)

The matrix W© € R¥H defines the neural network weights for an input-to-hidden layer with H feature maps, while W) € RHx¢
is a hidden-to-output matrix. Both matrices W and W are trained using gradient descent, considering the cross-entropy error
over all labeled nodes v; € V;. The softmax activation function is applied row-wise and yields the probability distribution over the
¢ class labels for each row, i.e., the probability values sum up to 1 for each row. After log function, the label assigned to a node v,
is defined according to the class with the less negative value in the embedded representation z;.

Mostly grounded by the success of the GCN (Kipf & Welling, 2017), various related graph convolutional network models have
been recently proposed (Bai et al., 2019; Bianchi et al., 2019; Klicpera, Bojchevski, & Giinnemann, 2019; Klicpera, Weilenberger, &
Giinnemann, 2019; Li et al., 2018; Velickovic, et al., 2018; Wu, Souza, Zhang, Fifty, Yu, & Weinberger, 2019). While some approaches
focus in the structure of network models (Bai et al., 2019; Bianchi et al., 2019; Klicpera, Bojchevski, & Giinnemann, 2019; Wu, Souza,
Zhang, Fifty, Yu, & Weinberger, 2019), others present contributions involving training steps and manifold information (Klicpera,
Weilienberger, & Glinnemann, 2019; Li et al., 2018). Different network models (Bianchi et al., 2019; Kipf & Welling, 2017; Klicpera,
Bojchevski, & Giinnemann, 2019; Wu, Souza, Zhang, Fifty, Yu, & Weinberger, 2019) can be used in conjunction with the proposed
self-training approach. The only condition is that a log-soft-max operation is kept as the last layer.

3. Rank-based self-training

We propose a self-training approach focused on better exploiting the unlabeled data by taking into account the information
encoded in the embedding computed by a first stage semi-supervised classification. The method post-processes the predicted labels
computed through a GCN classification, by identifying high-confidence predictions to be used for pseudo-labeled data expansion.

A challenging task for different self-training methods (Li et al., 2018; Sun et al., 2020; Zhou et al., 2019) is how to identify
high-accurate label predictions. This task is a central problem of self-training methods. Most approaches consider the soft-max score
of the predicted class to estimate the confidence of prediction, which is often not sufficient. In this regard, we present a margin
prediction confidence, inspired by active learning approaches (Scheffer, Decomain, & Wrobel, 2001; Settles, 2009), which consider

D.C.G. Pedronette and L.J. Latecki Information Processing and Management 58 (2021) 102443

Input Layer Output Layer ‘ Yl
>

Second Y
e %6 2 — % Stage)
¢ X @ > Layers %6 % — T
2 \' 2 First . ‘
oo oo Stage 6
@ TN 7
N X, N A Slg/éiregcn(i') 1 ‘

zZ, ‘
; Z L

X, A)

= Labels

Expanded Labeled Set oo

Fig. 1. Overview of the proposed rank-based self-training for graph convolutional networks.

the gap between the first and second higher scores. While active learning methods aims at identifying the most informative samples,
we are interested in the most confident labels. Our score is based on the conjecture that the log-soft-max output tends to provide
similar values to both first and second classes when the classification is not correct.

Different from other self-training methods, which keep a confidence score update at each epoch (Zhou et al., 2019) or multi-
stage (Sun et al., 2020), our method employs a simple two-stage approach, i.e., we train the GCN twice, first with original label
set, and then with the augmented label set. A direct advantage is improved efficiency and simplicity. A two-state training approach
requires the computation of the margin score and the global ranking of vertices. Considering a two-stage approach, such steps
are computed only once, reducing substantially the computational efforts required. Hence a two-stage approach keeps a favorable
trade-off between effectiveness and efficiency.

The proposed approach is illustrated in Fig. 1. Firstly, a first-stage classification is performed by a GCN model. Subsequently,
the proposed approach can be divided into three main steps:

1. Margin Confidence Score: a margin-based score is computed for each graph node aiming to estimate the confidence on the
computed embedding;

2. Labeled Set Expansion: the nodes are represented through a rank model, defined according to the margin score. Subsequently,
some nodes are selected for an expanded labeled set;

3. Second Stage Semi-Supervised Classification: the GCN model is re-trained by taking into account the expanded labeled set.

The three main steps of the proposed method are detailed and formally defined in next sub-sections. A general outline of the
proposed method is presented in Algorithm 1. Line 1 performs the first-stage classification. Lines 2-4 define the computation of the
margin confidence, discussed in Section 3.1. The labeled set expansion step is defined in lines 5-12 and detailed in Section 3.2. Line
13 performs the second-stage classification, discussed in Section 3.3.

Algorithm 1 Rank-based Self-Training for GCNs

Require: Feature matrix X, adjacency matrix A, labeled data V;, «
Ensure: Embedding matrix Z, learned function /®

1: Z=foenX A V)

first-stage classification: learned function [V

2: for all v; €V do

3 ¢ =c,1) # margin score computation
4: end for

5. 7 = sort(V,¢) # ranked list computation
6: th, =|V|Xa # threshold definition
7: Vg =V, # labeled set expansion
8: forall v, €V do

o if z(v,) < th, then

10: Vg =Vg Uy,

11: end if

12: end for

13: Z = foenX A VE) # second-stage classification: learned function /@

D.C.G. Pedronette and L.J. Latecki Information Processing and Management 58 (2021) 102443

3.1. Margin confidence score

The margin confidence score is defined based on the learned embeddings. Given a c-dimensional vector which defines the
embedded representation z; for a node v;, a set S; is computed containing the z; absolute values. The set S; is formally defined
as:

S ={1Z;] : j€{0,1,...c}} 3)

Once a log function is applied to the soft-max layer and the set S; contains its absolute values, we are interested in the smallest
values in S;. Such values are associated with the most likely classes. Therefore, we consider a function m(S;, k) that returns the kth
smallest element in S;. Formally, the function m : S; XN — R can be defined as:

{ min(S;), k=1
m(S;, k) = “@
min({v : v € S;,v>m(S;,k-1)}), k>1

More specifically, the value of interest is given by the normalized difference between the smallest and the second smallest values.
Therefore, the confidence estimation c(v;) of the predicted class for a given node v; is defined as:
m(S;,2) — m(S;, 1)

ZUGS‘- v ‘

3.2. Labeled set expansion

e, L) = (5)

Once a confidence estimation is defined, the nodes are ranked according to the function c¢(-) in order to obtain a ranked list 7.
The ranked list = can be formally defined as a permutation (v, v,, ..., v,) of the node set V. A permutation r is a bijection from the
set ¥ onto the set [N] = {1,2,...,n}.

For a permutation 7, we interpret 7(v;) as the position (or rank) of node v; in the ranked list 7. If v; is ranked before v; in the
ranked list 7, i.e., 7(v;) < 7(v;), then ¢(v;,Z) > c(v;Z). The rank 7(v;) is used to decide if the node v; is included in the expanded
training set.

Let a € [0, 1] denote a hyper-parameter that regulates the extend of labeled set expansion. Based on «, a ranking threshold 74,
is defined as:

th,= V| xa (6)

The threshold A, defines a position in the ranked list 7, until which the nodes are included in the expanded training set. Let Vj
denotes the expanded labeled set, it is formally defined as:

Ve ={v, € V|r(v,) Lth,} UV, @
3.3. Second stage semi-supervised classification

Once an expanded labeled set V, is defined, a second training stage is performed. Let /(! denotes the labeled function learned
by the first training stage. The second stage training uses the same network model and same hyper-parameters of the first stage.
However, the second stage training considers the set Vj as the labeled set to learn a new function /). Finally, the function /@ is
used for performing the definitive classification.

3.4. Complexity analysis

This section presents a brief discussion about the complexity of proposed rank-based self-training approach. The first and second
stage classifications are directly associated with the GCN model used. Therefore, the complexity of our method is given by the
computation of the margin confidence and the labeled set expansion procedure.

The margin score is computed based on the c-dimensional vector which defines the embedded representation, where ¢ denotes
the number of classes. Therefore, the complexity is O(c). The labeled set expansion requires a sorting procedure of the vertices,
which has O(nlog n) complexity. Since ¢ < n, the general complexity of the proposed model is given by O(nlog n).

3.5. Rank aggregation for prediction confidence fusion

Effectively exploiting the useful information encoded in the unlabeled data is a central issue in semi-supervised learning. More
specifically in self-training, the use of unlabeled data is closely associated with the identification of high-accurate predictions.

A true power of the proposed self-training approach becomes unlocked when a few diverse GCN models are exploited. The
labeled set expansion is defined through the ranked list of vertices, which is computed based on the margin score. Once the margin
score varies according to the GCN model, distinct GCN models yield different expanded labeled sets. Therefore, ranked lists from
different GCN models present diversity, which can be exploited and aggregated for a more accurate label expansion step.

D.C.G. Pedronette and L.J. Latecki Information Processing and Management 58 (2021) 102443

Additionally, even the same GCN model can give rise to distinct expanded labeled sets through distinct training executions,
due to the stochastic characteristics of optimization procedures and random parameters initialization involved. In this scenario, we
propose a rank aggregation approach to exploit such diversity. A fused prediction confidence score is computed by aggregating the
ranks in two dimensions: distinct GCN models and different training executions of each model. The fused scores gives rise to a more
effective aggregated ranking and, therefore, a more accurate expanded labeled set. Based on the expanded labeled set, a second
stage classification is performed.

More formally, each training execution of each GCN model assigns a different prediction score to given pair (node, class). As
a result, a different margin-based confidence score is computed for each execution. Let M denotes a set of GCN models, such that
a model M; € M and |M| = m,. Let t denotes the current training execution, such that + € {1,2,...,n/}. Let ¢, ;(v;) denotes
a confidence score computed by a GCN model M; on the training execution ¢ for a node v;. A fused confidence score c,(v;) is
computed based on a multiplicative rank aggregation formulation (Pedronette & Torres, 2013), as:

Mf nf
ey =[TT10 +es@ ®
j=11=1
The fused confidence score c¢(v;) combines information from different GCN models and training executions and can be used in
place of function c(-) (Eq. (5)) to define the ranked list 7. In this way, the aggregated ranking z is exploited to define a more accurate
expanded labeled set for a second-stage classification. The second stage classification can be performed by any model M; € M. In
order to ensure a consistent aggregation, the fused score c¢,(v;) can only be considered if the same label is assigned to node v; by
all GCN models on all training executions. Otherwise, we set cp(v) = 0.

4. Experimental evaluation

In this section, we describe the experiments conducted to assess the accuracy of the proposed method in the task of semi-
supervised node classification.

4.1. Graph convolutional network models

As previously discussed, the proposed self-training approach allows different GCN models and variants. The margin-based score
requirement is restricted only to the last layer, expected to be a log-soft-max operation. We validated the proposed method on four
GCN models with a log-soft-max as the last layer, described in the following:

» GCN: Graph Convolution Network (Kipf & Welling, 2017), a seminal GCN model broadly defined as an efficient variant CNNs
on graphs (detailed in Section 2.2);

» SGC: Simple Graph Convolution (Wu, Souza, Zhang, Fifty, Yu, & Weinberger, 2019), a simplification of GCN models obtained
by removing nonlinearities and collapsing weight matrices between consecutive layers;

« APPNP: Approximate Personalized Propagation of Neural Predictions (Klicpera, Bojchevski, & Glinnemann, 2019), an algorithm
which exploits the relationship between GCNs and PageRank, deriving a propagation strategy based on personalized PageRank;

+ ARMA: ARMA Filter Convolutions (Bianchi et al., 2019), a GCN variant which defines a convolutional layer based on
Auto-Regressive Moving Average (ARMA) filters.

All four network models are used in the rank aggregation fusion to boost the correctness of the extended label sets. Diverse
combinations of pairs and all models are considered on the experimental evaluation.

4.2. Datasets

The experimental evaluation was conducted on three citation network datasets': Cora (McCallum, Nigam, Rennie, & Seymore,
2000; Sen, et al., 2008) Citeseer (Giles, Bollacker, & Lawrence, 1998; Sen, et al., 2008) and Pubmed (Yang, Cohen, & Salakhutdinov,
2016). Such datasets have been largely used in the literature (Bai et al., 2019; Chen, Zhu, & Song, 2018; Fey & Lenssen, 2019;
Velickovic, et al., 2018, 2019; Wu, Souza, Zhang, Fifty, Yu, & Weinberger, 2019) as benchmark for semi-supervised classification
tasks, including some representative (Kipf & Welling, 2017; Yang et al., 2016) and recent (Bai et al., 2019; Velickovic, et al., 2019)
works. Table 1 presents some statistics of the three datasets, briefly detailed in the following.

The three datasets are composed by textual documents and a list of citation links between them. A graph is defined, where
each node represents a document and each edge represents a citation link. Additionally, a sparse bag-of-words feature vector is
associated to each document. The Cora dataset contains scientific publications divided into 7 categories. Each publication is described
by a binary bag-of-word representation, where 0 (or 1) indicates the absence (or presence) of the corresponding word from the
dictionary. The dictionary consists of 1433 unique words (features). The Citeseer dataset employs an analogous representation but
of 3, 703 dimensions. The Pubmed dataset is divided into 3 classes and uses a vectorial representation using Term Frequency-Inverse
Document Frequency (TF-IDF), based on a dictionary of 500 terms. For all datasets, each document has a single class label.

1 https://lings.soe.ucsc.edu/data.

https://linqs.soe.ucsc.edu/data

D.C.G. Pedronette and L.J. Latecki Information Processing and Management 58 (2021) 102443

Table 1

Citation network datasets statistics.
Dataset Nodes Edges Classes Features Train/Val/Test
Cora 2708 5429 7 1433 140/500/1000
CiteSeer 3327 4732 6 3703 120/500/1000
PubMed 19717 44338 3 500 60/500/1000

4.3. Experimental protocol and implementation details

The experiments were conducted according to the protocol initially used in Yang et al. (2016) and followed by other works (Fey
& Lenssen, 2019; Kipf & Welling, 2017). The training is performed using 20 labels per class, but all feature vectors (labeled and
unlabeled data). The accuracy prediction accuracy is evaluated on a test set of 1000 nodes. The dataset splits follows (Fey & Lenssen,
2019; Kipf & Welling, 2017; Yang et al., 2016), with a validation set of 500 labeled samples used by Kipf and Welling (2017) and
Fey and Lenssen (2019). The labels of the validation set are not used for training.

The implementation of the proposed Rank-based Self-Training was made upon PyTorch Geometric (PyG) (Fey & Lenssen, 2019),
a geometric deep learning extension library for PyTorch (Paszke, et al., 2017). We also used the PyG (Fey & Lenssen, 2019)
implementation of the four network models previously discussed: Graph Convolution Network (GCN) (Kipf & Welling, 2017); Simple
Graph Convolution (SGC) (Wu, Souza, Zhang, Fifty, Yu, & Weinberger, 2019); Approximate Personalized Propagation of Neural
Predictions (APPNP) (Klicpera, Bojchevski, & Giinnemann, 2019); and ARMA Filter Convolutions (ARMA) (Bianchi et al., 2019).

All the models were trained for 200 epochs using Adam (Kingma & Ba, 2015) optimization. During the training process, for
both first and second stages, the model is selected according to the lowest validation loss. The hyperparameters and network
configurations for each model followed the default values given by the benchmark provided in PyG (Fey & Lenssen, 2019).2 The
learning rate is defined as 0.01 for all networks except SGC, which used 0.1. The dropout parameter is set to 0.5 also for all networks
except SGC, which does no employ dropout. The early stop window size was defined to 10 for all networks except ARMA, which
used 100. The rank-based Self Training approach has only one hyper-parameter «, which, is discussed in next sub-section.

Regarding feature normalization, the PyG implementation includes a normalization procedure, which impacts positively on most
of network models. However, our self-training approach performs better without the normalization. Therefore, we report results
before self-training on both situations: with and without feature normalization.

4.4. Parameter space analysis

This section presents an analysis of the parameter space and definition of parameter settings. The proposed rank-based Self
Training requires only one hyper-parameter a, which defines a rank threshold. The impact of a on accuracy was evaluated on Cora
dataset considering an average of 20 executions. Fig. 2 presents the results for SGC and GCN networks.

We can observe that very low and high values of « lead to small gains in comparison with the network model in isolation (orange
line). However, a large intermediary region tends to produce higher accuracy gains, indicating the robustness of our approach to
small parameter variations. In all experiments we used a = 0.4, which approximates the beginning of intermediary values with high
associated accuracy gains.

The aggregation of network models also considers a parameter n,, which defines the aggregation of executions on first stage and
the average of executions on second stage classifications. We varied n in the interval [5,50] and evaluated the impact on accuracy.
Fig. 3 shows the results, which are very stable to different settings. The value of n, = 20 was empirically defined and used in all
aggregation experiments.

4.5. Results

This section present the accuracy results on semi-supervised classification tasks for the citation datasets. Firstly, we report the
accuracy results of the four network models in isolation, considering feature normalization. Table 2 present the results reported
according to PyG (Fey & Lenssen, 2019), with higher accuracy in bold.

Table 3 present the accuracy results for the proposed Rank-based Self-Training method. We reported the results of each network
model in isolation and jointly with the proposed self-training approach. All results consider an average of 100 executions and do
not use feature normalization. The best accuracy results are highlighted in bold. We can observe significant gains obtained for
most network models and datasets. All the highest accuracy results (in bold) are achieved by the Rank-based Self-Training, even
considering results of Table 2.

Results for fusion of confidence prediction are reported on Table 4. Different pairs combinations and the aggregation of all
network models are considered. SGC and APPNP network models are considered for the second stage classification, once have
achieved the best results on individual results reported in Table 3. As it can be observed, the results of fusion reached the high
accuracy results for all datasets. The highest results for each segment of the table is highlighted in bold.

2 https://github.com/rustyls/pytorch_geometric/tree/master/benchmark.

https://github.com/rusty1s/pytorch_geometric/tree/master/benchmark

D.C.G. Pedronette and L.J. Latecki Information Processing and Management 58 (2021) 102443

Impact of hyper-parameter a on Accuracy - Cora Dataset

N ettt
VRSN

.\

83.0
/— SGC *
—&— Rank-based Self-Training + SGC

Accuracy

0.0 0.2 0.4 0.6 0.8
Hyper-parameter a

(a) SGC
Impact of hyper-parameter a on Accuracy - Cora Dataset
" |
-
4
o3 md N\'J
2)
>
%3
£82] '\'
g
<
81
80
—— GCN
79 —&— Rank-based Self-Training + GCN

0.0 0.2 0.4 0.6 0.8
Hyper-parameter a

(b) GCN

Fig. 2. Evaluation of the impact of hyper-parameter « on accuracy.

Impact of hyper-parameter nr on Aggregation - Cora Dataset

85 /ii\ I I_—4

-~ -

84
g —— SGC
58 — GCN
g —&— Rank Self-Training: SGC(SGC+GCN)
82
81

10 20 30 40 50
Hyper-parameter n¢

Fig. 3. Evaluation of the impact of hyper-parameter n, on aggregation.

D.C.G. Pedronette and L.J. Latecki Information Processing and Management 58 (2021) 102443

Table 2

Accuracy of semi-supervised classification on citation datasets as reported in (Fey & Lenssen, 2019) with feature

normalization.
Method Cora CiteSeer PubMed
GCN (Kipf & Welling, 2017) 81.5 + 0.6 71.1 + 0.7 79.0 + 0.6
SGC (Wu, Souza, Zhang, Fifty, Yu, & Weinberger, 2019) 81.7 + 0.1 71.3 £ 0.2 78.9 + 0.1
ARMA (Bianchi et al., 2019) 82.8 + 0.6 72.3 + 1.1 78.8 + 0.3
APPNP (Klicpera, Bojchevski, & Giinnemann, 2019) 83.3 + 0.5 71.8 + 0.5 80.1 + 0.2

Table 3

Accuracy of Rank-based Self-Training on citation datasets. Results without feature normalization.
Method Cora CiteSeer PubMed
GCN (Kipf & Welling, 2017) 80.5 + 0.6 66.9 + 0.7 78.9 + 0.3
Rank-based Self-Trainig + GCN 83.3 + 0.9 69.4 + 1.9 80.3 + 0.4
SGC (Wu, Souza, Zhang, Fifty, Yu, & Weinberger, 2019) 80.9 + 0.0 69.3 + 0.0 78.9 + 0.0
Rank-based Self-Trainig + SGC 84.1 + 0.2 73.1 £ 0.2 75.9 = 0.0
ARMA (Bianchi et al., 2019) 80.1 + 1.0 64.6 + 2.2 782 + 0.4
Rank-based Self-Trainig + ARMA 829 + 1.0 68.0 + 4.4 79.5 + 0.6
APPNP (Klicpera, Bojchevski, & Giinnemann, 2019) 82.8 + 0.7 70.1 + 0.7 79.9 + 0.2
Rank-based Self-Trainig + APPNP 84.7 + 0.6 71.2 +£ 0.7 81.2 + 0.7

Table 4

Accuracy results for confidence prediction fusion based on Rank Aggregation Self-Training.
Method Cora CiteSeer PubMed
Rank-based Self-Trainig + GCN 83.3 + 0.9 69.4 + 1.9 80.3 + 0.4
Rank-based Self-Trainig + SGC 84.1 + 0.2 73.1 £ 0.2 75.9 + 0.0
Rank-based Self-Trainig + ARMA 829 + 1.0 68.0 + 4.4 79.5 + 0.6
Rank-based Self-Trainig + APPNP 84.7 + 0.6 71.2 £ 0.7 81.2 + 0.7

Rank Aggregation Self-Training: SGC for second stage classification
GCN+SGC 84.2 + 0.2 73.2 + 0.0 76.9 + 0.0
GCN+ARMA 83.7 £ 0.0 73.3 £ 0.0 79.1 £ 0.0
GCN+APPNP 84.2 + 0.0 73.3 + 0.1 78.9 + 0.0
SGC+ARMA 84.2 + 0.2 73.4 + 0.0 77.8 + 0.0
SGC+APPNP 84.4 + 0.2 72.8 + 0.1 77.8 £ 0.0
ARMA+APPNP 84.1 + 0.0 73.5 + 0.1 79.0 + 0.0
GCN+SGC+ARMA-+APPNP 84.3 + 0.0 74.1 + 0.0; 78.3 + 0.0

Rank Aggregation Self-Training: APPNP for second stage classification
GCN+SGC 84.0 + 0.4 714 + 0.4 79.3 + 0.3
GCN+ARMA 84.6 + 0.3 71.6 + 0.5 80.3 + 0.4
GCN+APPNP 849 + 0.5 71.4 £ 0.5 80.8 + 0.2
SGC+ARMA 84.7 + 0.4 72.1 + 0.3 79.3 + 0.2
SGC+APPNP 85.1 + 0.4 72.5 + 0.5 79.6 + 0.2
ARMA-+APPNP 85.0 + 0.3 719 + 0.5 80.9 + 0.2
GCN+SGC+ARMA+APPNP 85.0 + 0.5 72.1 + 0.5 79.9 + 0.2

4.6. Visual analysis

In order to enrich the discussion about the impact of the proposed method, we present a qualitative visualization of the feature
space. The visual analysis illustrates the outcome of the method through a 2-D projection of data features and their respective
computed embeddings. The analysis is conducted on three datasets with the 2-D projected space computed by the t-SNE (van der
Maaten & Hinton, 2008) algorithm.

Fig. 4 shows three t-SNE visualizations on the Cora dataset: (a) depicting the raw dataset features; (b) the embeddings computed
by SGC (Wu, Souza, Zhang, Fifty, Yu, & Weinberger, 2019) model; and (c) the embeddings computed by the proposed self-training
approach based on SGC (Wu, Souza, Zhang, Fifty, Yu, & Weinberger, 2019). Despite of the subjectivity associated to the visualization,
we can observe a higher cohesion of data items according to the seven topic classes of Cora and better separation of different classes
for the proposed self-training embedding.

Fig. 5 illustrates analogous t-SNE visualizations on CiteSeer and PubMed datasets. The impact of self-training is more pronounced
on the CiteSeer dataset, where the embeddings representations of each class are thinned. On the PubMed dataset, the difference is
slight, but a better separation between blue and black classes can be observed.

D.C.G. Pedronette and L.J. Latecki Information Processing and Management 58 (2021) 102443

(a) Cora Raw features

T T T T T

60 -40 -20 0 20 40 60
(b) Cora SGC embeddings

80

60

40 -

201

—204

—404

—60 4

-80 T T T T T T T T
—60 -40 -20 0 20 40 60 80

(c) Cora Self-Training SGC embeddings

Fig. 4. t-SNE (van der Maaten & Hinton, 2008) visualization of initial features and computed embeddings for the Cora dataset.

10

D.C.G. Pedronette and L.J. Latecki Information Processing and Management 58 (2021) 102443

60
40
201
o
_201
_401
601
4 60 -40 20 0 20 40 60
(a) CiteSeer Raw features (d) PubMed Raw features
801 100 4
60 754
40 A 501
20+ 251
0 0
_251
_201
_501
] &N
_751
601
—60 40 20 0 20 40 60 80 -100 -75 -50 -25 0 25 50 75 100
(b) CiteSeer SGC embeddings (e) PubMed SGC embeddings
80
75
P
50
40
20 1 254
0 01
—20 =25 A
—60 - =751 '
—80 =100 A
-80 -60 -40 -20 0 20 40 60 80 -75 -50 -25 0 25 50 75 100
(c) CiteSeer Self-Training SGC embeddings (f) PubMed Self-Training SGC embeddings

Fig. 5. t-SNE (van der Maaten & Hinton, 2008) visualization of initial features and computed embeddings for the CiteSeer and PubMed datasets. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

4.7. Comparison with state-of-the-art

We compared the proposed method with various state-of-the-art algorithms on semi-supervised classification tasks. The com-
parison was conducted on Cora, Citesser, and Pubmed datasets. The experimental setting and data splits followed the protocol

11

D.C.G. Pedronette and L.J. Latecki Information Processing and Management 58 (2021) 102443

Table 5
Comparison with state-of-the-art methods in terms of classification accuracy (%).
Method Cora Citeseer Pubmed
Manifold Regularization (Belkin, Niyogi, & Sindhwani, 2006) 59.5 60.1 70.7
Semi-Supervised Embedding (Weston, Ratle, & Collobert, 2008) 59.0 59.6 71.1
Label Propagation (LP) (Zhu et al., 2003) 68.0 45.3 63.0
DeepWalk (Perozzi et al., 2014) 67.2 432 65.3
Iterative Classification Algorithm (ICA) (Lu & Getoor, 2003) 75.1 69.1 73.9
Planetoid (Yang et al., 2016) 75.7 64.7 77.2
Graph Convolution Netork (GCN) (Kipf & Welling, 2017) 81.5 70.3 79.0
Graph Attention Network (GAT) (Velickovic, et al., 2018) 83.0 725 79.0
Variance Reduction (Chen et al., 2018) 82.0 729 79.0
Self-Training (Li et al., 2018) 80.5 69.9 78.3
Simple Graph Convolution (SGC) (Wu, Souza, Zhang, Fifty, Yu, & Weinberger, 2019) 81.0 71.9 78.9
Deep Graph Infomax (DGI) (Velickovic, et al., 2019) 82.3 71.8 76.8
Hypergraph Convolution and Attention (Bai et al., 2019) 82.7 712 78.4
Auto-Regressive Moving Average Filters (ARMA) (Bianchi et al., 2019) 83.4 725 78.9
Approx. Pers. Propagation of Neural Pred. (APPNP) (Klicpera, Bojchevski, & Giinnemann, 2019) 83.3 71.8 80.1
Rank-based Self-Training + SGC 84.1 731 75.9
Rank-based Self-Training + APPNP 847 712 81.2
Rank Agregation Self-Training: SGC (ARMA+APPNP) 84.1 735 79.0
Rank Agregation Self-Training: APPNP (SGC+APPNP) 85.1 725 79.6

used in Kipf and Welling (2017) and Yang et al. (2016), which have been established as a standard benchmark protocol in
the area. The classification accuracy of the compared methods is directly quoted from the literature. Several methods were
considered, from traditional semi-supervised learning methods (Lu & Getoor, 2003; Zhu, Ghahramani, & Lafferty, 2003) to more
recent baselines (Perozzi, Al-Rfou, & Skiena, 2014; Yang et al., 2016). Representative works, as GCN (Kipf & Welling, 2017) and
GAT (Velickovic, et al., 2018), were also considered in addition to very recent network models (Bai et al., 2019; Velickovic, et al.,
2019). Related self-training approaches were also included in the comparison, considering the higher accuracy results reported in Li
et al. (2018). Other self-training methods (Sun et al., 2020; Zhou et al., 2019) were not included due to distinct experiments settings
and data splits from Yang et al. (2016).

Table 5 presents the accuracy results on the three datasets. We report the results for Rank-based Self-Training considering
the network models which presented the best accuracy results in isolation: APPNP (Klicpera, Bojchevski, & Giinnemann, 2019)
and SGC (Wu, Souza, Zhang, Fifty, Yu, & Weinberger, 2019). For the Rank Aggregation Self-Training, we considered two selected
combination of pairs reported in Table 4: ARMA (Bianchi et al., 2019) + APPNP (Klicpera, Bojchevski, & Giinnemann, 2019) with
SGC (Wu, Souza, Zhang, Fifty, Yu, & Weinberger, 2019) as second stage classification and SGC (Wu, Souza, Zhang, Fifty, Yu, &
Weinberger, 2019) + APPNP (Klicpera, Bojchevski, & Giinnemann, 2019) with APPNP (Klicpera, Bojchevski, & Glinnemann, 2019)
for second stage. As we can observe, the proposed approach achieved the best accuracy results on the three datasets in comparison
with all state-of-art methods (in bold).

5. Conclusion

In this paper, we proposed a simple and effective self-training approach for Graph Convolutional Networks. Our approach uses
a margin-based score computed over log-soft-max layer of GCNs and analyzed through a rank-based model. Considering the crucial
role of unlabeled data on semi-supervised learning, the proposed Rank-based Self Training approach allows an effective labeled set
expansion and more accurate results on a second-stage classification. Evaluated on different GCN models, our approach achieved
state-of-the-art results on benchmarks widely used in the literature. In future work, we intend to investigate the use of our approach
on graph classification tasks, in addition to node classification.

CRediT authorship contribution statement

Daniel Carlos Guimaraes Pedronette: Conceptualization, Methodology, Software, Visualization, Writing - original draft. Longin
Jan Latecki: Conceptualization, Supervision, Formal analysis, Writing - review & editing.

Acknowledgments

The authors are grateful to Fulbright Commission, Sdo Paulo Research Foundation — FAPESP, Brazil (grants #2018/15597-6
and #2017/25908-6), Brazilian National Council for Scientific and Technological Development — CNPq (grant #308194,/2017-9)
and Microsoft Research, USA. This work was also partly supported by the National Science Foundation, USA Grant No. IIS-1814745.

12

D.C.G. Pedronette and L.J. Latecki Information Processing and Management 58 (2021) 102443
References

Bai, S., Zhang, F., & Torr, P. H. S. (2019). Hypergraph convolution and hypergraph attention. CoRR abs/1901.08150.

Belkin, M., Niyogi, P., & Sindhwani, V. (2006). Manifold regularization: A geometric framework for learning from labeled and unlabeled examples. Journal of
Machine Learning Research, 7, 2399-2434.

Bianchi, F. M., Grattarola, D., Livi, L., & Alippi, C. (2019). Graph Neural Networks with convolutional ARMA filters. CoRR abs/1901.01343.

Cai, H., Zheng, V. W., & Chang, K. C. (2018). A comprehensive survey of graph embedding: Problems, techniques, and applications. IEEE Transactions on Knowledge
and Data Engineering, 30(9), 1616-1637.

Chapelle, O., Schlkopf, B., & Zien, A. (2010). Semi-supervised learning (1st ed.). The MIT Press.

Chen, J., Zhu, J., & Song, L. (2018). Stochastic training of graph convolutional networks with variance reduction. In International conference on machine learning
(vol. 80). (pp. 941-949).

Fey, M., & Lenssen, J. E. (2019). Fast graph representation learning with pytorch geometric. CoRR abs/1903.02428.

Giles, C. L., Bollacker, K. D., & Lawrence, S. (1998). CiteSeer: An automatic citation indexing system.

Kingma, D. P., & Ba, J. (2015). Adam: A Method for Stochastic Optimization. In Bengio, Y. and LeCun, Y. (Eds.), International conference on learning representations.

Kipf, T. N., & Welling, M. (2017). Semi-supervised classification with graph convolutional networks. In 5th International conference on learning representations.

Klicpera, J., Bojchevski, A., & Giinnemann, S. (2019). Predict then propagate: Graph Neural Networks meet Personalized PageRank. In International conference
on learning representations.

Klicpera, J., Weilenberger, S., & Gilinnemann, S. (2019). Diffusion improves graph learning. In Advances in neural information processing systems (pp. 13333-13345).

Li, Q., Han, Z., & Wu, X. (2018). Deeper insights into graph convolutional networks for semi-supervised learning. In S. A. Mcllraith, & K. Q. Weinberger (Eds.),
Proceedings of the thirty-second AAAI conference on artificial intelligence (pp. 3538-3545). AAAI Press.

Lu, Q., & Getoor, L. (2003). Link-based classification. In International conference on international conference on machine learning (pp. 496-503). AAAI Press.

van der Maaten, L., & Hinton, G. (2008). Visualizing data using t-SNE. Journal of Machine Learning Research, 9, 2579-2605.

McCallum, S. K., Nigam, K., Rennie, J., & Seymore, K. (2000). Automating the construction of internet portals with machine learning. Information Retrieval, 3,
127-163.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., et al. (2017). Automatic differentiation in PyTorch. In NIPS-W.

Pedronette, D. C. G., & Torres, R. d. S. (2013). Image re-ranking and rank aggregation based on similarity of ranked lists. Pattern Recognition, 46(8), 2350-2360.

Pei, H., Wei, B., Chang, K. C., Lei, Y., & Yang, B. (2020). Geom-GCN: Geometric graph convolutional networks. In International conference on learning representations.

Perozzi, B., Al-Rfou, R., & Skiena, S. (2014). DeepWalk: Online learning of social representations. In ACM SIGKDD international conference on knowledge discovery
and data mining. (pp. 701-710).

Scheffer, T., Decomain, C., & Wrobel, S. (2001). Active hidden Markov models for information extraction. In International conference on advances in intelligent
data analysis (pp. 309-318). Berlin, Heidelberg: Springer-Verlag.

Scudder, H. J. (1965). Probability of error of some adaptive pattern-recognition machines. IEEE Transactions on Information Theory, 11(3), 363-371.

Sen, P., Namata, G., Bilgic, M., Getoor, L., Galligher, B., & Eliassi-Rad, T. (2008). Collective classification in network data. AI Magazine, 29(3), 93.

Settles, B. (2009). Active learning literature survey: Technical report 1648, University of Wisconsin-Madison, URL http://axon.cs.byu.edu/~martinez/classes/778/
Papers/settles.activelearning.pdf.

Sun, K., Lin, Z., & Zhu, Z. (2020). Multi-stage self-supervised learning for graph convolutional networks on graphs with few labeled nodes. In Proceedings of the
thirty-second AAAI conference on artificial intelligence. AAAI Press.

Tian, Q., Yu, J., Xue, Q., & Sebe, N. (2004). A new analysis of the value of unlabeled data in semi-supervised learning for image retrieval. In 2004 IEEE
International conference on multimedia and expo (vol. 2). (pp. 1019-1022).

Triguero, 1., Garcia, S., & Herrera, F. (2015). Self-labeled techniques for semi-supervised learning: taxonomy, software and empirical study. Knowledge and
Information Systems, 42(2), 245-284.

Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Lid, P., & Bengio, Y. (2018). Graph attention networks. In 6th international conference on learning
representations.

Velickovic, P., Fedus, W., Hamilton, W. L., Lio, P., Bengio, Y., & Hjelm, R. D. (2019). Deep Graph Infomax. In International conference on learning representations.

Weston, J., Ratle, F., & Collobert, R. (2008). Deep learning via semi-supervised embedding. In International conference on machine learning. (pp. 1168-1175).

Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., & Yu, P. S. (2019). A comprehensive survey on graph neural networks. CoRR abs/1901.00596.

Wu, F., Souza, A., Zhang, T., Fifty, C., Yu, T., & Weinberger, K. (2019). Simplifying graph convolutional networks. In International conference on machine learning
(vol. 97). (pp. 6861-6871).

Yang, Z., Cohen, W. W., & Salakhutdinov, R. (2016). Revisiting semi-supervised learning with graph embeddings. In International conference on international
conference on machine learning (pp. 40-48). JMLR.org.

Zhou, Z., Zhang, S., & Huang, Z. (2019). Dynamic self-training framework for graph convolutional networks. arXiv:abs/1910.02684.

Zhu, X., Ghahramani, Z., & Lafferty, J. (2003). Semi-supervised learning using gaussian fields and harmonic functions. In Proceedings of the twentieth international
conference on international conference on machine learning. (pp. 912-919).

13

http://refhub.elsevier.com/S0306-4573(20)30935-3/sb1
http://refhub.elsevier.com/S0306-4573(20)30935-3/sb2
http://refhub.elsevier.com/S0306-4573(20)30935-3/sb2
http://refhub.elsevier.com/S0306-4573(20)30935-3/sb2
http://refhub.elsevier.com/S0306-4573(20)30935-3/sb3
http://refhub.elsevier.com/S0306-4573(20)30935-3/sb4
http://refhub.elsevier.com/S0306-4573(20)30935-3/sb4
http://refhub.elsevier.com/S0306-4573(20)30935-3/sb4
http://refhub.elsevier.com/S0306-4573(20)30935-3/sb5
http://refhub.elsevier.com/S0306-4573(20)30935-3/sb7
http://refhub.elsevier.com/S0306-4573(20)30935-3/sb8
http://refhub.elsevier.com/S0306-4573(20)30935-3/sb12
http://refhub.elsevier.com/S0306-4573(20)30935-3/sb13
http://refhub.elsevier.com/S0306-4573(20)30935-3/sb13
http://refhub.elsevier.com/S0306-4573(20)30935-3/sb13
http://refhub.elsevier.com/S0306-4573(20)30935-3/sb14
http://refhub.elsevier.com/S0306-4573(20)30935-3/sb15
http://refhub.elsevier.com/S0306-4573(20)30935-3/sb16
http://refhub.elsevier.com/S0306-4573(20)30935-3/sb16
http://refhub.elsevier.com/S0306-4573(20)30935-3/sb16
http://refhub.elsevier.com/S0306-4573(20)30935-3/sb18
http://refhub.elsevier.com/S0306-4573(20)30935-3/sb21
http://refhub.elsevier.com/S0306-4573(20)30935-3/sb21
http://refhub.elsevier.com/S0306-4573(20)30935-3/sb21
http://refhub.elsevier.com/S0306-4573(20)30935-3/sb22
http://refhub.elsevier.com/S0306-4573(20)30935-3/sb23
http://axon.cs.byu.edu/~martinez/classes/778/Papers/settles.activelearning.pdf
http://axon.cs.byu.edu/~martinez/classes/778/Papers/settles.activelearning.pdf
http://axon.cs.byu.edu/~martinez/classes/778/Papers/settles.activelearning.pdf
http://refhub.elsevier.com/S0306-4573(20)30935-3/sb25
http://refhub.elsevier.com/S0306-4573(20)30935-3/sb25
http://refhub.elsevier.com/S0306-4573(20)30935-3/sb25
http://refhub.elsevier.com/S0306-4573(20)30935-3/sb27
http://refhub.elsevier.com/S0306-4573(20)30935-3/sb27
http://refhub.elsevier.com/S0306-4573(20)30935-3/sb27
http://refhub.elsevier.com/S0306-4573(20)30935-3/sb31
http://refhub.elsevier.com/S0306-4573(20)30935-3/sb33
http://refhub.elsevier.com/S0306-4573(20)30935-3/sb33
http://refhub.elsevier.com/S0306-4573(20)30935-3/sb33
http://arxiv.org/abs/1910.02684

	Rank-based self-training for graph convolutional networks
	Introduction
	Problem definition and preliminaries
	Graph-based semi-supervised learning
	Graph convolutional networks

	Rank-based self-training
	Margin confidence score
	Labeled set expansion
	Second stage semi-supervised classification
	Complexity analysis
	Rank aggregation for prediction confidence fusion

	Experimental evaluation
	Graph convolutional network models
	Datasets
	Experimental protocol and implementation details
	Parameter space analysis
	Results
	Visual analysis
	Comparison with state-of-the-art

	Conclusion
	CRediT authorship contribution statement
	Acknowledgments
	References

