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ABSTRACT

Bacterial genomes encode various multidrug efflux pumps (MDR) whose specific
conditions for fitness advantage are unknown. We show that the efflux pump MdtEF-TolC, in
Escherichia coli, confers a fitness advantage during exposure to extreme acid (pH 2). Our flow
cytometry method revealed pH-dependent fitness tradeoffs between bile acids (a major pump
substrate) and salicylic acid, a membrane-permeant aromatic acid that induces a drug-resistance
regulon but depletes proton motive force (PMF). The PMF drives MdtEF-TolC and related
pumps such as AcrAB-TolC. Deletion of md¢E (with loss of pump MdtEF-TolC) increased the
strain’s relative fitness during growth with or without salicylate or bile acids. However, when the
growth cycle included a 2-h incubation at pH 2 (below the pH growth range), MdtEF-TolC
conferred a fitness advantage. The fitness advantage required bile salts but was decreased by the
presence of salicylate, whose uptake is amplified by acid. For comparison, AcrAB-TolC, the
primary efflux pump for bile acids, conferred a PMF-dependent fitness advantage with or
without acid exposure in the growth cycle. A different MDR pump, EmrAB-TolC, confered no
selective benefit during growth in the presence of bile acids. Without bile acids, all three MDR
pumps incurred a large fitness cost with salicylate when exposed at pH 2. These results are
consistent with the increased uptake of salicylate at low pH. Overall, we showed that MdtEF-
TolC is an MDR pump adapted for transient extreme-acid exposure; and that low pH amplifies
the salicylate-dependent fitness cost for drug pumps.
IMPORTANCE

Antibiotics and other drugs that reach the gut must pass through stomach acid. Yet little
is known of how extreme acid modulates the effect of drugs on gut bacteria. We find that

extreme-acid exposure leads to a fitness advantage for a multidrug pump that otherwise incurs a
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fitness cost. At the same time, extreme acid amplifies the effect of salicylate selection against
multidrug pumps. Thus, organic acids and stomach acid could play important roles in regulating
multidrug resistance in the gut microbiome. Our flow cytometry assay provides a way to
measure the fitness effects of extreme-acid exposure to various membrane-soluble organic acids
including plant-derived nutrients and pharmaceutical agents. Therapeutic acids might be devised

to control the prevalence of multidrug pumps in environmental and host-associated habitats.
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INTRODUCTION

Bacterial multidrug resistance (MDR) efflux systems export diverse antibiotics, metals
and harmful products of metabolism (1-3). These MDR pumps also remove environmental or
host-derived antimicrobials like bile acids (4) as well as toxic products of the bacterium’s own
metabolism (5,6). For pathogens, MDR pumps serve as first-line defense against multiple
antibiotics at low levels (7). Thus, MDR pumps in pathogens pose a major threat to human health
(8-11). Yet the metabolic and biochemical conditions in which they provide a fitness benefit are
poorly understood.

The Escherichia coli K-12 genome contains genes for at least 36 multidrug efflux
systems (5,12). Only a few of these are understood in detail. The pump best known is AcrAB-
TolC, a member of the Resistance-Nodulation-Cell Division (RND) superfamily (13). AcrAB-
TolC exports bile acids (4,14) as well as antimicrobial drugs, dyes, organic solvents, essential
oils, and hormones (15,16). AcrAB expression is upregulated by many proteins including the
global regulator MarA, which is activated by aspirin derivatives such as salicylate and benzoate
(17,18) (Fig. 1). The salicylate-induced Mar regulon intersects with the Gad acid fitness island,
which includes mdtEF genes encoding components of MdtEF-TolC, an RND pump structurally
similar to AcrAB-TolC (19,20). MdtEF-TolC contributes to biofilm formation (21) and nitrate
respiration (22). Other tripartite pumps similar to AcrAB-TolC include members of the Major
Facilitator Superfamily (MFS) such as EmrAB-TolC (23).

Clinical and environmental management of MDR-associated antibiotic resistance requires
understanding the physiological tradeoffs of such pumps, most of which spend substantial
amounts of energy (12,13). Our laboratory uses experimental evolution to explore conditions that

could reverse the fitness benefit of drug efflux pumps and thus decrease their prevalence in
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microbial communities (24-26). Surprisingly, such conditions include the presence of salicylate
or benzoate that induce drug resistance regulons. Under serial culture, these MDR inducers
actually select against resistance to antibiotics, favoring mutants that have lost pumps such as
MAtEF and EmrAB (24,26,27). Transcription profiles support a model in which genes
responding to transient aromatic-acid stress actually decrease fitness over periods of chronic
exposure (26).

Little is known regarding the effects of salicylates on the gut microbiome, and their
interactions with substances such as bile acids. The antimicrobial activity of bile acids plays an
important role in structuring the gut microbiome (28-30); and bile acids induce AcrAB-TolC
(31).

Most drug pumps power their efflux by spending proton motive force (PMF). For
example, PMF drives pumps of the RND superfamily such as AcrAB-TolC (15,16) and the MFS
superfamily pump EmrD (32). However, these pumps cannot function when exposed to PMF
uncouplers such as carbonyl cyanide m-chlorophenyl hydrazone (CCCP) (12,25). Full
uncouplers penetrate the membrane in the protonated and unprotonated forms, whereas partial
uncouplers cross mainly in the protonated form. Partial uncouplers include membrane-soluble
aromatic acids such as aspirin, salicylic acid, and ibuprofen, which belong to the class of
nonsteroidal anti-inflammatory drugs (NSAIDs) (33,34). Membrane-soluble acids and their
derivatives are of interest for human diet, as many are phytochemicals produced by plants, which
control their microbiomes in ways that are poorly understood.

An important aspect of proton-driven drug pumps is their association with extreme-acid
resistance (35). Extreme-acid resistance enables E. coli and other enteric bacteria to survive

transient exposure at a range of pH 1-3, as found in the human stomach (36,37). Moderate acid
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(pH 5.0-6.8) upregulates systems for extreme-acid survival such as those of the Gad acid fitness
island (38,39). The acid fitness island includes genes md¢EF for the MdtEF-TolC pump (19,20)
and for Gad transcriptional regulators such as GadE (40). Gad-dependent acid resistance allows
stationary-phase survival under extreme acid where E. coli cannot grow. The system raises
intracellular pH by consuming protons through the decarboxylation of glutamate and glutamine
by GadA and GadB, regulated by GadE. Despite the importance of this system, few studies of
experimental evolution incorporate extreme-acid exposure. In one report, twenty cycles at pH 2.5
selected for mutations in the acid-resistance regulator EvgS (41). Such an experiment, in effect,
tests evolving mutants for relative death rates under an adverse condition.

We investigated the tradeoffs between PMF-driven MDR pumps and the presence of
salicylate and bile acids (24-26). We developed a method using flow cytometry (42) to measure
the relative fitness contributions of MDR genes versus null alleles under various conditions,
including the presence of uncouplers and of exportable substrates such as bile acids (cholic acid
and deoxycholic acid). We modified the method to include cycles of extreme acid exposure.
Using this approach, we showed that the MdtEF-TolC pump requires pH 2 exposure to confer
positive relative fitness. This finding represents a novel case of an extreme acid-dependent drug
efflux pump. We also observed distinct patterns of relative fitness for the AcrAB-TolC and

EmrAB-TolC efflux pumps.
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RESULTS

Relative fitness measurement by flow cytometry of YFP and CFP. We sought to measure the
relative fitness contributions of MDR genes in the presence of various organic acids. For this
purpose we modified the flow cytometry assay of Gullberg (42) which uses yellow fluorescent
protein (YFP) and cyan fluorescent protein (CFP) markers (Fig. 2). In our assay, each strain had
a gene of interest knocked out by replacement with kanR from alleles of the KEIO collection
with the exception of the Aslp-gadX strain (43). The kanR gene constitutively expresses an
aminoglycoside 3’-phosphotransferase (43,44). In early competition trials, we found that the
presence of kanR incurs a small fitness cost relative to control strain, E. coli W3110. Therefore,
in all assays involving knock-out strains that expressed kanR, we used a control strain with the
vhdN::kanR allele. For the single gene deletions used in this experiment (dacrA::kanR,
AmdtE::kanR, AgadE::kanR, and demrA::kanR) each allele was transduced into a strain of E. coli
K-12 W3110 containing the fluorophore allele galK::yfp or galK::cfp inducible via a lac
promoter (42).

The mixture of two strains was serially diluted 1000-fold each day, and observed over a
total of 30 generations (doublings) from day zero to day 3. This period was sufficient to permit
accurate measurement of relative fitness, but not long enough to make the rise of new mutations
likely (42). All culture media were buffered at pH 6.8, a level that allows cytoplasmic pH
depression by membrane-permeant acids of lower pK.. Each day, a parallel dilution with IPTG
inducer was performed using LBK-PIPES pH 6.8 buffered medium without stressors. The IPTG-
induced populations express YFP or CFP for flow cytometry, whereas the overnight 1000-fold
dilutions avoid energy-expensive fluorophore expression. This procedure enabled us to minimize

the fitness effects of fluorophore expression during stress selection.
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Fig. 2A shows the appearance of a distinctive population of YFP-expressing cells
showing high fluorescence intensity with 488-nm excitation, and low-intensity fluorescence at
405 nm, versus a second population expressing CFP with low intensity at 488-nm excitation and
high intensity at 405 nm. Fig. 2B show a typical experiment in which the log» ratios of YFP and
CFP populations were reported for the tested mutant (W3110 acrA::kanR) and the control
(W3110 yhdN::kanR). For each competition experiment, an equal number of trials were
performed with the gene knock-out strain expressing YFP and the control strain expressing CFP,
and vice versa.

Relative fitness was measured as the selection rate, defined as the daily change in log>
ratio of cocultured strain populations (45). A selection rate of 1 unit per day indicates a two-fold
increase in population of one strain compared to the competing strain’s population. This measure

indicates the relative fitness of two strains cultured under a given stress condition.

The fitness benefit of MdtE requires extreme acid exposure (pH 2). In a strain lacking
AcrAB-TolC, overexpression of MdtEF-TolC confers resistance to antibiotics and bile acids
(46). The range of substrates transported by an RND pump depends on its distal pocket, the
periplasmic portion of its substrate-binding pocket (47). MdtE shares 55% amino-acid sequence
identity with AcrA (13) but its periplasmic substrate-binding pocket includes amino-acid
residues with a lower isoelectric point (pI=3.1 for MdtEF, pI=4.0 for AcrAB) (20). For this
reason, we investigated roles for acids and acidic conditions in pump function.

We first tested the relative fitness contribution of mdrE by competition of an mdtE™ strain
(W3110 A4yhdN::kanR) against W3110 AmdtE::kanR in the presence of 6 mM salicylate and

0.15% bile acids (Fig. 3A). The mdtE deletion allele increased the relative fitness under all
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conditions—the pH 6.8 control medium, as well as in 0.15% bile acids, or in 6 mM salicylate
(p<0.001). Selection against the mdtE" strain was further increased by the addition of 10 uM
CCCP (p<0.001) which depletes the PMF needed to drive efflux (Fig. 3A). The expenditure of
limited PMF by the MdtEF-TolC could be one possible explanation for the pump’s fitness cost.
All conditions tested led to a fitness cost or neutral selection for MdtEF-TolC.

Under what growth conditions does MdtEF-TolC confer advantage? We tried including a
period of pH 2 exposure, a condition for which the Gad regulon maintains extreme-acid survival
dependent on stationary phase (35). This condition of stationary phase in extreme acid mimics
the passage of bacteria through an acidic stomach, an adaptation that helps enteric E. coli gain
access to the intestinal tract and may activate drug efflux pumps (19). Our serial cultures enter
stationary phase for at least 12 h, so they are fully acid resistant before each dilution. Starting on
Day zero, the CFP/YFP strain mixture was diluted 100-fold in unbuffered LBK at pH 2.0. The
acidified cell suspension, approximately pH 2, was incubated for 2 hours. Under this condition,
survival of E. coli K-12 strains is typically 50-100% (35,48,49). The acidified suspension was
then diluted ten-fold in media buffered with PIPES at pH 7.0, leading to a final pH of 6.8. The
total dilution overall was 1,000-fold per day, comparable to our original relative fitness assay.
This period of pH 2 exposure was repeated for each of Days 1-3 of the assay.

The 2-h exposure to extreme acid eliminated the fitness cost of mdtE during coculture at
pH 6.8. The mdtE allele conferred a fitness benefit in the presence of bile acids, with or without
2 mM salicylate (Fig. 3B). A higher concentration of 4 mM salicylate, however, incurred a large
fitness cost for MdtE (p<0.001). The highest salicylate concentration tested (6 mM) did not
permit growth over three days. Note that after 100-fold dilution in LBK pH 2, there would still

be 0.06 mM concentration of salicylate. At external pH 2, where the E. coli internal pH is about
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pH 5 (49) the uptake of salicylic acid (with a pKa.= 2.8) would be greatly increased by the
transmembrane pH difference, a ApH of approximately three units. So the low pH could amplify

the fitness effect of a small salicylate concentration.

AcrA incurs fitness tradeoffs. AcrAB-TolC is the best known of E. coli RND-type efflux
pumps, and is the most important for efflux of bile acids and other deleterious molecules (13).
Nevertheless, we found that the acr4™ strain incurs a measurable fitness cost during culture at pH
6.8 (p<0.01, Fig. 4A). The fitness cost was seen with or without salicylate. The acrA™ allele
conferred fitness benefit only in the presence of bile acids (p<0.001; Fig. 4A). This result might
show that the AcrAB-TolC efflux pump is worth the energy expenditure only when it is needed
to export a deleterious substrate. The advantage conferred by bile acids was eliminated by
CCCP, which would be consistent with pump dependence on PMF.

The daily growth cycle was adjusted to include a 2-h period in stationary phase at pH 2
(Fig. 4B). Under this adjusted cycle, the acrd™ strain showed a small fitness cost (p<0.01) and
lost its fitness benefit in the presence of bile acids. A large fitness cost was incurred with 4 mM
salicylate (p<0.001), whereas the fitness advantage was restored with bile acids and a small
amount of salicylate (p<<0.001, Fig. 4B). The smaller amount of salicylate may tip the balance by
inducing AcrAB expression during the pH 6.8 portion of the growth cycle (31). So the bacteria’s
ability to make AcrAB-TolC leads to very different tradeoffs in the presence of bile acids and

salicylate, dependent on pH 2 exposure.

EmrA carries a fitness cost. The EmrAB-TolC efflux pump structurally resembles AcrAB-

TolC efflux pump, with EmrA providing a link between the outer membrane efflux pump
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component, TolC and inner membrane component, EmrB (50). The EmrAB-TolC efflux pump is
activated by salicylate, and confers resistance to some antibiotics as well as CCCP (51). As seen
for mdtE, emrA incurred a fitness cost in the pH 6.8 under all conditions tested, with the
exception of bile acids plus salicylate (Fig. SA). The fitness cost was increased by the presence
of CCCP (p<0.01, Fig. SA). This is surprising since the EmrAB-TolC efflux pump confers
resistance to CCCP, but CCCP resistance may require emr4 overexpression through mutations to
the transcriptional repressor emrR (mprA) (25).

Inclusion of pH 2 exposure during the growth cycle did not increase relative fitness for
emrA" (Fig. 5B). The emrA" strain was less fit in the presence of salicylate, with or without bile
acids (p<0.001). Unlike MdtEF-TolC or AcrAB-TolC, EmrAB-TolC did not show evidence of

functional bile acid export under the conditions tested.

The Gad island shows fitness tradeoffs with bile acids and salicylate. In addition to the
multidrug efflux pump components mdtEF (46), the Gad acid fitness island (Fig. 1) includes
genes whose products counteract acid stress, such as periplasmic acid chaperones hdeA and hdeB
and acid-resistance regulators gadE and gadX (38). Nonetheless, this region of the genome often
undergoes deletion during experimental evolution with acid stress (26,52).

We investigated how the mdtE fitness effects compares to the fitness effects of the entire
Gad island. Competition assays were conducted using a strain with most of the Gad island
deleted by recombineering (4slp-gadX) (26). In this assay, the parent strain W3110 had a small
fitness advantage over the Asip-gadX strain (Fig. 6A). This result differed from the mdtE™
competition (Fig. 3A) in which the mdtE deletion had no effect on fitness. The advantage

conferred by the Gad island was independent of the presence or absence of bile acids, but was
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reversed by the presence of 6 mM sodium salicylate. Thus, the negative effect of salicylate
overcomes whatever net fitness contribution is provided by components of the Gad island. The
net effects on fitness are small compared to the fitness effects observed for individual knock-out
strains (Fig. 3, 4, 5).

An important regulatory component of the glutamate-dependent acid resistance pathway
is gadE (Fig. 1; (53,54)). GadE activates the decarboxylation of glutamate in the cell by the
upregulation of gadA and gadB (48). We sought to determine if salicylate affects the fitness
benefit of gadE" similarly to that of the overall Gad island (slp-gadX) . In pH 6.8 medium, the
control strain had a fitness advantage over 4gadE::kanR, similar to the fitness advantage
conferred by the Gad island as a whole (Fig. 6B). With bile acids, however, GadE conferred no
selective benefit. The presence of 6 mM salicylate, in the absence of bile acids, incurred a fitness
cost for gadE (p<0.001; Fig. 6B). These results suggest that some component regulated by GadE

is sensitive to salicylate; and that some unidentified tradeoff exists with bile acids.
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DISCUSSION

Previously, it was unknown why genes encoding the MdtEF pump reside in the Gad acid
fitness island (Fig. 1) along with a complex set of regulators of acid resistance via glutamate
decarboxylase and periplasmic chaperones (38). The MdtE fitness benefit with pH 2 exposure
(Fig. 3) suggests that MdtEF-TolC effluxes bile acids under extreme acid, where the cell cannot
grow but its death rate can be slowed by various acid-resistance components of the Gad island.
This finding would be consistent with the previously unexplained requirement of pump
component TolC for Gad-related survival at pH 2 (55).

Our modified flow cytometry assay enables us to explore the fitness effects of extreme-
acid exposure, which enteric pathogens as well as commensal strains must survive to reach the
intestine (35,48,49). Our results may provide clues as to the relative fitness of drug-exporting
strains during human uptake of aromatic acid medications such as aspirin. These efflux pumps
consume PMF and thus their fitness contribution may be neutralized or reversed by the presence
of the uncoupler CCCP (Figures 3A, 4A, 5A). We show that the efflux pump fitness
contribution may also be reversed by a membrane-permeant aromatic acid such salicylate during
extreme-acid exposure (Figures 3B, 4B, 5B). The mechanisms of antimicrobial action of
aromatic acids may involve depletion of PMF, as well as the ApH-amplified uptake of a
molecule that disrupts the membrane (24,26,27,56,57).

Extreme-acid exposure had surprising impact on the fitness effects of bile acids. Bile
acids occur at highest concentration in the lumen of the small intestine, where they enhance lipid
absorption (58—60). While bile does not normally reach the stomach, many patients exhibit

chronic bile reflux gastritis (61), a condition associated with disorders such as carcinogenesis.
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Thus, pumps capable of extreme acid-dependent efflux of bile acids could be useful for bacteria
that experience gastric transit.

The different MDR pumps we tested showed diverse effects of bile acids. AcrAB-TolC
conferred a fitness benefit in the presence of bile acids under various conditions, whereas
MAtEF-TolC confer an advantage only when the growth cycle included exposure at pH 2. By
contrast, EmrAB-TolC conferred no fitness advantage under any of our conditions tested. Thus,
conditions favoring this pump’s action must involve substrates other than bile acids.

Although the intact mdtE gene decreased fitness under almost all conditions at pH 6.8,
the overall Gad island (Fig. 6A) conferred a small selective benefit at pH 6.8. This advantage
may derive from the net fitness contributions of Gad acid-resistance genes other than mdtEF.
The Gad regulon includes various components whose functions in acid resistance are poorly
understood (26). The hdeAB acid stress operon encodes two periplasmic proteins that prevent
protein aggregation at pH 2.0 (62). It may be more advantageous for the cell to lose one
energetically expensive pump rather than its entire acid defense system. We will explore further
the effect of acid exposure on fitness of other Gad components, as well other MDR pumps.

Our interest in assessing fitness under acid exposure with salicylate has pharmaceutical
implications. High levels of salicylate in the human stomach, whether through changes in diet or
periodic exposure to drugs such as aspirin, can affect the relative survival of different bacteria to
enter the stomach. Other pharmaceuticals likely interact in unexpected ways with the
microbiome that influence clinical outcomes. Our relative fitness assay can reveal such

interactions and explore their mechanisms.
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MATERIALS AND METHODS

Strains and media. All strains used in our experiments are derived from E. coli K-12 W3110
(Table 1). Strains were constructed by phage P1 transduction, with confirmation by PCR
amplification across the sequence joint (55). The main growth medium was LBK broth (10 g/
tryptone, 5 g/l yeast extract, 7.45 g/l potassium chloride) buffered at pH 6.8 with 100 mM
piperazine-N, N'-bis(2-ethanesulfonic acid) (PIPES, pK.= 6.80) using NaOH to adjust pH (26).
This medium is designated LBK-PIPES pH 6.8. Sodium salicylate, bile acids (50/50 mixture of

sodium cholate and sodium deoxycholate) and CCCP were all obtained from Millipore Sigma.

FACS Competition Assays. Relative fitness of cocultured strains was measured by flow
cytometry of strains expressing yellow fluorescent protein (YFP) or cyan fluorescent protein
(CFP) (42). Strains were cultured in 2 mL of LBK-PIPES pH 6.8 incubated in separate tubes at
37°C with rotation for 16-h. On the next day (Day -1) 20 pl of each inoculated culture was
pipetted into 2 ml of the appropriate competition medium for which the strains were competed
and incubated for 24-h at 37°C with rotation. On Day 0, for each experimental condition 2 pl of a
1:1 mixture of the CFP and YFP strains to compete was added to 2 ml of the appropriate
competition medium and incubated at 37°C with rotation for 24 h. From this culture, serial
dilutions were repeated (2 pl into 2 ml) on Days 1 and 2. Thus each day leads to a 1000-fold
dilution followed by approximately 10 doublings (generations), for a total of 30 doublings by
Day 3. During each daily cycle the cells spend approximately 12-14 h in stationary phase
(24,26).

To include a period of pH 2 exposure, overnight cultures were inoculated in unbuffered

LBK pH 2 for the first 2-h of incubation each day (starting in the morning, Day 0 through Day
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2). At pH 2, the bacteria cannot grow but they remain viable via the stationary phase-induced

Gad acid resistance (38,40). Each day, 2 ul of the mixture of competing CFP and YFP strains

was added to 200 ul of LBK pH 2 and incubated at 37°C for 2-h. After this incubation period,
1.8 ml of the competition medium buffered to pH 7 was added (restoring pH to approximately
6.8) and the tubes were incubated for 24 h at 37°C.

For daily flow cytometry: A separate dilution of each CFP and YFP coculture was
performed by adding 50 pl (1:40 dilution) of the 1:1 mixtures of labeled strains and 20 pl (1:100
dilution) of 100 mM IPTG to 2 ml of LBK-PIPES pH 6.8. This tube was incubated for 2 h at
37°C while rotating and then sampled using the BD FACSMelody Cell Sorter with a blue laser
(488 nm) and violet laser (405 nm). A 545/20 filter was used for YFP emission, and a 528/45
filter for CFP emission. Each competition mixture was diluted with 1X phosphate-buffered
saline (PBS) to obtain 50,000 total events. The dilution was set such that the processed events
were greater than 98% and the event rate was less than 10,000 events/second. The threshold
value of counts for each tested strain in a coculture was set at 0.01%. Two technical replicates of
each competition mixture were recorded and averaged. The percentages of cells with YFP or
CFP fluorescence was recorded. This process was repeated each day for days 0-3 of testing. For
each experimental condition, unless specified otherwise, 12 biological replicates were averaged,
always with equal numbers of YFP to CFP and CFP to YFP competitions.

For each gene tested, the selection rate s was calculated as:

s=log>2(R:/Ro)/t
where R represents the ratio of cell numbers for the control strain (W3110 AyhdN or W3110) to
the knock-out strain of interest; and ¢ represents time in days (with daily dilution 1:1,000,

approximately 10 generations per day) (45,63,64). This rate gives a biological indication of the
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change in population distribution of cocultured genetic variants over time. For example, a
selection rate of 1 unit per day (one doubling per 10 generations) means that each day, one of

two cocultured strains increases its population advantage two-fold over the competing strain.

Statistical Analysis. ANOVA and post-hoc Tukey tests were performed to compare trials under
different conditions. In the figures, brackets indicate the Tukey results (*p<0.05, **p<0.01,
*#%p<(0.001). Single sample t-tests were performed to compare the value of each selection rate to

zero. (7p<0.05, +1p<0.01, +7+p<0.001). Statistical results are presented in Supplemental File 1.
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TABLES

Table 1. E. coli strains used in this study

Strain Genotype/Description Source
W3110 E. coli K-12F \ Lab stock (65)
CH367 Alac::FRT AgalK::cfp-bla (AmpR) (42)
CH372 Alac::FRT AgalK::yfp-bla (AmpR) (42)
JLS1779 W3110 4galK:: cfp-bla This study
JLS1780 W3110 4galK:: yfp-bla This study
JLS1910 W3110 4galK:: cfp-bla, AyhdN::kanR This study
JLS1911 W3110 AdgalK:: yfp-bla , AyhdN::kanR This study
JLS1826 W3110 AgalK:: cfp-bla, AacrA::kanR This study
JLS1832 W3110 AgalK:: yfp-bla, AacrA::kanR This study
JLS1834 W3110 AgalK:: cfp-bla, AmdtE::kanR This study
JLS1835 W3110 AgalK:: yfp-bla, AmdtE::kanR This study
JLS1912 W3110 AgalK:: cfp-bla, AemrA::kanR This study
JLS1913 W3110 AgalK:: yfp-bla, AemrA::kanR This study
JLS1817 W3110 AgalK:: cfp-bla, Aslp-gadX This study
JLS1818 W3110 4galK:: yfp-bla, Aslp-gadX This study
JLS1919 W3110 AdgalK:: cfp-bla, AgadE::kanR This study
JLS1920 W3110 AdgalK:: yfp-bla, AgadE::kanR This study
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537  Figure 1. The salicylate-inducible Mar drug resistance regulon intersects with the Gad acid
538  resistance regulon. Selected components relevant to this work are shown. Modified from Ref.

539  (26). Cited references include (17,31,41,49,66-73).
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Figure 2. Flow cytometry competition assays of strains expressing YFP or CFP.
A. Emission intensity indicates cells expressing cyan fluorescent protein (CFP) and yellow
fluorescent protein (YFP) for two strains in coculture. The combined culture is diluted and

incubated for 2-h with IPTG to induce fluorophore expression.

B. The slope of the log, ratios for LBK-PIPES pH 6.8 control media (n=12) is compiled for Day
0 through Day 3 for all weeks tested. The absolute values of these ratios are taken from cell
counts for AyhdN::kanR (acrA™) / AacrA::kanR. Each competition assay included an equal
number of assays in which the AyhdN::kanR strain expressed YFP versus CFP. Cultures were
diluted 1:1000 daily and assayed by flow cytometry as described under Methods. Slopes were
calculated over days 0-3 of testing. The flow-cytometry threshold for percentage of each cell

type was 0.01%.
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A. Conditions include LBK-PIPES pH 6.8 (n=16) with 0.15% bile acids (n=24), 6 mM salicylate
(n=16), 0.15% bile acids and 2 mM salicylate (n=12), 0.15% bile acids and 1.0% ethanol (n=12),

or 0.15% bile acids, 1.0% ethanol and 10 uM CCCP (n=12).
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B. Conditions include LBK-PIPES pH 6.8 (n=16), with 0.15% bile acids (n=16), 4 mM salicylate
(n=8), or 0.15% bile acids and 2 mM salicylate (n=16). The daily growth cycle included 100-fold
dilution in unbuffered LBK pH 2, with incubation for 2 h. Then the cultures were diluted 10-fold

in the appropriate competition media adjusted to pH 7.0, yielding a final pH of 6.8.

For each condition, ANOVA and post-hoc Tukey tests were used to compare conditions to one
another using brackets (*p<0.05, **p<0.01, ***p<0.001). Single sample t-tests were performed
to compare each selection rate to a value of zero (7p<0.05, 71p<0.01, T17p<0.001). Statistical

results are presented in Supplemental File 1.
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569  Figure 4. Selection for acrA* in the presence of salicylate, bile acids, and CCCP. Selection
570 rate is given by logx(4vhdN::kanR / AacrA::kanR)/day. The slopes were calculated over days 0-3
571  of testing. Significance was determined as for Figure 3.

572 A. Conditions include LBK-PIPES pH 6.8 (n=12), with 0.15% bile acids (n=20), 6 mM

573  salicylate (n=12), 0.15% bile acids and 2 mM salicylate (n=12), 0.15% bile acids and 1.0%

574  ethanol (n=12), or 0.15% bile acids, 1.0% ethanol (n=12), 10 uM CCCP (n=12).
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B. Conditions include LBK-PIPES pH 6.8 (n=12), with 0.15% bile acids (n=12), 4 mM salicylate
(n=12), or 0.15% bile acids and 2 mM salicylate (n=16). The daily growth cycle included 100-
fold dilution in unbuffered LBK pH 2, with incubation for 2 h. Then the cultures were diluted

10-fold in the appropriate competition media adjusted to pH 7.0, yielding a final pH of 6.8.
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583  A. Conditions include LBK-PIPES pH 6.8 (n=16), with 0.15% bile acids (n=16), 6 mM

584  salicylate (n=16), 0.15% bile acids and 2 mM salicylate (n=12), 0.15% bile acids and 1.0%

585  ethanol (n=12), or 0.15% bile acids, 1.0% ethanol, and 10 uM CCCP (n=12).
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B. Conditions include LBK-PIPES pH 6.8 (n=12), with 0.15% bile acids (n=12), 4 mM salicylate
(n=16), or 0.15% bile acids and 2 mM salicylate (n=16). The daily growth cycle included 100-
fold dilution in unbuffered LBK pH 2, with incubation for 2 h before a 10-fold dilution in the

appropriate competition media adjusted to pH 7.0, yielding a final pH of 6.8.
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Figure 6. Selection for Gad island and for gadE". The slopes were calculated over days 0-3 of
testing. Significance was determined as for Figure 2.

A. slp-gadX*: Selection rate is given by log2(W3110/4slp-gadX)/day. Conditions include LBK-
PIPES pH 6.8 (n=12), with 0.15% bile acids (n=20), 6 mM salicylate (n=12), or 0.15% bile acids
and 6 mM salicylate (n=12).

B. gadE™*: Selection rate is given by log2(4yhdN::kanR /AacrA::kanR)/day. Conditions include
LBK-PIPES pH 6.8 (n=12), with 0.15% bile acids (n=20), 6 mM salicylate (n=12), or 0.15% bile

acids and 6 mM salicylate (n=16).



