1	
2	Extreme Acid Modulates Fitness Tradeoffs of Multidrug Efflux Pumps MdtEF-TolC and
3	AcrAB-TolC in Escherichia coli K-12
4	
5	By
6	Samantha H. Schaffner, Abigail V. Lee, Minh T.N. Pham, Beimnet B. Kassaye, Haofan Li,
7	Sheetal Tallada, Cassandra Lis, Mark Lang, Yangyang Liu, Nafeez Ahmed, Logan G. Galbraith
8	Jeremy P. Moore, Katarina M. Bischof, Chelsea C. Menke, and Joan L. Slonczewski.
9	
LO	
l1	Department of Biology, Kenyon College, Gambier, Ohio, USA.
L2	
L3	*Corresponding Author:
L4	Joan L. Slonczewski
L5	slonczewski@kenyon.edu
L6	
L7	¹ These two authors contributed equally.

ABSTRACT

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

Bacterial genomes encode various multidrug efflux pumps (MDR) whose specific conditions for fitness advantage are unknown. We show that the efflux pump MdtEF-TolC, in Escherichia coli, confers a fitness advantage during exposure to extreme acid (pH 2). Our flow cytometry method revealed pH-dependent fitness tradeoffs between bile acids (a major pump substrate) and salicylic acid, a membrane-permeant aromatic acid that induces a drug-resistance regulon but depletes proton motive force (PMF). The PMF drives MdtEF-TolC and related pumps such as AcrAB-TolC. Deletion of *mdtE* (with loss of pump MdtEF-TolC) increased the strain's relative fitness during growth with or without salicylate or bile acids. However, when the growth cycle included a 2-h incubation at pH 2 (below the pH growth range), MdtEF-TolC conferred a fitness advantage. The fitness advantage required bile salts but was decreased by the presence of salicylate, whose uptake is amplified by acid. For comparison, AcrAB-TolC, the primary efflux pump for bile acids, conferred a PMF-dependent fitness advantage with or without acid exposure in the growth cycle. A different MDR pump, EmrAB-TolC, confered no selective benefit during growth in the presence of bile acids. Without bile acids, all three MDR pumps incurred a large fitness cost with salicylate when exposed at pH 2. These results are consistent with the increased uptake of salicylate at low pH. Overall, we showed that MdtEF-TolC is an MDR pump adapted for transient extreme-acid exposure; and that low pH amplifies the salicylate-dependent fitness cost for drug pumps.

IMPORTANCE

Antibiotics and other drugs that reach the gut must pass through stomach acid. Yet little is known of how extreme acid modulates the effect of drugs on gut bacteria. We find that extreme-acid exposure leads to a fitness advantage for a multidrug pump that otherwise incurs a

- fitness cost. At the same time, extreme acid amplifies the effect of salicylate selection <u>against</u>
 multidrug pumps. Thus, organic acids and stomach acid could play important roles in regulating
 multidrug resistance in the gut microbiome. Our flow cytometry assay provides a way to
 measure the fitness effects of extreme-acid exposure to various membrane-soluble organic acids
- 45 including plant-derived nutrients and pharmaceutical agents. Therapeutic acids might be devised
- 46 to control the prevalence of multidrug pumps in environmental and host-associated habitats.

INTRODUCTION

Bacterial multidrug resistance (MDR) efflux systems export diverse antibiotics, metals and harmful products of metabolism (1–3). These MDR pumps also remove environmental or host-derived antimicrobials like bile acids (4) as well as toxic products of the bacterium's own metabolism (5,6). For pathogens, MDR pumps serve as first-line defense against multiple antibiotics at low levels (7). Thus, MDR pumps in pathogens pose a major threat to human health (8–11). Yet the metabolic and biochemical conditions in which they provide a fitness benefit are poorly understood.

The *Escherichia coli* K-12 genome contains genes for at least 36 multidrug efflux systems (5,12). Only a few of these are understood in detail. The pump best known is AcrAB-TolC, a member of the Resistance-Nodulation-Cell Division (RND) superfamily (13). AcrAB-TolC exports bile acids (4,14) as well as antimicrobial drugs, dyes, organic solvents, essential oils, and hormones (15,16). AcrAB expression is upregulated by many proteins including the global regulator MarA, which is activated by aspirin derivatives such as salicylate and benzoate (17,18) (**Fig. 1**). The salicylate-induced Mar regulon intersects with the Gad acid fitness island, which includes *mdtEF* genes encoding components of MdtEF-TolC, an RND pump structurally similar to AcrAB-TolC (19,20). MdtEF-TolC contributes to biofilm formation (21) and nitrate respiration (22). Other tripartite pumps similar to AcrAB-TolC include members of the Major Facilitator Superfamily (MFS) such as EmrAB-TolC (23).

Clinical and environmental management of MDR-associated antibiotic resistance requires understanding the physiological tradeoffs of such pumps, most of which spend substantial amounts of energy (12,13). Our laboratory uses experimental evolution to explore conditions that could reverse the fitness benefit of drug efflux pumps and thus decrease their prevalence in

microbial communities (24–26). Surprisingly, such conditions include the presence of salicylate or benzoate that induce drug resistance regulons. Under serial culture, these MDR inducers actually select against resistance to antibiotics, favoring mutants that have lost pumps such as MdtEF and EmrAB (24,26,27). Transcription profiles support a model in which genes responding to transient aromatic-acid stress actually decrease fitness over periods of chronic exposure (26).

Little is known regarding the effects of salicylates on the gut microbiome, and their interactions with substances such as bile acids. The antimicrobial activity of bile acids plays an important role in structuring the gut microbiome (28–30); and bile acids induce AcrAB-TolC (31).

Most drug pumps power their efflux by spending proton motive force (PMF). For example, PMF drives pumps of the RND superfamily such as AcrAB-TolC (15,16) and the MFS superfamily pump EmrD (32). However, these pumps cannot function when exposed to PMF uncouplers such as carbonyl cyanide *m*-chlorophenyl hydrazone (CCCP) (12,25). Full uncouplers penetrate the membrane in the protonated and unprotonated forms, whereas partial uncouplers cross mainly in the protonated form. Partial uncouplers include membrane-soluble aromatic acids such as aspirin, salicylic acid, and ibuprofen, which belong to the class of nonsteroidal anti-inflammatory drugs (NSAIDs) (33,34). Membrane-soluble acids and their derivatives are of interest for human diet, as many are phytochemicals produced by plants, which control their microbiomes in ways that are poorly understood.

An important aspect of proton-driven drug pumps is their association with extreme-acid resistance (35). Extreme-acid resistance enables *E. coli* and other enteric bacteria to survive transient exposure at a range of pH 1-3, as found in the human stomach (36,37). Moderate acid

(pH 5.0-6.8) upregulates systems for extreme-acid survival such as those of the Gad acid fitness island (38,39). The acid fitness island includes genes *mdtEF* for the MdtEF-TolC pump (19,20) and for Gad transcriptional regulators such as GadE (40). Gad-dependent acid resistance allows stationary-phase survival under extreme acid where *E. coli* cannot grow. The system raises intracellular pH by consuming protons through the decarboxylation of glutamate and glutamine by GadA and GadB, regulated by GadE. Despite the importance of this system, few studies of experimental evolution incorporate extreme-acid exposure. In one report, twenty cycles at pH 2.5 selected for mutations in the acid-resistance regulator EvgS (41). Such an experiment, in effect, tests evolving mutants for relative death rates under an adverse condition.

We investigated the tradeoffs between PMF-driven MDR pumps and the presence of salicylate and bile acids (24–26). We developed a method using flow cytometry (42) to measure the relative fitness contributions of MDR genes versus null alleles under various conditions, including the presence of uncouplers and of exportable substrates such as bile acids (cholic acid and deoxycholic acid). We modified the method to include cycles of extreme acid exposure. Using this approach, we showed that the MdtEF-TolC pump requires pH 2 exposure to confer positive relative fitness. This finding represents a novel case of an extreme acid-dependent drug efflux pump. We also observed distinct patterns of relative fitness for the AcrAB-TolC and EmrAB-TolC efflux pumps.

RESULTS

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

Relative fitness measurement by flow cytometry of YFP and CFP. We sought to measure the relative fitness contributions of MDR genes in the presence of various organic acids. For this purpose we modified the flow cytometry assay of Gullberg (42) which uses yellow fluorescent protein (YFP) and cyan fluorescent protein (CFP) markers (Fig. 2). In our assay, each strain had a gene of interest knocked out by replacement with kanR from alleles of the KEIO collection with the exception of the $\triangle slp$ -gadX strain (43). The kanR gene constitutively expresses an aminoglycoside 3'-phosphotransferase (43,44). In early competition trials, we found that the presence of kanR incurs a small fitness cost relative to control strain, E. coli W3110. Therefore, in all assays involving knock-out strains that expressed kanR, we used a control strain with the vhdN:kanR allele. For the single gene deletions used in this experiment ($\Delta acrA:kanR$, ΔmdtE::kanR, ΔgadE::kanR, and ΔemrA::kanR) each allele was transduced into a strain of E. coli K-12 W3110 containing the fluorophore allele galK::yfp or galK::cfp inducible via a lac promoter (42). The mixture of two strains was serially diluted 1000-fold each day, and observed over a total of 30 generations (doublings) from day zero to day 3. This period was sufficient to permit accurate measurement of relative fitness, but not long enough to make the rise of new mutations likely (42). All culture media were buffered at pH 6.8, a level that allows cytoplasmic pH depression by membrane-permeant acids of lower pK_a. Each day, a parallel dilution with IPTG inducer was performed using LBK-PIPES pH 6.8 buffered medium without stressors. The IPTGinduced populations express YFP or CFP for flow cytometry, whereas the overnight 1000-fold dilutions avoid energy-expensive fluorophore expression. This procedure enabled us to minimize the fitness effects of fluorophore expression during stress selection.

Fig. 2A shows the appearance of a distinctive population of YFP-expressing cells showing high fluorescence intensity with 488-nm excitation, and low-intensity fluorescence at 405 nm, versus a second population expressing CFP with low intensity at 488-nm excitation and high intensity at 405 nm. Fig. 2B show a typical experiment in which the log₂ ratios of YFP and CFP populations were reported for the tested mutant (W3110 *acrA::kanR*) and the control (W3110 *yhdN::kanR*). For each competition experiment, an equal number of trials were performed with the gene knock-out strain expressing YFP and the control strain expressing CFP, and vice versa.

Relative fitness was measured as the selection rate, defined as the daily change in log₂ ratio of cocultured strain populations (45). A selection rate of 1 unit per day indicates a two-fold increase in population of one strain compared to the competing strain's population. This measure indicates the relative fitness of two strains cultured under a given stress condition.

The fitness benefit of MdtE requires extreme acid exposure (pH 2). In a strain lacking AcrAB-TolC, overexpression of MdtEF-TolC confers resistance to antibiotics and bile acids (46). The range of substrates transported by an RND pump depends on its distal pocket, the periplasmic portion of its substrate-binding pocket (47). MdtE shares 55% amino-acid sequence identity with AcrA (13) but its periplasmic substrate-binding pocket includes amino-acid residues with a lower isoelectric point (pI=3.1 for MdtEF, pI=4.0 for AcrAB) (20). For this reason, we investigated roles for acids and acidic conditions in pump function.

We first tested the relative fitness contribution of mdtE by competition of an $mdtE^+$ strain (W3110 $\Delta yhdN::kanR$) against W3110 $\Delta mdtE::kanR$ in the presence of 6 mM salicylate and 0.15% bile acids (**Fig. 3A**). The mdtE deletion allele increased the relative fitness under all

conditions—the pH 6.8 control medium, as well as in 0.15% bile acids, or in 6 mM salicylate (p<0.001). Selection against the $mdtE^+$ strain was further increased by the addition of 10 μ M CCCP (p<0.001) which depletes the PMF needed to drive efflux (**Fig. 3A**). The expenditure of limited PMF by the MdtEF-TolC could be one possible explanation for the pump's fitness cost. All conditions tested led to a fitness cost or neutral selection for MdtEF-TolC.

Under what growth conditions does MdtEF-TolC confer advantage? We tried including a period of pH 2 exposure, a condition for which the Gad regulon maintains extreme-acid survival dependent on stationary phase (35). This condition of stationary phase in extreme acid mimics the passage of bacteria through an acidic stomach, an adaptation that helps enteric *E. coli* gain access to the intestinal tract and may activate drug efflux pumps (19). Our serial cultures enter stationary phase for at least 12 h, so they are fully acid resistant before each dilution. Starting on Day zero, the CFP/YFP strain mixture was diluted 100-fold in unbuffered LBK at pH 2.0. The acidified cell suspension, approximately pH 2, was incubated for 2 hours. Under this condition, survival of *E. coli* K-12 strains is typically 50-100% (35,48,49). The acidified suspension was then diluted ten-fold in media buffered with PIPES at pH 7.0, leading to a final pH of 6.8. The total dilution overall was 1,000-fold per day, comparable to our original relative fitness assay. This period of pH 2 exposure was repeated for each of Days 1-3 of the assay.

The 2-h exposure to extreme acid eliminated the fitness cost of *mdtE* during coculture at pH 6.8. The *mdtE* allele conferred a fitness benefit in the presence of bile acids, with or without 2 mM salicylate (**Fig. 3B**). A higher concentration of 4 mM salicylate, however, incurred a large fitness cost for MdtE (p<0.001). The highest salicylate concentration tested (6 mM) did not permit growth over three days. Note that after 100-fold dilution in LBK pH 2, there would still be 0.06 mM concentration of salicylate. At external pH 2, where the *E. coli* internal pH is about

pH 5 (49) the uptake of salicylic acid (with a pK_a = 2.8) would be greatly increased by the transmembrane pH difference, a Δ pH of approximately three units. So the low pH could amplify the fitness effect of a small salicylate concentration.

AcrA incurs fitness tradeoffs. AcrAB-TolC is the best known of *E. coli* RND-type efflux pumps, and is the most important for efflux of bile acids and other deleterious molecules (13). Nevertheless, we found that the *acrA*⁺ strain incurs a measurable fitness cost during culture at pH 6.8 (p<0.01, Fig. 4A). The fitness cost was seen with or without salicylate. The *acrA*⁺ allele conferred fitness benefit only in the presence of bile acids (p<0.001; Fig. 4A). This result might show that the AcrAB-TolC efflux pump is worth the energy expenditure only when it is needed to export a deleterious substrate. The advantage conferred by bile acids was eliminated by CCCP, which would be consistent with pump dependence on PMF.

The daily growth cycle was adjusted to include a 2-h period in stationary phase at pH 2 (**Fig. 4B**). Under this adjusted cycle, the *acrA*⁺ strain showed a small fitness cost (p<0.01) and lost its fitness benefit in the presence of bile acids. A large fitness cost was incurred with 4 mM salicylate (p<0.001), whereas the fitness advantage was restored with bile acids and a small amount of salicylate (p<0.001, **Fig. 4B**). The smaller amount of salicylate may tip the balance by inducing AcrAB expression during the pH 6.8 portion of the growth cycle (31). So the bacteria's ability to make AcrAB-TolC leads to very different tradeoffs in the presence of bile acids and salicylate, dependent on pH 2 exposure.

EmrA carries a fitness cost. The EmrAB-TolC efflux pump structurally resembles AcrAB-TolC efflux pump, with EmrA providing a link between the outer membrane efflux pump

component, TolC and inner membrane component, EmrB (50). The EmrAB-TolC efflux pump is activated by salicylate, and confers resistance to some antibiotics as well as CCCP (51). As seen for *mdtE*, *emrA* incurred a fitness cost in the pH 6.8 under all conditions tested, with the exception of bile acids plus salicylate (**Fig. 5A**). The fitness cost was increased by the presence of CCCP (p<0.01, **Fig. 5A**). This is surprising since the EmrAB-TolC efflux pump confers resistance to CCCP, but CCCP resistance may require *emrA* overexpression through mutations to the transcriptional repressor *emrR* (*mprA*) (25).

Inclusion of pH 2 exposure during the growth cycle did not increase relative fitness for $emrA^+$ (**Fig. 5B**). The $emrA^+$ strain was less fit in the presence of salicylate, with or without bile acids (p<0.001). Unlike MdtEF-TolC or AcrAB-TolC, EmrAB-TolC did not show evidence of functional bile acid export under the conditions tested.

The Gad island shows fitness tradeoffs with bile acids and salicylate. In addition to the multidrug efflux pump components mdtEF (46), the Gad acid fitness island (Fig. 1) includes genes whose products counteract acid stress, such as periplasmic acid chaperones hdeA and hdeB and acid-resistance regulators gadE and gadX (38). Nonetheless, this region of the genome often undergoes deletion during experimental evolution with acid stress (26,52).

We investigated how the mdtE fitness effects compares to the fitness effects of the entire Gad island. Competition assays were conducted using a strain with most of the Gad island deleted by recombineering ($\Delta slp\text{-}gadX$) (26). In this assay, the parent strain W3110 had a small fitness advantage over the $\Delta slp\text{-}gadX$ strain (**Fig. 6A**). This result differed from the $mdtE^+$ competition (**Fig. 3A**) in which the mdtE deletion had no effect on fitness. The advantage conferred by the Gad island was independent of the presence or absence of bile acids, but was

reversed by the presence of 6 mM sodium salicylate. Thus, the negative effect of salicylate overcomes whatever net fitness contribution is provided by components of the Gad island. The net effects on fitness are small compared to the fitness effects observed for individual knock-out strains (**Fig. 3, 4, 5**).

An important regulatory component of the glutamate-dependent acid resistance pathway is gadE (Fig. 1; (53,54)). GadE activates the decarboxylation of glutamate in the cell by the upregulation of gadA and gadB (48). We sought to determine if salicylate affects the fitness benefit of $gadE^+$ similarly to that of the overall Gad island (slp-gadX). In pH 6.8 medium, the control strain had a fitness advantage over $\Delta gadE$::kanR, similar to the fitness advantage conferred by the Gad island as a whole (Fig. 6B). With bile acids, however, GadE conferred no selective benefit. The presence of 6 mM salicylate, in the absence of bile acids, incurred a fitness cost for gadE (p<0.001; Fig. 6B). These results suggest that some component regulated by GadE is sensitive to salicylate; and that some unidentified tradeoff exists with bile acids.

DISCUSSION

Previously, it was unknown why genes encoding the MdtEF pump reside in the Gad acid fitness island (**Fig. 1**) along with a complex set of regulators of acid resistance via glutamate decarboxylase and periplasmic chaperones (38). The MdtE fitness benefit with pH 2 exposure (**Fig. 3**) suggests that MdtEF-TolC effluxes bile acids under extreme acid, where the cell cannot grow but its death rate can be slowed by various acid-resistance components of the Gad island. This finding would be consistent with the previously unexplained requirement of pump component TolC for Gad-related survival at pH 2 (55).

Our modified flow cytometry assay enables us to explore the fitness effects of extreme-acid exposure, which enteric pathogens as well as commensal strains must survive to reach the intestine (35,48,49). Our results may provide clues as to the relative fitness of drug-exporting strains during human uptake of aromatic acid medications such as aspirin. These efflux pumps consume PMF and thus their fitness contribution may be neutralized or reversed by the presence of the uncoupler CCCP (Figures 3A, 4A, 5A). We show that the efflux pump fitness contribution may also be reversed by a membrane-permeant aromatic acid such salicylate during extreme-acid exposure (Figures 3B, 4B, 5B). The mechanisms of antimicrobial action of aromatic acids may involve depletion of PMF, as well as the ΔpH-amplified uptake of a molecule that disrupts the membrane (24,26,27,56,57).

Extreme-acid exposure had surprising impact on the fitness effects of bile acids. Bile acids occur at highest concentration in the lumen of the small intestine, where they enhance lipid absorption (58–60). While bile does not normally reach the stomach, many patients exhibit chronic bile reflux gastritis (61), a condition associated with disorders such as carcinogenesis.

Thus, pumps capable of extreme acid-dependent efflux of bile acids could be useful for bacteria that experience gastric transit.

The different MDR pumps we tested showed diverse effects of bile acids. AcrAB-TolC conferred a fitness benefit in the presence of bile acids under various conditions, whereas MdtEF-TolC confer an advantage only when the growth cycle included exposure at pH 2. By contrast, EmrAB-TolC conferred no fitness advantage under any of our conditions tested. Thus, conditions favoring this pump's action must involve substrates other than bile acids.

Although the intact *mdtE* gene decreased fitness under almost all conditions at pH 6.8, the overall Gad island (**Fig. 6A**) conferred a small selective benefit at pH 6.8. This advantage may derive from the net fitness contributions of Gad acid-resistance genes other than *mdtEF*. The Gad regulon includes various components whose functions in acid resistance are poorly understood (26). The *hdeAB* acid stress operon encodes two periplasmic proteins that prevent protein aggregation at pH 2.0 (62). It may be more advantageous for the cell to lose one energetically expensive pump rather than its entire acid defense system. We will explore further the effect of acid exposure on fitness of other Gad components, as well other MDR pumps.

Our interest in assessing fitness under acid exposure with salicylate has pharmaceutical implications. High levels of salicylate in the human stomach, whether through changes in diet or periodic exposure to drugs such as aspirin, can affect the relative survival of different bacteria to enter the stomach. Other pharmaceuticals likely interact in unexpected ways with the microbiome that influence clinical outcomes. Our relative fitness assay can reveal such interactions and explore their mechanisms.

MATERIALS AND METHODS

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

Strains and media. All strains used in our experiments are derived from E. coli K-12 W3110 (Table 1). Strains were constructed by phage P1 transduction, with confirmation by PCR amplification across the sequence joint (55). The main growth medium was LBK broth (10 g/l tryptone, 5 g/l yeast extract, 7.45 g/l potassium chloride) buffered at pH 6.8 with 100 mM piperazine-N,N'-bis(2-ethanesulfonic acid) (PIPES, pK_a= 6.80) using NaOH to adjust pH (26). This medium is designated LBK-PIPES pH 6.8. Sodium salicylate, bile acids (50/50 mixture of sodium cholate and sodium deoxycholate) and CCCP were all obtained from Millipore Sigma. **FACS Competition Assays.** Relative fitness of cocultured strains was measured by flow cytometry of strains expressing yellow fluorescent protein (YFP) or cyan fluorescent protein (CFP) (42). Strains were cultured in 2 mL of LBK-PIPES pH 6.8 incubated in separate tubes at 37°C with rotation for 16-h. On the next day (Day -1) 20 μl of each inoculated culture was pipetted into 2 ml of the appropriate competition medium for which the strains were competed and incubated for 24-h at 37°C with rotation. On Day 0, for each experimental condition 2 µl of a 1:1 mixture of the CFP and YFP strains to compete was added to 2 ml of the appropriate competition medium and incubated at 37°C with rotation for 24 h. From this culture, serial dilutions were repeated (2 µl into 2 ml) on Days 1 and 2. Thus each day leads to a 1000-fold dilution followed by approximately 10 doublings (generations), for a total of 30 doublings by Day 3. During each daily cycle the cells spend approximately 12-14 h in stationary phase (24,26).To include a period of pH 2 exposure, overnight cultures were inoculated in unbuffered

LBK pH 2 for the first 2-h of incubation each day (starting in the morning, Day 0 through Day

2). At pH 2, the bacteria cannot grow but they remain viable via the stationary phase-induced Gad acid resistance (38,40). Each day, 2 µl of the mixture of competing CFP and YFP strains was added to 200 µl of LBK pH 2 and incubated at 37°C for 2-h. After this incubation period, 1.8 ml of the competition medium buffered to pH 7 was added (restoring pH to approximately 6.8) and the tubes were incubated for 24 h at 37°C.

For daily flow cytometry: A separate dilution of each CFP and YFP coculture was performed by adding 50 µl (1:40 dilution) of the 1:1 mixtures of labeled strains and 20 µl (1:100 dilution) of 100 mM IPTG to 2 ml of LBK-PIPES pH 6.8. This tube was incubated for 2 h at 37°C while rotating and then sampled using the BD FACSMelody Cell Sorter with a blue laser (488 nm) and violet laser (405 nm). A 545/20 filter was used for YFP emission, and a 528/45 filter for CFP emission. Each competition mixture was diluted with 1X phosphate-buffered saline (PBS) to obtain 50,000 total events. The dilution was set such that the processed events were greater than 98% and the event rate was less than 10,000 events/second. The threshold value of counts for each tested strain in a coculture was set at 0.01%. Two technical replicates of each competition mixture were recorded and averaged. The percentages of cells with YFP or CFP fluorescence was recorded. This process was repeated each day for days 0-3 of testing. For each experimental condition, unless specified otherwise, 12 biological replicates were averaged, always with equal numbers of YFP to CFP and CFP to YFP competitions.

For each gene tested, the selection rate *s* was calculated as:

325
$$s = \log_2(R_t/R_0)/t$$

where R represents the ratio of cell numbers for the control strain (W3110 $\Delta yhdN$ or W3110) to the knock-out strain of interest; and t represents time in days (with daily dilution 1:1,000, approximately 10 generations per day) (45,63,64). This rate gives a biological indication of the

change in population distribution of cocultured genetic variants over time. For example, a selection rate of 1 unit per day (one doubling per 10 generations) means that each day, one of two cocultured strains increases its population advantage two-fold over the competing strain.

Statistical Analysis. ANOVA and post-hoc Tukey tests were performed to compare trials under different conditions. In the figures, brackets indicate the Tukey results (*p<0.05, **p<0.01, ***p<0.001). Single sample t-tests were performed to compare the value of each selection rate to zero. (†p<0.05, ††p<0.01, †††p<0.001). Statistical results are presented in Supplemental File 1.

ACKNOWLEDGMENTS

This work was supported by National Science Foundation awards MCB-1923077 and MRI-1725426. We thank two anonymous reviewers for very helpful comments on the manuscript.

341 REFERENCES

- 1. Du D, Wang-Kan X, Neuberger A, van Veen HW, Pos KM, Piddock LJV, et al. Multidrug efflux pumps: Structure, function and regulation. Nat Rev Microbiol. 2018;16:523–39.
- Sulavik MC, Houseweart C, Cramer C, Jiwani N, Murgolo N, Greene J, et al. Antibiotic susceptibility profiles of *Escherichia coli* strains lacking multidrug efflux pump genes.
 Antimicrob Agents Chemother. 2001;45(4):1126–36.
- 347 3. Tikhonova EB, Zgurskaya HI. AcrA, AcrB, and TolC of *Escherichia coli* form a stable intermembrane multidrug efflux complex. J Biol Chem. 2004;279(31):32116–24.
- Thanassi DG, Cheng LW, Nikaido H. Active efflux of bile salts by *Escherichia coli*. J
 Bacteriol. 1997;179(8):2512–8.
- Teelucksingh T, Thompson LK, Cox G. The evolutionary conservation of *Escherichia coli* drug efflux pumps supports physiological functions. J Bacteriol. 2020;202(22):1–17.
- 6. Rosner JL, Martin RG. An excretory function for the *Escherichia coli* outer membrane pore TolC: Upregulation of *marA* and *soxS* transcription and Rob activity due to metabolites accumulated in *tolC* mutants. J Bacteriol. 2009;191(16):5283–92.
- Nolivos S, Cayron J, Dedieu A, Page A, Delolme F, Lesterlin C. Role of AcrAB-TolC multidrug efflux pump in drug-resistance acquisition by plasmid transfer. Science. 2019;364(6442):778–82.
- 8. Ventola CL. The antibiotic resistance crisis: causes and threats. P T J. 2015;40(4):277–83.
- Malik B, Bhattacharyya S. Antibiotic drug-resistance as a complex system driven by socio-economic growth and antibiotic misuse. Sci Rep. 2019;9(9788):1–12.
- Spengler G, Kincses A, Gajdács M, Amaral L. New roads leading to old destinations:
 Efflux pumps as targets to reverse multidrug resistance in bacteria. Molecules. 2017;22(3).
- Li XZ, Plésiat P, Nikaido H. The challenge of efflux-mediated antibiotic resistance in
 Gram-negative bacteria. Clin Microbiol Rev. 2015;28(2):337–418.
- Paulsen IT, Brown MH, Skurray RA. Proton-dependent multidrug efflux systems.
 Microbiol Rev. 1996;60(4):575–608.
- 368 13. Anes J, McCusker MP, Fanning S, Martins M. The ins and outs of RND efflux pumps in *Escherichia coli*. Front Microbiol. 2015;6(JUN):1–14.
- Pos KM. Drug transport mechanism of the AcrB efflux pump. Biochim Biophys Acta Proteins Proteomics. 2009;1794(5):782–93.
- Du D, Wang Z, James NR, Voss JE, Klimont E, Ohene-Agyei T, et al. Structure of the
 AcrAB-TolC multidrug efflux pump. Nature. 2014;509(7501):512-5.
- 374 16. Shi X, Chen M, Yu Z, Bell JM, Wang H, Forrester I, et al. In situ structure and assembly of the multidrug efflux pump AcrAB-TolC. Nat Commun. 2019;10(1):4–9.
- 17. Cohen SP, Levy SB, Foulds J, Rosner JL. Salicylate induction of antibiotic resistance in
 377 *Escherichia coli*: Activation of the *mar* operon and a *mar*-independent pathway. J

- 378 Bacteriol. 1993;175(24):7856–62.
- Wang T, Kunze C, Dunlop MJ. Salicylate increases fitness cost associated with MarA-mediated antibiotic resistance. Biophys J. 2019;117(3):563–71.
- Kobayashi A, Hirakawa H, Hirata T, Nishino K, Yamaguchi A. Growth phase-dependent
 expression of drug exporters in Escherichia coli and its contribution to drug tolerance. J
 Bacteriol. 2006;188(16):5693-703.
- Novoa D, Otakuye C-B. The anaerobic efflux pump MdtEF-TolC confers resistance to cationic biocides. bioRXiv Prepr http://dx.doi.org/101101/036806. 2019;
- Matsumura K, Furukawa S, Ogihara H, Morinaga Y. Roles of multidrug efflux pumps on the biofilm formation of *Escherichia coli* K-12. Biocontrol Sci. 2011;16(2):69–72.
- Zhang Y, Xiao M, Horiyama T, Zhang Y, Li X, Nishino K, et al. The multidrug efflux pump MdtEF protects against nitrosative damage during the anaerobic respiration in *Escherichia coli*. J Biol Chem. 2011;286(30):26576–84.
- 23. Lomovskaya O, Lewis K. *emr*, an *Escherichia coli* locus for multidrug resistance. Proc
 Natl Acad Sci U S A. 1992;89(19):8938–42.
- 24. Creamer KE, Ditmars FS, Basting PJ, Kunka KS, Hamdallah IN, Bush SP, et al.
 Benzoate- and salicylate-tolerant strains of *Escherichia coli* K-12 lose antibiotic resistance during laboratory evolution. Appl Environ Microbiol. 2017;83(2):e02736.
- 396 25. Griffith JM, Basting PJ, Bischof KM, Wrona EP, Kunka KS, Tancredi AC, et al.
 397 Experimental evolution of *Escherichia coli* K-12 in the presence of proton motive force
 398 (PMF) uncoupler carbonyl cyanide m-chlorophenylhydrazone selects for mutations
 399 affecting PMF-driven drug efflux pumps. Appl Environ Microbiol. 2018;85(5):1–18.
- 400 26. Moore JP, Li H, Engmann ML, Bischof KM, Kunka KS, Harris ME, et al. Inverted
 401 regulation of multidrug efflux pumps, acid resistance, and porins in benzoate-evolved
 402 *Escherichia coli* K-12. Appl Environ Microbiol. 2019;85(16):1–21.
- 403 27. Malla CF, Mireles NA, Ramírez AS, Poveda JB, Tavío MM. Aspirin, sodium benzoate and sodium salicylate reverse resistance to colistin in *Enterobacteriaceae* and *Pseudomonas aeruginosa*. J Antimicrob Chemother. 2020;75(12):3568–3575.
- Martins A, Spengler G, Rodrigues L, Viveiros M, Ramos J, Martins M, et al. pH modulation of efflux pump activity of multi-drug resistant Escherichia coli: protection during its passage and eventual colonization of the colon. PLoS One. 2009;4(8):e6656.
- Schubert K, Olde Damink SWM, von Bergen M, Schaap FG. Interactions between bile salts, gut microbiota, and hepatic innate immunity. Immunol Rev. 2017;279(1):23–35.
- 411 30. Kurdi P, Kawanishi K, Mizutani K, Yokota A. Mechanism of growth inhibition by free bile acids in lactobacilli and bifidobacteria. J Bacteriol. 2006;188(5):1979–86.
- Rosenberg EY, Bertenthal D, Nilles ML, Bertrand KP, Nikaido H. Bile salts and fatty acids induce the expression of *Escherichia coli* AcrAB multidrug efflux pump through their interaction with Rob regulatory protein. Mol Microbiol. 2003;48(6):1609–19.

- 416 32. Lee J, Sands ZA, Biggin PC. A numbering system for MFS transporter proteins. Front Mol Biosci. 2016;3(JUN):1–13.
- 418 33. Cardinale DA, Lilja M, Mandic M, Gustafsson T, Larsen FJ, Lundberg TR. Resistance
 419 training with co-ingestion of anti-inflammatory drugs attenuates mitochondrial function.
 420 Front Physiol. 2017;8(DEC):1–11.
- 421 34. Mahmud T, Rafi SS, Scott DL, Wrigglesworth JM, Bjarnason I. Nonsteroidal
 422 antiinflammatory drugs and uncoupling of mitochondrial oxidative phosphorylation.
 423 Arthritis Rheum. 1996;39(12):1998–2003.
- 424 35. Foster JW. *Escherichia coli* acid resistance: tales of an amateur acidophile. Nat Rev Microbiol. 2004 Nov;2(11):898–907.
- 36. Dressman JB, Berardi RR, Dermentzoglou LC, Russell TL, Schmaltz SP, Barnett JL, et al.
 Upper gastrointestinal (GI) pH in young, healthy men and women. Pharm Res An Off J
 Am Assoc Pharm Sci. 1990;7(7):756–61.
- Beasley DE, Koltz AM, Lambert JE, Fierer N, Dunn RR. The evolution of stomach acidity and its relevance to the human microbiome. PLoS One. 2015;10(7):1–12.
- 431 38. Mates AK, Sayed AK, Foster JW. Products of the *Escherichia coli* acid fitness island 432 attenuate metabolite stress at extremely low pH and mediate a cell density-dependent acid 433 resistance. J Bacteriol. 2007;189(7):2759–68.
- 434 39. Deng Z, Shan Y, Pan Q, Gao X, Yan A. Anaerobic expression of the *gadE-mdtEF* 435 multidrug efflux operon is primarily regulated by the two-component system ArcBA
 436 through antagonizing the H-NS mediated repression. Front Microbiol. 2013;4(194):00194.
- 437 40. Ma Z, Richard H, Tucker DL, Conway T, Foster JW. Collaborative regulation of
 438 Escherichia coli glutamate-dependent acid resistance by two AraC-like regulators, GadX
 439 and GadW (YhiW). J Bacteriol. 2002;184(24):7001–12.
- 41. Johnson MD, Bell J, Clarke K, Chandler R, Pathak P, Xia Y, et al. Characterization of 441 mutations in the PAS domain of the EvgS sensor kinase selected by laboratory evolution 442 for acid resistance in *Escherichia coli*. Mol Microbiol. 2014;93(5):911–27.
- 42. Gullberg E, Cao S, Berg OG, Ilbäck C, Sandegren L, Hughes D, et al. Selection of
 resistant bacteria at very low antibiotic concentrations. PLoS Pathog. 2011;7(7):e1002158.
- 43. Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, et al. Construction of
 446 Escherichia coli K-12 in-frame, single-gene knockout mutants: The Keio collection. Mol
 447 Syst Biol. 2006;2(1):0008.
- 448 44. Datsenko KA, Wanner BL. One-step inactivation of chromosomal genes in *Escherichia coli* K-12 using PCR products. Proc Natl Acad Sci U S A. 2000;97(12):6640–5.
- 45. Burghardt LT, Epstein B, Guhlin J, Nelson MS, Taylor MR, Young ND, et al. Select and resequence reveals relative fitness of bacteria in symbiotic and free-living environments.

 452 Proc Natl Acad Sci U S A. 2018;115(10):2425–30.
- 453 46. Nishino K, Senda Y, Yamaguchi A. The AraC-family regulator GadX enhances multidrug

- resistance in *Escherichia coli* by activating expression of *mdtEF* multidrug efflux genes. J Infect Chemother. 2008;14(1):23–9.
- 47. Vargiu A V., Nikaido H. Multidrug binding properties of the AcrB efflux pump characterized by molecular dynamics simulations. Proc Natl Acad Sci U S A. 2012;109(50):20637–42.
- 48. Richard H, Foster JW. *Escherichia coli* glutamate- and arginine-dependent acid resistance systems increase internal pH and reverse transmembrane potential. J Bacteriol. 2004;186(18):6032–41.
- 462 49. Small P, Blankenhorn D, Welty D, Zinser E, Slonczewski JL. Acid and base resistance in
 463 Escherichia coli and Shigella flexneri: role of rpoS and growth pH. J Bacteriol. 1994
 464 Mar;176(6):1729–37.
- 465 50. Borges-Walmsley MI, Beauchamp J, Kelly SM, Jumel K, Candlish D, Harding SE, et al.
 466 Identification of oligomerization and drug-binding domains of the membrane fusion
 467 protein EmrA. J Biol Chem. 2003;278(15):12903–12.
- Lomovskaya O, Lewis K. *emr*, an *Escherichia coli* locus for multidrug resistance. Proc
 Natl Acad Sci U S A. 1992;89(19):8938–42.
- 470 52. He A, Penix SR, Basting PJ, Griffith JM, Creamer KE, Camperchioli D, et al. Acid 471 evolution of *Escherichia coli* K-12 eliminates amino acid decarboxylases and reregulates 472 catabolism. Appl Environ Microbiol. 2017;83:e00442-17.
- Ma Z, Gong S, Richard H, Tucker DL, Conway T, Foster JW. GadE (YhiE) activates
 glutamate decarboxylase-dependent acid resistance in *Escherichia coli* K-12. Mol
 Microbiol. 2003;49(5):1309–20.
- Castanié-Cornet MP, Cam K, Bastiat B, Cros A, Bordes P, Gutierrez C. Acid stress
 response in *Escherichia coli*: Mechanism of regulation of *gadA* transcription by RcsB and
 GadE. Nucleic Acids Res. 2010;38(11):3546–54.
- Deininger KNW, Horikawa A, Kitko RD, Tatsumi R, Rosner JL, Wachi M, et al. A
 requirement of TolC and MDR efflux pumps for acid adaptation and GadAB induction in
 Escherichia coli. PLoS One. 2011;6(4):1–7.
- Sundaramoorthy NS, Suresh P, Selva Ganesan S, GaneshPrasad AK, Nagarajan S.
 Restoring colistin sensitivity in colistin-resistant *E. coli*: Combinatorial use of MarR inhibitor with efflux pump inhibitor. Sci Rep. 2019;9(1):1–13.
- 485 57. Rosner JL, Chai TJ, Foulds J. Regulation of OmpF porin expression by salicylate in *Escherichia coli*. J Bacteriol. 1991;173(18):5631–8.
- Hofmann AF. The continuing importance of bile acids in liver and intestinal disease. Arch Intern Med. 1999;159(DEC):2647–58.
- Hamilton JP, Xie G, Raufman JP, Hogan S, Griffin TL, Packard CA, et al. Human cecal
 bile acids: Concentration and spectrum. Am J Physiol Gastrointest Liver Physiol.
 2007;293(1):256–63.

- Hegyi P, Maléth J, Walters JR, Hofmann AF, Keely SJ. Guts and gall: Bile acids in regulation of intestinal epithelial function in health and disease. Physiol Rev. 2018;98(4):1983–2023.
- Vere CC, Cazacu S, Comanescu V, Mogoanta L, Rogoveanu I, Ciurea T. Endoscopical
 and histological features in bile reflux gastritis. Rom J Morphol Embryol.
 2005;46(4):269-74.
- 498 62. Kern R, Malki A, Abdallah J, Tagourti J, Richarme G. *Escherichia coli* HdeB is an acid stress chaperone. J Bacteriol. 2007;189(2):603–10.
- 500 63. Dykhuizen DE. Experimental Studies of Natural Selection in Bacteria. Annu Rev Ecol Syst. 1990;21(1):373–98.
- Lenski RE, Rose MR, Simpson SC, Tadler SC. Long-term experimental evolution in
 Escherichia coli. I. Adaptation and divergence during 2,000 generations. Am Nat.
 1991;138:1315–41.
- Hayashi K, Morooka N, Yamamoto Y, Fujita K, Isono K, Choi S, et al. Highly accurate genome sequences of *Escherichia coli* K-12 strains MG1655 and W3110. Mol Syst Biol. 2006;2(1):2006.0007.
- 508 66. Sayed AK, Foster JW. A 750 bp sensory integration region directs global control of the *Escherichia coli* GadE acid resistance regulator. Mol Microbiol. 2009;71(6):1435–50.
- Hommais F, Krin E, Coppée JY, Lacroix C, Yeramian E, Danchin A, et al. GadE (YhiE):
 A novel activator involved in the response to acid environment in *Escherichia coli*.
 Microbiology. 2004;150:61–72.
- Ma Z, Masuda N, Foster JW. Characterization of EvgAS-YdeO-GadE branched
 regulatory circuit governing glutamate-dependent acid resistance in *Escherichia coli*. J
 Bacteriol. 2004;186(21):7378–89.
- 516 69. Seo SW, Kim D, O'Brien EJ, Szubin R, Palsson BO. Decoding genome-wide GadEWX-517 transcriptional regulatory networks reveals multifaceted cellular responses to acid stress in 518 *Escherichia coli*. Nat Commun. 2015;6:7970.
- 519 70. Waterman SR, Small PLC. Transcriptional expression of *Escherichia coli* glutamate-520 dependent acid resistance genes *gadA* and *gadBC* in an hns *rpoS* mutant. J Bacteriol. 521 2003;185(15):4644–7.
- 522 71. Chubiz LM, Rao C V. Aromatic acid metabolites of *Escherichia coli* K-12 can induce the *marRAB* operon. J Bacteriol. 2010;192(18):4786–9.
- 524 72. Bhaskarla C, Das M, Verma T, Kumar A, Mahadevan S, Nandi D. Roles of Lon protease 525 and its substrate MarA during sodium salicylate-mediated growth reduction and antibiotic 526 resistance in *Escherichia coli*. Microbiology. 2016;162:764–76.
- 73. Ruiz C, McMurry LM, Levy SB. Role of the multidrug resistance regulator MarA in global regulation of the *hdeAB* acid resistance operon in *Escherichia coli*. J Bacteriol. 2008;190(4):1290–7.

531 TABLES

532

Table 1. E. coli strains used in this study

Strain	Genotype/Description	Source
W3110	E. coli K-12 F ⁻ λ ⁻	Lab stock (65)
CH367	Δlac::FRT ΔgalK::cfp-bla (AmpR)	(42)
CH372	Δlac::FRT ΔgalK::yfp-bla (AmpR)	(42)
JLS1779	W3110 ∆galK:: cfp-bla	This study
JLS1780	W3110 ∆galK:: yfp-bla	This study
JLS1910	W3110 AgalK:: cfp-bla, AyhdN::kanR	This study
JLS1911	W3110 AgalK:: yfp-bla , AyhdN::kanR	This study
JLS1826	W3110 AgalK:: cfp-bla, ΔacrA::kanR	This study
JLS1832	W3110 AgalK:: yfp-bla, ΔacrA::kanR	This study
JLS1834	W3110 AgalK:: cfp-bla, AmdtE::kanR	This study
JLS1835	W3110 AgalK:: yfp-bla, AmdtE::kanR	This study
JLS1912	W3110 AgalK:: cfp-bla, ΔemrA::kanR	This study
JLS1913	W3110 AgalK:: yfp-bla, ΔemrA::kanR	This study
JLS1817	W3110 ∆galK:: cfp-bla, ∆slp-gadX	This study
JLS1818	W3110 ∆galK:: yfp-bla, ∆slp-gadX	This study
JLS1919	W3110 ∆galK:: cfp-bla, ∆gadE::kanR	This study
JLS1920	W3110 ∆galK:: yfp-bla, ∆gadE::kanR	This study

FIGURES

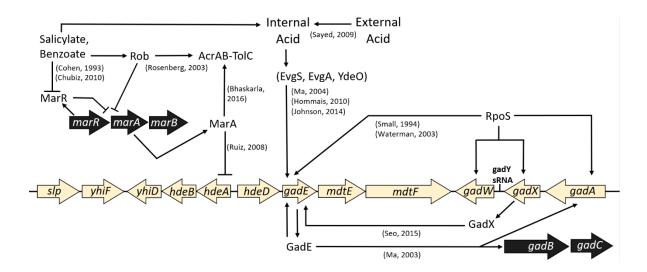


Figure 1. The salicylate-inducible Mar drug resistance regulon intersects with the Gad acid resistance regulon. Selected components relevant to this work are shown. Modified from Ref. (26). Cited references include (17,31,41,49,66–73).

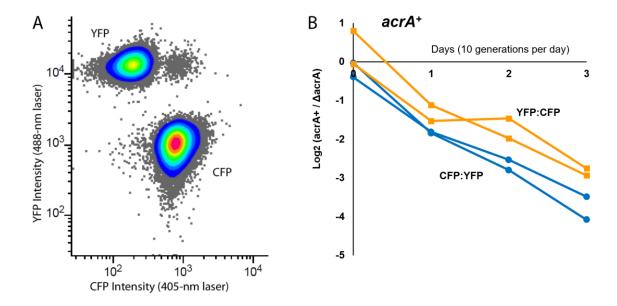
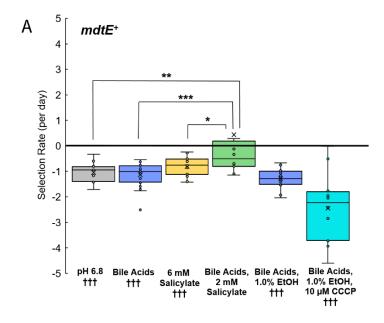



Figure 2. Flow cytometry competition assays of strains expressing YFP or CFP.

A. Emission intensity indicates cells expressing cyan fluorescent protein (CFP) and yellow fluorescent protein (YFP) for two strains in coculture. The combined culture is diluted and incubated for 2-h with IPTG to induce fluorophore expression.

B. The slope of the \log_2 ratios for LBK-PIPES pH 6.8 control media (n=12) is compiled for Day 0 through Day 3 for all weeks tested. The absolute values of these ratios are taken from cell counts for $\Delta yhdN$::kanR ($acrA^+$) / $\Delta acrA$::kanR. Each competition assay included an equal number of assays in which the $\Delta yhdN$::kanR strain expressed YFP versus CFP. Cultures were diluted 1:1000 daily and assayed by flow cytometry as described under Methods. Slopes were calculated over days 0-3 of testing. The flow-cytometry threshold for percentage of each cell type was 0.01%.

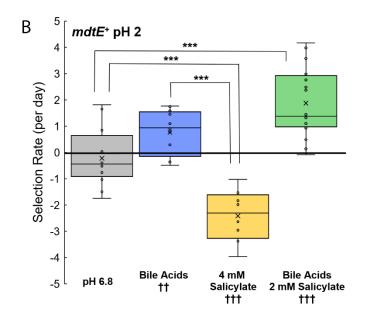
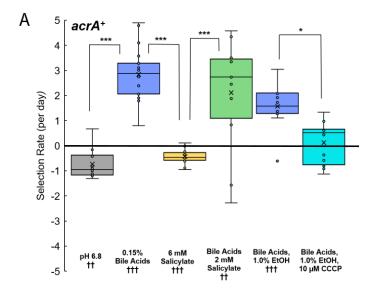



Figure 3. Selection for *mdtE*⁺ with or without pH 2 exposure. Selection rate is given by $\log_2(\Delta y h dN :: kanR / \Delta mdtE :: kanR)/day$. The slopes were calculated over days 0-3 of testing.

A. Conditions include LBK-PIPES pH 6.8 (n=16) with 0.15% bile acids (n=24), 6 mM salicylate (n=16), 0.15% bile acids and 2 mM salicylate (n=12), 0.15% bile acids and 1.0% ethanol (n=12), or 0.15% bile acids, 1.0% ethanol and 10 μM CCCP (n=12).

B. Conditions include LBK-PIPES pH 6.8 (n=16), with 0.15% bile acids (n=16), 4 mM salicylate (n=8), or 0.15% bile acids and 2 mM salicylate (n=16). The daily growth cycle included 100-fold dilution in unbuffered LBK pH 2, with incubation for 2 h. Then the cultures were diluted 10-fold in the appropriate competition media adjusted to pH 7.0, yielding a final pH of 6.8.

For each condition, ANOVA and post-hoc Tukey tests were used to compare conditions to one another using brackets (*p<0.05, **p<0.01, ***p<0.001). Single sample t-tests were performed to compare each selection rate to a value of zero (†p<0.05, ††p<0.01, †††p<0.001). Statistical results are presented in Supplemental File 1.

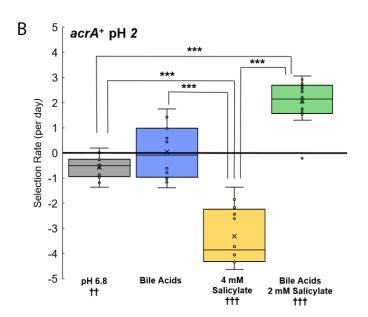
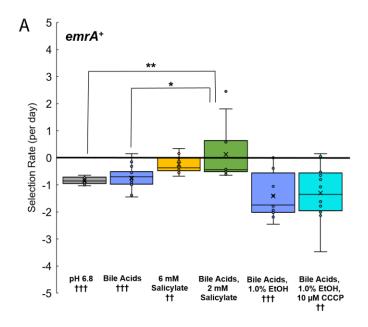



Figure 4. Selection for *acrA*⁺ in the presence of salicylate, bile acids, and CCCP. Selection rate is given by log₂(ΔyhdN::kanR / ΔacrA::kanR)/day. The slopes were calculated over days 0-3 of testing. Significance was determined as for Figure 3.

A. Conditions include LBK-PIPES pH 6.8 (n=12), with 0.15% bile acids (n=20), 6 mM salicylate (n=12), 0.15% bile acids and 1.0%

ethanol (n=12), or 0.15% bile acids, 1.0% ethanol (n=12), 10 μM CCCP (n=12).

B. Conditions include LBK-PIPES pH 6.8 (n=12), with 0.15% bile acids (n=12), 4 mM salicylate (n=12), or 0.15% bile acids and 2 mM salicylate (n=16). The daily growth cycle included 100-fold dilution in unbuffered LBK pH 2, with incubation for 2 h. Then the cultures were diluted 10-fold in the appropriate competition media adjusted to pH 7.0, yielding a final pH of 6.8.

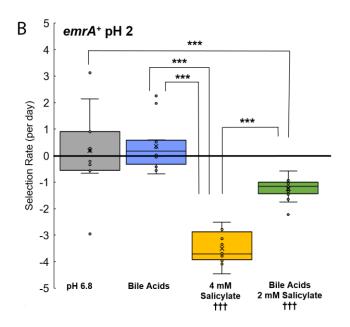
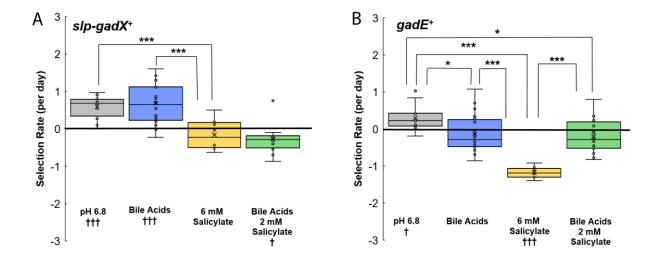



Figure 5. Selection for *emrA*⁺. Selection rate is given by log₂(ΔyhdN::kanR /ΔemrA::kanR)/day. The slopes were calculated over days 0-3 of testing. Significance was determined as for Figure 2.

A. Conditions include LBK-PIPES pH 6.8 (n=16), with 0.15% bile acids (n=16), 6 mM salicylate (n=16), 0.15% bile acids and 2 mM salicylate (n=12), 0.15% bile acids and 1.0%

ethanol (n=12), or 0.15% bile acids, 1.0% ethanol, and 10 μ M CCCP (n=12).

B. Conditions include LBK-PIPES pH 6.8 (n=12), with 0.15% bile acids (n=12), 4 mM salicylate (n=16), or 0.15% bile acids and 2 mM salicylate (n=16). The daily growth cycle included 100-fold dilution in unbuffered LBK pH 2, with incubation for 2 h before a 10-fold dilution in the appropriate competition media adjusted to pH 7.0, yielding a final pH of 6.8.

Figure 6. Selection for Gad island and for *gadE*⁺**.** The slopes were calculated over days 0-3 of testing. Significance was determined as for Figure 2.

A. *slp-gadX*⁺: Selection rate is given by log₂(W3110/\(\Delta\)slp-gadX)/day. Conditions include LBK-PIPES pH 6.8 (n=12), with 0.15% bile acids (n=20), 6 mM salicylate (n=12), or 0.15% bile acids and 6 mM salicylate (n=12).

B. *gadE*⁺: Selection rate is given by log₂(ΔyhdN::kanR /ΔacrA::kanR)/day. Conditions include LBK-PIPES pH 6.8 (n=12), with 0.15% bile acids (n=20), 6 mM salicylate (n=12), or 0.15% bile acids and 6 mM salicylate (n=16).