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1. Introduction

In this paper graphs are finite and are permitted to have loops and parallel edges.
Many questions in graph theory or combinatorial optimization can be formulated as
follows. Given a set of graphs F and a graph G, what is the maximum number of disjoint
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subgraphs of G where each isomorphic to a member of F or what is the minimum number
of vertices that are required to meet all such subgraphs? We call the former problem the
packing problem and the maximum number the packing number, and we call the latter
problem the covering problem and the minimum the covering number. For example, if F
consists of the graph Ks, then the packing number is the maximum size of a matching
and the covering number is the minimum size of a vertex cover; if F is the set of cycles,
the covering number is the minimum size of a feedback vertex set.

In view of combinatorial optimization, the packing problem and the covering problem
can be formulated as integer programming problems. And the covering problem is the
dual of the packing problem. Furthermore, it is easy to see that the packing number is
at most the covering number. On the other hand, it is natural to ask when the covering
number can be bounded by a function of the packing number from above. In other
words, we hope that the optimal solutions of the packing problem and covering problem
are bounded by functions of each other.

Formally, a set of graphs F has the Erdds-Pdsa property if for every integer k, there
exists a number f(k) such that for every graph G, either G contains k disjoint subgraphs
each isomorphic to a member of F, or there exists Z C V(G) with |Z| < f(k) such that
G — Z does not contain a subgraph isomorphic to a member of F. A classical result of
Erdés and Pésa [6] states that the set of cycles has the Erdds-Pésa property. Hence the
packing number and the covering number for the set of cycles are tied together.

This theorem was later generalized by Robertson and Seymour in terms of graph
minors. A graph is a minor of another graph if the former can be obtained from a
subgraph of the latter by contracting edges. For every graph H, define M(H) to be the
set of graphs containing H as a minor. Robertson and Seymour [16] proved that M(H)
has the Erdés-Pésa property if and only if H is planar. So the aforementioned result of
Erdés and Poésa follows from the case that H is the one-vertex graph with one loop.

A variant of the minor containment is the topological minor containment. We say that
a graph is a topological minor of another graph if the former can be obtained from a
subgraph of the latter by repeatedly contracting edges incident with at least one vertex
of degree two. Minor containment and topological minor containment are closely related.
For example, they are equivalent for characterizing planar graphs.

However, minors and topological minors behave much differently with respect to the
Erdés-Pésa property. For every graph H, define TM(H) to be the set of graphs contain-
ing H as a topological minor. Unlike graph minors, the Erdés-Pésa property for TM(H)
is not equivalent with the planarity of H. The author, Postle and Wollan [12] provided a
characterization of graphs H in which T M(H) has the Erdds-Pésa property and proved
that it is NP-hard to decide whether T M (H) has the Erdés-Pésa property for the input
graph H.

The topological minor relation can be equivalently defined as follows. A graph H with
no isolated vertices is a topological minor of another graph G if there exist an injection
my from V(H) to V(G) and a function 7g that maps the edges e, say with ends u, v, of
H to paths in G from 7y (u) to 7y (v) (if e is a loop with the end v, then 7g(e) is a cycle
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in G containing 7y (v)) such that 7g(e1) and mg(e2) are internally disjoint for distinct
edges e1,eo of H. Note that we consider a loop as a cycle as well.

We say that a graph H (allowing isolated vertices) is an émmersion of a graph G if the
mentioned internally disjoint property is replaced by the edge-disjoint property. Formally,
an H-immersion in G is a pair of functions Il = (my, 7g) such that the following hold.

e 7y is an injection from V(H) to V(G).

o 7 maps E(H) to the set of subgraphs of G such that for every edge e of H, if e has
distinct ends z,y, then 7g(e) is a path with ends 7wy (z) and 7y (y), and if e is the
loop with end v, then 7g(e) is a cycle containing my (v).

o If e, eq are distinct edges of H, then mg(e1) and wg(es) are edge-disjoint.

We denote the subgraph U.c p( ) (€) UU, ey () v (v) of G by II(H). We say that two
H-immersions Il = (7v, 7g) and II' = (7, m};) are edge-disjoint if Uy e, (m(rry) EW)
is disjoint from UWGW}E(E(H)) E(W). (In this paper, for any function f and any subset
X of its domain, we define f(X) to be the set {f(x) : © € X}.) Equivalently, IT and II'
are edge-disjoint if and only if II(H) and II'(H) are edge-disjoint subgraphs of G.

As immersions consist of edge-disjoint paths, it is reasonable to ask for packing edge-
disjoint copies of immersions instead of disjoint copies. Furthermore, one vertex can
meet more than one edge-disjoint immersion, so it is more natural to cover these edge-
disjoint subgraphs by edges instead of by vertices. This motivates an edge-variant of the
Erdés-Pdsa property.

We say that a set F of graphs has the edge-variant of the Erdds-Posa property if
for every integer k, there exists an integer f(k) such that for every graph G, either G
contains k edge-disjoint subgraphs each isomorphic to a member of F, or there exists
Z C E(G) with |Z] < f(k) such that G — Z has no subgraph isomorphic to a member
of F. Raymond, Sau and Thilikos [14] proved that M(6,) has the edge-variant of the
Erdés-Posa property, where 6,. is the loopless graph on two vertices with r edges.

For every graph H, define Z(H) to be the set of graphs containing H as an immersion.
Z(H) does not have the edge-variant of the Erdés-Pésa property for every graph H.
The necessary conditions for graphs H for which TM(H) has the Erdds-Pdsa property
mentioned in [12] are necessary for graphs H for which Z(H) has the edge-variant of
the Erdos-Pdsa property. On the other hand, even though a family of graphs does not
have the edge-variant of the Erdés-Posa property, this family possibly has this property
if we restrict the host graphs to be members of a smaller class of graphs. For example,
the set of odd cycles does not have the edge-variant of the Erdés-Posa property, but
Kawarabayashi and Kobayashi [9] proved that it has the edge-variant of the Erdés-Pésa
property in 4-edge-connected graphs. We address the same direction in this paper and
prove that for every graph H, Z(H) has the edge-variant of the Erdds-Pésa property in
4-edge-connected graphs. In fact, we prove the following theorem that is slightly stronger
than the previous statement.
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Theorem 1.1. For every graph H, there exists a function f : N — N such that for
every graph G whose every component is 4-edge-connected and for every positive integer
k, either G contains k edge-disjoint subgraphs each containing H as an immersion, or
there exists Z C E(GQ) with |Z| < f(k) such that G — Z has no H-immersion.

Recall that the necessary conditions for which 7M(H) has the Erdds-Pdsa property
mentioned in [12] provide necessary conditions for which Z(H) has the edge-variant of the
Erd8s-Poésa property. The constructions in [12] show that the 4-edge-connectivity cannot
be replaced by the 3-edge-connectivity. In addition, Kakimura and Kawarabayashi [8]
proved that Theorem 1.1 is true if G is 4-edge-connected and H is a complete graph;
they also provided some example showing that 3-edge-connectivity is not enough. On the
other hand, Giannopoulou, Kwon, Raymond and Thilikos [7] proved that the requirement
of being 4-edge-connected can be dropped if H is a loopless connected planar subcubic
graph.

We remark that statements analogous to Theorem 1.1 with respect to minors and
topological minors are not true. In other words, there does not exist a constant ¢ such that
for every graph H, M(H) and TM(H) have the Erdés-Pdsa property even if the host
graphs are c-connected. Let H be a graph such that M(H) (or TM(H), respectively)
does not have the Erdos-Pdsa property. So there exists a positive integer k such that
for every positive integer IV, there exists a graph Gy that does not contain k disjoint
subgraphs where each of them is a member of M(H) (or TM(H), respectively) such that
there exists no Z C V(G) with |Z| < N hitting all such subgraphs. For positive integers
N, c, let G,y be the graph obtained from Gy by adding c new vertices and adding edges
from these ¢ vertices to all vertices in G . Then for any positive integers ¢, N, the graph
G.,n is c-connected but does not contain k + ¢ disjoint subgraphs where each of them is
a member of M(H) (or TM(H), respectively), and there exists no hitting set in G n
with size at most N. So there is no absolute constant ¢ that would ensure that M(H)
and T M(H) have the Erdés-Pésa property in c-connected graphs.

In fact, we prove a stronger version of Theorem 1.1 (see Theorem 7.5). Theorem 7.5
states that the 4-edge-connectivity can be replaced by the condition of having no edge-
cut of order exactly three. (In fact, Theorem 7.5 is even slightly stronger than this.)
Note that every Eulerian graph has no edge-cut of order three, so Theorem 7.5 implies
that the edge-variant of the Erdds-Pésa property holds if the host graphs are Eulerian
graphs. Recall that Kakimura and Kawarabayashi [8] proved that Theorem 1.1 is true
if G is 4-edge-connected and H is a complete graph; we remark that what they actually
proved is stronger: the 4-edge-connectivity of G can be replaced by the condition that
no “minimal edge-cut” has size three. Our Theorem 7.5 also implies the stronger setting
in [8]. See the remark after the proof of Theorem 7.5 for the details.

We also consider the following version of the half-integral packing problem in this pa-
per. For every loopless graph H, an H -half-integral immersion in G is a pair of functions
(my, ) such that the following hold.
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e 7y is an injection from V(H) to V(G).

e mg maps every edge e with ends u,v of G to a path in G from 7y (u) to 7y (v).

o For every edge e of G, there exist at most two edges e1, ea of H such that e € mg(eq)
and e € Tg(e2).

The following theorem shows that the 4-edge-connectivity can be dropped if we consider
the following version of half-integral packing of half-integral immersions.

Theorem 1.2. For every loopless graph H, there exists a function f : N — N such that
for every graph G and for every positive integer k, either

1. G contains k H-half-integral immersions (7‘(‘5/1), W(El)), o (71'$,k)7 Wgc)) such that for ev-
ery edge e of G, there exist at most two pairs (i,e') with 1 < i < k and ¢’ € E(H)
such that e € wg)(e’), or

2. there exists Z C E(G) with |Z| < f(k) such that G — Z has no H-half-integral

immersion.

We remark that a result about half-integral packing of topological minors was proved
by the author [11], but the notion of the half-integral packing in [11] is different from
the one in above theorem.

More recent developments about the Erd6s-Pésa property can be found in a survey
of Raymond and Thilikos [15].

1.1. Owerview of this paper

Now we roughly sketch the proof of Theorem 1.1 and describe the organization of this
paper. More detailed sketches of proofs will be included in later sections when we are
ready to prove them. We need following ingredients for the proof of Theorem 1.1.

1.1.1. Ingredient 1: edge-tangles

Tangle is one important notion in Robertson and Seymour’s Graph Minors series. It
defines a “consistent orientation” for each separation of small order in a graph and has
been proven to be useful in dealing with problems related to the Erdés-Pésa property. If
one can delete a small number of vertices from a graph such that the packing number of
every component of the remaining graph is smaller than packing number of the original
graph, then one can obtain a hitting set of small size by an easy inductive argument.
So we can assume that there must exist a component whose packing number is not
smaller than the packing number of the original graph. Note that such a component is
unique as we cannot have two components whose packing number are not smaller than
the packing number of the original graph. Hence, as long as we delete a small number
of vertices, we know which component of the graph obtained by vertex-deletion is the
“most important”. Given a separation of a graph, by simply seeing which side has this
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“important” component, we obtain an orientation for separations to define a tangle.
As we address the edge-variant of the Erd6s-Pdsa property in this paper, we develop a
similar machinery called “edge-tangles” which gives an orientation for each edge-cut of
small order in Section 2. This section is a preparation of many results of this paper and
includes formal definitions of tangles and edge-tangles.

The notion of edge-tangles is natural but its explicit form seems unnoticed by the com-
munity until the first version of this paper was submitted for publication. We remark that
Diestel and Oum [4,5] extended the ideas of “consistent orientations” for separations of
graphs to a much more general setting for “abstract separation systems” to prove a gen-
eral strong duality theorem. After a version of this paper was submitted for publication,
it was pointed out by Reinhard Diestel (via private communication with the author)
that the concept of edge-tangles defined in this paper coincides with a special case of
their abstract separation systems when graphs are loopless. In particular, applying their
duality theorem for abstract separation systems in [4] to edge-tangles, they [5, Section
5.2] noted that edge-tangles are dual to low “carving width” as defined by Seymour and
Thomas [21]. The existence of such a duality theorem for edge-tangles was independently
asked by Robin Thomas via private communication with the author around 2013 when
the author introduced the notion of edge-tangles to develop a structure theorem for ex-
cluding immersions. In addition, Diestel, Hundertmark and Lemanczyk [3] applied their
general work to edge-tangles to derive the classical Gomory-Hu tree theorem. Besides
those developments for abstract separation systems, in this paper we consider different
aspects for edge-tangles, mainly on developing structure theorems with respect to im-
mersions and edge-tangles and its application to Erdés-Pdsa type problems. We omit the
details and formal definitions of the terms mentioned in this paragraph, as this paper
does not rely on them.

In Section 2, we develop basic theory related to edge-tangles. In particular, in Sec-
tions 2.1 and 2.2, we show some basic properties for edge-tangles and build a relationship
between edge-tangles in a graph G and tangles in the line graph of G. Those results will
be used in later sections of this paper.

It is known that if a graph G contains a graph H as a minor, then tangles in H
“induce” tangles in G; and every tangle of large order has a “subtangle” induced by a
large grid minor. We show analogous results in Section 2.3: if a graph G contains a graph
H as an immersion, then edge-tangles in H “induce” edge-tangles in G (Lemma 2.10);
every edge-tangle of large order has a “sub-edge-tangle” determined by a large degree
vertex or induced by a large wall immersion (Lemma 2.16).

We prove other lemmas about edge-tangles in Section 2.4. Those lemmas will be used
in later sections.

1.1.2. Ingredient 2: a structure theorem for excluding immersions

The next step to prove Theorem 1.1 is to study the structure of minimum coun-
terexamples to Theorem 1.1. If G is a graph that does not contain k edge-disjoint
H-immersions, then G does not contain an H’-immersion for some larger graph H'.
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So we shall prove a structure theorem for excluding a fixed graph as an immersion.
Such a structure theorem was developed by the author in an unpublished manuscript
in 2013. In this paper we include a proof of part of this theorem which is sufficient for
proving Theorem 1.1. More specifically, we will prove in this paper a structure theorem
(Theorem 4.6) for graphs that forbids a fixed graph as an immersion with respect to an
edge-tangle that “grasps” a large set of pairwise edge-disjoint but pairwise intersecting
subgraphs (called “thorns”). The formal definition of thorns is included in Section 4.

Roughly speaking, Theorem 4.6 states that if an H-immersion free graph G has an
edge-tangle of large order grasping a large thorns, then we can sweep all except few
vertices into the non-important side of edge-cuts in this edge-tangle so that the “resulting
graph” is “simpler” than H in terms of the supply of large degree vertices. To prove
Theorem 4.6, we first prove strengthenings of some Menger-type results of Robertson
and Seymour [19] and Marx and Wollan [13] in Section 3, and then we complete the
proof of this structure theorem in Section 4 by using results proved in Sections 2 and 3.

We remark that a structure theorem about excluding a fixed graph as an immersion
was proved by Wollan [22]. But it seems to us that Wollan’s structure theorem is not
sufficiently informative to be applied in this paper. In addition, the structure theorem
proved in this paper is a “local version” and is a critical component of the proof of a
“global version” of an excluding immersion structure theorem proved in a later paper of
the author [10]. The global version has other applications, see [10] for more details.

1.1.8. Ingredient 3: 4-edge-connectivity and thorns

Then, in Section 6 we will show that the 4-edge-connectivity of “sufficiently large”
graphs can ensure that every edge-tangle “grasps” such a large thorns and hence the
aforementioned structure theorem can be applied to minimum counterexamples to The-
orem 1.1. This is achieved by Theorem 6.4. Recall that Lemma 2.16 shows that every
edge-tangle of large order has a sub-edge-tangle determined by a large degree vertex or
induced by a large wall immersion. Both a large degree vertex and a large grid immersion
define a large thorns. So the remaining key step in proving Theorem 6.4 is to show that
in any 4-edge-connected graph, one can obtain a large grid immersion from a large wall
immersion.

1.1.4. Ingredient 4: preserving edge-connectivity

Finally, we prove Theorems 1.1 and 1.2 in Section 7.

Recall that if one can find an edge-cut of small order such that the subgraph induced
on each side has smaller packing number for H-immersions, then one can apply induction
on the packing number to obtain a small hitting set of each of these two subgraphs, and
one can obtain a hitting set of the whole graph by further collecting the edges between
the two sides of the edge-cut. Hence in the minimum counterexample to Theorem 1.1,
no edge-cut of small order has this property. In particular, at most one side can contain
an H-immersion. Furthermore, when H is connected, at least one side must contain
an H-immersion, for otherwise the edges between the two sides is a small hitting set.
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Hence we obtain an orientation of each edge-cut of small order by indicating the side
having an H-immersion is important, so we obtain an edge-tangle. Our structure theorem
(Theorem 4.6) ensures that for any H-immersion, one can find an edge-cut of small order
such that the non-important side contains part of this H-immersion. By repeatedly
applying machinery developed in Section 3, we can repeatedly enlarge the portion of
this H-immersion contained in the non-important side until the entire H-immersion is
contained in the non-important side, which is a contradiction by the definition of the
edge-tangle. This is the purpose of Section 5 and is achieved by Lemma 5.6.

In fact, careful readers might notice that there are issues with the above strategy
connected to induction on the packing number and defining an edge-tangle. One concern
is that we require H to be connected. This concern can be solved relatively easily by
induction on the number of components of H, and Lemma 5.6 actually already takes
care of it. The other concern is more substantial: we tried to apply induction hypothesis
to the subgraphs induced by each side of an edge-cut. Note that such a subgraph is not
necessarily 4-edge-connected, so we cannot apply induction to it. The key strategy is to
apply induction to the graph obtained from contracting one side of the edge-cut. Such
a graph preserves the 4-edge-connectivity, but the packing number is not necessarily
smaller than the original graph even though the other side of the edge-cut contains an
H-immersion. To solve this issue, we actually prove a stronger version of Theorem 1.1
by allowing some vertices having labels, where the label of each vertex can be roughly
considered the number of H-immersions that this vertex represents. More details are
included in Section 7.

Section 7 formally proves this stronger setting of Theorem 1.1 and solves the afore-
mentioned concern about preserving edge-connectivity. Theorem 7.5 is the strongest
version in this paper and it implies Theorem 1.1. We remark that we do not require the
edge-connectivity in Section 5 and Lemma 5.6, as they only require the edge-tangles to
grasp a thorns. Moreover, Theorem 1.2 is a simple corollary of this stronger version of
Theorem 1.1, and its proof is included in Section 7.

1.2. Notations

We define some notations to conclude this section. Given a subset X of the vertex-set
V(G) of a graph G, the subgraph of G induced by X is denoted by G[X], and the set of
vertices that are not in X but adjacent to some vertices in X is denoted by Ng(X). When
X = {v}, we write Ng({v}) as Ng(v) for simplicity. We define Ng[X] = Ng(X)UX and
Ng[v] = Ng(v) U {v}. A graph is simple if it does not contain parallel edges and loops.
The line graph of a graph G, denoted by L(G), is the simple graph with V(L(G)) = E(G),
and every pair of vertices x,y € V(L(G)) are adjacent in L(G) if and only if z,y are two
edges having a common end in G. For every v € V(G), define cl(v) to be the clique in
L(G) consisting of the edges of G incident with v. The degree of a vertex v in a graph
G, denoted by degq(v), is the number of edges of G incident with v, where each loop
is counted twice. A vertex of G is an isolated verter in G if it is not incident with any
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edge. Note that a vertex is non-isolated even if all edges incident with it are loops. If G
is a graph and Y C V(G), then G — Y is the graph G[V(G) = Y]; if Y C E(G), then
G —Y is the graph with V(G —-Y) = V(G) and E(G-Y) = E(G) — Y. For a positive
integer k, a graph G is k-edge-connected if G contains at least two vertices and G — F' is
connected for every F' C E(G) with |F| < k. For every positive integer n, we denote the
set {1,2,...,n} by [n] for short.

2. Tangles and edge-tangles
2.1. Edge-cuts and separations of line graphs

A separation of a graph G is an ordered pair (A, B) of edge-disjoint subgraphs of G
with AU B = G, and the order of (A, B) is [V(A) NV (B)].

A separation (A, B) of G is normalized if every vertex v € V(A) NV (B) is adjacent
to a vertex of A — V(B) and adjacent to a vertex in B — V(A). The normalization of a
separation (A, B) of a graph G is the separation (A*, B*) of G defined as follows.

e Let 57 be the set of all non-isolated vertices v in G contained in V(A) N V(B) with
Na(v) C V(B). Let A’ be the graph A — S; and let B’ be the subgraph of G such
that (A’, B’) is a separation of G with V(A")NV(B') = V(A)NV(B) — S1. In
other words, (A4’, B’) is obtained from (A, B) by removing all non-isolated vertices
v € V(A)NV(B) of G with Ny(v) C V(B) from A and putting all edges of G
incident with v into B. Note that V(B’) = V(B).

e Let Sy be the set of all edges in B’ whose every end is in V(A") N V(B’). Let
A" = A’"USy and B” = B’ — S5. Note that (A", B”) is a separation of G, and every
loop of G incident with some vertex in V' (A”) N V(B”) belongs to A”.

o Let S3 be the set of all isolated vertices of B”. Note that S5 consists of the isolated
vertices of G contained in V' (B") and some vertices contained in V(A”)NV (B") that
are not adjacent to any vertex in V(B”) — V(A”) by the definition of A”. Define A*
to be the graph obtained from A” by adding S5 — V(A”), and define B* = B” — Sj.
That is, we remove all isolated vertices of B” from B” and put them into A”.

The following lemma shows some basic properties of the normalization of a separation
and will be used in the rest of the section.

Lemma 2.1. Let G be a graph and (A, B) a separation of G. If (A*, B*) is the normal-
ization of (A, B), then the following hold.

1. (A*, B*) is normalized.
2. The order of (A*, B*) is at most the order of (A, B).
3. Ife € E(B) — E(B*), then every end of e belongs to V(A)NV(B).
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4. If e € E(B*) — E(B), then e is incident with some vertex v in V(A) NV (B) with
Na(v) CV(B).

Proof. Let G be a graph, (A, B) a separation of G, and (A*, B*) the normalization of
(A, B). Let S1, 52, S5 be the sets and let (A’, B'), (A”, B") be the separations mentioned
in the definition of (A*, B*), respectively. It is clear that V(A*) N V(B*) C V(4”) N
V(B")=V(A)YNV(B)=V(A)NV(B) — S1,and V(A) — V(B) C V(A4*) — V(B*).

We first prove Statement 1. Let v € V(A*)NV(B*). So v is a non-isolated vertex of G
and v € V(A)NV(B) — Si. Hence Na(v) € V(B). That is, v is adjacent to some vertex
in V(A) = V(B) CV(A*) — V(B*). Since v € V(B*), v is not an isolated vertex of B”.
So v is adjacent in B” to some vertex u € V(B”). Note that u is not an isolated vertex
of B”. Hence u € V(B") — S3 = V(B*). Since v € V(A*) NV (B*) C V(A)NnV(B'),
u ¢ V(A)NV(B'), for otherwise every edge incident with both u, v belongs to Sy and u
is not adjacent to v in B”. Since V(A")NV(B") =V(A)YNV(B'),u e V(B")-V(A").
Since u ¢ S3, u € V(B*) — V(A*). So v is adjacent to a vertex in V(B*) — V(A*). This
shows that (A*, B*) is normalized.

Statement 2 immediately follows from the fact that V(A*)NV(B*) CV(4A)NV(B) —
S.

Now we prove Statement 3. Let e € E(B) — E(B*). Since e € E(B), e ¢ E(A). So
e ¢ E(A’) and hence e € E(B’). Since every vertex in Ss is an isolated vertex in B” and
e ¢ E(B*),e ¢ E(B"). Soe € E(B") — E(B") C S,. Hence every end of e belongs to
V(A)NV(B") CV(A)NV(B). This shows Statement 3.

Finally, we prove Statement 4. Let e € E(B*) — E(B). Since every vertex in Ss is an
isolated vertex of B”, e € E(B*) = E(B") C E(B’). So e ¢ E(A"). Since e ¢ E(B),
e € E(A). Hence e is incident with some vertex w in Sy. But every vertex in Sy satisfies
that w € V(A) NV (B) and Ny(w) C V(B). This completes the proof. O

An edge-cut of a graph G is an ordered partition [A4, B] of V(G), where some of A
and B is allowed to be empty. The order of an edge-cut [A, B], denoted by |[A, B]|, is
the number of edges with one end in A and one end in B. For an edge e of GG, we write
e € [A, B] if e has one end in A and one end in B.

The partner of a normalized separation (A, B) of the line graph L(G) of G is the
edge-cut [A’, B'] of G satisfying that A’ is the union of the set of isolated vertices of G
and the set {v € V(G) : cl(v) CV(A)}, and B’ = {v € V(G) : cl(v) C V(B),cl(v) # 0}.

Lemma 2.2. Let G be a graph, and let (A, B) be a separation of L(G). If (A, B) is
normalized, then the partner [A', B'] of (A, B) is a well-defined edge-cut of G, and the
order of (A, B) equals the order of [A’, B'].

Proof. We first show that the partner [4’, B'] of (4, B) is a well-defined edge-cut of G.
That is, A" UB' =V (G) and A’ N B’ = 0. Let v € V(G). If v is an isolated vertex of G,
then v € A’; otherwise, cl(v) is a non-empty clique, so cl(v) C V(A) or cl(v) C V(B), and
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hence v € A’UB’. So A’ U B’ = V(G). Suppose to the contrary that v € A’ N B’. Then
cl(v) CV(A)NV(B) and cl(v) # 0. So there exist ey € cl(v) and a set X C V(G) — {v}
with |X| < 1 such that Np(eo) € cl(v) UJ,cx cl(u). But since (A, B) is normalized
and ey € cl(v) C V(A)NV(B), e is adjacent in L(G) to a vertex in A — V(B) and a
vertex in B—V(A). Since cl(v) C V(A)NV(B), U,cx cl(u) intersects both V(A4) -V (B)
and V(B) — V(A). But it is impossible since |X| < 1, a contradiction. This shows that
[A’) B'] is an edge-cut of G.

Now we show that the order of (A, B) equals the order of [A’, B]. Let e € [A’, B']
with ends w,v, where u € A" and v € B’. So cl(u) C V(A) and cl(v) C V(B). Hence,
e € cl(u) Necl(v) € V(A) NV(B). This implies that the order of (A, B) is at least the
order of [A’, B].

On the other hand, let e € V(A4) N V(B). Since (A, B) is normalized, e is adjacent
to a vertex eq of L(G) in V(A) — V(B) and a vertex eg of L(G) in V(B) — V(A). So
e and ey have a common end z in G, and e and eg have a common end y of G. Since
ea ¢ V(B), cl(x) C V(A) and hence x € A’. Similarly, cl(y) C V(B) and y € B’. So
x # y and they are the ends of e. This proves that e € [A’, B’] and the order of (A, B)
is at most the order of [4’, B’]. O

2.2. Basic properties of edge-tangles

Let 6 be an integer. A tangle 7 in a graph G of order 6 is a set of separations of G of
order less than 6 such that

(T1) for every separation (A, B) of G of order less than 6, either (A, B) € T or (B, A) €
T;

(T2) if (Al, Bl), (AQ, Bg), (A3, Bg) € T, then A1 U Ay U As 7é G,

(T3) if (A, B) € T, then V(A) # V(G).

The notion of tangles was first defined by Robertson and Seymour in [17]. We call (T1),
(T2) and (T3) the first, second and third tangle axioms, respectively. Note that (T2)
implies that if (A, B) € T, then (B, A) ¢ T.

An edge-tangle £ in a graph G of order 0 is a set of edge-cuts of G of order less than
# such that the following hold.

(E1) For every edge-cut [A, B] of G of order less than 0, either [A, B] € £ or [B, A] € &;
(EQ) If [Al, Bl], [A27 BQ], [Ag, Bg} S g, then B1 n BQ N B3 }é @
(E3) If [A, B] € &, then G has at least 6 edges incident with vertices in B.

We call (E1), (E2) and (E3) the first, second and third edge-tangle axioms, respectively.
Note that if an edge-tangle £ of order 8 > 1 in G exists, then [}, V(G)] € € by (E1) and
(E2), so |E(GQ)| > 6 by (E3). Furthermore, for every [A, B] € £, there exists an edge of
G whose every end is in B by (E3).
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The following lemma is simple but useful. It shows that the “orientation” of the edge-
cuts given by an edge-tangle is “consistent”.

Lemma 2.3. Let 0 be a positive integer. Let G be a graph and £ an edge-tangle of order
0 in G. If [A, B],[C, D] € &, then the following hold.

1. If the order of [AUC, BN D] is less than 0, then [AUC, BN D] € £.
2. If A" C Aand[A',V(G)—A'] is an edge-cut of G of order less than 0, then [A', V(G)—
Aleé.

Proof. We first prove Statement 1. Assume that [A U C, B N D] has order less than 6.
By (E1), either [AUC, BN D] e & or [BND,AUC] € . Since [A, B],[C,D] € £ and
BNDN(AUC)=10,[BND,AUC] ¢ & by (E2). So [AUC,BN D] € £ This shows
Statement 1.

Now we prove Statement 2. Let A’ C A, and assume that [A', V(G) — A'] is an edge-
cut of G of order less than 6. By (E1), either [A/, V(G)— A"l € Eor [V(G)—- A", A" € E.
Since [A,B] € £ and BNA' =0, [V(G) — A, A'] ¢ € by (E2). So [A/,V(G) — Al € &.
This shows Statement 2. O

The following lemma shows that the vertex-set of any component with at most one
edge can be moved to either side of an edge-cut without flipping the “orientation” given
by an edge-tangle.

Lemma 2.4. Let 0 be an integer with 6 > 2 and let G be a graph. Then the following hold.

1. Let S be the vertez-set of a component of G with at most one edge. If [A, B] € €,
then [AUS,B — S] € €.

2. Let D be the union of the vertex-sets of the components of G with at most one edge.
If[A,B] €&, then [AUD,B— D] € €.

Proof. We first prove Statement 1. Suppose to the contrary that [AU S, B — S| ¢ €£.
Note that every edge with one end in AU S and one end in B — S is an edge with one
end in A and one end in B. Hence the order of [AU S, B — S] is at most the order of
[A, B]. By (E1), [B—S,AUS] € £. The edge-cut [S,V(G) — S] has order 0, so either
[S,V(G)—S] € &or [V(G)—S,5] € € by (E1). Since § > 2 and there exists at most one
edge incident with S, (E3) implies that [V(G) — S,S] ¢ £. So [S,V(G) — S] € €. Hence
[A, B],[B—S, AUS], [S, V(G)—S] are edge-cuts in € such that BN(AUS)NV(G)—S =0,
contradicting (E2). This proves Statement 1.

Now we prove Statement 2. Let S, 55, ..., Si be the subsets of V(G) such that each
S; is the vertex-set of some component of G with at most one edge. So D = Ule S;.
For every j € [k], let D; = 5:1 S;. We shall prove that [AU D;,B — D,] € & for
j € [k] by induction on j. The case j = 1 immediately follows from Statement 1 of
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this lemma. So we may assume that j > 2 and [AU D;_,B — D;_4] € £. Applying
Statement 1 of this lemma by taking [A,B] = [AUD;_1,B — Dj_1] and S = S;, we
know that [A U Dj, B — Dj] = [(A U Dj_1> U Sj7 (B — Dj_l) - SJ] € &. This shows that
[AUD;,B— D,] € & for every j € [k]. Hence [AUD,B — D] = [AU Dy, B — Dy] € €.
This proves the lemma. 0O

The next step is to build a relationship between edge-tangles in G and tangles in its
line graph L(G).

Given an edge-tangle &£ of order @ in G, the conjugate € of £ is the set of separations
of L(G) of order less than [6/3] such that (A, B) € & if and only if the partner of the
normalization of (A, B) is in £.

One reason for considering separations of L(G) of order less than [0/3] only instead
of considering separations of L(G) of order less than 6 is due to a technicality in the
proof of the following lemma which shows a relationship between £ and &.

Lemma 2.5. Let 6 be an integer with 6 > 2 and G a graph. If £ is an edge-tangle of order
30 — 2 of G, then & is a tangle of order 6 in L(G).

Proof. Observe that every member of £ has order less than [39772]
that £ satisfies tangle axioms (T1), (T2) and (T3). Note that |E(G

has an edge-tangle of order 36 — 2.

6. We shall prove
> 360 — 2 since G

Claim 1: & satisfies (T1).

Proof of Claim 1: Let (A, B) be a separation of L(G) of order less than 0. Let (A1, By)
and (Bg, A2) be the normalizations of (A, B) and (B, A), respectively. And let [A], By]
and [Bj, A5] be the partners of (A;, By) and (B2, A2), respectively. If any of [A], B] and
[BY, Ab] is in &, then (A, B) or (B, A) is in £, and we are done. So we may assume that
none of [A], B{] and [Bj, A5] is in £. By Lemmas 2.1 and 2.2, the order of [A}, Bj] and
[BY, Ab] are less than 6, so [Bf, A}] and [A}, BS] are in € by (E1). Let D be the union of the
vertex-sets of the components of G with at most one edge. Let [BY, AY] = [BjUD, A} — D]
and let [AY, BY] = [A,UD, B, — D). By Statement 2 of Lemma 2.4, [Bf, A{] and [A], BY]
are in .

Let v € AY N BY. So v ¢ D and hence v does not belong to any component of G with
at most one edge. In particular, v is not an isolated vertex in G and cl(v) # 0. Note that
cl(v) is not a set consisting of one isolated vertex in L(G), for otherwise the vertex in cl(v)
is the only edge of some component of G and v € D. Since v € AY C A}, cl(v) C V(A1)
as v is not an isolated vertex in G. Similarly, cl(v) C V(Bz). So cl(v) C V(A1) NV (By).

Suppose that cl(v) € V(A). Then some vertex in cl(v) is in V(B) — V(A) and is not
an isolated vertex of B, so this vertex is in V(By) — V/(A1). Hence cl(v) — V(A1) # 0, a
contradiction.

So cl(v) € V(A). Similarly, cl(v) C V(B), for otherwise cl(v) — V(Bz) # (0. Hence
cl(v) CV(A)NV(B).
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This shows that e aynpy cl(u) € V(A)NV(B). Therefore, the number of edges of G
incident with some vertex in AYN By is at most (U, e apnpy cl(u)| < [V(A)NV(B)[ < 6.
In particular, the number of edges with one end in AY N BY and one end in BjUAY is less
than 6. Hence, (E1) implies that either [A{NBY, BY UA}] € £ or [BY UAL, A/NBY] € £.
But (E3) excludes the latter case, so [A{NBY, BY UA]] € £. However, [BY, AY], [4Y, BY]
and [A] N BY, BY U AY] belong to &, but AY N BY N (B U AY) = 0, contradicting (E2).
This proves that & satisfies (T1). O

Next, we show that & satisfies (T3). Suppose that (A, B) € £ with V(A) = V(L(Q)).
So the partner [A’, B'] of the normalization of (A, B) is in £. Note that (J,p cl(v) €
V(B) = V(A) N V(B), so the number of edges incident with vertices in B’ is at most
|[V(A)NV(B)| < 8 < 30 — 2, contradicting (E3). Consequently, £ satisfies (T3).

Now we suppose that € does not satisfy (T2). So there exist separations (Aj, By),
(As, Bs), (A3, B3) in € such that A; U A2 U A3 = L(G). For each i € [3], let (A}, B}) be
the normalization of (A;, B;), and let [A}, B{] be the partner of (A}, B}). By the definition
of €, [Al, B!] € € for i € [3]. The number of edges of G incident with vertices in ﬂf’zl B
is at most |U,eqs_ g cl(v)] < IMiZy V(BY)| < IMi=y V(By)|. However, (_, V(B;) €
Ui’:l V(A;N B;), as A1 U Ay U A3 = L(G). So the number of edges of G incident with
vertices in ﬂ?:1 B is at most \U?Zl V(A;NB;)| <3(0—1). In addition, |[A] U AL, BI N
Bi]| < Z?:1|[A§,B£]| <260 —-1) <30 —2,s0 [A] UAL BN B € &by Lemma 2.3.
Similarly, [[A} U Ay U A4, Bj N By N Byl| < S22 |[A4, Bl < 36 —1) < 30 — 2, so
[A] U AU AL, BN By N B4 € € by Lemma 2.3. Hence by (E3), the number of edges of
G incident with vertices in ﬂ?:l B} is at least 30 — 2, a contradiction. This proves that
£ satisfies (T3). Consequently, £ is a tangle of order § in L(G). O

Let G be a graph and & a collection of edge-cuts of G of order less than a positive
number 0, and let X C E(G). Define £ — X to be the set of edge-cuts of G — X of order
less than 6 — |X| such that [A, B] € £ — X if and only if [4, B] € €.

Lemma 2.6. Let G be a graph and 0 be a positive integer. If € is an edge-tangle in G of
order 0 and X is a subset of E(G) with | X| < 0, then € — X s an edge-tangle in G — X
of order 0 — | X|.

Proof. If [A, B] is an edge-cut of order less than § — |X| in G — X, then [4, B] is an
edge-cut in G of order less than 6. So for every edge-cut [A, B] of G — X of order less
than 6 — |X|, since & is an edge-tangle in G of order 0, either [A, B] € £ or [B, A] € &,
and hence either [A, B] € £ —X or [B, A] € £ — X by the definition of £ — X. This shows
that £ — X satisfies (E1).

Since & satisfies (E2), BN B2 N By # 0, for any edge-cuts [Ay1, B1], [A2, Ba], [A3, B3] €
€. So for any members [A1, B1], [A2, Ba], [As, B3] of £ — X, we have [A1, B1],[A2, Ba],
[A5.B3] € £ by the definition of £ — X, so By N BaN By # (). Hence £ — X satisfies (E2).
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If [A,B] € £— X, then [A, B] € &, so G contains at least § edges incident with vertices
in B. Hence, G — X contains at least § — | X| edges incident with vertices in B. So £ — X
satisfies (E3). This proves that £ — X is an edge-tangle of order § — | X|. O

Let £ be an edge-tangle in a graph G. We say that a subset Y of E(G) is free with
respect to £ if there exist no Z CY and [A, B] € £ — Z of order less than |Y — Z| such
that every edge in Y — Z has every end in A.

Lemma 2.7. Let G be a graph and £ an edge-tangle in G of order 0 > 1. Let Z be a
subset of E(G) with |Z] < 0 and let X be a subset of E(G) — Z such that X is free with
respect to € — Z. If | X| < 0 — |Z|, then for every X' C X and Z' C Z, X' is free with
respect to £ — 7.

Proof. Suppose to the contrary that X’ is not free with respect to £ — Z’. Then there
exist W/ C X' and [A,B] € (E—-2Z")—W' =& —(Z' UW’) of order less than | X' — W/
such that every edge in X’ — W’ has every end in A. Let W = W/ U (X — X’). So
X' —W'=X—W.Since Z/ C Z and W/ C X', [A, B] is an edge-cut of G — Z of order
less than | X' — W'| + |W'| < |X'| < |X| < 0 —|Z|. Since € — Z has order 0 — |Z] by
Lemma 2.6, by (E1), either [A,B] € £ —Z or [B,A]€ £ - Z.

Since W C X and X is free with respect to £ — Z, either [A, B] ¢ (€ — Z) — W or the
order of [A,B] in G— (ZUW) is at least | X —W| = |X'—W'|. Since ZUW 2 Z’UW’,
the order of [A,B] in G — (Z U W) is at most the order of [A, B] in G — (Z' UW'),
which is less than | X' — W’|. So [A,B] ¢ (£ — Z) — W. Hence [A,B] ¢ £ — Z by the
definition of (€ —Z) —W. So [B, A] € £ —Z. By the definition of £ — Z, [B, A] € £. Since
[A, B] € E—(Z'UW’), the order of [B, A] in G—(Z'UW’) is less than 6 — | Z'UW'|. Since
[B,A] € &, [B,A] € £— (Z'"UW’) by the definition of & — (Z' UW"). So [A, B], [B, 4] €
E—(Z' UW'), contradicting (E2). O

Let 7 be a tangle in a graph G. We say that a subset X of V(G) is free with respect
to T if there does not exist (A, B) € T of order less than |X| such that X C V(A4).

Note that for every graph G, V(L(G)) = E(G). So for every subset of E(G), we can
consider whether it is free with respect to an edge-tangle £ in G and whether it is free
with respect to the conjugate € of &£.

Lemma 2.8. Let £ be an edge-tangle in a graph G, and let € be the conjugate of €. Let
X, Z be disjoint subsets of E(G). If X is free with respect to € — Z, then X is free with
respect to € — Z.

Proof. Suppose that X is not free with respect to £ — Z. Then there exists a separation
(A,B) € €~ Z of L(G) — Z of order less than |X| such that X C V(A). We may
assume that the order of (A, B) is as small as possible, and subject to that, V(B) is
inclusion-wise minimal. So every vertex in V(A4) N V(B) — X is adjacent to a vertex in
V(A) -V (B) and adjacent to a vertex in V(B) —V(A); every vertex in V(A)NV(B)NX
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is adjacent to a vertex in V(B) — V(A). Furthermore, B has no isolated vertices by the
minimality of (A, B). Let (A’, B’) be a separation of L(G) with V(4") = V(A)U Z and
V(B') =V (B)UZ. Since (A,B) € £~ 7, (A", B’) € £. Let (A*, B*) be the normalization
of (A", B'). So V(B*)—Z = V(B')—Z, V(A*)NV (B*)—(XUZ) = V(A)NV(B')—(XUZ)
and [V(A*)NV(B*) = (XU2Z)|=|VA)NV(B)| -V A)NV(B)N (X UZ)|.
Suppose that (A*,B*) ¢ €. Then (B*,A*) € & by (T1). By (T1) and (T3),
(GIV(A) NnV(B")],G — E(GIV(A) N V(B"))) € &. Since V(B') — Z = V(B*) - Z,
we know (A’, B), (B*, A*), (G[V(A)NV(B")],G — E(G[V(A") NV (B’)])) are members
of € such that A'UB*UG[V(A)NV(B')] = L(G), contradicting (T2). So (A*, B*) € £.
Let [C, D] be the partner of (A*, B*). So [C,D] € £&. Let W = (V(A)NV(B))nN
(X UZ). Note that W is a subset of V(L(G)) = E(G). Every edge e in X — W has every
end in C since it is a vertex in V(A’) — V(B’). And the order of [C, D] in G — W equals
[V(A*) NV (B*) — (X UZ)| = [V(4) "V (B)| - W] < |X| — [W - Z] < |X = (W X)),
Let 6 be the order of £. So the order of £ is at most [§/3]. Since (A, B’) € €&,
[V(A"YNV(B')| < 0/3. So the order of [C, D] in G—W is at most |V (A" )NV (B')|—|W| <
0/3 —|W| < 6—|W|. Hence [C,D] € £ —W.
Therefore, [C, D] € (€ —Z) — (W N X) is an edge-cut of (G — Z) — (W N X) of order
less than | X — (X N W)| such that every edge in X — (X N W) has every end in C. So
X is not free with respect to £ — Z, a contradiction. 0O

The converse of Lemma 2.8 is also true when Z = (), subject to a requirement on the
size of the set, as shown in the following lemma.

Lemma 2.9. Let € be an edge-tangle in a graph G of order at least two, and let € be the
conjugate of €. Let X be a subset of E(G). Denote the order of £ by 0. If X is free with
respect to € and | X| < 0, then X is free with respect to &.

Proof. Suppose to the contrary that X is not free with respect to £. So there exist
W C X and [A, B] € £ — W of order less than |X — W] such that every edge in X — W
has every end in A. We further assume that the order of [A4, B] is as small as possible,
and subject to that, |A| is as large as possible.

Claim 1: The following hold.

o FEwvery non-isolated vertex of G is incident with an edge of G — W whose every end
is contained in A or an edge of G — W whose every end is contained in B.
e A contains the vertex-set of every component of G with at most one edge.

Proof of Claim 1: The first statement of this claim immediately follows from the mini-
mality of the order of [A, B]. Furthermore, the minimality of |[A, B]|, the maximality of
A, and Statement 2 of Lemma 2.4 imply the second statement of this claim. O
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Define B’ to be the induced subgraph of L(G — W) such that V(B') is the set of edges
of G — W incident with vertices of B. Define (A’, B’) to be a separation of L(G — W)
such that V(A’) N V(B’) is the set of edges of G — W with one end in A and one
end in B. Note that the order of (A’, B’) is at most the order of [A, B] in G — W. So
[V(A)NV(B)| < |X —W]|.

Let (A*, B*) be a separation of L(G) with V(A*) = V(A")UW and V(B*) =V (B")U
W.So X C V(A*) and |V(A*)NV(B*)| < |X| < 6. By (T1), (A%, B*) € € or (B*, A*) €
E.

Let (A”, B"”) be the normalization of (A*, B*). Let [C, D] be the partner of (A", B”)
in G.

Claim 2: [C, D] = [A, B].

Proof of Claim 2: Suppose that there exists a vertex v € C — A. Since A contains
all isolated vertices in G by Claim 1, v is not an isolated vertex in G. Since v € C,
cl(v) C V(A”). Since v ¢ A, v € B. By Claim 1, v is incident with an edge e of G — W
whose every end is contained in B. Soe € V(B')-V(A’) = V(B*)—V(A*). Since v € B,
e is not the only edge of some component of G by Claim 1. So e is not an isolated vertex
in B*. Hence e € V(B") — V(A”). But e € cl(v) — V(A"), a contradiction. This shows
C C A

Suppose that there exists a vertex u € A— C. Since C contains all isolated vertices of
G, u is not an isolated vertex of G. Since u € A, u is incident with an edge f of G — W
whose every end in A by Claim 1. Hence f € V(A4') — V(B') = V(4*) — V(B*). So
feV(A")—V(B") and hence cl(u) C V(A”). This implies that v € C, a contradiction.

Therefore, A = C. Since {4,B} and {C,D} are partitions of V(G), [4,B] =
[C,D]. O

By Claim 2, since [C, D] = [A, B] € €, (A*,B*) € £. But X C V(A4*) and |V (A*) N
V(B*)| < |X|, so X is not free with respect to £, a contradiction. This proves that X is
free with respect to £. O

2.8. Immersions and edge-tangles
The following lemma provides a way to obtain an edge-tangle from an immersion.

Lemma 2.10. Let H be a graph and £ an edge-tangle of order 0 in H. Let G be a graph
that contains an H-immersion (my,ng). If € is the set of all edge-cuts [A, B] of G of
order less than 0 such that there exists [A’, B'] € & with ny(A") = ANmy(V(H)), then
& is an edge-tangle of order 6 in G.

Proof. We shall show that & satisfies the edge-tangle axioms (E1), (E2) and (E3). Note
that for every edge-cut [A, B] of G, AN7y(V(H)) and BNay(V(H)) are two disjoint
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subsets of m (V(H)) such that their union is 7y (V(H)), so there exists an edge-cut
[A", B'] of H such that my(A") = ANmy(V(H)) and my (B') = BNy (V(H)).

We first prove that & satisfies (E1). Let [A, B] be an edge-cut of G of order less
than 6. Let [4’, B’] an edge-cut of H such that 7y (A") = ANny(V(H)) and 7y (B') =
BNy (V(H)). Since (my,mg) is an H-immersion, there are at least |[A’, B']| edge-
disjoint paths in G from AN 7y (V(H)) to BNwy(V(H)). So |[A,B]] < |[A,B]| < 6.
Hence, one of [A’, B'] and [B’, A’] is in &', and hence one of [A, B] and [B, 4] is in £. So
€ satisfies (E1).

Now we prove that & satisfies (E2). For each i € [3], let [A;, B;] € £ be an edge-
cut of G. By the definition of &, for each ¢ € [3], there exists [A}, B]] € £ such that
mv(4)) = A; Ny (V(H)) and hence 7y (B]) = B; Ny (V(H)). Since £’ is an edge-
tangle in H, B} N B, N B} contains a vertex v of H. So 7y (v) € By N B2 N Bs. This
proves that & satisfies (E2).

Finally, we prove that £ satisfies (E3). Let [A, B] € £. By the definition of £, there
exists [A’, B'] € &' such that my (A") = ANy (V(H)) and hence 7y (B') = BNay (V(H)).
Since &’ satisfies (E3), H contains at least 6 edges incident with vertices in B’. So there
are at least 6 edge-disjoint subgraphs of G each containing a vertex in 7y (B’) C B and
containing an edge of G. Therefore, G contains at least 6 edges incident with vertices in
B. Consequently, £ is an edge-tangle in G. O

We call the edge-tangle £ defined in Lemma 2.10 the edge-tangle induced by the H -
immersion (my,mg) and the edge-tangle &' in H.

The m x n wall is the simple graph with vertex-set {(,7): 1 <i<n,1 <j <m} and
edge-set {(4,7)(i+1,j):1<i<n—1,1<j<m}U{(2a—1,2b—1)(2a—1,2b) : 1 <
a<[n/2],1<b<|m/2]}U{(2a,20)(2a,2b+1):1<a<|n/2],1<b<|[(m—1)/2]}.
The i-th row of the m x n wall is the subgraph induced by {(z,i) : 1 < 2 < n}. The
k-th column of the m x n wall is the subgraph induced by {(z,y) : 2k — 1 < 2 <
min{2k,n},1 <y < m}. Hence, the m x n wall contains m rows and [n/2] columns.

It was proved by Robertson, Seymour and Thomas [20] (see Theorem 2.11 below) that
every tangle is “equivalent” to a subdivision of a wall. The next objective of this section
is to prove an analogous result (Lemma 2.16) about edge-tangles and immersions, which
will be used in Section 6.

For a graph H, an H-immersion (7, 7.) is an H -subdivision if

o for every pair of distinct edges ey, es of H, V(ng(e1) N7wg(e2)) C my(S), where S is
the set of the common ends of e, es, and
o forevery e € E(H), ny(V(H))NV(rg(e)) = mv(5), where S is the set of ends of e.

We say that a tangle T is induced by a r x r wall-subdivision (wy,7g) if for every
(A, B) € T, there exists a row of the wall such that E(B) intersects wg(e) for every edge
e of this row.
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One corollary of the following restatement of [20, (2.3)] is that every graph with a
tangle of large order contains a subdivision of a large wall.

Theorem 2.11. [20, (2.3)] Let 0 > 2, and let T be a tangle in G of order at least
200" (20-1), If 7' C T is a tangle of order 8, then T is induced by a 0 X 0 wall-subdivision.

Lemma 2.12. Let r and 0 be positive integers with 0 < r. Let G be the r x 2r wall. If
[A, B] is an edge-cut of order less than 0 of G, then

exactly one of A and B contains all vertices of a column of G,

exactly one of A and B contains all vertices of a row of G,

A contains all vertices of a column if and only if A contains all vertices of a row,
exactly one of A and B intersects vertices in at least 8 columns of G,

exactly one of A and B intersects vertices in at least 0 rows of G,

S T W

A intersects vertices in at least 0 columns of G if and only if A contains all vertices
of a column of G, and

7. A intersects vertices in at least 0 rows of G if and only if A contains all vertices of
a column of G.

Proof. Note that G has r rows and r columns. Suppose that A contains all vertices of
a column and B contains all vertices of another column. Then every row must contain
an edge in [A, B], so the order of [A, B] is at least r, a contradiction. Suppose that none
of A and B contains all vertices of a column. Then every column must contain an edge
in [A, B], so the order of [A, B] is at least r, a contradiction. So exactly one of A and B
contains all vertices of a column. Similarly, exactly one of A and B contains all vertices
of a row. Furthermore, if A contains all vertices of a column, then B cannot contain all
vertices of a row, so A contains all vertices of a row as well. Similarly, if B contains all
vertices of a column, then B contains all vertices of a row. This shows Statements 1-3.

Since r > 6, every column intersects vertices in at least 6 rows. By Statement 1, at
least one of A and B intersects vertices in at least 6 rows. If one of A and B contains
all vertices of a column and the other intersects vertices in at least 6 rows, then there
are at least 6 rows containing both vertices in A and in B, so there are at least 6 edges
between A and B, a contradiction. So A contains all vertices of a column if and only if
A intersects vertices in at least § rows. This shows Statement 7. Then Statements 1 and
7 imply Statement 5.

Similarly, A contains all vertices of a row if and only if A intersects vertices in at
least 6 columns. So Statement 6 follows from Statement 3, and Statement 4 follows from
Statements 5-7. O

Lemma 2.13. Let r and 0 be positive integers. Let G be the r x 2r wall. Let £ be the set
of all edge-cuts [A, B] of order less than 0 of G satisfying that B intersects vertices in
at least 8 columns of G. If r > 26, then & is an edge-tangle of G of order 6.
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Proof. Let [A, B] be an edge-cut of G of order less than 6. By Lemma 2.12, [A, B] or
[B, A] is in €. Hence, & satisfies (E1).

Let [A;, B;] € € be edge-cuts of G for i € [3]. For each ¢ € [3], B; intersects vertices in
at least 6 columns of G, so B; contains all vertices of a column of G by Lemma 2.12. For
each i € [3], let ¢; be a column of G contained in B;. Suppose that By N By N By = (. If
€1 = ¢9, then Bj is disjoint from ¢y, so A3 contains ¢;, a contradiction. So by symmetry,
we may assume that ¢y, co, c3 are pairwise distinct. Since ¢; is contained in Ay U Az, we
know that As or As, say Ao, contains at least one half vertices of ¢y, so As intersects
at least r/2 rows. But By contains cg, so there are at least r/2 edges with one end in
As and one end in By. Therefore, [As, Ba| has order at least r/2 > 0, a contradiction.
Hence, & satisfies (E2).

For every [A,B] € £, B contains a column in G by Lemma 2.12, so there are at
least r > 6 edges in G incident with some vertices in B. This proves that £ is an edge-
tangle. O

We call the edge-tangle £ mentioned in Lemma 2.13 the natural edge-tangle in the
r X 2r wall of order 6. Here is a short summary about natural edge-tangles in a wall.

Lemma 2.14. Let r and 0 be positive integers with r > 20. Let W be the r x 2r wall.
Let G be a graph and 11 = (wy,7g) a W-immersion in G. If £ is the edge-tangle in G
induced by I1 and the natural edge-tangle of order 6 in W, then for every edge-cut [A, B]
of G of order less than 0, the following are equivalent.

. [A,B] €.
. B intersects the image of my of vertices in at least 0 columns of W.
. B contains the image of my of all vertices of some column of W.

=W N =

. B contains the image of my of all vertices of some row of W.

Proof. Statements 1 and 2 are equivalent by the definition of £. Statements 2-4 are
equivalent by Lemma 2.12. O

We need the following lemma to prove Lemma 2.16. It states that whenever each
“vertex” of a large “grid” is labeled with a bounded number of labels in a way that every
label is used by a bounded number of times, one can find a large “subgrid” such that
the sets of labels used in this “subgrid” are pairwise disjoint.

Lemma 2.15. For any nonnegative integers s,t,p, q, there exist integers s* = s*(s,t,p,q),
t* = t*(s,t,p, q) such that the following holds. Let I, J be sets with |I| = t* and |J| = s*.
Let U be a set, and let [ be a function that maps each pair (i,j) € I x J to a subset of
U of size at most p. If for every u € U, [{(i,4) € I x J:u € f((¢,5))} < q, then there
exist I' C I with |I'| =t and J C J with |J'| = s such that f((z,y)) N f((z',y')) =0
for distinct (x,y), (2',y') e I' x J'.
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Proof. We shall prove this lemma by induction on s. When s = 0, the lemma holds
obviously. So we may assume that s > 1 and this lemma holds for every smaller s.

Let s1 = s*(s — 1,t,p,q) and ¢, = t*(s — 1,¢,p, q). Define s*(s,¢,p,q) = s1 + pgt1 + 1
and t*(s,t,p, q) = pqt;.

Without loss of generality, we may assume that I = [t*] and J = [s*]. Note that for
every « € [t*], there are at most pq elements z’ € [t*] such that f((x,1))N f((2',1)) # 0.
So there exists a subset I of I with |I1]| = % = 1 such that f((z,1))N f((z',1)) =0
for distinct z,2" € I;. Note that [J,c;, f((x,1))] < pt1. So there exists a subset .J; of
J — {1} with 1] > |J| = 1 — ptig = s1 such that f((z,y)) N f((i,1)) = O for every
(x,y) € I x J; and ¢ € I . By the induction hypothesis, there exist I C I; with
|Is] = ¢ and Jo C Jy with |Jo] = s — 1 such that f((z,y)) N f((z,y")) = 0 for distinct
(x,y), (2',y") € Iy x J. Define I' = I and J" = {1} U Js. Then f((z,y))Nf((z',y")) =0
for distinct (z,y), (',y') e I’ x J'. O

Lemma 2.16. For every positive integers 0 and d with 8 > 2, there exists an integer
w = w(0,d) such that if € is an edge-tangle in a graph G of order at least w, then either
there exists v € V(Q) incident with at least d edges in G such that v € B for every
[A, B] € &, or &y is induced by a 20 x 40 wall-immersion and the natural edge-tangle of
order 0 in the 20 x 40 wall, where &y is the edge-tangle in G of order 8 such that &y C £.

Now we sketch the proof of Lemma 2.16. Since £ is an edge-tangle in G of large order,
£ is a tangle in L(G) of large order, so it is induced by a very large wall subdivision
IT in L(G) by Theorem 2.11. If there exists a vertex v of G such that cl(v) contains
many branch vertices of II, then it is not hard to show that this vertex v satisfies the
conclusion of Lemma 2.16. If there exists no such vertex v exists, then there exists a
smaller (but still sufficiently large) wall subdivision IT* such that every branch vertex of
IT* is a branch vertex of II, and cl(u) contains at most one branch vertex of IT* for every
u € V(G). Such a wall subdivision II* in L(G) defines a wall immersion I’ in G in an
obvious way. Then one can show that the wall immersion II’ satisfies the conclusion of
Lemma 2.16 by using the relationship between £ and &.

Proof of Lemma 2.16. Let 6 and d be positive integers with 6 > 2. Let 6/ = s5.15(20, 46, 4,
(20d)?) + t2.15(20,40,4,(20d)?) + 50, where s5.15 and t5 15 are the integers s* and t*
mentioned in Lemma 2.15. Define w = 2064¢"°.

Denote the 20" x 20" wall by W. Let G be a graph, and let £ be an edge-tangle in G of
order at least w. By Lemma 2.5, € is a tangle of order at least w/3 — 1 > 20(20)*(46'~1)
in L(G). For every integer ¢, let £ be the tangle in L(G) of order t with & C &. By
Theorem 2.11, ¢/ is induced by a W-subdivision (my, 7) in L(G).

Claim 1: If there exists v € V(G) such that cl(v) contains at least (20d)? wvertices in
my (V(W)), then v is incident with at least d edges in G, and v € B for every [A, B] € &.
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Proof of Claim 1: Let v be a vertex of G such that cl(v) contains at least (20d)? vertices
in 7y (V(W)). So |cl(v)| > (20d)? and v is incident with at least (20d)? > d edges in G.

Suppose that there exists an edge-cut [A, B] € & such that v € A. We may assume
that the order of [A, B] is as small as possible, and subject to that, A is maximal. By
Lemma 2.3 and the maximality of A, A contains all isolated vertices of G.

Since the order of [A, B] is less than § and v € A is incident with at least (20d)? > 6
edges in G, some edge of G incident with v has every end in A.

We define the following.

(i) Define B’ to be a subgraph of L(G) such that V(B’) consists of the edges of G
incident with vertices in B.
(ii) Define (A’, B’) to be a separation of L(G) such that V(A’) N V(B’) consists of the
edges of G with one end in A and one end in B.
(iii) Subject to (i) and (ii), E(A’) is maximal.

Since the order of [A4, B] is minimal and some edge of G incident with v has every end in
A, (A’, B') is normalized. Hence [A, B] is the partner of (4’, B'). Therefore, (A’, B') € €.

Since [V(A)NV(B')| < 6 < 20, (A", B') € Ea¢r. Since Eqg¢ is induced by a W-
subdivision (my,7g) in L(G), there exists a row r of W such that E(B’) intersects
wg(e) for every edge e of the row r. Since |V(A') N V(B’)| < 0, there are at most 6
vertices z of W in r such that wy (z) € V(A’) — V(B’). That is, there are at least 260’ — 6
vertices « of W in r such that my (z) € V/(B').

Suppose that there exists a row r’ of W other than r such that there are at least
460 vertices = of r’ such that my(x) € V(A') — V(B’). Then there exist 26 columns
€1, Ca, ..., cop of W such that V(A") —V(B’) intersects the image of 7y of some vertices of
each of ¢;. Since there are at least 26’ — 6 vertices z of W in r such that 7y (z) € V(B’),
there are at least 6 columns ¢ in {¢; : 1 <4 < 26} such that both V(A’) — V(B’) and
V(B’) intersect the image of my of some vertices in c. Hence there are at least 6 disjoint
paths from V(A’) to V(B’), a contradiction.

Therefore, for every row of W, there are at least 26’ — 46 > 1 vertices z of this row
such that 7wy (x) € V(B'). In particular, V(B’) intersects the image of 7y of the vertices
of each row. Since |[V(A")NV(B’')| < 0, V(A’) intersects the image of 7y of vertices in
at most @ — 1 rows of W. Since ¢ > 6§ — 1, V(B’) intersects the image of 7y of vertices
in every column of W.

Since v € A, V(A’) D cl(v) contains at least (20d)? vertices in my (V(W)). So V(4)
contains the image of 7y of some vertices in either at least 260d rows of W or at least 6d
columns of W. Since V(A’) intersects the image of my of vertices in at most § — 1 rows
of W, the former is impossible. So V' (A’) contains the image of 7y of some vertices in at
least 6d columns of W. But V(B’) intersects the image of 7y of vertices in every column
of W. So there exist 8d > 6 disjoint paths from V(A’) to V(B’), a contradiction. O
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By Claim 1, we may assume that for every v € V(G), cl(v) contains at most (20d)?
vertices in 7y (V(W)), for otherwise the lemma holds.
Denote the 20 x 40 wall by W'.

Claim 2: There exists a W'-subdivision II* = (n{,, 7%) in L(G) such that

« (VW) S my(V(W)) and
—ifx e V(W) and 2’ € V(W) with ©{,(z) = my (2'), then o’ = (i,7) for some i, j
with 20 +1 <1 <20 —20 and 0§ +1<j <0 — 0, and
— if ,y are two vertices in the same row of W', then there exist two vertices x',y’
in the same row of W such that 7, (z) = v (2') and 73, (y) = 7v (v'),
* Ueepw) me(€) € Ueepw) Te(€), and
o for every v € V(G), |cl(v) N7y (VW) < 1.

Proof of Claim 2: Let I = {i: 0 +1<i< ¢ —6tand J={j:0+1<j <6 —0}. For
every (i,5) € I x J, define f((¢,7)) = {v € V(G) : {my((2¢ — 1, ), mv ((24,5)) } Ncl(v) #
0}. Note that |f((¢,7))| < 4 for each (4,j) € I x J. In addition, for each v € V(G),
H(i,j) € I xJ:ve f((i,9)} < lel(v) N my(V(W))| < (20d)?. By Lemma 2.15, there
exist I’ C I with [I'| =460 and J' C J with |J’| = 20 such that f((i,7)) N f((#,5)) =0
for distinct (z,7), (¢',5") € I' x J'.

Denote the elements of I’ by 1 < x5 < ... < 149 and denote the elements of J’ by y; <
Y2 < ... < Yog. For each ¢ € [20] and j € [20], define 7}, ((2¢ —1,7)) = 7y ((2x2i—1 — 1, ¥;))
and 77, ((24,7)) = v ((222;,y;)). So wj,(V(W')) C my(V(W)), and for every v € V(G),
lcl(v) N7} (V(W'))| < 1. Furthermore, if z,y are two vertices in the same row of W',
then there exist two vertices 2,3’ in the same row of W such that 73, (z) = 7y (2’) and
m(y) =mv(y). Note 0 +1 <21 <z49 <0 —fand 0+1 < y1 <yag <6 —6, 50
itz € V(W') and 2’ € V(W) with 7}, (z) = my(z'), then 2’ = (4, ) for some 4, j with
20+1<i<20—20and 0+1 < j <0 —80. It is obvious that one can define 7§, such that
(m, ) is a W-subdivision in L(G) such that U.c g TE(€) € Ueepmn Te(). O

Now we define a W'-immersion (7{,, 7%) in G.

o Define 7{, to be the function that maps each vertex of z of W’ to a vertex v of G such
that 7, (z) € cl(v) and | Ny (73 (2)) Nel(v)| = max,ev () [ Nomw) (7 () Nel () |.
o Define 7; to be the function that maps each edge e of W’ to the path in G whose
edge-set is the union of the set of internal vertices of 7} (e) and the set U, U Uy,
where x,y are the ends of e and for each u € {z,y}, the set U, satisfies
— if the vertex in Ny, ()(u) is not in cl(ny, (u)), then U, = {7, (u)}, and
— if the vertex in Ny, ) (u) is in cl(7{,(u)), then U, = 0.

It is clear that (7(,,7%) is a W/-immersion in G.
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To prove this lemma, it is sufficient to show that &y is induced by (7{,, 7%;) and the
natural edge-tangle of order 6 in W’. Let £” be the edge-tangle induced by (71, 7%) and
the natural edge-tangle of order § in W’. Note that £” has order 6.

Suppose to the contrary that & # £”. So there exists [A, B] € & — £”. We further
assume that the order of [A, B] is as small as possible, and subject to that, A is maximal.

Since [{v}, V(G) — {v}] € & NE” for every vertex v of G incident with less than 0
edges of GG, A contains all isolated vertices of G by Lemma 2.3 and the maximality of
A. Similarly, by the minimality of the order of [A, B] and Lemma 2.3, every vertex in A
that is a non-isolated vertex of G is incident with an edge whose every end is in A, and
every vertex in B that is a non-isolated vertex of G is incident with an edge whose every
end is in B.

Define (A’, B’) to be the separation of L(G) such that

(iv) V(A") NV (B’) consists of the vertices of L(G) corresponding to the edges with one
end in A and one end in B,

(v) V(B'’) cousists of the vertices of L(G) corresponding to the edges of G incident with
vertices in B, and

(vi) subject to (iv) and (v), E(A’) is maximal.

Since for every non-isolated vertex of G, it is not an isolated vertex in G[A] or G[B],
so it has a neighbor in the same side of the edge-cut. Hence every vertex in V(A" )NV (B’)
is adjacent to a vertex in V(A’) — V(B’) and a vertex in V(B') — V(A4’). So (A’,B’) is
normalized. Since A contains all isolated vertices of G, [A, B] is the partner of (4’, B').
Since [A, B] € &, (A, B") € &p. Since £z is induced by a W-subdivision (my,7g) in
L(G), E(B’) intersects every path in the image of mg of all edges of a row of W. Since
the order of (A’, B) is less than 6 and W is a 26’ x 20" wall, V(B’) — V(A’) contains at
least 26’ — 260 vertices in the image of 7y of the vertices of a row of W. Furthermore, for
each row of W, V(A’) contains at most 66 vertices in the image of my of the vertices of
this row, for otherwise there are at least 6 disjoint paths from V(A’) to V(B’). Hence
for every row of W, V(B') — V(A’) contains the image of 7y of some vertex of this row.

Since [A,B] ¢ £, [B,A] € £" by (E1). So A contains the image of 7{, of all vertices
of a row of W’ by Lemma 2.14. Recall that by the definition of =, for every v €
m (V(W)), cl(v) N7y (V(W?)) # 0. And by Claim 2, for distinct vy, vy € m, (V(W')),
cl(v1) Nel(ve) Ny (V(W?)) = 0. In addition, by Claim 2, if =,y are two vertices in the
same row of W', then there exist two vertices z’,y’ in the same row of W such that
i (x) = my(2’) and 7, (y) = v (y'). Hence, there exist a row r of W and a set S such
that S C V(A'), and S consist of § vertices in the image of 7y of vertices in the row 7.
By Claim 2, r is the j-th row of W, for some 6 +1 < j < 6" — 6.

Let S = {v1,v2,...,v9}. For each i € [0], let z; be the vertex of W such that 7y (x;) =
v;. Since 0 + 1 < 57 < 6 — 6, there exist distinct rows r1,rs,...,79 of W other than r
such that for every permutation o : [] — [6], there exist disjoint paths P, 1, Py 2, ..., Psg
of

in L(G) such that for every i € [0], Py; is from v; to my (2, ;) for some vertex z, ;
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W in the row r,(; such that P, ; is contained in the image of g of the column of W
containing x;. Since for each ¢ € [0], V(B’) — V(A’) contains the image of 7y of some
vertex of each r;, we know that for every permutation o : [#] — [0] and for each i € [6],
there exists a path @, ; contained in the image of 7 of r; such that @, ; is from 7y (z7, ;)
to a vertex in V(B') — V(A’). In addition, we say Qs is decreasing if the index of the

/

».;) is at least the index of the column containing the other end

column containing 7y (z
of Qo ;; otherwise, we say Q,,; is increasing.

For each i € [0], assuming o*(¢') is defined for every 1 < i’ <i— 1, define o*() to be
the element in [0] — {o* (') : 1 < ¢’ <i—1} such that Q.+ ; is decreasing if possible, and

subject to this,

e if Q5= ; is decreasing, then P, ; is as short as possible, and
e if Qs+ ; is increasing, then P,- ; is as long as possible.

Then o* is a permutation on [0]. Since Py« 1UQy+ 1, Por 2UQu* 2, ...; Por g UQy+ o cannot
be 6 disjoint paths in L(G) from V(A4') to V(B’) =V (A’), there exist 1 < a < b < 6 such
that Py« o U Qo= o intersects Py p U Qg+ p.

Suppose that Q= 4 is decreasing. Since Py« o U Qg+ o intersects Py« U Qo+ b, Qo= p
is decreasing. But the choice of P,« , implies that Py« o U Qo+ q and Py« U Qg+ 3 are
disjoint, a contradiction.

S0 Qo+ 4 is increasing. In particular, the ends of Q5+ , are not contained in the same
column. If @« is increasing, then the choice of P« , implies that Py« 4 U Qs o, and
Py« p U Qy= p are disjoint, a contradiction. So Q- is decreasing. Since Py« 4 U Qo= q
intersects Py« 3UQq= 1, the choice of Py« , implies that the index of the column containing
the end of @+, other than Wv(I:I*,b) is at most the index of the column containing
Ty (T4 4), 80 Qo o can be chosen to be decreasing, a contradiction. This proves the

lemma. 0O
2.4. Other useful lemmas
The following two lemmas will be used in Section 5.

Lemma 2.17. Let G be a graph and £ an edge-tangle in G. Let p be a positive integer
and let [A1, B1],...,[Ap, Bp] € €. For each i with 1 < i < p, let X; be the set of edges
of G between A; and B;. Assume that for every i with 1 < i < p and for every v € A;,
there exists a path in G[A;] from v to an end of an edge in X;. Assume the order of &€
is greater than | Ji_, X;|. If UY_, X is free with respect to & and X; N X; =0 for every
pair of distinct i,j, then A; N A; =0 for every pair of distinct i, j.

Proof. There is nothing to prove if p = 1, so we may assume that p > 2. First, we
suppose that there exists an edge e € X; such that both ends of e are in As. Let
Z = (UY_, X;) — e. Since the order of & is greater than || J!_, X;|, [A2, Bo] € £ — Z has
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order zero in G — Z. But both ends of the unique member e of Ule X, — Z are in A,.
So [JY_, X; is not free with respect to &£, a contradiction. Hence, no edge in X; has both
ends in As.

Similarly, for every pair of distinct ¢, j, no edge in X; has both ends in A;.

Now we suppose that there exist distinct ¢, j such that A; N A; # 0. Let v € A; N A;.
Let P; be a path in G[4;] from v to an end of an edge €’ in X;. Since X is disjoint from
X; and some end of e’ is in B;, e’ has both ends in Bj. So P; intersects X;. But F; is
contained in G[A;], so every edge in X; N E(F;) has both ends in A;, a contradiction.
This proves the lemma. 0O

Lemma 2.18. Let £ be a positive integer. Let G be a graph and € an edge-tangle in G of
order at least € + 2. If Z is a subset of E(G) with |Z| < &, then there exists a set W
consisting of two edges of G — Z with at least one common end such that W is free with
respect to & — Z.

Proof. Suppose to the contrary that every set consisting of two edges of G — Z with
at least one common end is not free with respect to &€ — Z. That is, for every edges
e1,ea € E(G) — Z sharing at least one common end, there exist Y C {ej,es} and
[A,B] € £ — (Y U Z) of order at most 1 — |Y| such that every edge in {e1,ea} — Y has
every end in A. Let G, ...,G. be the components of G — Z.

Claim 1: There exists a unique i with 1 < i < ¢ such that [V(G)-V(G;),V(G;)] € E—-Z.

Proof of Claim 1: We first prove that there exists ¢ with 1 < ¢ < ¢ such that [V(G) —
V(G;),V(G;)] € €—Z. Suppose to the contrary that [V(G) —V(G;),V(G;)] ¢ €— Z for
every i € [c]. Since £—Z has order at least two, by (E1), [V(G;),V(G)-V(G;)] € £—Z for
every i € [c]. We prove that [U?:1 V(G,),V(G)— U?Zl V(G,)] € € — Z for every k € [c]
by induction on k. The case k = 1 is obviously true, so we may assume that £ > 2 and
UL VG, V(G) — UMl VIG)] € € — 7. Then (UL, V(G)), V(@) — UL, V(Gy)] €
€ —Z by Lemma 2.3. Hence [U?=1 V(G;),V(G)— U§=1 V(G;)] € €—Z for every k € [c].
But when k = ¢, [V(G),0] = [Uj_, V(G}),V(G) = Uj_, V(G)] € € - Z, contradicting
(E3). This shows the existence of 1.

Now we show the uniqueness of i. Suppose there exist distinct a,b € [c] such that
[V(G)=V(G,),V(G,)] and [V(G) =V (Gy), V(Gy)] belong to £—Z. But a, b are distinct,
so V(G,) NV(Gy) = 0, contradicting (E2). This proves the claim. 0O

Without loss of generality, we may assume that [V(G) — V(G1),V(G1)] € € — Z.
Define &£’ to be the set of edge-cuts of Gy such that [A, B] € £ if and only if [A, B] has
order less than two and [AUJ;_, V(G;),B] € £ — Z.

Suppose that £ is not an edge-tangle in G of order two. It is easy to see that &’
satisfies (E2) and (E3). So £ does not satisfy (E1). Hence there exists an edge-cut [A, B]
of Gy such that [B, AUJ;_, V(G;)] and [4, BU{J;_, V(G;)] belong to € — Z, but these



174 C.-H. Liu / Journal of Combinatorial Theory, Series B 151 (2021) 148-222

two edge-cuts together with [ J;_, V(G;), V(G1)] are three edge-cuts in € — Z such that
(AUUZ, V(Gi)) N (BUUi—, V(Gi)) N V(G1) = 0, contradicting (E2).
Hence £’ is an edge-tangle in G of order two.

By considering the cut-edges of G, it is well-known that there exist a tree T and a
partition (X; : ¢ € V(T)) of V(G;) such that

o G1[X] either has only one vertex or is 2-edge-connected for every t € V(T),

o for every adjacent vertices t1,ty of T, there exists uniquely one edge between X,
and X;,, and

e every edge of G either has every end in X; for some ¢ € V(T'), or has one end in

Xy, and one end in Xy, for some adjacent vertices t1,te of T'.

For each edge e = t1tp of T', let T+, and T, ;, be the components of T'— e containing t;
and to, respectively, and define Y, ;, = Xy and Y, = X;. Since
&’ has order two, by (E1) and (E2),1exaglt§‘;(n%’3f) Yetr, Yet,] 2and L[J}ﬁf;:;'etil)} eéE-Z.
If the former happens, then we orientate the edge e from t; to t2; otherwise, we orientate
the edge e from t5 to t1. So we obtain an orientation of F(T) and hence T has a vertex
t* of out-degree zero.

Given two edges e, f of G— Z with at least one common end, by the assumption, there
exist Y C {e, f} and [A. ¢, Be f] € E—Z of order at most 1—|Y| such that every end of the
edges in {e, f} =Y isin A. Let [A[ ;, B, (] be the edge-cut [A sV (G1), Be, NV (G1)] of
Gy of order at most 1—[Y[. If [B] ;, A, ;] € &', then [(B. s NV (G1))UUi_, V(Gi), A f N
V(G1)] € £—Z by the definition of &', but [A. ¢, Be f] also belongs to £€—Z, contradicting
(E2). So [B; ;, AL ;] ¢ €. By (E1), [AL ;, B, (] € £'. Since [A] ;, B; ;] has order at most
one, Bé,f contains X;-.

We first claim that Xy« is a single vertex. Suppose Xy« contains at least two vertices.
Then G;[X;+] is 2-edge-connected. We choose e, f to be two edges of G1[X;+| sharing
at least one common end. By the definition, one of e, f has every end in A’e7f. But as
proved in the previous paragraph, Bé,f contains X;« and hence contains the ends of e
and f. So A} ; N B, ; # (), a contradiction.

Hence X;- contains exactly one vertex v. Since £’ has order at least two, v is incident
with at least two edges of G;. Let e, f be two edges of G incident with v. Since one of
e, f has every end in A’e’f, v E A/e’f, a contradiction. This proves the lemma. O

3. Spider theorems

The main result of this section is Lemma 3.3 which is an edge-version of a result
(see Lemma 3.2 below) that is slightly stronger than a theorem implicitly proved by
Robertson and Seymour [19] and explicitly proved by Marx and Wollan [13]. Lemma 3.3
enables us to show that given collections of “interesting sets” of edges, either we can
extend a set free with respect to an edge-tangle by adding many sets from those given
collections, or we can delete a bounded number of edges to make some collection of
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“interesting sets” containing no free sets. This lemma will be frequently used in this
paper.

We need the following lemma, which is a slightly stronger form of [19, Theorem 7.2].
And it can be proved by simply modifying the proof in [19].

Lemma 3.1. Let h > 1 and w > 0 be integers. Let T be a tangle in a graph G, and let
W C V(G) be free with respect to T with |W| < w. If T has order at least (w+h)"T1+h,
then there exists W' C V(G) with W C W' and [W'| < (w + h)"*! such that for every
(C,D) € T of order |W| + he with W C V(C), where he is an integer with he < h,
there exists (A*, B*) € T with W' CV(A*NB*), |[V(A*NB*)—=W'| < hg and C C A*.

Proof. For every (A4, B) € T and every v € V(A) NV(B), the T -successor of (A, B) via
v is the separation (A4’, B’) of G such that

(i) v¢ V(B'), AC A and B' C B,
(ii) subject to (i), the order of (A’, B’) is as small as possible, and
(iii) subject to (i) and (ii), B’ is minimal.

Let Ag be the graph such that V(4g) = W and E(4g) = 0. Let To = {(4o,G)},
and for ¢ > 1, let 7; be the set of all T-successors (A, B’) of members (A4, B) of
Ti—1 via some vertex in V(A) N V(B) with |[V(4") N V(B)| < |[W|+ h. Let W/ =
Uo<i<n Ua,myer;(V(A) N V(B)). 1t is proved in [19, Theorem 7.2] that W < W/,
|W'| < (w+ h)"*1, and every member of 7; has order at least |W| + i — 1 for every
i€ [h+1].

Let (C,D) € T of order |W|+ he with W C V(C) for some integer he with he < h.
Note that he > 0 since W is free with respect to 7. Let (C*, D*) € T be the separation
of G such that

(iv) the order of (C*, D*) is at most |W|+ hg, C C C* and D* C D,
(v) subject to (iv), the order of (C*, D*) is minimal, and
(vi) subject to (iv) and (v), C* is maximal.

Let (A, B) € T; for some ¢ with 0 < i < h such that A C C* and D* C B. Note that
such an (A, B) exists as (Ao, G) is a candidate. We assume that ¢ is as large as possible.

Note that if ¢ # 0, then (A, B) is a T-successor of a member of 7;_1, so either (A, B) =
(C*,D*) or the order of (A, B) is smaller than the order of (C*, D*), for otherwise
(C*,D*) is a better candidate for being in 7; than (A, B) by (i)-(iii). Furthermore, if
(A,B) # (C*,D*), then [W|+i—1<|V(A) NV(B)| < |V(C*)NV(D*)| < |W|+ he,
so 1 < hg < h.

Suppose that V(A) NV (B) € V(C*)NV(D*). Let v € (V(A) NV (B)) — (V(C*) N
V(D*)). Let (A’,B’) be the 7' successor of (A, B) via v. Note that the order of (A’ B’
is at most the order of (C*,D*) as A C C* and D* C B. Since V(A) B) ¢
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V(C*)NV(D*), (A, B) # (C*,D*), so i < h—1. By the maximality of 4, either A’ ¢ C*,
or D* ¢ B'. By the maximality of C*, the order of (C*UA’, D* N B’) is greater than the
order of (C*, D*). So the order of (C*NA’, D*U B’) is smaller than the order of (A’, B)
by the submodularity. But v ¢ V(D*UB’) and A C C*NA’ and D*UB’ C B, so (A, B’)
is not the T-successor of (A4, B) via v by (ii), a contradiction. Hence, V(A) N V(B) C
V(C*) N V(D).

Let (A*, B*) be the separation of G such that V(A*) = V(C*) UW' and V(B*) =
V(D*) UW’, and subject to that, A* is maximal. If i = 0, then the order of (A, B) is
|[W|; if ¢ > 1, then the order of (A, B) is at least |W| + ¢ — 1. So the order of (A, B)
is at least |W|. Since V(A) NV (B) C V(C*) NV (D*) N W', the order of (A*, B*) is at
most [V (C*) NV (D*)| — |[V(A) NV(B)|+ |[W'| < (w+ h)" ! + he. So (A*, B*) € T. In
addition, W/ C V(A*) NV (B*) and C C A*. And [V(A*) NV (B*) — W'| < |[V(C*)N
V(D*) - [V(A) N V(B)| < he. O

For every tangle T of order 6 in a graph G and every Z C V(G) with |Z] < 6, we
define T — Z to be the set of separations (A, B) of G — Z such that (A4’,B’) € T for
some subgraphs A’, B’ of G with V(A") = V(A)U Z and V(B’) = V(B) U Z. Note that
T — Z is a tangle in G — Z of order 6 — |Z| by [17, Theorem 6.2].

The following is a stronger form of [13, Theorem 3.3] and its proof uses ideas similar
to that used in [13, Theorem 3.3].

Lemma 3.2. Let G be a graph and T a tangle in G of order 0, and let ¢ be a positive
integer. For every i € [c], let d;, k; be positive integers, and let {X;; C V(G) : j € J;}
be a family of subsets of V(G) indexed by a set J;. Let d,k be integers such that 6 >
(ked)* +d, d; < d and k; < k fori € [c]. Let JF C J; with |J}| < k; for each i € [d],
such that | J;_, UjeJ; X, ; is free with respect to T and X; ;N Xy ;o = 0 for distinct pairs
(2,7), (@, 5") with1 <i<i' <e¢, jeJf and j' € J}. If | X, ;| < d; for every i € [c] and
7 € J;, then either

1. there exist Ji,J}, ..., J. with J* C J! C J; and |J!| = k; for each i € [c] such that
Uictg Ujes Xy is free with respect to T, and X; ;0 Xy o = 0 for all distinct pairs
(1,7), (@, 7)) with1 <i<i <e, je J and j € J),, or

2. there exist Z C V(G) with |Z| < (ked)¥t and integer i* € [¢] with |J5| < ki such
that for every j € J;=, either X« ;N Z # 0, or X;« j is not free with respect to T — Z.

Proof. For every i € [c], pick J! with J* C J! C J; and |J/| < k; such that

(i) Uie[c] UjeJ{ X j, denoted by W, is free with respect to 7,
ii) X; ; and X,/ are disjoint for all distinct pairs (7, 5), (¢/,5') with 1 < ¢ < i’ < ¢,
J J
j€J]and j' € J/,, and
(iii) subject to (i) and (ii), the sequence (ki1 — |J1|, k2 — ||, ..., ke — |J.]), denoted by s,
is lexicographically minimal.
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Note that such a set W exists since [J;_, Ujesr Xij is free and X; ; N Xir ;o = 0 for all
distinct pairs (i,7), (¢/,5") with 1 <i < < ¢, j € Jf and j' € J}.

Assume that the first conclusion of this lemma does not hold. So s contains a non-zero
entry. Let ¢* be the smallest number i such that k; —|J/| > 0. Note that |W| < (kc—1)d.
Applying Lemma 3.1 by taking (h,w) = (d, (kc—1)d), there exists Z C V(G) with W C Z
and |Z| < (ked)®*! such that for every (C, D) € T of order |W| + he with W C V(C)
for some h¢ < d, there exists (A',B') € T with Z CV(A'NB), |V(ANB')—Z| < he
and C C A'.

We shall prove that Z and i* satisfy the second conclusion of this lemma. Assume
that j € J;» such that X;- ;N Z = 0. Since W C Z, X;- ; is disjoint from W. By the
maximality of W, W U X« ; is not free with respect to 7. So there exists a separation
(C,D) € T of order at most |W|+ | X;« ;| — 1 with W U X;- ; C V(C). By the choice of
Z, there exists (A',B’) € T with Z CV(A'nB’), [V(A'NB')—-Z| <|X;+;|—1 and
C C A’ That is, X;» ; C V(A") — Z and the order of (A’ — Z, B’ — Z) is less than |X;- ;|.
So X« ; is not free with respect to 7 — Z. This proves the lemma. O

What we really need in this paper is a version of Lemma 3.2 with respect to edge-
tangles.

Lemma 3.3. Let G be a graph and £ an edge-tangle in G of order 6, and let ¢ be a positive
integer. For every i € [c], let d;, k; be positive integers, and let {X, ; C E(G) : j € J;}
be a family of subsets of E(G) indexed by a set J;. Let d,k be integers such that 6 >
3(ked)Y +3d, d; < d and k; < k fori € []. Let J; C J; with |J}| < k; for each i € [c],
such that | J;_, UjeJ; X is free with respect to € and X; ;N Xy j» = O for distinct pairs
(0,7), (@, 5") with1 <i <i'" <e¢, jeJf and j' € J}. If |X; ;| < d; for every i € [c] and
j € J;, then either

1. there exist Ji,J5, ..., J. with JF C J] C J; and |J]| = k; for each i € [c] such that
Uiy Ujesr Xij is free with respect to €, and X;; and Xy j are disjoint for all
distinet pairs (i,7), (¢',7") with1 <i<i <e¢, j€ J/ and j' € J},, or

2. there exist Z C E(G) with |Z| < (ked)?*t and integer i* € [c] with |J5| < ki such
that for every j € Ji«, either X« jNZ # 0, or X;« j is not free with respect to € —Z.

Proof. Since € is an edge-tangle of order 6 in G, & is a tangle of order at least |0/3] >
(ked)™' + d in L(G) by Lemma 2.5. Note that for every i € [¢] and j € J;, X, ; is a
subset of E(G) so it is a subset of V(L(G)). Since J;_, UjeJ; X, ; is free with respect
to &, Ui, UjeJ; X, j is free with respect to € by Lemma 2.8. So by Lemma 3.2, either

(i) there exist Ji,J5, ..., J. with J* C J/ C J; and |J!| = k; for each i € [c] such that
Uiz1 Ujes Xij is free with respect to €, and X;; and X are disjoint for all
distinct pairs (i, j), (i/,7') with 1 <i <4i' <¢, j € J/ and j' € J},, or
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(ii) there exist Z C V(L(G)) = E(G) with |Z| < (ked)?*! and integer i* € [¢] with
|J5.| < k;» such that for every j € J;«, either X;« ;N Z # ), or X« ; is not free with
respect to € — Z.

If (i) holds, then (J;_, Ujng X ; is a set of size at most ckd < |0/3] that is free
with respect to £, so Ui, UjeJ; X, is free with respect to £ by Lemma 2.9, and hence
Statement 1 of this lemma holds.

So we may assume that Z and i* mentioned in (ii) exist. We shall prove that Statement
2 of this lemma holds. Suppose to the contrary that there exists j € J;« such that
X+ ;N Z =0 and X;- ; is free with respect to € — Z. So X;» ;N Z = () and X« ; is free
with respect to £ — Z by Lemma 2.8, contradicting (ii). This proves the lemma. 0O

4. Excluding immersions

Given a simple graph H, an H-minor of a graph G is a map « with domain V(H)
such that

e «(h) is a nonempty connected subgraph of G, for every h € V(H);

o if hy and hy are different vertices in H, then a(h;) and a(hs) are disjoint;

o if hihy is an edge in H, then there exists an edge of G with one end in a(hy) and
one end in a(hs).

We say that G contains an H-minor if such a function « exists. And for every h € V(H),
a(h) is called a branch set of a.

Given a simple graph H, an H-thorns of a graph G is a map « with domain V(H)
such that

o a(h) is a connected subgraph of G with at least one edge, for every h € V(H);
e if hy and hy are different vertices in H, then a(hy) and «a(hs) are edge-disjoint;
o if hyhy is an edge in H, then V(a(h1)) NV (a(ha)) # 0;

We say that G contains an H-thorns if such a function « exists. And for every h € V(H),
a(h) is called a branch set of a.

Note that if a graph contains a vertex v incident with d edges, then it contains a
K 4-thorns whose branch sets are the edges incident with v. Another example of thorns
is that every r X r-grid contains a K,-thorns by defining «a(v;) to be the union of the
i-th row and the i-th column.

Lemma 4.1. If H is a simple graph, then a graph G contains an H-thorns if and only if
L(G) contains an H-minor.
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Proof. Let a be an H-thorns in G. For every h € V(H), define 5(h) to be the subgraph
of L(G) induced by E(«(h)). It is clear that § is an H-minor in L(G).

Let 8’ be an H-minor in L(G). For every h € V(H), define o/ (h) to be the connected
subgraph of G with E(a/(h)) = V(8'(h)). Then it is obvious that o’ is an H-thorns in
G. O

The following was proved by Robertson and Seymour [18].

Lemma 4.2 (18, Theorem 5.4]). Let G be a graph, and let Z be a subset of V(G) with
|Z] = €. Let k > |3¢], and let a be a Ky-minor in G. If there is no separation (A, B)
of G of order less than |Z| such that Z C V(A) and ANa(h) =0 for some h € V(K}),
then for every partition (Z1,...,Zy) of Z into non-empty subsets, there are n connected
subgraphs T, ..., T,, of G, mutually disjoint and with V(T;) N Z = Z; for 1 <i < n.

Now, we prove an edge-variant of Lemma 4.2.

Lemma 4.3. Let G be a graph, and let X be a subset of E(G) with | X| = ¢. Let k > |3¢],
and let « be a Ky-thorns in G. If there exist no Y C X and edge-cut [A,B] of G — Y
of order less than § — |Y| such that every edge in X —Y is incident with some vertex
in A and ANV (a(h)) =0 for some h € V(K}), then for every partition (X1, ..., Xp)
of X into non-empty subsets, there are n connected subgraphs T1, ..., T, of G, mutually
edge-disjoint and with E(T;) N X = X; for 1 <i<n.

Proof. Let 8 be the Kj-minor in L(G) corresponding to o mentioned in Lemma 4.1.

Claim 1: There does not exist a separation (A',B') of L(G) of order less than & such
that X CV(A’) and A’ N B(h) =0 for some h € V(K}).

Proof of Claim 1: Suppose to the contrary that there exists a separation (A’, B’) of
L(G) of order less than ¢ such that X C V(A’) and A’ N B(h) = O for some h €
V(K}). We may assume that the order of (A’, B’) is as small as possible. So every vertex
in V(A’) N V(B’) — X must have an neighbor in V(A’) — V(B’) and a neighbor in
V(B')—V(A"), and every vertex in V(A')NV(B’)N X has a neighbor in V(B’) — V(A’).
Define B = {v € V(G) : cl(v) C V(B’)} and A = V(G) — B. Then [A, B] is an edge-cut
of G. Let Y be the subset of X consisting of the edges in X with every end in B. Note
that the order of [A, B] equals [V (A" )NV (B")|—|{v € V(A )NV (B’) : v has no neighbor
inV(A)-V(B)} = |V(A)NV(B)| - Y] < £—|Y|. Furthermore, every edge in X —Y
has an end in A. In addition, every vertex of S(h) is in V/(B’) — V(4'), so every edge of
a(h) has every end in B. That is, V(a(h)) N A =0, a contradiction. O

Let (Xi,Xs,...,X,) be a partition of X into nonempty sets. By Lemma 4.2 and
Claim 1, there exist mutually disjoint connected subgraphs T7, ..., T}, of L(G) such that
VT))NnX = X, for every 1 < i < n. For every 1 < i < n, define T; to be the
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connected subgraph of G with E(T;) = V(T}). Then 11, ..., T, are mutually edge-disjoint
and E(T;))NX =X,. O

A tangle T in G controls an H-minor « if there do not exist (A, B) € T of order less
than |V(H)| and h € V(H) such that V(a(h)) C V(A). An edge-tangle £ in G controls
an H-thorns « if V(a(h)) N B # () for every h € V(H) and every [4, B] € £ of order less
than |V (H)|.

The degree sequence of a graph G is the non-increasing sequence of the degrees of the
vertices of G.

Lemma 4.4. Let G be a graph and H be a graph on h wvertices with degree sequence
(d1,da,...,dp). Letd = dy and t > 3hd. Let V(H) = {u1, ua, ..., up }, where degy(u;) = d;
for every i € [h]. Let £ be an edge-tangle of order at least 2hd in G that controls a K-
thorns. Let £ be the number of loops of H. Assume that there exist pairwise disjoint
subsets Xo, X1, X2, ..., X of E(G) such that U?:o X, is free with respect to £, Xy can
be partitioned into £ 2-element subsets Si, Sa, ..., S¢ where the two edges in each S; share
at least one common end s;, and for each i € [h], X; consists of d; edges incident
with a common vertexr v;. If vi,vs,...,v are distinct and there exists a partition of
{51, 52, ..., S¢} into sets Dy, Da, ..., Dy, such that for everyi € [h], |D;| equals the number
of loops incident with u; and v; ¢ {s; : S; € D;}, then G has an H-immersion (v, Tg)
with my (V(H)) = {v1,v2,...,vn}.

Proof. Let o be a K;-thorns in G controlled by £, and let X = U?:o X;. Note that
| X| <20+ hd < 2hd.

Claim 1: For every positive integer r and every partition (Z1, Za, ..., Z,) of X into non-
empty subsets, there exist pairwise edge-disjoint connected subgraphs 11,15, ..., T, of G
such that E(T;)) N X = Z; for every 1 <i <.

Proof of Claim 1: Suppose that there exist Y C X and an edge-cut [A, B] of G — Y of
order less than |X — Y| such that every edge in X —Y is incident with some vertex in A
and ANV (a(u)) = 0 for some u € V(K;). We assume that Y is maximal, so every edge
in X —Y has every end in A. Since X is free with respect to &, [A, B] ¢ £ — Y. But the
order of [A,B] in G —Y is less than | X — Y| < 2hd — |Y]. So [B,A] € £ - Y by (E1).
Hence [B, A] € € is an edge-cut of G of order less than 2hd < t. However, £ controls «,
so ANV (a(u)) # 0, a contradiction. Therefore, this claim follows from Lemma 4.3. O

Let E(H) = {e1,e2,...,e|p(m)|}, where e; is not a loop for every j € [|[E(H)| — {].
For every i € [h], let ¥; be a subset of X; such that |Y;| equals the number of non-loops
incident with w;. For every i € [h], define a bijection f; from Y; to the set of non-loop
edges of H incident with u;, and define an onto function f! from X; —Y; to the set of
loops of H incident with u; such that the preimage of every loop incident with u; has
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size two. Define fg to be a bijection from the set of loops of H to {Si, Sa, ..., S¢} such
that if e is a loop of H incident with u; for some i € [h], then fgr(e) € D;.

For each i € [|E(H)| — {], define Z; to be the subset of X consisting of the two edges
in U?Zle mapped to e; by fi, f2,..., fn. For each loop e of H, let {Z.1,Z.2} be a
partition of the union of fg(e) and the preimage of e by f1, f3, ..., f;, into two sets of size
two such that |Z.1 N fe(e)| = [Ze2 N fe(e)] = 1. So {Z1, Za, ..., Z)g(t)|—t> Ze,1s Zey2 : €
is a loop of H} is a partition of X into non-empty sets.

By Claim 1, there exist pairwise edge-disjoint connected subgraphs Ti,75, ...,
Ne)y -0 Ten, Te2 of G (for every loop e of H) such that E(T;) N X = Z; for every
1<i<|E(H)|—¥, and E(T. ;) N X = Z. ; for every loop e of H and j € [2]. Note that
for every i € [|[E(H)| — /], there exists a path in T; connecting v;, vi, where j, k are the
indices such that e; belongs to the image of f; and fi. For each loop e of H, there exists
a cycle contained in T; ; UT, 2 containing v;, where ¢ is the index such that e is incident
with w;, since v; ¢ {s; : S; € D;}.

Define 7y : V(H) — V(G) such that my (u;) = v; for every i € [h]. Define mg to be a
function that maps each non-loop edge e; of H (for some i € [|[E(H)|—¢])) to be a path
in T; from 7y (u) to my (u'), where u, u” are the ends of e;, and maps each loop e of H to
a cycle in T, 1 U T, 5 containing my (u”"), where v” is the end of e. Then (7y,7g) is an
H-immersion in G with 7y (V(H)) = {v1,ve,..,v5}. O

A family D of edge-cuts of a graph is cross-free if AN C = () for every pair of distinct
edge-cuts [A, B, [C, D] in D.

Lemma 4.5. Let k,0 be integers. Let G be a graph and £ an edge-tangle in G of order at
least 0. If there exist C C E(Q) with |C| < 0 —k and a subset D of € —C' such that every
member of D is an edge-cut of G — C' of order less than k, then there exists a cross-free
family D* C € — C such that every member of D* is an edge-cut of G — C of order less
than k such that ;4 piep A = Ua pjep- A-

Proof. Define D* to be a subset of & — C' with U4 gjep A = Ua, pjep- 4 such that
every member of D* is an edge-cut of G — C' of order less than k, and subject to that,

Z[ A,BleD* A| is as small as possible. Note that such a family D* exists as D is a candi-
date. To prove this lemma, it suffices to show that D* is cross-free.

Suppose that D* is not cross-free. Then there exist [A1, Bi], [A2, Bo] € D* such that
Ay # Ay and A1NAy # . By the submodularity, |[A1NBs, BiUAs]|+|[A1UBy, BiNAs]| <
[[A1, B1]|+]|[B2, A2]| < 2(k—1), so one of [A;NBs, B1UAs] and [B1N A3, A;UBs] has order
at most k—1. By symmetry, we may assume that [A;N By, B;1UAs| has order at most k—1.
Note that the order of £ — C is at least § — |C| > k. By Lemma 2.3, [A; N B, By UAs] €
E—C,since [A1,B1] € £ —C. Let D' = (D* — {[A1, B1]}) U {[A1 N Ba, A3 U B1]}. Since
Ay C (A1 N By) U Ag, D' is contained in £ — C and is a family of edge-cuts of G — C of
order at most k — 1 such that U4 gjep 4 = Ua, pjep- 4 = U4, pjep A- Hence, by the
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minimality of D*, |A; N By| > |A1]|. This implies that A; = A1NBy C By, s0 A1NAy = (),
a contradiction. Therefore, D* is cross-free. O

A graph is exceptional if it contains exactly one vertex of degree at least two, and this
vertex is incident with a loop.

Theorem 4.6 is a structure theorem for excluding a fixed non-exceptional graph as an
immersion in a graph with an edge-tangle controlling a big complete graph-thorns.

Theorem 4.6. For any positive integers d,h, there exist positive integers 8 = 6(d, h)
and & = &(d,h) such that the following holds. If H is a non-exceptional graph with
degree sequence (dy,da, ...,dp), where dy = d, and G is a graph that does not contain an
H -immersion, then for every edge-tangle £ of order at least 8 in G controlling a Ksap-
thorns, there exist C C E(G) with |C| <&, U CV(G) with [U] < h—1 and a cross-free
family D C £ — C such that for every vertex v € V(G) — U, there exists [A,B] € D of
order at most djy|41 — 1 with v € A.

Now we sketch the proof of Theorem 4.6. We greedily pick a vertex v and a set X,, of
sufficiently many edges incident with it such that v is not picked before, X, is disjoint
from all previously picked sets of edges, and the union of X, and all previously picked
sets is free with respect to &, until we cannot find such a vertex or a such set of edges.
We first assume that H has no loops. If we picked at least |V (H)| vertices in the process,
then we can construction an H-immersion by Lemma 4.4, a contradiction. So the set U
of picked vertices has size at most [V (H)| — 1. If we can further repeatedly pick a vertex
v and a set X, of d|;y|41 edges incident with v such that v is not picked before, X, is
disjoint from all previously picked sets of edges, and the union of X, and all previously
picked sets is free with respect to &, until we get |V (H)| vertices, then again we can
construct an H-immersion, a contradiction. So Lemma 3.3 implies that one can delete
a bounded number of edges such that each vertex in V(G) — U is contained in the first
entry of an edge-cut in the edge-tangle, and we are done. The case that H has loops
is similar but takes extra work. Lemma 4.4 implies that we cannot further pick many
disjoint set of two edges sharing a common end such that the union of those sets is free,
so that Lemma 3.3 implies that for every vertex, there exists an edge-cut of order at
most one such that this vertex belongs to the first entry of the edge-cut.

Proof of Theorem 4.6. For any positive integers d, h, define £(d, h) = (h+1)((3hd?)4+1 +
dh) and 0(d, h) = 3(2hd?)*+! + 3dh + €.

Let d, h be positive integers. Denote £(d, h) and 6(d, k) by £ and 0, respectively. Let H
be a non-exceptional graph on h vertices with degree sequence (dy,ds, ..., dy) and di = d.
Since there exists no graph on one vertex with maximum degree one, this theorem holds
if d = h = 1. Suppose that (d, h) is a pair of positive integers with d 4+ A minimum such
that this theorem does not hold. That is, there exists a graph G that does not contain
an H-immersion and there exists an edge-tangle £ in G of order at least 6 controlling
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a Ksgp-thorns such that there do not exist C' C E(G) with |C] < &, U C V(GQ) with
U] < h—1 and a cross-free family D C £ — C' such that for every vertex v € V(G) — U,
there exists [A, B] € D of order at most djyj41 — 1 with v € A.

Claim 1: |V(G)| > h and H does not contain an isolated vertex.

Proof of Claim 1: It is clear that |V (G)| > h, for otherwise choosing C' = 0, U = V(G)
and D = ( leads to a contradiction. Suppose that H contains an isolated vertex wu.
Let H' = H — u. Note that the degree sequence of H' is (dy,ds,...,dp—1), and H' is
non-exceptional. Since |[V(G)| > h and G does not contain an H-immersion, G does
not contain an H’-immersion. By the minimality of d + h, there exist C C E(G) with
|IC] < &(d,h —1) < &(d,h), U C V(G) with [U| < (h —1) — 1 and a cross-free family
D C & — C such that for every vertex v € V(G) — U, there exists [A4, B] € D of order at
most dj7j41 — 1 with v € A, a contradiction. O

Claim 2: There do not exist C C E(G) with |C| < & and U C V(G) with |U| < h—1 such
that for every v € V(G) — U, there exists [A,, B,] € € — C of order at most djy4+1 — 1
such that v € A,.

Proof of Claim 2: Suppose to the contrary that there exist C C F(G) with |C| < ¢ and
U C V(G) with |U| < h—1 such that for every v € V(G)—U, there exists [A,, B,] € E-C
of order at most d|7|+1 — 1 such that v € A,. That is, there exists a family D' C £ — C
of edge-cuts of G — C of order at most d|;7j+; — 1 such that for every v € V(G) — U,
there exists [A, B] € D’ such that v € A. In particular, V(G) = U € U4 pjep A- By
Lemma 4.5, there exists a cross-free family D C £ — C of edge-cuts of G — C of order
at most djyj+1 — 1 such that U gep A = Uja, gjep 4 2 V(G) — U. Hence for every
v € V(G) — U, there exists [A, B] € D with v € A, a contradiction. O

For each i € [d], define U; to be a subset of V(G) and define S} to be a collection of
subsets of E(G) such that U; and S} satisfy the following properties.

(i) Forevery S € S/, S consists of d—i+1 edges of G with a common end vg ¢ Ul LU,
and S is disjoint from S’ for every S’ € UZ ! Sy

(11) For every pair of distinct sets S, S’ € S}, we have SNS =0 and vg # ve.
ii) U] 1 US’GS* S is free with respect to &.
)
)

A
—
=
—

(iv) Subject to () (iii), S is maximal.
(V -—{Us.SGS;}.
If there exists k € [d] such that |Uf:1 Uil < {ue V(H) :degy(u) > d—k+ 1}, then
define r to the minimum such k; if there does not exist such k, then \U?Zl Uil > {u €
V(H) : degy(u) > 1} = h since H has no isolated vertex, and we define r = d.

If |U:_, Us| < h, then define U* = |J;_, U;; otherwise, r = d and we define U* to be
a set with U]_l U, CU* C UZ: U; with |U*| = h, where j is the minimum such that
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g:1|Ui| > h. Define §* = {S € |J,_,; 8} : vs € U*}. Note that |S*| = |U*| < h, and
members of S* are pairwise disjoint and (Jgcg- S is free with respect to £. For every
v € V(G), define S, to be the collection of the sets of djy«41 edges of G — Jgeg- S
incident with v, where we define d; = 0 if ¢ > h. Note that S, = () if v is incident with
less than d|y«41 edges.

Claim 3: There exist distinct vi,va, ..., vh_ju~| € V(G) — U* and pairwise disjoint sets
X1, Xo, ..., Xjy_ju+| such that Jge g SUU?:_llU*l X; is free with respect to £, and for each
i€ [h—|U*], X; €Sy,

Proof of Claim 3: There is nothing to prove if |[U*| > h. So we may assume that |U*| < h.

Let S = 8* and let Sy = UveV(G)_U* Sy. For i € [2], let J; be a set such that we
can write S; = {X;; 1 j € Ji}. Let J; = Jy and J3 = 0. So U, U;e - Xij = Uxes- X
is free with respect to £, and X; ; N X, j» = 0 for every distinct pairsb (,7),(i',4") with
1<i<i <2 jeJrfand j € Jj Let ky = |S1| and ka = (d —1)(h — 1) + 1. Let
k = dh. Note that k; = |[U*| < h—1. So k > max{ky, k2} and 0 > 3(2kd)?*! + 3d. Since
every member of S; has size at most d and every member of Sy has size d|y-11 < d, by
Lemma 3.3, either

(I”) there exist Ji,Ji with JF C J/ C J; and |J!/| = k; for ¢« € [2] such that
U?:I UjeJ; X, ; is free with respect to £, and X;; N Xy j» = 0 for every distinct
pairs (2,7), (¢, j") with 1 < <4 <2, j € J/ and j' € J/,, or

(ii’) there exist Z C E(G) with |Z| < (2dk)?*! and integer i* € [2] with |J5| < ky»
such that for every j € J;«, either X;« ;N Z # (), or X;- ; is not free with respect to
E-7Z.

Suppose that (ii’) holds. Define C = Z U Jycg- X. Then |C| < [Z] 4 d|S*] <
(2dk)?*t +dh < €. Since |J5| = |J1| = ki1, i* = 2. So every member X of S; US, disjoint
from C belongs to So = S;« and hence is not free with respect to £ — Z and hence is
not free with respect to £ — C' by Lemma 2.7. By Claim 2, there exists v € V(G) — U*
such that there does not exist [A,, B,] € & — C of order at most djyy-|4+1 — 1 such that
v € Ay, for otherwise choosing C' = C' and U = U* contradicts Claim 2. In particular,
v € V(G) — U* is incident with at least d|y-4+; edges in G — C. Hence there exists
X € 8, C 8, such that every edge in X is incident with v and X N C = (). So X is not
free with respect to £ — C'. Hence there exist Y C X and an edge-cut [4, B] € £ —(CUY)
of G—(CUY) of order less than |X — Y| such that every edge in X —Y has every end in
A. Since every edge in X —Y is incident with v, we have that v € A and [A,B] € £ - C
is an edge-cut of G — C' of order less than |X| = d|y+|41, a contradiction.

So (i) holds. Note that J; = J; = J;. If there exist h — |U*| distinct vertices
V1,02, o, Vp—u=| € V(G) = U* and ji1,ja, ..., jh—ju=| € Jo such that X, ; € S, for
each i € [h — |U*|], then the claim holds.
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So we may assume that there exist at most h — |[U*| — 1 < h — 1 vertices
V1,2, oy Up—|p=|—1 i V(G) — U* such that {X,; : j € J3} C Uh U= 'S,,. Since
|J5] = (d = 1)(h — 1) + 1, there exists j* € [h — |U*| — 1] such that S,,. contains at
least d members of {X ; : j € J5}. Let W be a subset of UXeS,,j*m{ij:jeJé} X of size
d. Note that such a set W exists since members of {X; : j € J5} are pairwise disjoint
and non-empty. Since U?:1 Ujng Xi,; is free with respect to &, WU (Ugeg: 5) Is free
with respect to £. But W is disjoint from (J g s S and consists of d edges incident with
v;+ ¢ Uy, contradicting the maximality of S§. This proves the claim. O

Claim 4: H contains a loop, h > 2 and dy > 2.

Proof of Claim 4: Let Y1,Y5,...,Y|s+| be the members of S* such that |Y;| > [Y3]| for
every 1 < j <k < [S*[. Let Y|s+|4; = X; for every i € [h — [U*[], where X; is defined in
the statement of Claim 3.

We first show that |Y;| > d; for every j € [h]. Suppose to the contrary that there
exists j € [h] with |Y;| < dj. It is clear that |Yj| > djy+|41 > dj when |[U*[+1 < j < h.
So there exists i; € [r] such that Y; € S}. Since Y; € S/, d —i; +1 = [Vj| < dj, so
d—d; +1 < ij. Since |Y;| < d;, |Ud 4+l |f|Ud d+15*| <j-1<{ueV(H):
degy(u) > d—(d—dj +1)+ 1}, s0 d —dj +1 > r > i; by the definition of r, a
contradiction.

So [Yj| > dj for every j € [h]. Hence for every j € [h], there exists Y] C Y; with
|Y/| = d;. Since Y1, Ya, ..., Y}, are pairwise disjoint and U?Zl Y; is free with respect to €
by Claim 3, we know Y7,Y5, ..., Y} are pairwise disjoint and U;L:I Y] is free with respect
to £. If H does not contain a loop, then G contains an H-immersion by Lemma 4.4, a
contradiction.

So H contains a loop. Since H is not exceptional, h > 2 and ds > 2. O

Claim 5: For every v € U*U{v; : 1 < ¢ < h — |U*|}, there exist Z, C E(G) with
|Z,| < (3hd?)¥+ +dh and [A,, B,] € € — Z, of order at most one such that v € A,.

Proof of Claim 5: Let v be a vertex in U* U{v; : 1 <i < h— |U*|}. Let §; = S*U{X;:
1<i<h—|U*}. Let So = {W C E(G) : W consists of two edges of G incident with
v}. Let S5 = {W C E(G) : W counsists of two edges of G sharing at least one common
end u € V(G) — {v}}.

For i € [3], let J; be a set such that S; can be written as {Y; ; : j € J;}. Let J{ = Jj,
Ji =0, and J; = 0. So UL, Ujes: Yiy is free with respect to €. Let ki = |Sy|. Let
ko = dh and let ks = dh. So max{ky, ka,ks} < hd. Note that for every S € U?Zl S;,
|S| < max{d,2} < d since dy > 2. Since § > 3(hd - 3 - d)**! + 3d, by Lemma 3.3, either

(") there exist Ji,J5, J5 with J* C J/ C J; and |J/| = k; for each ¢ € [3] such that
.Y, ; is free with respect to £, and X; ; N X,/ ;» = 0 for all distinct pairs
Uz 1UJEJ 2,7 N
(2,7),(#,7") with 1 <43 < <3, j € J] and j' € J/,, or
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(ii’) there exists Z!, C E(G) with |Z!| < (3hd?)**! and i* € [3] with |J%| < k;« such
that for every j € J;-, either Y;- ;NZ] # 0 or Y;» ; is not free with respect to £ —Z,.

Suppose that (i’) holds. Let S5 = {Y3, : j € J3} and S5 = {Y3; : j € J5}. Let
Xo = Uyesyus, Y- Let D, = 83. Since |J3| = hd, there exists a partition (Dy : u €
(U U{v; : 1 <i < h—|U*}) —{v}) of S} into subsets of size at least d. Note that
each member of D, consists of two edges incident with a vertex in V(G) — {v}, and for
every u € (U* U{v; : 1 < i < h—|U*}) — {v}, each member of D,, consists of two
edges incident with v € V(G) — {u}. Hence G contains an H-immersion by Lemma 4.4,
a contradiction.

Therefore, (ii’) holds. Since k1 = |J{, i* € {2,3}. Let Z, = Z, UJgcs, S- So |Z,] <
(3hd?)HL - dh < €.

If i* = 2, then let u = v; otherwise, let u be a vertex in V(G) — {v} such that there
exists X € S;« such that u is a common end of all edges in X. If there exists at most
one edge of G — Z, incident with u, then there exists [A,, By] € € — Z, of order at
most one such that u € A,. If there exist at least two edges of G — Z, incident with
u, then let W be a set of two edges of G — Z, incident with u, so W &€ S;«. Since W
is disjoint from Z!, W is not free with respect to & — Z,,, so there exists W/ C W and
[Aw, Bw] € € — (Z, UW’) of order less than |W — W'| = 2 — |IW’| such that every edge
in W — W' has every end in Ay . Since u is an end of any edge of W, u € Ay . Note
that [Aw, Bw| € € — Z, has order at most one.

So the claim follows if i* = 2. Hence we may assume that i* = 3. Define U = {v} and
C = Z,. Then for every w € V(G) — U, either w is incident with at most one edge in
G — Z,,or w € V(G) — {v} is a common end of all edges in X for some X € S3. But in
either case, there exists [A,, B,| € £ — Z, of order at most 1 < dy —1 = d|yj41 — 1 such
that w € A, contradicting Claim 2. O

Claim 6: There exists Zy C E(G) with |Zs| < (2hd?)4*! + hd such that for every v €
V(G) = (U*U{v; : 1 <i < h—|U*}), there exists [Ay, By] € € — Zy of order at most
one such that v € A,.

Proof of Claim 6: Let S; = S*U{X;:1<i<h—|U*}. Let So = {W C E(G) : W
consists of two edges of G sharing at least one common end u € V(G) — (U* U{v; : 1 <
i <h—|U*})}. For i € 2], let J; be a set such that S; can be written as {Y; ; : j € J; }.
Let J; = Jy and J; = (. Let ky = |J;| and ky = hd. Note that max{k;, ko} < hd and
|S| < max{d, 2} = d for every S € S; U Sy, since dy > 2. Since 6 > 3(hd -2 - d)**! + 3d
and |Jf| = ki, by Lemma 3.3, either

(”) there exist Ji, J5 with J* C J! C J; and with |J/| = k; for each i € [2] such that the
members of {1 : j € J|}U{Ya; : j € J3} are pairwise disjoint, and [ J7_, Ujes Yi
is free with respect to &, or

(i") there exists Z{ C E(G) with |Z}| < (2hd?)?*! such that for every Y ; € Sa, either
Ys ;N Z, #0, or Ys ; is not free with respect to €& — Z;).
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If (i) holds, then G contains an H-immersion by Lemma 4.4. So (ii’) holds. Let Zy = Z{U
Uyes, Y- Then | Zg| < (2hd?)** ! +hd. For every v € V(G)—(U*U{v; : 1 < i < h—|U*|}),
either v is incident with at most one edge of G — Zj, or there exists W € S, consisting
of two edges of G — Z; incident with v such that W is not free with respect to & — Zj.
For the former, there exists [A,, B,] € £ — Zy of order at most one such that v € A,
and we are done. So we may assume that there exists W € Sy consisting of two edges
of G — Zj incident with v such that W is not free with respect to £ — Zy. Since W is
disjoint from Z{, W is not free with respect to & — Z, so there exists W' C W and
[Aw, Bw] € € — (Zo UW') of order less than [W — W’| = 2 — |IWW/| such that every edge
in W — W' has every end in Ay . Since v is an end of any edge of W, v € Ay . Note that
[Aw, Bw] € € — Zy has order at most one. This proves the claim. O

Define C' = ZoUU,epugu,1<ich(v+|y Zv- S0 |C| < (2hd?)H! +hd+h- ((3hd?) ™ +
dh) < ¢. By Claims 5 and 6, for every v € V(G), there exists [A,, B,] € £ — C of order
at most 1 < d; — 1 such that v € A,. It is a contradiction to Claim 2 by choosing U = {).
This proves the theorem. O

5. Isolating an immersion

The main result of this section is Lemma 5.6 which states that if a graph that does
not contain many edge-disjoint H-immersions has an edge-tangle £ of large order that
controls a large complete graph-thorns, then one can delete a bounded number of edges
to push all H-immersions in the remaining graph into the first entry of an edge-cut
belonging to £. The proof of Lemma 5.6 follows from an induction on the number of
components of H. The main difficulty lies at the base case, namely the case that H is
connected. This base case will be proved in Lemma 5.5.

Now we sketch the proof of Lemma 5.5. Assume that G does not contain k edge-disjoint
H-immersions. Then G does not contain a large graph H’ with |V(H')| = |V(H)| as an
immersion. So Theorem 4.6 implies that one can delete a bounded number of edges
from G such that for every vertex v in the remaining graph not contained in a set U
with |U| < |V(H)| — 1, there exists an edge-cut [A,, B,] in & of small order such that
v € A,. Hence for every H-immersion II in the remaining graph, there exists an edge-cut
[Ar1, Bri| in € of bounded order such that all its branch vertices are contained in U U Apy,
and A contains at least one branch vertex.

Assume that we can further delete a set of edges of bounded size from G to either
decrease |U| or decrease the order of [Ary, Byy| for all H-immersions II. As |U] is bounded,
by repeatedly deleting small sets of edges a bounded number of times, at some point we
will keep decreasing the order of [Ar, Br] for all H-immersions II, so that eventually
[Arr, Brr] will have order 0 for all H-immersions II. It implies that II(H) is contained in
G[An] as H is connected and Ap contains at least one branch vertex. So Lemma 5.5 is
proved.

So it suffices to show that we can further delete a set of edges of bounded size to
either decrease |U| or decrease the order of [Ay, Byy| for all H-immersions II.
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First we show that if we cannot delete a small number of edges to reduce |U|, then
one can find a set 5, of many edges incident with u for every vertex v € U, such that S,
and Sy~ are pairwise disjoint for distinct v/, u” € U, and | J,,c;; Sy is free with respect to
E. This is the purpose of Lemma 5.1 and can be proved by an application of Menger’s
theorem.

We may assume that we cannot delete a small set of edges to decrease |U]|, for otherwise
we are done. So we may assume that those sets S, ’s exist. Then we shall show that we can
delete a bounded number of edges to reduce the order of [Ar, Byy| for all H-immersions
II. This is the purpose of Lemma 5.2. Then Lemma 5.5 follows from repeatedly applying
Lemma 5.2.

Now we sketch the proof of Lemma 5.2. For each H-immersion II = (7y, ), since all
branch vertices of II are contained in Ay UU, for every edge e € E(H) with V(mg(e)) N
U=0,V(rg(e))NAn # 0. We say that G[Ar] “fully realizes” an edge e of H if mg(e) C
G[An]; G[An| “partially realizes” an edge e of H if mg(e) € G[An] but V(g (e)) NAn #
(). Since Aq contains at least one branch vertex, at least one edge of H is fully realized
or partially realized by G[Ap]. This leads to the notion of “shell” defined right above
the statement of Lemma 5.2, which is a collection of subgraphs of H indicating what
the vertices of H whose corresponding branch vertices are contained in U are, what the
edges fully realized by G[Ap] are, and what the edges partially realized by G[Aq] are.
Note that for each partially realized edge e of H, one can find an edge between Ar and
By contained in wg(e).

Hence, if we can find many H-immersions IIy, Iy, ..., where G[Ap,] NII;(H) are pair-

wise edge-disjoint, such that the union of (J S, and the set of edges between A,

uelU
and By, over all ¢ is free, then we can “link” Ethose edges to create k edge-disjoint H-
immersions by using Lemma 4.3 to obtain a contradiction. So it implies that we cannot
find such H-immersions. Then Lemma 3.3 implies one can delete a bounded number of
edges to reduce the order of [Ar, Byy] for all H-immersions II, so that Lemma 5.2 is
proved.

Now we formally prove all results in this section.

Lemma 5.1. For any positive integers h,w, there exists a nonnegative integer £* =
&*(h,w) such that the following holds. Let 6,&,p be positive integers with 0 > & 4+ £* + 1.
Let G be a graph and € an edge-tangle in G of order at least 6. Assume that there exist
Yo C E(G) with |Yo| < &, Uy C V(G) with |Ug| < h—1 and a family Fo C € - Y
of edge-cuts of G — Yy of order less than p. Then there exist U C Uy, a set Z with
Yy C Z C E(G) with |Z] < |Yo| +&*, a family F C € — Z of edge-cuts of G — Z of order
less than p and a collection {S,, : u € U} such that the following hold.

.Uy —UC U[A,B]e.FA and Fo C F.

. For every u € U, S,, consists of w edges of G — Z incident with u.
. Sy NSy =0 for distinct u,u’ € U.

Uucu Su is free with respect to € — Z.

W N
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Proof. Let ag = 0, and for every positive integer 7, let a; = a;_1+2h%w. Define £* = aj,_1.

Let r be an integer with 0 < r < h — 1 such that there exist ¥, C F(G) with Yy C Y,
and |Y;| < |Yo| +ar, U, C Uy with |U,| < |Up| —r and a family F,. C £ — Y, of edge-cuts
of G =Y, of order less than p with Uy — U,. C U[A,B]e}} A and Fy C F,.. Note that such
a number 7 exists as we can choose r = 0. We assume that r is as large as possible.

We shall prove that this lemma is true if we take U = U,., Z = Y, and F = F,. It
suffices to prove the existence of a collection {S,, : u € U,.} satisfying Statements 2-4.

If r > |Up|, then U, = 0, so Statements 2-4 hold. So we may assume that r < |Up|—1 <
h— 2.

Claim 1: There exists a collection {S, : u € U,} of pairwise disjoint sets such that for
every u € U, Sy consists of w edges of G —Y,. incident with u.

Proof of Claim 1: Let U, be a minimal subset of U, such that there exists a collection
{Sy : u € U, — U} of pairwise disjoint sets such that for every u € U, — U}, S,, consists
of w edges incident with u of G — Y, whose every end is in U, — U/. So for every two
distinet u,u’ € U, there exist at most 2w — 1 edges of G — Y, between u,u’ by the
minimality of U/.. Let Y be the set consists of the non-loop edges whose both ends are
in U/. Note that [Y] < (/%) (2w —1) < (h — 1)2(2w — 1). Let ' = G — (Y, UY).

To prove this claim, it suffices to show that there exists a collection {S, : v € U/} of
pairwise disjoint sets such that for every u € U/, S, consists of w edges of G’ incident
with u.

Define H' to be the directed graph such that the following hold.

o V(H’) is the disjoint union of a set @ and a set R, where @ is a copy of U] and R
is a copy of V(G). For each u € U/, we denote the copy of u in @ by u'; for each
v € V(G), we denote the copy of v in R by v'.

o Every edge of H' is from Q to R.

e For every v/ € Q and v' € R with u # v, the number of edges of H' from u' to v’
equals the number of edges of G’ with ends u, v.

e For every v/ € Q and v/ € R with u = v, the number of edges of H' from u' to v’
equals the number of loops of G’ incident with u.

Note that no two distinct vertices in U/ are adjacent in G’. So there exists a bijection g
between F(H’) and the set of edges of G’ incident with U, such that for every edge e of
E(H'), the ends of g(e) are exactly the originals of ends of e. Define H to be the directed
graph obtained from H’ by adding two new vertices s,t and adding w edges from s to
u" and w|U| edges from v’ to t for each v’ € @ and v' € R.

Assume that there exist w|Uj | edge-disjoint directed paths P, Py, ..., Py|y:| in H from
s to t. So every edge of H incident with s belongs to UZU:H{L | P,. Hence for every u' € @,
there exist w edges in Uzw:‘ll]H P; from u’ to R. For each u € U/, define S, = {g(e) : e €
E(UZ”:I[{/‘ P;),e is from u to R}. Then the collection {S, : u € U} consists of pairwise
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disjoint sets, and S, consists of w edges of G’ incident with u for each u € U. So the
claim holds.

Hence we may assume that there do not exist w|U]| edge-disjoint directed paths in H
from s to t. By Menger’s Theorem, there exists X C E(H) with |X| < w|U/| such that
there exists no directed path in H — X from s to ¢t. We assume that |X| is minimum.
Since for each v’ € R, there exist w|U!| > | X| edges from v’ to ¢, we know there exists an
edge in H — X from v’ to t. So X does not contain any edge incident with ¢, for otherwise
removing any edge incident with ¢ from X does not create a directed path from s to ¢,
contradicting the minimality of X. Let T be the subset of @) consisting of the vertices
that can be reached from s by a directed path in H — X. So there exists no directed path
in H— X from T to t. Note that T" # () since there are more than |X| edges incident
with s. Since X does not contain any edge incident with ¢, there exist no directed path
in H— X from T to R. Let X’ = {g(e) : e € E(H — s) N X}. Then X’ contains all the
edges of G’ incident with {u € U : v/ € T}.

Let [A,B]=[{ue U, :v €T}, V(G)—{u e U] : v € T}]. Define Y, ;1 = Y, UYUX',
Ury1 =U,—{u e U] : v € T} and Frpq1 = FrU{[A4, B]}. Then |Y, 11| < |V, |+]Y[+|X'| <
(Yol +ar)+ (h—1)* 2w —1)+w|U}| ~1 < (Yol +a,) + (h—1)2(2w—1)+ (w(h—1)~1) <
Yol + ariy1. And |U,y1| = |U.| — |T| < |Ug| — (r + 1). Note that [A, B] is an edge-cut of
G — Y, 41 of order zero. So F,41 is a family of edge-cuts of G — Y,.11 of order less than p
such that Uy — Upqr = (Uo = Up) U{u € Uy 2w/ € T} € Upar pries,,, A’ Since there are
at most |[Y UX'| < (h—1)22w—1)+ (w(h—1) — 1) < 0 — |Y,| edges of G — Y, incident
with A, [A,B] € £ =Y, by (E1) and (E3). So [A, B] € £ — Y,41. This contradicts the
maximality of . O

Let {S, : u € U, } be a collection mentioned in Claim 1. To prove the claim, it suffices
to prove that UUEUT Sy is free with respect to £ — Y.

Suppose to the contrary that UueUT Sy is not free with respect to £ — Y,.. Then there
exist X C U, cp, Su and [A4, B] € £ — (Y, U X) of order less than (U, ¢y, Su) — X| such
that every edge in (U,cp, Su) — X has every end in A. Note that (U,cp Su) — X # 0
since there exists no edge-cut of order less than 0. Let X’ be the union of X and the set
of edges of G — Y, with one end in A and one end in B. So |X'| < |X|+ |U Sul <
2AU,ep, Sl < 20— Duw.

Define Y11 = Y. U X', Uy = U, — A, and Fry1 = F- U{[A,B]}. So V11| <
Yo [+ X'| < [Yo|+ar+2(h—1)w < [Yo|+a,41. Note that every edge in (U, ¢y Su)—X # 0
has every end in A, so U, N A # . Hence |Uyp11| < |U,| — 1 < |Up| — (r + 1). Since
[A,Bl€ £-Y,, [A,B] € £ —Y,41 is an edge-cut of G — Y;.1; of order 0. So F; C Fr41
and Uy — U,41 C U[A’,B’]e]-‘rﬂ A’. This contradicts the maximality of r and proves the

uelU,

lemma. O

Let G be a graph and S a subgraph of G. We define Sg to be the graph obtained
from S by attaching degq(v) — degg(v) leaves to v, for each v € V(S). So every vertex
in V(SE) — V(S) corresponds to an edge in E(G) — E(S). Note that if e is an edge in
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E(G) — E(S) with both ends u,v in V(S), then e contributes two leaves to Sg;, where
one is adjacent to u and one is adjacent to v. In particular, if e € E(G) — E(S) is a loop
incident with a vertex v in S, then e contributes two leaves adjacent to v in Sg.

Let G and H be graphs, and let S, R be subgraphs of G, H, respectively. We say that
S} realizes R}, if S contains a Rjj-immersion (v, 7) such that my (V(R};) —V(R)) C
V(S%) — V(S) and 7y (V(R)) C V(S).

Let H be a graph. A shell of H is a collection of disjoint connected subgraphs of H such
that every vertex of H is contained in a member of the collection. For any H-immersion
Il = (my,mg) in a graph G, we denote the subgraph U, c g sy 7E(€) UU, ey () Tv (v) Of
G by II(H).

Lemma 5.2. For every connected graph H and for positive integers k,p, &), there ex-
ist integers 0* = 0*(H, k,p,&)),w* = w*(H, k,p,&)),& = & (H, k,p, &) such that the
following holds. Assume that G is a graph that does not contain k edge-disjoint H -
immersions and £ is an edge-tangle in G of order at least 0* controlling a K, -thorns
for some w > w*. If there exist U' C V(G) with |U’'| < |V(H)| -1, Z§ C E(G) with
|Z4| < & and a family F' C € — Z|, of edge-cuts of G — Z, of order less than p such that
for every H-immersion L = (my,wg) in G — Z{;, there exists [A},B}] € F' such that
my(V(H)) CU UA,, then there exist U CU', Z* C E(G) with |Z*| < £* and a family
F* CE—Z" of edge-cuts of G — Z* such that either

1. U C U, every member of F* has order less than |V(H)|p, and for every H-
immersion II = (my,7g) in G — Z*, there exists [A},Bf] € F* such that
mv(V(H)) CUUAY, or

2. every member of F* has order less than p — 1, and for every H-immersion 11 =
(mv,mg) in G — Z*, either there exists [A,B] € & — Z* of order zero such that
II(H) C G[A], or there exists [A}y, Bf] € F* such that v (V(H)) CU U Aj;.

Proof. Let H be a connected graph with degree sequence (dy,ds,...,dp), where h =
|[V(H)|. Let k, p, &, be positive integers. We define the following.

o Let & =& + &5.1, where &5 1 is the number £*(h, kd1) mentioned in Lemma 5.1.
o Let & = (khdy(kh + 2)(kd; + p))kdrp+1,
o Define £* = &y + (2h2dy)"€]], w* = 6k2h%dip + £* and 0* = £* + w* + hp.

Let G be a graph that does not contain k£ edge-disjoint H-immersions, and let £ be
an edge-tangle of order at least #* in G controlling a K,,-thorns « for some w > w*.
Assume there exist U’ C V(G) with |U’'| < |V(H)| — 1, Z) C E(G) with |Zj| < &
and a family 7' C & — Zj of edge-cuts of G — Z{, of order less than p such that for
every H-immersion L = (ny,7g) in G — Z|, there exists [A},B7] € F’ such that
ny(V(H)) CU U A%
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By Lemma 5.1, there exist U C U’, a set Zy with Z) C Zy C E(G) with |Zp| < &, a
family F C £—Z, of edge-cuts of G— Z; of order less than p and a collection {S,, : u € U}
such that the following hold.

e U -UC U[A7B]€FA and F' C F.

e For every u € U, S, consists of kd; edges of G — Z incident with wu.
e S, NS, =0 for distinct u, v’ € U.

o Uueu Su is free with respect to £ — Zj.

We may assume that U is inclusion-wise minimal subject to the conditions above. So for
every u € U, there exists no [A, B] € £ — Zj of order less than p such that u € A, for
otherwise, we may add [A, B] € F and remove u from U.
For any subset Z of F(G), we say an H-immersion IT in G — Z is active (with respect
to Z) if there does not exist [A, B] € £ — Z of order zero such that II(H) C G[A].
Suppose that this lemma does not hold.

Claim 1: G — Z contains an active H-immersion with respect to Zy, and U = U’.

Proof of Claim 1: If G — Zy contains no active H-immersion with respect to Zg, then
Statement 2 of this lemma holds by taking Z* = Zy and F* = (), a contradiction. So
G — Zj contains an active H-immersion with respect to Zj.

Now we suppose that U C U’. Since U' — U C U[A,B]e}‘ A, for each v € U’ — U, there
exists [Ay, By] € F with u € A,. Since the order of £ — Zj is at least hp, we know for
every [A,B] € F, [AUU,cpr—v Aus BN Nyey/—u Bul is an edge-cut of order less than
I[A, B]| + (h — 1)p < hp and hence belongs to £ — Zy by Lemma 2.3. Since for every
H-immersion L = (my,7g) in G—Zy C G—Zy, there exists [Ay, B] € F' C F such that
v (V(H)) CU' U AL, we know 7y (V(H)) CUUALUU,cp_y Au- So Statement 1 of
this lemma follows if we take Z* = Zy and F* = {[AUU, ey Auw, BN Nyeyr—v Bul
[A, B] € F}, a contradiction. O

For any member S of some shell of H and any active H-immersion L = (7wy,7g) in
G — Zy with respect to Zy, we say that an edge-cut [A, B] of G — Zj is useful for L, S if
the following hold.

o [A,B] € £ — Z and the order of [A, B] is less than p.

o my(V(H)) CAUU.

o G[A] realizes SF;.

o For every vertex in A, there exists a path in G[A] — Z from this vertex to an end of
an edge between A and B.

Claim 2: For every active H-immersion L = (wy,7g) in G — Zy with respect to Zy, there
exist a shell Py, of H and [Ay, Br) € € — Zy of order less than p such that {v} € Py, for
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every v € V(H) with my(v) € U, and [AL, Bg] is useful for L, S for every member S of
Pr—{{v}:mv(v) e U}.

Proof of Claim 2: Let L = (my,mg) be an active H-immersion in G — Zy with respect to
Zy. Note that L is an H-immersion in G — Z|, so there exists [Ar, Br] € F' C F such
that 7y (V(H)) CU ' UAL = UU Ap. Since F' C € — Zy and every member of F' is
an edge-cut G — Z, of order less than p, we know [Ar, Br] € £ — Zp is an edge-cut of
G — Zj of order less than p.

Let S’ be the subgraph of H such that V(S’) = {v € V(H) : my(v) € AL} and
E(S") ={e € E(H) : ng(e) C G[AL]}. Let Pr be the shell of H that is the union of
the set {{v}:v € V(H) -V (5')} and the collection consisting of the components of S’.
Since for every u € U, there exists no [A, B] € £ — Zy of order less than p such that
u € A, we know that {{v} :v e V(H) -V (5)} = {{v}:v e V(H),my(v) € U}. Since
Ul < h—1, my(v) ¢ U for some v € V(H), so S’ contains at least one vertex. Then
G[AL){ realizes S, for every member S of Py, — {{v}:v € V(H),my(v) € U}

So there exists [Ar, Br] € £ — Z; satisfying the first three conditions of being useful
for L, S, for every member S of P, — {{v}: v € V(H),my(v) € U}. We further choose
such [Ap, Br] such that the order of [Ay, By| is as small as possible, and subject to
that, Ay is minimal. To show that [Ar, By] is useful for L, S for every member S of
Pr—{{v}:veV(H),my(v) € U}, it suffices to show that for every vertex in Ay, there
exists a path in G[AL] — Zp from this vertex to an end of an edge between Ay, and By.

Since L is active, the order of [Ay, Br] is greater than zero. Suppose that there exists
a vertex in A such that there exists no path in G[Ar] — Zp from this vertex to an
edge between Aj, and By. Then there exists a component C' of G[AL] — Zy such that
there exists no path in G — Zj from V(C) to any edge between Ay and Br. We define
[A7,B7] = [AL — V(C),Br U V(C)]. Since the order of [A},B}] is the same as the
order of [Ar, Br], we know [A}, B}] € £ — Zy by Lemma 2.3. By the minimality of Ay,
V(C) contains 7y (v) for some v € V(H). Since H is connected and C is a component
of G[AL] — Zy, C contains mg(E(H)). So [V(C),V(G) — V(C)] is an edge-cut of G — Zy
of order zero such that C contains mg(E(H)) and hence G[V(C)]{, realizes Hy;. Note
that it implies that 7y (V(H))NU = 0, so {H} is a shell P’ of H with {v} € P’ for each
v € V(H) with 7y (v) € U. In addition, [V(C),V(G) — V(C)] € £ — Zy by Lemma 2.3.
Since the order of [Ar, Br] is greater than 0, it contradicts the minimality of the order
of [Ar,Br]. O

For every shell P of H and every subset D of {v € V(H) : {v} € P} of size at most
|U|, we define the following,.

o Define Hp p to be the graph obtained from the disjoint union of k copies of H by
for each v € D, identifying the k copies of v into a vertex. Note that |V (Hp p)| =
E([V(H)| — |D|) + |D], and for any two (not necessarily distinct) vertices in D, if
there are ¢ edges of H between then, then there are k¢ edges of Hp p between them.



194 C.-H. Liu / Journal of Combinatorial Theory, Series B 151 (2021) 148-222

Note that G contains no Hp p-immersion, for otherwise G contains k edge-disjoint
H-immersions.

o Define Qp p to be the shell of Hp p consisting of {v}, for each v € D, and the
members of P — {{v} : v € D} in each copy of H.

o For each S € Qp p, define Xg = {X : X is the set of edges between Ay, and By, for
some active H-immersion L in G — Zy and some edge-cut [Ar, Br] of G — Zj that is
useful for L, S}. Note that each member of Xs has size at most p.

Define Xy = {Sy, : u € U}. Recall that |Jy ¢, X is free with respect to & — Zo. Define
Xp to be the collection of the 2-element subsets of E(G — Zj) each consisting of two
edges having at least one common end. Define X§ = Xy, ko = |U|, X}, = 0, kg = khd;,
X% =0 and kg = kh for each S € Op p — {{v} : v € D}. Note that |Qp p| < kh.

Claim 3: For every shell P of H and every subset D of {v € V(H) : {v} € P} of size at
most |U|, there exist Zp.p C E(G)— Zy with |Zp p| < &) and S € Qp p—{{v} :v € D}
such that for every X € Xg, either X N Zp p # 0, or X is not free with respect to
E—(ZyU Z’PVD).

Proof of Claim 3: Let P be a shell of H and D a subset of {v € V(H) : {v} € P} of size
at most |U|. Notice that |XJ| = ko. By Lemma 3.3, one of the following holds.

(i) There exist a collection X{ of size ko with XF C X[ C Ay, a collection X} of size
kg = khd, with X}, C X, C X and collections X of size kg = kh with X§ C Xg C
Xs for each S € Qp p — {{v} : v € D} such that XU X5 UUsco, ,—(fo}wen) X5
consists of pairwise disjoint members, and the union of its members is free with
respect to £ — Zj.

(ii) There exist Zp.p C E(G) — Zy with |Zp p| < (khd1(|Qp,p| — |D| + 2)(kd1 +
p))khtrtl < ¢ and S € Qp p — {{v} : v € D} such that for every X € Xg, either
XNZpp#0,or X is not free with respect to & — (Zo U Zp p).

(iii) There exists Zp p C E(G) — Zy with |Zp p| < (khd1(|Qp.p| — |D| + 2)(kd1 +
p))ktPtl < ¢ such that every set of two edges of G — (ZoU Zp p) sharing at least
one common end is not free with respect to & — (Zo U Zp p).

Note that Statement (iii) cannot hold by Lemma 2.18 since § > &y + & + 2. To prove
this claim, it suffices to show that Statement (i) does not hold.

Suppose to the contrary that Statement (i) holds. We shall derive a contradiction by
showing that G contains k edge-disjoint H-immersions.

Let X be the union of the members of X5 U X5 UUgco, ,—({v1wepp) Xs- S0 X is
free with respect to & — Zy, and |X| < hkdy + 2hkdy + kh - kh - p < 4h?k*d;p. Since «
is a K,-thorns controlled by &, there exists a K,,_¢,-thorns o in G — Z; controlled by
& — Zy. Note that w — & > w* — & > %|X|

Suppose that there exist ¥ C X and an edge-cut [A,B] of G — (Zp UY) of order
less than |X| — |Y| such that every edge in X — Y is incident with vertices in A and
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ANV (/(t)) = 0 for some t € V(Ky_g,). By (E1), [A,B] or [B,A]isin £ —(Z,UY), and
hence [A, B] or [B, A] is in £ — Z;. Since X is free with respect to £ — Zy, [A, B] ¢ £ — Zy.
Since £ — Z controls o/, [B, A] ¢ £ — Zj, a contradiction.

Therefore, there do not exist Y C X and an edge-cut [A4, B] of G — (Zy UY') of order
less than | X| — Y] < 2(w* — &) — |V such that every edge in X — Y is incident with
vertices in A and ANV (&/(t)) = 0 for some ¢t € V(Ky—_g,).

For each S € Qp p — {{v} :v € D} and Xg € X%,

e define Lg to be an H-immersion (’/Tg/s),ﬂ'(ES)) in G — Z; such that Xg is the set of
edges between Ay, and Bp., where [AL,, B ] is a useful edge-cut of G — Z; for
Lg, S,

o let (7r$,s’1), 7T(ES’1)) be an Sj;-immersion in G[Ay ] such that m (V(SF;) — V(S)) C
V(G[ALS]E) — Ap, and 7y (V(S)) C AL, and

o let fx, be the injection from V(ST) —V(S) to Xg such that for every z € V(S+) —
V(S), fxs(x) is the edge in Xg contained in ﬂ%s’l)(e), where e is the edge in S}
incident with z.

Define ¢p to be an injection from D to U, and for every v € D, define fé{{u} to be an
injection from the set of edges of Hp p incident with v to the set S, (,), and define fx ,,
to be the injection from V(Hp,D[{v}]EP,D)— {v} to S, (v) such that fx  , (e) = f}({v} (e)
for every e € V(HPvD[{U}])Ep,D —{v} and edge ¢’ of Hp_,D[{v}]EP_’D (so €’ is an edge of
Hp p) incident with e. Note that for every v € D, {v} is a member of Qp p. So for every
S € Op.p, fxs is defined. In addition, kg > |E(Hp p)|, so there exists an injection ¢
from E(Hp,p) to Xp.

For each edge e of Hp p not contained in any member of Qp p, we define the following.

e Say e has one end in 7 € Qp p and one end in S € Op p. Note that S; and S
are not necessarily distinct, and e corresponds to a leaf e; in S;" and a leaf e5 in S,
where ey # es even if S; = S5 or e is a loop. We define W, = {fXS1 (e1), fxs, (e2)}.

o Define W/ = i(e). Note that W/ is a member of Xp,.

o Define {We 1, W2} to be a partition of W, U W/ into two sets of size two each
containing exactly one element in W.,.

Let W be the union of W, 1 UW, 2 over all edges e of Hp p not contained in any member
of Op p. Let W= {W,.1,W.:e € E(Hp p) not contained in any member of Qp p}.
Note that W is a subset of X and W is a partition of W. Let R = {{z} :x € X — W},
and let R* = R UW. Note that R is a partition of X — W and R* is a partition of X.

Recall that there do not exist Y C X and an edge-cut [A4, B] of G — (Zp UY) of order
less than |X| — [Y] < 2(w — &) — [V such that every edge in X — Y is incident with
vertices in A and ANV («/(t)) = 0 for some ¢t € V(Ky_g,). So by Lemma 4.3 (where
the partition mentioned in Lemma 4.3 is taken to be R*), there exists a collection
{T;,:2e X-W}}U{T.,:i€[2],e € E(Hp,p) not contained in any member of Op p}
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of pairwise edge-disjoint connected subgraphs in G — Zj such that z € E(T}) for every
zxe€X —-W,and E(T.;)N X = E(T. ;) NW = W, for each e and i.

Let Qp p = Qpp — {{v} : v € D}. Note that USEQIP,D,XsEXé Xg contains all
edges between USGQ;;7D,XSEXé Arg and ﬂSeQ;D,D,XseA’g Bp,. Suppose there exists an
edge © € X whose every end is in USGQ;,YD,XseXé Aps. Let Y = X — {z}. Hence,
[USGQ%,Dy){SGXé Arg, mSeQ;,’D,XseXg Byr] is an edge-cut of G — (Zp UY) of order 0 <

|X| = [Y] such that every edge in X —Y has every end in Jgco xy, ALs- Note

P.pXsE
that [USEQ;;,D,XseXg AstﬂSeQ’pﬁD,XseXg Br.] € - (ZyUY) by Lemma 2.3. So X is
not free with respect to £ — Zj, a contradiction.

Hence every edge in X has at most one end in USEQ%D
ular, since USGQ;,’D,Xsexg Xs contains all edges between USeQ;,,D,XseXg Ap, and

By..

xsexy ALs. In partic-

. p .
ﬂS€Q%1D,XS€XéBLS, every edge in a member of X}, has every end in ﬂSGQ%,D,XseXé

Therefore, X consists of all edges between USEQ%’D,XsGXé Apg and mSEQ%ﬂD,XseXé Brg,

and some edge whose every end is in [\gc o, Xsex, By, . It follows that each subgraph

P.D>
T, ; does not contain an edge whose every end is in USEQ'p b XsEXL Arg.
Since X is free with respect to & — Zg and Xg/ N Xg» = ) for distinct S', S” € Q% p,

we have A, N Az, = 0 for distinct S’,S” € Qp |, by Lemma 2.17. So the subgraphs
T. ; together with the intersection of the image of 7T](5~S) and G[AL], for each S € Qp p,
define a subgraph of G — Zj containing an Hp p-immersion (my,7g) in G — Zy with
7y (v) = tp(v) for every v € D, a contradiction. This proves the claim. O

Let Z* be the union of Z, and the sets Zp p over all shells P of H and subsets D
of {v e V(H) : {v} € P} of size at most |U| mentioned in Claim 3. Note that there are
at most h'(hdy)" different shells of H, and for each shell P of H, there are at most 2"
different subsets of {v € V(H) : {v} € P}. So |Z*| < & + (2h%dy)hel < €.

Note that we may assume that there exists an active H-immersion in G — Z* with
respect to Z*, for otherwise Statement 2 of this lemma holds by taking F* = ). Note
that every H-immersion in G — Z* is an immersion in G — Zj.

Claim 4: For every active H-immersion L = (ny,7g) in G—Z* with respect to Z*, there
exists [A%, B3] € € — Z* of order less than p — 1 such that my (V(H)) CU U A3

Proof of Claim 4: Let L = (7y,7g) be an active H-immersion in G — Z* with respect
to Z*. So L is an active H-immersion in G — Z; with respect to Zy. By Claim 2,
there exist a shell Py of H and [Ap,Br] € € — Zy of order less than p such that
{v} € Py, for every v € V(H) with 7y (v) € U, and [Ar, By] is useful for L, S for every
member S of Py, — {{v} : mv(v) € U}. Let X be the set of edges of G — Zy between
Ap and Br. So | X| <p—1.Let D ={v e V(H) : ny(v) € U}. So D is a subset of
{veV(H) : {v} € P.} of size at most |U|. Since |U| < |V(H)| — 1, X € Xg for every
member S of Qp, p — {{v}:v € D}.

By Claim 3, either X N Z* # () or X is not free with respect to £ — Z*. If XN Z* #£ 0,
then [Ar, Br] is an edge-cut of G— Z* of order less than its order in G—Zy, so [AL, BL] €
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& — Z* is an edge-cut of G — Z* of order less than p — 1 such that =y (V(H)) CUUAL
and we are done. So we may assume that X N Z* = ().

Hence X is not free with respect to &€ — Z*. So there exist Y C X and [A4, B] €
E —(Z*UY) of order less than | X| — |Y| such that every edge in X — Y has every end
in A. We assume that the order of [A, B] is as small as possible, and subject to that, A
is maximal.

Since [A, B] is an edge-cut of G — Z* of order less than | X| <p—1, [4,B] € £ — Z*.
So we are done if A;, C A.

So we may assume that Ay, Q A. Let A* = AU AL and B* = BN By,. Since every
edge of G — (Z*UY) between Ay, By, is an edge in X — Y, it is not incident with B. So
[A*, B*] is an edge-cut of G — (Z*UY") of order at most the order of [A, B] with A* D A.
Hence [A*,B*] € £ — (Z*UY) by Lemma 2.3. But this contradicts the choice of [A, B].
This proves the claim. 0O

Define F* = {[A},Bj] : L is an active H-immersion in G — Z* with respect to Z*},
where [A}, Bf] is the edge-cut mentioned in Claim 4. Then Statement 2 of this lemma
follows. O

Lemma 5.3. For every connected graph H and for positive integers k,p,&, there exist
integers 0* = 0"(H,k,p,§),w* = w*(H,k,p,§),&" = & (H, k,p, &), p* = p*(H,k,p,¢)
such that the following holds. Assume that G is a graph that does mot contain k edge-
disjoint H-immersions and &£ is an edge-tangle of G of order at least 0* controlling a
K ,-thorns for some w > w*. If there exist U’ C V(G) with |U'| < |V(H)|-1, Z C E(G)
with |Z] < & and a family F' C & — Z of edge-cuts of G — Z of order less than p such
that for every H-immersion L = (my,mg) in G— Z, there exists [A}, B} ] € F' such that
my(V(H)) CU UAL, then there exist U CU', Z* C E(G) with |Z*| < £* and a family
F*CE—Z" of edge-cuts of G — Z* such that either

1. U Cc U’, every member of F* has order less than p*, and for every H-immersion
Il = (wy,7g) in G — Z*, there exists [Af, Bi| € F* such that my (V(H)) C U U Af,
or

2. for every H-immersion Il in G — Z*, there exists [A, B] € £ — Z* of order zero such
that II(H) C G[A].

Proof. Let H be a connected graph and k, p, £ be positive integers. Let h = |V (H)|. We
define the following.

o Let g =&, 0y =0 and wg = 0.

o For every positive integer ¢ with 1 < ¢ < p, define §; = 0;,_1+052(H, k,p—i+1,§_1),
w; = wi—1 +ws2(H,k,p—i+1,§ 1), and & = &o(H, k,p — i+ 1,§_1), where
05.0,ws.2,&5 5 are the numbers 0%, w*, £* mentioned in Lemma 5.2, respectively.

o Define 0* =30 6;,, w* =30 w;, & =" & and p* = hp.
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Let G be a graph that does not contain k edge-disjoint H-immersions, and let £ be an
edge-tangle of G of order at least 6* controlling a K,,-thorns for some w > w*. Assume
that there exist U’ C V(G) with |U’| < |V(H)| -1, Z C E(G) with |Z] < £ and a family
F' C & — Z of edge-cuts of G — Z of order less than p such that for every H-immersion
L = (my,7g) in G — Z, there exists [A}, B;] € F' such that ny(V(H)) CU' U A%.

Let Zy = Z and Fy = F'. Let r be an integer with 0 < r < p — 1 such that there
exist a set Z, C E(G) with |Z,.| < &, and a family F,. C £ — Z,. of edge-cuts of G — Z,,
of order less than p — r such that for every H-immersion II = (7my,7g) in G — Z,, there
exists [A, B] € F, such that my(V(H)) C U’ U A. Note that such an integer r exists as
r = 0 is a candidate. We assume that r is as large as possible.

Applying Lemma 5.2 by taking (H,k,p, &, U’, 2, F') = (H,k,p — &, U, Z,, Fp),
there exist U C U’, Z* C E(G) with |Z*| < &1 and a family F* C £ — Z* of edge-cuts
of G — Z* such that either

(i) U C U’, every member of F* has order less than h-(p—r), and for every H-immersion
Il = (ry,7g) in G — Z*, there exists [A, B] € F* such that my(V(H)) CUUA, or

(ii) every member of F* has order less than p — r — 1 and for every H-immersion II =
(my,mg) in G — Z*, either there exists [A,B] € £ — Z* of order zero such that
TI(H) C G[A], or there exists [Af7, Bfj] € F* such that my (V(H)) C U U Af.

If (i) holds, then since &* > &1 and p* > h(p —r), Statement 1 of this lemma holds.
So we may assume that (ii) holds.

Assume that r = p — 1. Since there exists no edge-cut of order less than zero, F* = ().
So for every H-immersion IT in G — Z*, there exists [A, B] € £ — Z* of order zero such
that II(H) C G[A]. Hence Statement 2 of this lemma holds.

So we may assume that r < p—2. Define Z,,1 = Z*, and define F,1; = F*U{[A, B] €
E—7*:[A, B] is an edge-cut of G — Z* of order zero}. Since r < p— 2, every member of
Fri1 has order less than p — r — 1. This contradicts the maximality of r and completes
the proof. O

Lemma 5.4. For every connected graph H on at least two vertices and for every positive
integer k, there exist integers 0 = O(H, k), w = w(H,k),§ = &(H, k) with 0 > w + ¢
such that the following holds. If G is a graph that does not contain k edge-disjoint H -
immersions and £ is an edge-tangle in G of order at least 0 controlling a K, -thorns for
some w' > w, then there exist Z C E(G) with |Z| < & and [A, B] € £ — Z of order zero
such that G[A] contains all H-immersions in G — Z.

Proof. Let H be a connected graph with degree sequence (di,ds,...,dy), where h =
|[V(H)| > 2. Let k be a positive integer. We define the following.

o Let g = 046(kdy,h) and let & = £4.6(kdy, h), where 6, 6 and &, 5 are the numbers 0
and & mentioned in Theorem 4.6, respectively.
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e Let po = kdih and wg = 3kd;h.

o For every positive integer i, let 8; = 0,1 +65 5(H, k,p;i—1,&i-1), w; = w5 3(H, k,p;—_1,
&71), & = 55.3(H7k7pi717§i71> and p; = ps.s(Hak,Pifl,fifl), where 05 3, ws 3,853
and ps.3 are the numbers 0%, w*, £* and p* mentioned in Lemma 5.3, respectively.

e Define £ = Z?ZO&-, w=wp+E&and § =0, +w+§+27=0pi.

Let G be a graph that does not contain k edge-disjoint H-immersions, and let £ be an
edge-tangle of order at least 6 in G controlling a K, -thorns « for some w’ > w. We may
assume that k& > 2, for otherwise the lemma holds by choosing Z = 0.

Define Hj, to be the graph obtained from H by duplicating each edge k times. Note
that Hj is a graph on h vertices with maximum degree kd;. Since h > 2 and H is
connected, dy > 1. So Hy, contains at least two vertices of degree at least k£ > 2 and hence
is not an exceptional graph. Since G' does not contain k edge-disjoint H-immersions,
G does not contain an Hy-immersion. By Theorem 4.6, there exist Zy C E(G) with
|Zo| < &0, Ug C V(G) with |Up| < h—1 and a family Fj; C € — Zj of edge-cuts such that
for each v € V(G) — Uy, there exists [A,, By] € F} of order less than kd; with v € A,.

For every H-immersion L=(7y,mg) in G—Zj, define [AE’B}:]:[U'UGV(H),WV(U)QUOAWV(’U)7
oev (i),my (0)¢Us Brv (v)]- Note that each [A7, B7] has order less than kdih and hence
belongs to & — Zy by Lemma 2.3. Define Fy = {[A},Bj] : L is an H-immersion in
G — Zp} to be a collection of edge-cuts of G — Zy. Note that for every H-immersion
L= (ry,mg) in G —Zy, nv(V(H)) CUyU Aj.

Let r be an integer with 0 < r < h — 1 such that there exist U, C V(G) with
|U.| <h—-1-r, Z. C E(G) with |Z,| <&, and a family F,, C £ — Z, of edge-cuts of
G — Z, of order less than p, such that for every H-immersion L = (7y,7g) in G — Z,,
there exists [A7, B} ] € F, such that my (V(H)) C U, U A’.. Note that such an integer r
exists since r = 0 is a candidate. We assume that r is as large as possible.

Apply Lemma 5.3 by taking (H,k,p,&, U, Z, F') = (H,k,pr, &, Uy, Z, F,), there
exist U C U,, Z* C E(G) with |Z*| < &-41 and a family F* C £ — Z* of edge-cuts of
G — Z* such that either

(i) U C U,, every member of F* has order less than p,11, and for every H-immersion
Il = (wy,7g) in G — Z*, there exists [Af, Bfy] € F* such that my (V(H)) CUU A},
or

(ii) for every H-immersion IT in G — Z*, there exists [A}}, Bfj] € £ — Z* of order zero
such that II(H) C G[A}].

We first suppose that (i) holds. If » = h — 1, then U, = @, so (i) does not hold, a
contradiction. So r < h — 2. But it is a contradiction to the maximality of r by defining
Ury1=U, Zpy1 = Z* and Fry1 = F*.

Hence (i) does not hold. So (ii) holds. Let [A, B] = [J, A}, B], where the union
and intersection are over all H-immersions L in G — Z* and each [A}, B} ] is the member
of £ — Z* mentioned in (ii). Note that [A, B] has order zero. So [A,B] € £ — Z* by
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Lemma 2.3. Note that for every H-immersion II in G — Z*, II(H) C G[A]. Then this
lemma follows by taking Z = Z*. O

Now we drop the requirement of the number of vertices of H from Lemma 5.4.

Lemma 5.5. For every connected graph H and for every positive integer k, there exist
integers 0 = O(H, k), w = w(H,k),§ = £(H, k) with 8 > w+ £ such that the following
holds. If G is a graph that does not contain k edge-disjoint H-immersions and £ is an
edge-tangle in G of order at least 8 controlling a K, -thorns for some w' > w, then there
exist Z C E(G) with |Z| < & and [A, B] € £ — Z of order zero such that G[A] contains
all H-immersions in G — Z.

Proof. Let H be a connected graph and let k be a positive integer. By Lemma 5.4, we
may assume |V (H)| = 1. Note that we may assume |E(H)| > 1, for otherwise every graph
on at least one vertex contains arbitrarily many edge-disjoint H-immersions. Hence H
is a one-vertex graph with at least one loop. Let H' be the graph obtained from H by
subdividing one edge of H once.

Define £ = & 4(H k) + (k— 1)(K|E(H)| - 1), w = w5 4(H', k) and 0 = 05 ,(H', k) +
w~+E&, where &4, w5 4, 05 4 are the numbers &, w, # mentioned in Lemma 5.4, respectively.

Let G be a graph that does not contain k edge-disjoint H-immersions and £ an edge-
tangle in G of order at least 6 controlling a K,,/-thorns for some w’ > w. Since G does not
contain k edge-disjoint H-immersions, no vertex of G is incident with at least k|E(H)|
loops, and there are at most k — 1 vertices of G incident with at least |E(H)| loops.
Hence there exists Zy C E(G) with |Zy| < (k— 1)(k|E(H)| — 1) such that no vertex in
G — Zy is incident with at least |[E(H)| loops in G — Zj.

Since G does not contain k edge-disjoint H-immersions, G does not contain k edge-
disjoint H’-immersions. By Lemma 5.4, there exist Z' C E(G) with |Z'| < &.4(H', k)
and [A, B] € £ — Z' of order zero such that G[A] contains all H'-immersions in G — Z'.
Let Z=2ZyUZ'. So |Z| <& and [A, B] € £ — Z is an edge-cut of G — Z of order zero.

Suppose that there exists an H-immersion II in G — Z such that II(H) ¢ G[A]. Since
H is connected, II(H) C G[B]. So II(H) does not contain an H'-immersion. Hence I1(H)
consists of one vertex and |E(H)| loops. But no vertex in G — Z is incident with at least
|E(H)| loops in G — Z, a contradiction. This proves the lemma. 0O

The following is the main result of this section, which says that the connectivity of
the graph H in Lemma 5.5 can be dropped.

Lemma 5.6. For every graph H and for every positive integer k, there exist integers
0 =0(H,k),w=w(Hk),&§=¢&H,E) with > w+ & such that the following holds. If G
is a graph that does not contain k edge-disjoint H-immersions and £ is an edge-tangle
in G of order at least 6 controlling a K./ -thorns for some w' > w, then there ewist
Z C E(GQ) with |Z| <& and [A,B] € £ — Z of order zero in G — Z such that G[B] — Z
contains no H-immersion.
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Proof. Let H be a graph and let k be a positive integer. Let p be the number of compo-
nents of H. We shall prove this lemma by induction on p. When p = 1, this lemma holds
by taking 0, w, £ to be the numbers 65 5(H, k), ws 5(H, k), &5 5 (H, k), where 05 5, w5 5,&5 5
are the integers 6, w, £ mentioned in Lemma 5.5. So we may assume that p > 2 and the
lemma holds for every graph with less than p components.

Define F; to be the set of graphs that can be obtained from H by adding an edge
between different components. Define F5 to be the set of graphs that can be obtained
from H by subdividing an edge and adding an edge between this new vertex and another
component of H. Define F3 to be the set of graphs that can be obtained from H by
subdividing two edges in different components and either adding an edge between those
two new vertices or identifying the two new vertices. Define F; to be the set of graphs
that can be obtained from H by subdividing an edge and identify this new vertex with
a vertex in another component. Let F = F; U Fo U F3 U Fy. Note that |F| < |[V(H)|? +
|E(H)||V(H)|+2|E(H)|?*+|E(H)||V(H)| <5(|V(H)|*+|E(H)?). Since every graph in
F contains less than p components, by the induction hypothesis, for every graph F' € F,
there exist integers 0(F, k), w(F, k), &(F, k) such that the lemma holds.

Define w(H, k) = Y pcrw(F k), E(H, k) = > per E(F k), and 0(H, k) = w(H, k) +
§(H, k) + 3 per0(F, k). We shall prove that the numbers 0(H, k), w(H, k) and £(H, k)
satisfy the lemma. Let § = 0(H, k), w = w(H, k) and £ = {(H, k).

Let G be a graph that does not contain k edge-disjoint H-immersions and £ an edge-
tangle in G of order at least 6 controlling a K,,/-thorns for some w’ > w. Note that for
every F' € F and every Z C F(QG), any subgraph of G — Z containing an F-immersion
contains an H-immersion. So for every F' € F, G does not contain k edge-disjoint F-
immersions. By the induction hypothesis, for every F € F, there exist Zr € E(G) with
|Zp| < &(F,k) and [Ap, Bp] € € — Zp of order zero in G — Zp such that G[Bp] — Zp
contains no F-immersion. Define Z = Uy Zr and [C, D] = [Upcr Ar,\per Brl. So
[C, D] has order zero in G — Z and G[D] — Z contains no F-immersion for each F € F.
Since [C, D] has order zero, [C, D] € £ — Z by Lemma 2.3. Define [A, B] to be the edge-
cut of G — Z of order zero such that [4, B] € £ —Z and C' C A, and subject to those, A is
maximal. Then the maximality of A implies that G[B] — Z is connected by Lemma 2.3.

Suppose that G[B] — Z contains an H-immersion. Then for each ¢ € [p], G[B]— Z con-
tains an H;-immersion II; = (ﬂ'g), Wg)), where H; is the i-th component of H, such that
the images of 71'9), e 77‘(})) are pairwise disjoint and the images of WS), e 77(;) are pairwise
edge-disjoint. If there exist distinct 4, j € [p] such that V (IL;(H;)) NV (I1;(H;)) # 0, then
G[B] — Z contains an F’-immersion for some F’ € F3 U F4 C F, a contradiction. Since
G[B] — Z is connected, there exist distinct ¢, € [p] and a path P in G[B] — Z of length
at least one from V (IL;(H;)) to V(IL;(H;)) internally disjoint from | J,_, V(IL,(H;)). But
it implies that G[B] — Z contains an F’-immersion for some F' € F; UF, UF3 C F, a

contradiction. Therefore, G[B] — Z contains no H-immersion. 0O
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6. Edge-tangles in 4-edge-connected graphs

A m x n grid is the graph with vertex-set {1,2,...,n} x {1,2,...,m} and two vertices
(z,y), (2',y) are adjacent if and only if |z — 2’| 4+ |y — ¢’| = 1. For every i € [m], the i-th
row of a m x n grid is the subgraph induced by {(x,%) : « € [n]}. For every j € [n], the
j-th column of a m x n grid is the subgraph induced by {(j,v) : y € [m]}.

For every positive integer r, the diagonal vertices of the r x 2r wall are the vertices
((2i—1,4):1<i<r}

Lemma 6.1 (/1, Theorem (1.5)]). For every g > 1, there exists b > 0 such that the
following holds. Let (my,mg) be a wall-subdivision in a graph G, and let S be a subset of
the image of wy of the diagonal vertices of the wall such that for every pair of distinct
vertices x,y in S, G contains four edge-disjoint paths from x toy. If |S| > b, then there
exists a g X g grid-immersion (7{,,7) in G such that the image of 7}, is contained in

S.

In fact, in [1], Chudnovsky et al. proved that the grid-immersion (7{,, 7%;) mentioned
in Lemma 6.1 is a “strong immersion.” We omit the definition of strong immersions as
we do not need this notion in the rest of the paper. But we remark that every H-strong
immersion is an H-immersion. On the other hand, the following lemma shows that if
we do not require (7, 7) to be a strong immersion, we can strengthen Lemma 6.1
by showing that the mentioned wall-subdivision (7y,7g) can be replaced by a wall-
immersion.

Lemma 6.2. For every g > 1, there exists b > 0 such that the following holds. Let (wy,7g)
be a wall-immersion in a graph G, and let S be a subset of the image of wy of the diagonal
vertices of the wall such that for every pair of distinct vertices x,y in S, G contains four
edge-disjoint paths from x to y. If |S| > b, then there exists a g X g grid-immersion
(7i,, ) in G such that the image of w|, is contained in S.

Proof. Let g be an integer with ¢ > 1. Define b to be the number b mentioned in
Lemma 6.1.

Let G be a graph and let W be a wall such that (7w, 7g) is a W-immersion in G. Let
S be a subset of the image of 7y of the diagonal vertices of W. Assume that |S| > b,
and for every pair of distinct vertices x,y in S, G contains four edge-disjoint paths from
x to y.

Since W is simple, mg(e) does not contain any loop of G for every e € E(W). In
addition, for every pair of distinct vertices x,y in S, any path from z to y does not
contain any loop. So we may assume that G is loopless by deleting all loops of G.

Let G’ be the graph obtained from G by subdividing every edge once. Let H be the
graph obtained from L(G") by for each v € V(G) C V(G'), adding a vertex u, adjacent
to every vertex in cl(v) in G’. Then it is clear that H admits a W-subdivision (7{,, 7%;)
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such that {}, () = Ury (1) for every @ € V(W). In particular, 7, (" (5)) = {us : s € S}.
Note that since G is loopless, for every edge e of G with ends x,y, there exists an edge
in H with one end in V(cl(z)) and one end in V(cl(y)), and we also denote this edge in
H as e. Since every wall does not contain a loop, the image of 7% of each edge of W is
path in H.

For every pair of distinct vertices x,y of S, there exist four edge-disjoint paths
Py, Py, P3, Py in G from x to y, so there exist four paths Q1,Q2,Q3,Q4 in H from u,
to uy such that E(Q;) contains E(P;) for 1 <14 < 4. If we choose those paths Q1, ..., Q4
such that the sum of their length is minimum, then Q1, ..., Q4 are pairwise edge-disjoint.

Therefore, by Lemma 6.1, there exists a g x g grid-immersion (7{/,7%) in H such that

the image of 7{/ is contained in {u, : s € S}.

Note that if for every v € V(G), we identify the vertices in {u,} Ucl(v) into a vertex
and delete all resulting loops, then we obtain G. By the same procedure, we know there
exists a g x g wall-immersion (7{,, 7};) in G such that the image of 7, is {s € S : u, is

in the image of m{/}. This proves the lemma. 0O

Recall that every large wall has a natural edge-tangle in it by Lemma 2.13, and every
immersion induces an edge-tangle by Lemma 2.10. The following lemma shows that every
graph with no edge-cut of order three but with an edge-tangle induced by an immersion
of a large wall has an edge-tangle controlling a large complete graph-thorns.

Lemma 6.3. For any positive integers 0 and t, there exists a positive integer w = w(6,t)
with w > 6 such that the following holds. If G is a graph with no edge-cut of order three,
and £ is an edge-tangle in G of order w induced by a 2w X 4w wall-immersion and the
natural tangle of order w in the 2w x 4w wall, then there exists an edge-tangle &' C &€ of
order at least 0 in G controlling a K;-thorns.

Proof. Let 6 and ¢ be positive integers. Let 6’ = 6 +t. Let b be the number mentioned in
Lemma 6.2 by taking g = 46’. Define w = b+2. Note that w > (40")2+2 > 6’ +2 > 6+2.

Denote the 2w x 4w wall by W and denote the 46’ x 46’ grid by R. Let S be the set of
diagonal vertices of W not contained in the first and the last column of W. So |S| > b.
Let G be a graph with no edge-cut of order three, and let £ be an edge-tangle in G of
order w induced by a W-immersion (7y,7g) in G and the natural edge-tangle in W of
order w. By Lemma 2.14, for every edge-cut [A, B] of G of order less than w, [4,B] € £
if and only if B contains the image of 7y of all vertices of a column of W.

Claim 1: For any two vertices x,y in my(S), there exist four edge-disjoint paths in G
between x and y.

Proof of Claim 1: Let z,y € my(S). So there exist z/,y’ € S such that z = 7y (2)
and y = 7y (y'). Since 2’ and y’ are diagonal vertices in W not belong to the first and
last column of W, there exist three edge-disjoint paths in W from z’ to y’. Hence there
exist three edge-disjoint paths in G from x to y. Suppose that there do not exist four
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edge-disjoint paths in G from x to y. Then there exists an edge-cut [A, B] of G of order
at most three such that x € A and y € B. Since there are three edge-disjoint paths in G
from z to y, the order of [A, B] is exactly three, contradiction that G has no edge-cut of
order three. 0O

By Lemma 6.2 and Claim 1, G admits an R-immersion (7{,, 7};) such that ={, (V(R))
is contained in 7y (S). Define £’ to be the collection of all edge-cuts [4, B] of G of order
less than 6’ such that B contains the image of 7{, of all vertices of a row of R.

A wall that is a subgraph of R is canonical if every its row is a subgraph of a row
of R and every its column is a subgraph of the union of two consecutive columns of R.
Note that for every canonical 26" x 40" wall W’ and for every [A, B] € &', B contains the
image of 7{, of all vertices of a row of W', so B intersects the image of 7{, of vertices in
at least ' columuns of W'.

Since R contains a canonical 20’ x 46’ wall W* as a subgraph, for every [A, B] € &,
B intersects the image of 7{, of vertices in at least ' columns of W*. By Lemma 2.14,
&’ is the edge-tangle in G of order 6’ > 6 induced by an W*-immersion and the nature
edge-tangle in W* of order #'.

For every ¢ with 1 < i < ¢ < ¢, define a(v;) to be the union of the image of 7',
of the edges in the i-th column and the edges in the i-th row of R, where we write
V(K:) ={v; : 1 < j <t}. So v is a K;-thorns.

We claim that &’ controls a. Suppose to the contrary that there exist [4, B] € &’
with order less than ¢t and v € V(K}) such that V(a(v)) N B = 0. Since [A,B] € &', B
contains the image of 7y, of all vertices of a row of R. Since a(v) intersects the image of
w1, of each row, BNV (a(v)) # 0, a contradiction. Hence £’ controls a Ki-thorns .

It suffices to prove that & C & to complete the proof. Let [A, B] € £’. So the order
of [A, B] is less than ¢’. Since 7{,(V(R)) C my(S) and B contains the image of 7{, of all
vertices of a row of R, we know B contains at least 6’ vertices in 7y (S). Since different
vertices in S belong to different columns of W, B intersects the image of my of vertices
in at least 6’ columns of W. Since 6’ < w, [A, B] € £ by Lemma 2.14. This proves that
&Cé o

The following theorem is the main result of this section.

Theorem 6.4. For any positive integers k and 6 with 6 > k, there exists a positive integer
w = w(k,0) such that if G is a graph with no edge-cut of order three, and £ is an edge-
tangle in G of order at least w, then & controls a Ky-thorns, where Ey is the edge-tangle
in G of order 0 such that £ C E.

Proof. Let k and 6 be positive integers with 6 > k. Note that § > 2. Let wy; = wg.3(6, k),
where wg 5 is the integer w mentioned in Lemma 6.3. Note that w; > 6 > 2 by Lemma 6.3.
Define w = ws. 16(w1, k), where ws 16 is the integer w mentioned in Lemma 2.16.

For every integer ¢t and for every edge-tangle £ in a graph of order at least t, let & be
the edge-tangle in the same graph of order ¢ such that & C £.
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Let G be a graph with no edge-cut of order three, and let £ be an edge-tangle in G
of order at least w. By Lemma 2.16, either

(i) there exists v € V(G) incident with at least k edges in G such that v € B for every
[A,B] € &,,, or

(ii) &, is induced by a 2wy x 4w; wall-immersion and the natural edge-tangle of order
w1 in the 2wy x 4w, wall.

We first assume that (i) holds. Define « to be a Kj-thorns such that «(h) is an edge of
G incident with v for each h € V(K}). We shall prove that & controls «. Let [A, B] € &
with order less than k. Since 6 < wy, [4, B] € &,,. Hence, v € BNV (a(h)) for every
h € V(K}). Therefore, & controls a Kg-thorns.

So we may assume that (ii) holds. That is, &,, is induced by a 2w; x 4w; wall-
immersion and the natural edge-tangle of order w; in the 2w x 4w, wall. By Lemma, 6.3,
there exists an edge-tangle & C &, of order at least § in G controlling a Kj-thorns.
Therefore, & = &) controls a Kj-thorns. O

7. Erdés-Poésa property

We say that a graph G is nearly 3-cut free if |V(G)| > 2, G is connected and for every
edge-cut of G of order three, the edges between A and B are parallel with the same ends.

Lemma 7.1. If G is either a nearly 3-cut free graph or a graph with |V(G)| = 1, then
there exist a tree T and a partition {X; : t € V(T)} of V(G) such that the following
hold.

1. For every t € V(T), either | X;| = 1 or G[X;] does not have an edge-cut of order
three.

2. If there is an edge of G with one end in X, and one end in X, for some distinct
t1,to € V(T), then t1 is adjacent to ty in T.

3. For every edge tity of T, there are exactly three edges with one end in X;, and one
end in Xy,, and those edges are parallel with the same ends.

Proof. We prove this lemma by induction on |V(G)|. If either G does not have an edge-
cut of order three or G has only one vertex, then we are done by taking the tree on one
vertex and the partition of V(G) with one part. This proves the base case and we may
assume that |V(G)| > 2 and the lemma holds for every nearly 3-cut free graph on less
than |V(G)| vertices. And we may assume that there exists an edge-cut [4, B] of G of
order three. Since G is nearly 3-cut free with |V (G)| > 2, the edges between A and B
are three parallel edges with the same ends u,v, say u € A and v € B.

Suppose that |A| > 2 and G[A4] is not nearly 3-cut free. Then there exists an edge-cut
[A", B'] of G[A] of order zero or three such that either there is no edge between A’ and
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B’, or the edges between A’, B’ are not parallel with the same ends. By symmetry, we
may assume that u € B’. So [A’, B’U B] is an edge-cut of G such that the edges between
A’, B'U B are the edges between A’, B’. Since G is nearly 3-cut free, there is at least one
edge between A’, B’ U B, and the edges between A’, B’ U B are parallel with the same
ends. Therefore, there is at least one edge between A’, B’, and the edges between A’, B’
are parallel with the same ends, a contradiction.

Hence either |A| = 1 or G[A] is nearly 3-cut free. Similarly, either |B| = 1 or G[B]
is nearly 3-cut free. By the induction hypothesis, there exist trees T4, Tg, a partition
{Y; : t € V(Ta)} of A and a partition {Z; : t € V(Tg)} of B satisfying the three
properties mentioned in the lemma. Let ¢, € V(T4) and t, € V(T) be the vertices
such that v € X;, and v € X, . Define T to be the tree obtained from the union of T4
and Tg by adding the edge t,t,. For every t € V(T), define X; = Y; if t € V(T4), and
X, = Z,if t € V(Tg). Then T and the partition {X; : ¢t € V(T)} of V(G) satisty the
three properties mentioned in the lemma. O

Now we are ready to address the Erdés-Posa property. The purpose of Lemma 7.3 is to
deal with the main difficulty of the proof of Theorem 1.1. Lemma 7.3 implies Theorem 1.1
for the case when H has no isolated vertices and G is nearly 3-cut free.

We give the intuition of the statement of Lemma 7.3 and sketch its proof. We shall
prove that given a nearly 3-cut free graph G, if G does not contain k edge-disjoint H-
immersions, then we can hit all H-immersions in G by a set of edges with bounded size.
We assume that H is connected in the proof sketch, as the case that H is disconnected
follows from a relatively easier argument by (more or less) induction on the number
of components of H. We shall prove it by induction on k, and assume that G does not
contain k edge-disjoint H-immersions. Note that as long as there exist an edge-cut [A, B]
of G, a hitting set of H-immersions of G[A] and a hitting set of H-immersions of G[B],
we can obtain a hitting set of H-immersions of G by taking the union of those two
hitting sets together with all edges between A, B, since H is connected. So there is a
win if there exists an edge-cut [A, B] of G of small order such that each G[A] and G[B]
has a hitting set of small size. If both G[A] and G[B] contain H-immersions, then each
of G[A] and G[B] does not contain k — 1 edge-disjoint H-immersions, so we expect to
obtain hitting sets of H-immersions in G[A] and G[B] by induction on k. However, the
induction does not apply, as G[A] and G[B] might not be nearly 3-cut free. So instead
of considering G[A] = G — B and G[B] = G — A, we consider the graph G4 obtained
from G by contracting B and the graph Gp obtained from G by contracting A. Note
that G 4 and Gp are nearly 3-cut free. But contracting a subset of V(G) can create more
H-immersions. So we should treat those new vertices obtained by contractions as special
vertices. This is the purpose of the set S and function « stated in Lemma 7.3. It can be
helpful (though not completely true) to think that each vertex v in S corresponds to a
subset of vertices that induces a subgraph that contains v(v) edge-disjoint H-immersions.
This setting allows us to apply induction on k — > _¢7(v) for G4 and Gp. In addition,
each of those special vertices is obtained by contracting one side of an edge-cut, so its
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degree equals the order of the edge-cut. As we will only contract the sides of edge-cuts
of bounded order, the degree of those special vertices in S is bounded. Since H has no
isolated vertices, each H-immersion in G intersecting S must intersect an edge incident
with a vertex in S. Hence if we can hit all H-immersions in G — S by a set of edges of
bounded size, then we can hit all H-immersions in G by a set of edges of bounded size
by further including all edges incident with S, as long as |S| is bounded. Indeed, |S| is
bounded by 7 . ¢7v(v).

Further intuition and proof sketch of Lemma 7.3 will be stated after we prove the
following easy lemma which is the base case of Lemma 7.3.

Lemma 7.2. For every connected graph H that has exactly one edge and every function
g: N x (NU{0}) = NU{0}, there exists a function f : N x (N U{0}) - N U {0}
such that for every graph G, every positive integer k, every S C V(G) and every function
v :S = N, if S does not contain any verter of degree at least g(k, ), g7 (v)), then either
G — S contains k — ) g7 (v) edge-disjoint H-immersions, or there exists Z C E(G)
with |Z| < f(k,>,cg7(v)) such that G — Z does not contain an H-immersion.

Proof. Let H be a connected graph that has exactly one edge, and let g : N x (NU{0}) —
N U {0} be a function. Note that H is either K5 or the one-vertex graph with one loop.
It was shown in [2, Chapter 9, Exercise 6] that there exists a function h : N — N such
that for every simple graph G, either G contains k edge-disjoint cycles, or there exists
Z C E(G) with |Z| < h(k) such that G — Z has no cycle. Define f to be the function
such that f(x,y) = h(z + yg(z,y)) + 2(x + yg(z,y))? for any x € N and y € N U {0}.

Let G be a graph, k a positive integer, S a subset of V(G) and v : S — N a function
such that S does not contain any vertex of degree at least g(k,) , cg7(v)). Let d =
2 ves (V)

Since every vertex of S has degree less than g(k,d), if G contains k + |S|g(k, d) edge-
disjoint H-immersions, then G — S contains k > k — d edge-disjoint H-immersions. Note
that |S| < d since y(v) > 1 for every v € S. So to prove this lemma, it suffices to prove
that either G contains k+dg(k, d) edge-disjoint H-immersions, or there exists Z C E(Q)
with |Z| < f(k,d) such that G — Z does not contain an H-immersion.

We first assume that H = K. If G contains at least k + dg(k, d) non-loop edges,
then G contains k + dg(k, d) edge-disjoint H-immersions; if G has less than & + dg(k, d)
non-loop edges, there exists Z C E(G) with |Z] < k+dg(k,d) < f(k,d) such that G—Z
has no non-loop edge and has no H-immersion. So this lemma holds if H = K>.

Now we assume that H is the one-vertex graph with one loop. We assume that G
does not contain k + dg(k,d) edge-disjoint H-immersions and show that there exists a
set Z C E(G) with |Z| < f(k,d) such that G — Z has no H-immersion. So G does not
contain k+dg(k, d) loops, and there do not exist two distinct vertices such that there are
2(k+dg(k,d)) parallel edges between them. In addition, G does not contain k + dg(k, d)
distinct pairs of distinct vertices of G such that there are at least two edges between each
pair. Hence G has at most k + dg(k,d) — 1 loops, no pair of distinct vertices of G has at
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least 2(k + dg(k,d)) edges between them, and there are at most k + dg(k,d) — 1 pairs
of distinct vertices having parallel edges between them. So there exists Z; C E(G) with
|Z1| < k+dg(k,d) — 1+ (k + dg(k,d) — 1)(2(k + dg(k,d)) — 1) < 2(k + dg(k,d))? such
that G — Z is simple. Since G does not contain k+ dg(k, d) edge-disjoint H-immersions,
G — 7, is a simple graph that does not contain k + dg(k, d) edge-disjoint cycles. By [2,
Chapter 9, Exercise 6], there exists Zo C F(G — Zy) with |Zs| < h(k + dg(k,d)) such
that G — (Z1 U Z3) is a simple graph with no cycle and hence has no H-immersion. This
proves the lemma since |Z; U Zs| < h(k + dg(k,d)) + 2(k + dg(k,d))? < f(k,d). O

Now we continue the intuition and proof sketch of Lemma 7.3. Recall that we aim to
prove that given a nearly 3-cut free graph G and a connected graph H, if G — S does not
contain k — ) ¢ v(v) edge-disjoint H-immersions, then we can hit all H-immersions in
G by a set of edges with bounded size, where S is a special set of vertices whose size is
bounded by » ¢ 7(v). Also recall that our setting for the set S of special vertices allows
us to apply induction on G4 and G whenever we have an edge-cut [A, B] of small order
such that both G[A4] and G[B] contain H-immersions, and the degree of the vertices in S
can be bounded if we only work on edge-cuts of bounded order. So now we may assume
that there exists no edge-cut [A, B] of G of small order such that each G[A] and G[B]
contains an H-immersion. This will allow us to define an edge-tangle in G of large order
(see Claims 3-5), by simply seeing which side of each edge-cut contains an H-immersion.
Note that the order of the edge-tangle is related to the degree of the vertices in S and
the order of the edge-cuts that we can work with. For a technical reason, we need this
number to be depend on |S| (or more precisely, > _¢(v)). And that is the reason why
we consider the function g in Lemma 7.3 to indicate the degree condition of the vertices
of S. For another technical reason, we want this function g growing sufficiently quickly,
and that is the motivation of the notion of “H-legal” functions defined below. If G has
no edge-cut of order three, then we know this edge-tangle controls a K,,-thorns for some
large w by Theorem 6.4, and hence we can obtain a hitting set by Lemma 5.6. So we
may assume that G is nearly 3-cut free but has an edge-cut of order three. Hence we
can decompose G into pieces with no edge-cut of order three in a tree-like fashion by
Lemma 7.1. Claims 6-8 tell us that we can use the tree to reduce the problem to a piece
of G with no edge-cut of order three and hence complete the proof.

Recall that an isolated vertex in a graph is a vertex of degree zero. For a graph H
with no isolated vertices, we say that a function g is H-legal if g is a function from
N x (NU{0}) to N U {0} satisfying that

o g(z,y) > g(z,y') +2y and g(z,y) > g(2',y) for every z,2" € N, y,y/' € NU{0} with

x> 2 and y > 1/, and
o for any positive integers m and n,

g(m,n)
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ZH}}/X {w("-4(w5-(5(Hlvm + (n - 1) . g(m7n - 1))’954(S(Hl7m + (n - 1) : g(man - 1)))

+ 3m|V (H")|dp },

where the maximum is over all graphs H’ with no isolated vertices and with
|E(H'")| < |E(H)|, and wg 4 is the integer w mentioned in Theorem 6.4, and 05 ¢, w5 ¢
are the integers #, w mentioned in Lemma 5.6, respectively, and dg- is the maximum
degree of H'.

Note that if g is H-legal for some graph H with no isolated vertices, then g is H”-legal
for any graph H” with no isolated vertices with |[E(H")| < |E(H)|. And it is easy to see
that H-legal functions exist for any graph H with no isolated vertices.

Lemma 7.3. For every graph H with no isolated vertices, there exists an H-legal function
g* N x (NU{0}) = N U{0} such that for every H-legal function g : N x (N U{0}) —
N U {0} with g > g*, there exists a function f : N x (NU{0}) = N U {0} such that
for every nearly 3-cut free graph G, every positive integer k, every S C V(G) and every
function v : S — N, if S does not contain any vertex of degree at least g(k,),c57(v)),
then either G — S contains k — Zves v(v) edge-disjoint H-immersions, or there exists
Z C E(G) with |Z| < f(k,)_,cg7(v)) such that G—Z does not contain an H-immersion.

Proof. Let H be a graph with no isolated vertices. Denote |V (H)| by h and the maximum
degree of H by d. Since H has no isolated vertices, d > 1.

We shall prove this lemma by induction on |E(H)|. If H contains only one edge, then
H is connected since H has no isolated vertices, so the lemma holds by Lemma 7.2
by choosing g* to be any H-legal function. This proves the base case of the induction.
We assume that this lemma is true for every graph H’ without isolated vertices with
|[E(H")| < |E(H)| and denote the corresponding function ¢g* and the corresponding
function f (when some H'-legal function g with ¢ > ¢* is given) by g3, and fu g,
respectively.

We define the following.

o Define ¢* : N x (NU{0}) — N U {0} such that the following hold.

— For every positive integer m, define g*(m,0) = wes.4(ws¢(H, m),056(H, m)) +
3mhd + 3" g5 (m,0), where wg 4 is the integer w mentioned in Theorem 6.4,
and 05 ¢, ws. ¢ are the integers 6, w mentioned in Lemma 5.6, respectively, and the
last sum is over all graphs H’ with no isolated vertices and with less edges than
H.

— For every positive integers m,n, define g*(m,n) = wsa(wss(H,m + (n — 1) -
g myn—1)),056(H,m+ (n—1)-g*(m,n—1))) + 3mhd + g*(m,n — 1) + 2n +
Os.6(H,m~+ (n—1)-g*(m,n—1))+ >4 g5 (m,n), where the last sum is over all
graphs H' with no isolated vertices and with less edges than H.
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Note that 05 ¢(H,t) > ws.¢(H,t) for any positive integer ¢ by Lemma 5.6. Clearly,
g* is H-legal.
o For every H-legal function g with g > ¢*, we define the following.
~ Let f};,: N = NU{0} be the function such that fj; (k) = 3 S35 far (K, 1)
for every positive integer k, where the first sum is taken over all graphs H’ with no
isolated vertices having less edges than H. Note that there are only finitely many
such graphs H’, as H' has no isolated vertices.
— Define f: N x (NU{0}) - N U{0} to be the function satisfying the following.
x f(m,n) =0 for every integers m,n with 0 < m < n.
« f(m,n) = 2f(m,n+1) + (m+n+2)g(m,n+1) + (2" — 4) fi; (mg(m,n +
2g(m,n +1))) + mhd for every integers m,n with m > n > 0.
Note that f depends on g, but we do not add subscript g to describe f for simplicity
of notations.

We shall prove that the functions ¢* and f defined above satisfy the conclusion of
this lemma for the graph H. That is, we shall prove that for every H-legal function g
with g > ¢g*, the function f satisfies the property that for every nearly 3-cut free graph
G, every positive integer k, every set S C V(G) and every function v : S — N such
that S does not contain any vertex of degree at least g(k,)  .q7(v)), either G — S
contains k — Y _¢v(v) edge-disjoint H-immersions, or there exists Z C E(G) with
|Z] < f(k, > ,cs7(v)) such that G — Z does not contain an H-immersion.

We do induction on k — Zve 5 7(v). Suppose to the contrary that there exists a tuple
(9,G,k,S,v) such that the following hold.

(i) g is an H-legal function with g > ¢*, G is a nearly 3-cut free graph, k is a positive
integer, S is a subset of V(G), and v : S — N is a function such that S does not
contain any vertex of degree at least g(k, >, .q7(v)).

(ii) G—S doesnot contain k—) s v(v) edge-disjoint H-immersions, but there does not
exist Z C E(G) with |Z] < f(k, >, cg7(v)) such that G — Z has no H-immersion.

(iii) Subject to (i) and (ii), k¥ — >_, cgv(v) is minimum.

Note that (ii) implies that k— 3 _¢~(v) > 1, so the minimum mentioned in (iii) exists.

In the rest of the proof, we denote » _¢7(v) by 7.

For every edge-cut [A, B] of G with A # () # B, define G4 (and Gp, respectively) to
be the graphs obtained from G by identifying B (and A, respectively) into one new vertex
vp (and v4, respectively), and deleting all resulting loops. Define S4 = (SN A) U {vp}
and Sp = (SN B)U{va}. Note that the degree of vp in G4 and the degree of v4 in Gp
are the order of [A, B].

Claim 1: For every edge-cut [A, B] of G with A # () # B, Ga and Gp are nearly 3-cut
free.
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Proof of Claim 1: Since A # () # B, G4 and Gp contain at least two vertices. Since G
is nearly 3-cut free, G is connected, so G4 and Gp are connected. If G4 is not nearly
3-cut free, then there exists an edge-cut [X,Y] of G4 with vg € Y of order three such
that the edges between X and Y are not parallel edges with the same ends. But then
[X, (Y — {vg}) U B] is an edge-cut of G of order three such that the edges in between
are not parallel edges with the same ends, a contradiction. So G 4 is nearly 3-cut free.
Similarly, Gp is nearly 3-cut free. 0O

Claim 2: Let 0 be a positive integer. If there exist W C V(G), an edge-cut [A, B] of G of
order less than 6 and a set Zy C E(G) containing all edges between A and B such that
G[A]— (WU Zy) and G|B]— (W UZy) do not contain H-immersions, then there exists Z
with Zo C Z C E(G) and |Z| < | Zo| + (2" — 2) f 4 (kg(k, 7+ 0)) such that G — (W U Z)
has no H-immersion.

Proof of Claim 2: If A = (), then G = G[B], so we are done by taking Z = Z;. Similarly,
we are done if B = (). So we may assume that A # () # B and hence G4 and G g contain
at least two vertices and are nearly 3-cut free by Claim 1.

If H is connected, then every H-immersion in G — Zy must be in G[A] or G[B], as Z
contains all edges between A and B. So we are done by taking Z = Z,.

Now we assume that H is not connected. Let Hy, Hy, ..., H, be the components of H,
where p > 2. For every set I with ) C I C [p], define Q; to be the disjoint union of H;
over all © € I.

Since H has no isolated vertices, every H-immersion in G4 (or Gp, respectively)
intersecting S4 (or Sp, respectively) must intersect an edge incident with a vertex in
Sa (or Sp, respectively). Since every vertex in S4 — {vp} has degree in G4 at most
g(k,7) — 1 in G4 and vp has degree in G4 at most § — 1, for every I with ) C I C [p]
and any nonnegative integer k', if G4 contains at least &'+ (|Sa| —1)(g(k,7) —1)+6 —1
edge-disjoint @ -immersions, then G[A] — S4 contains k' edge-disjoint @ -immersions.
Similarly, for every I with ) C I C [p] and any nonnegative integer k', if Gp contains at
least k' + (|Sp| — 1)(g(k,7) — 1) + 8 — 1 edge-disjoint Q;-immersions, then G[B] — Sp
contains k' edge-disjoint (Q;-immersions.

Note that for every nonnegative integer k¥’ and set I with § C I C [p], if G[A] — Sa
contains k" edge-disjoint @ -immersions and G[B] — Sp contains k&’ edge-disjoint Qp,)— ;-
immersions, then G — S contains k' edge-disjoint H-immersions. Hence, since G — S has
no k — 7 edge-disjoint H-immersions, for every I with ) C I C [p], either G4 does not
contain (k—7)+ (]Sa| — 1)(g(k,7) — 1) + 6 — 1 edge-disjoint @ -immersions, or Gp does
not contain (k —7) + (|Sp| — 1)(g9(k,7) — 1) + 6 — 1 edge-disjoint Q[,)_ -immersions.

Ask—7 > 1, max{|Sal,|SB|} < |S|+1 < 7+1 < k. Hence, for every I with ® C I C [p],
either G4 does not contain (k — 1)g(k,7) — 7 + 6 edge-disjoint Qr-immersions, or Gp
does not contain (k —1)g(k,7) — 7 + 6 edge-disjoint Q[,_ -immersions.

Define v4 : Sa4 — N to be the function such that ya(ve) = 0 + > cgnp7(v) and
va(z) = y(z) for every & € SN A. Define v : Sg — N to be the function such that
vB(WA) =0+, csnav(v) and vp(z) = v(z) for every x € SN B.
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Note that ), cg, va(v) =0 +7and > g vB(v) =0 +7. So g(k,>, cg, 7a(v)) =
g(k,0 +7) > g(k,7) + 20 since g is H-legal. Similarly, g(k, ), cq,. 78(v)) > g(k,T) + 20.

Let ka = kg(k,> ,cq, 7a(v)) and let kg = kg(k,>_ cs, v8(v)). Hence, if I is
a set with § € I C [p] such that G4 — Sa does not contain (k — 1)g(k,7) —
7 + 0 edge-disjoint @Qr-immersions, then G4 — Sa does not contain ((k — 1)g(k,7) —
F 0t s, 14(0) — Soes, al0) = (U — Dg(hs) +260) — oeg, 7a(0) <
kg(k, Y pes, 1A(0)) = D pes, 7a(V) = ka — >, c5, 7a(v) edge-disjoint Q-immersions.
Similarly, if I is a set with § € I C [p] such that Gg — Sp does not contain
(k —1)g(k,7) — 7 + 0 edge-disjoint Q[ ;-immersions, then Gp — Sp does not contain
kg = cs, 7B(v) edge-disjoint Q) -immersions.

Therefore, for every I with ) C I C [p], either G4 — S4 does not contain kg —
> ves, 1A(v) edge-disjoint Qr-immersions, or G'p does not contain kg — >, cg. VB(V)
edge-disjoint Q[p)_ -immersions.

Note that every vertex in S has degree in G 4 less than g(k,7)+6 < g(k, >, cg, 7a(v))
< g(ka, X yes, v4(v)), since g is H-legal. Similarly, every vertex in Sp has degree in
Gp less than g(k,7) + 0 < g(kp, > c5, 7B(V)).

Recall that G4 and Gp are nearly 3-cut free graphs. For every I with ) C I C [p],
Qr and Qpp_; are graphs with no isolated vertices and with less edges than H, g is
Qr-legal and Qpyr-legal, and g > g* > g5, + gzg[p]_l, so by the induction hypothesis,
either there exists Za 1 C E(Ga) with |Z4 1] < fg,.4(ka, Y ,cs, 74(v)) such that G4 —
Z 4,1 does not contain an Q-immersion, or there exists Zg ; C E(Gpg) with |Zp 1| <
fQu-1.9(kB: X5, 7B (V) such that Gp — Zp 1 does not contain an Q) ;-immersion.

Note that ka = kg(k, > c5, 74(v)) = > e, 1a(v) and kg = kg(k, > s, 7B(V)) >
> ves, 7B(v) since g is H-legal. Therefore, for every I with ) C I C [p], there ex-
ists Z1 C B(G) with |Z1] < fo,6(ka, Soes, 140) + fap_ra(ke. Toes, 15(0) <
S forg(kas i) + 8% fau (k. i) < fi ,(kg(k, 7 + 0)) such that either G4 — Z;
has no Q;-immersion or Gp — Z; has no Qp)_r-immersion.

Define Z = Zo U Upccpp Z1- Note that [Z] < |Zo| + (2P — 2) - fpy ,(kg(k,7 +0)) <
| Zo| + (2" = 2) f17. 4 (kg(k, T + 0)), since p < h.

Suppose that G—(WUZ) contains an H-immersion. Since Z contains all edges between
A and B, and G[A] — (WU Zy) and G[B]— (W UZp) do not contain H-immersions, there
exists I with @ C I C [p] such that G[A] — Z contains a Qr-immersion and G[B] — Z
contains a Q[p)— ;-immersion, contradicting the existence of Zr. This proves the claim. O

Claim 3: There exists no edge-cut [A, B] of G of order less than g(k,1+ T) such that
G[A] — S contains an H-immersion and G[B] — S contains an H-immersion.

Proof of Claim 3: Suppose to the contrary that there exists an edge-cut [A, B] of G of
order less than g(k,1 + 7) such that G[A] — S contains an H-immersion and G[B] — S
contains an H-immersion. Note that degg , (vp) < g(k,1+7) and degg,, (va) < g(k, 1+7).
Since both G[A] and G[B] contain H-immersions, A # () # B, so G4 and G are nearly
3-cut free by Claim 1.
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Since G[B] — S contains an H-immersion, G4 — S4 = G[A] — S does not contain
k — 7 — 1 edge-disjoint H-immersions, for otherwise G — S contains k — r edge-disjoint
H-immersions, contradicting (ii). Define y4 : S4 — N to be the function such that
ya(v) = 14> csnp Y (v), and ya(z) = y(x) for every x € SN A. So G4 — Sa does
not contain k —7 —1 =k — 3> ¢ 7va(v) edge-disjoint H-immersions. Furthermore,
every vertex in S4 has degree in G4 less than max{g(k,7),g(k,1+7)} = g(k,1+7) =
9(k, > pes, va(v)) since g is H-legal. Hence the tuple (g, G, k, Sa,v4) satisfies (i). Since
k=2 ves,vaw) =k —1—7 <k -7, by (iii), (9, Ga, k,Sa,74) does not satisfy (ii).
So there exists Z4 C E(Ga) with |Za| < f(k,> ,e5, 7a(v)) = f(k,7 + 1) such that
G 4 — Z 4 does not contain an H-immersion.

Similarly, there exists Zg C E(Gp) with |Zg| < f(k,7 + 1) such that Gg — Zp does
not contain an H-immersion. Note that every edge of G4 incident with vp is an edge
between A and B. So Z4 is a subset of E(G). Similarly, Zp is a subset of E(G).

Let Z’ be the set of edges of G with one end in A and one end in B. Define Zy =
ZaUZpUZ'. Note that |Zo| < 2f(k,7+ 1)+ g(k,1+7).

Since G[A] — Zy is a subgraph of G4 — Z4 and G[B]— Z; is a subgraph of Gp — Zp, we
know that G[A] — Zy and G[B] — Z, do not contain H-immersions. Note that Z, contains
all edges between A and B. Applying Claim 2 by taking 6 = g(k,1+7) and W = (), we
know that there exists Z with Zy C Z C E(G) and |Z| < [Zo| + (2" — 2) f1; ,(kg(k, T +
g(k,1+7))) < f(k,7) such that G — Z has no H-immersion. Hence (g,G, k, S,~) does
not satisfy (ii), a contradiction. O

Claim 4: For every edge-cut [A, B] of G of order less than g(k,1 + 7), exactly one of
G[A] — S or G|B] — S contains an H-immersion.

Proof of Claim 4: Suppose to the contrary that this claim does not hold. So there exists
an edge-cut [A, B] of G of order less than g(k,1 + 7) such that G[A] — S and G[B] — S
do not contain H-immersions by Claim 3. Applying Claim 2 by taking 0 = g(k, 1+ 7),
W = S and Zj to be the set of the edges between A and B, we obtain Z C E(G) with
1Z] < g(k, 1 +7) + (2" = 2) f3; o (kg(k, 7 + g(k, 1+ 7))) such that G — (S U Z) has no
H-immersion.

Let Z' be the union of Z and the set of edges incident with vertices in S. Since
|S| <7 <k —1 and every vertex in S has degree less than g(k,7), |Z'| < |Z| + (k —
D(g(k,7)—1) < kg(k,14+7) + (2" — 2)f g (kg(k,7+g(k,1+7))) < f(k,7). Since H has
no isolated vertices, G — Z’ has no H-immersion, contradicting (ii). O

Define € to be the collection of edge-cuts of G such that [A, B] € £ if and only if
[A, B] has order less than g(k,14 7) and G[B] — S contains an H-immersion. Note that
Claim 4 implies that G[A] — S does not contain an H-immersion for every [A, B] € €.

Claim 5: £ is an edge-tangle in G of order g(k,1+ 7).

Proof of Claim 5: Claim 4 implies that £ satisfies (E1).
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Suppose that & does not satisfy (E2). So there exist edge-cuts [A1, B1],[A2, Bal,
[A3, B3] € & with By N By N By = (). Hence {A;, By N A3, By N Ba N A3} is a parti-
tion of V(G). Let [Cy, D1] = [A; U(B1NAs), B1 N BaN As]. Note that G[C1] — (41 US) C
G[B1 N A3] — S C G[A3] — S. Since [A3,Bs] € &, G[C1] — (A1 U S) does not con-
tain an H-immersion. Since [A3,Bs] € &, G[D1] — (A1 US) C G[43] — (A1 UYS)
does not contain an H-immersion. Note that every edge between Ci, D; is either be-
tween Aj, By or between A, Bs. So the order of [Cy, D;] is less than 2g(k,1 + 7).
Applying Claim 2 by taking 0 = 2¢g(k,1 4+ 7), W = A; US, [A,B] = [C1,D;] and
Zy to be the set of all edges between C; and Dj, there exists Z7 C E(G) with
1Z7| < 2g(k, 14 7) + (2" = 2) f1; ,(kg(k,7 + 2g(k,1 + 7))) such that G — (4, U S U Z)
has no H-immersion. Hence G[B1] — (SU Z7) = G — (A1 U S U Zf) does not con-
tain an H-immersion. Since [A1,B1] € &, G[A1] — (S U Z{) does not contain an
H-immersion. Applying Claim 2 by taking § = g(k,1+7), W = S, [A, B] = [A1, B1]
and Zp to be the union of Z7 and the set of all edges between A, By, there exists
Z3 C B(G) with |Z5| < (1Zf] + g(k,1 + 7)) + (2" = 2) f ,(kg(k, 7 + g(k,1 + 7)) <
3g(k, 14+7) + (2" —2) f1; (kg (k, 7 +2g(k, 1 +7))) + (2" = 2) f1 , (kg(k, 7+ g(k, 1+7))) <
3g(k, 1+f)+2(2h—2)f}1,g(k'g(k, 7+2g(k,147))) such that G—(SUZ3) does not contain
an H-immersion. Let Z3 be the union of Z3 and the set of all edges of G incident with
S. Since H has no isolated vertices, G — Z3 does not contain an H-immersion. Note that
1231 < 1231 +18\(g(k,7) — 1) < (7 3)g(k, 14+7) +2(2" —2) iy, (kg (k, 7+ 29(k, 1+7) <
f(k,7). It contradicts (ii). So £ satisfies (E2).

Finally, suppose that there exists [A, B] € £ such that there are less than g(k, 1+ 7)
edges incident with B, then G[B]— (E(G[B])US) has no H-immersion. Since [4, B] € &,
G[A] - (E(G[B])US) = G[A] — S has no H-immersion. Applying Claim 2 by taking § =
g(k,1+7), W = S, and Z; to be the union of E(G[B]) and the set of edges between A, B,
we know there exists Z C F(G) with | Z] < 2¢(k, 1+F)+(2h'—2)f1’q’g(kg(k, r+g(k,1+7)))
such that G — (Z U S) has no H-immersion. Let Z* be the union of Z and the set of
all edges of G incident with S. Then G — Z* does not contain an H-immersion. But
2] < 29k, 1+ 7) + (2% — 2) iy, (kg (B, 7+ gk, 1+7))) + 7 (g (b, 7) — 1) < (7 gk, 1+
7) 4+ (2" — 2)fu o (kg(k,7 + g(k,1 4 7))) < f(k,7), contradicting (ii). Hence & satisfies
(E3). O

Let T be the tree and P = {X; : ¢ € V(T)} the partition of V(G) satisfying
Lemma 7.1. For each t € (T), we call X; the bag at t. For each edge e € E(T), there
exists an edge-cut [A., Be] of G such that each A, and B, is the union of the bags of
the vertices in a component of T'— e. So [A., B.] has order at most three and the edges
between A, and B, are the parallel edges with the same ends. Since £ is an edge-tangle
of order greater than three, [A., B.] € € or [Be, A¢] € € but not both. If [A., B.] € &,
then we direct e such that B. contains the bag of the head of e; otherwise, we direct e
in the opposite direction. Hence, we obtain an orientation of 7" and there exists a vertex
t* of T of out-degree zero.
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Claim 6: There exist a set R of loops of G[X;+] with |R| < (k—1)hd and a set U C E(T)
with |U| < (k — 1)hd such that every edge in U is incident with t*, and for every H-
immersion Il = (my,7g) in G, one of the following holds.

o TI(H)

(1)

(H) contains an edge in R.

(II(H)) N X4« # 0 and there exists e € U such that V(II(H)) N A # 0.

intersects S.
contains a non-loop edge of G[Xy+].

< 2=

Proof of Claim 6: Recall that for any edge e of T', the edges between [A., B.| are parallel
edges. So for every H-immersion II = (ny,7g) in G and every edge x of H, since
me(x) is a path or a cycle, there are at most two edges e of T incident with ¢* such
that V(mg(z)) N A. # 0. Therefore, for every H-immersion II = (my,7g) in G, there
exists a set Wy of edges of T incident with t* with |[Wr| < 2|E(H)| < hd such that
I(H) N G[N,ewy, Bel — Xt = 0, and for every e € Wi, V(II(H)) N A, # 0. In addition,
for every H-immersion II = (ny,7g) in G, II(H) contains a loop €’ of G only if there
exists a loop e of H such that mg(e) = €’. So for every H-immersion II = (7y,7g) in
G, there exists a set Ry of loops of G incident with Xy« with |Ryy| < |E(H)| < hd such
that Ry consists of the loops of G incident with X contained in II(H).
Let C be a maximal collection of H-immersions in G — S such that

o for every member II of C, II(H) does not contain any non-loop edge of G[X;], and
o for distinct members 11y, 115 of C, Ry, N Ry, = ® and Wy, N Wy, = 0.

Note that members of C are pairwise edge-disjoint H-immersions in G — S. So |C| <
k—r<k.

Define R = e R and define U = (Jyce Wn. Hence |R| < (k — 1)hd and |U] <
(k—1)hd.

Let IT be an H-immersion in G. We may assume that IT does not satisfy the first two
conclusions of this claim, for otherwise we are done. So II is an H-immersion in G — S.

Suppose that V(II(H)) N X;- = (. Since TI(H) N G[,ew, Bel — Xi= = 0, T(H) C
GlU. ey, Ael- Hence ITis an H-immersion in G[U ey, Ae]=S- S0 [U.ewy, Aes Neewy, Bel
¢ & by the definition of £. Since |[Wp| < hd, the order of [, cy,, AesNeewy, Bel 1s
at most 3hd which is less than the order of €. Since [A., Be] € £ for each e € Wy,
(Uecewy, Aes Neewy, Bel € € by Claim 5 and Lemma 2.3, a contradiction.

Hence V(II(H)) N X4« # 0. Suppose Ry = 0 and Wi = (0. Since Wi = 0, II(H) C
G[X}+]. Since Ry = 0 and II(H) C G[Xy+], II(H) does not contain any loop of G. Since
H has no isolated vertex, II(H) contains a non-loop edge of G[X¢-], so II satisfies the
second conclusion of this claim, a contraction.

Hence either Ry # 0 or Wi # (0. If IT € C and Ry # ), then II satisfies the third
conclusion of this claim. If II € C and Wy # (), then II satisfies the fourth conclusion of
this claim. So we may assume that II ¢ C. By the maximality of C, there exists I’ € C
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such that either Ry N Ry # 0 or Wi N W # 0. If Ry N Ry # @, then TI(H) contains
an edge in R, so II satisfies the third conclusion of this claim. So we may assume that
Wi N Wiy # (. Then there exists e € Wiy C U such that V(II(H)) N Ae # 0. So II
satisfies the fourth conclusion of this claim. 0O

Claim 7: For every [A, B] € € of order less than g(k,1 +7) — 3(k — 1)hd, G[B N X;+]
contains at least f(k,7) — kg(k,1+7) — (k — 1)hd — (2" = 2) fi; ,(kg(k, T + g(k, 1+ 7)))
non-loop edges.

Proof of Claim 7: Let m = f(k,7) — kg(k,1 +7) — (k — 1)hd — (2" — 2)f o (kg(k, 7 +
g(k,1 4 7))). Suppose to the contrary that there exists [4, B] € & of order less than
g(k,147) — 3(k — 1)hd such that G[B N X;| contains less than m non-loop edges.

Let U be the set of edges of T incident with ¢t* and R the set of loops of G[X;]
mentioned in Claim 6. Note that |U| < (k — 1)hd and |R| < (k — 1)hd. Let A’ =
AUy Ae and B = BN() ¢y Be. Note that the order of [A’, B] is at most [[A4, B]| +
3(k—1)hd < g(k,1+7). By Lemma 2.3, [A’, B'] € £. By Claim 6, for every H-immersion
II = (ny,7g) in G — S, one of the following holds.

o II(H) contains a non-loop edge of G[X;+] or a loop in R.
o« VII(H))NA #0.

Let Zy be the set consisting of all non-loop edges in G[B N X;+| and all edges of G
between A’ and B’. Let Z = Zy U R. Then G[B’] — (S U Z) has no H-immersion.
In addition, by the definition of £, G[A’] — S has no H-immersion. Applying Claim 2
by taking (0, W, [A, B], Zy) = (g(k,1 +7),S,[A", B'], Z), there exists Z' C E(G) with
2| < |Z|+ (2" = 2) f1y o (kg(k, 7+ g(k, 1 +7))) < (m A+ g(k, 1 +7) + (k — 1)hd) + (2" —
2) fr (kg(k,m + g(k, 1+ 7)) < f(k,7) — (k — 1)g(k,7) such that G — (S U Z’) has no
H-immersion.

Let Zg be the set of edges incident with vertices S. So |Zg| < (k — 1)g(k,7). Let
Z* = Z'U Zg. Then |Z*| < f(k,7) and G — Z* has no H-immersion, contradicting
(ii). O

Since f(k,7) — kg(k,1 +7) — (k — 1)hd — (2" — 2)f}; ,(kg(k,7 + g(k,1 +F))) > 2,
Claim 7 implies that X« contains at least two vertices and hence G[X;+] does not have
an edge-cut of order three.

For every vertex v in Xy, define Q, = {u € V(G) — Xy: every path in G from u
to X;» contains v}. Note that @, is empty if Ng(v) C X;-. Furthermore, since G is
connected, by Lemma 7.1, for every u € V(G) — Xy, there exists a unique v € X;» such
that u € @Q,.

Define &’ to be the set of edge-cuts [A’, B’] of G[X;] of order less than g(k,1+7) —
3(k — 1)hd such that [A’, B'] € £ if and only if [A" UJ,c 4 Quv, B'UU,cp Q] € E.

Claim 8: &’ is an edge-tangle of order g(k,1+7) — 3(k — 1)hd in G[X+].
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Proof of Claim 8: For every edge-cut [A’, B'] of G[X;+], the order of [A"U|J, ¢ 4 Quv, B'U
Upen @uv] equals the order of [A’,B’]. Since £ is an edge-tangle, either [A" U
Uvenr Qus B'UUyep Qo] € € or [B'UU,ecp Qus AU U, ca Qu] € €. So & satisfies
(E1).

If there exist [A}, B]] € &£ for i € [3] such that A} U A, U A = X+, then [A] U
Usea; @uv, BiUU,ep; @] € € for i € [3], but A} U Ay U A5 UU,c 4104504, Qv =V(G),
a contradiction. So &’ satisfies (E2).

In addition, for every edge-cut [A’, B'] € &', the number of edges of G[X~] incident
with B’ is at least |E(G[B'])| = |[E(G[(B'UU,cp Quv) N X¢=])| > f(k,7) —kg(k,14+7) —
(k=1)hd — (2" = 2) f1; ,(kg(k, 7+ g(k,1+7))) > g(k,147) — 3(k — 1)hd by Claim 7. So
&' satisfies (E3). O

By Claim 8, £’ is an edge-tangle of order g(k,1+7) — 3(k — 1)hd > we 4(ws.6(H, k +
7-g(k,7)),056(H, k+7-g(k,7))) in G[X¢~], where the last inequality follows from the
assumption that g is H-legal.

Define & and &}, to be the subsets of £ and £ consisting of edge-cuts of order less
than 65 ¢ (H, k+7-g(k,T)), respectively. So & and &, are edge-tangles of order 05 (H, k+
7-g(k,7)) in G and G[X+], respectively. Let wy, = w5 6(H, k+ 7 - g(k,7)).

Since G[X-] does not have an edge-cut of order three, by Theorem 6.4, &}, controls a
K, -thorns a in G[X;+]. Since « is in G[X+] C G, & controls a.

Since G — S does not contain k — 7 edge-disjoint H-immersions and every vertex in
S has degree in G at most g(k,7) — 1, G does not contain k — 7 + |S|(g(k,7) — 1) <
k—7+7-gk,7) < k+7-g(k,r) edge-disjoint H-immersions. Since & is an edge-
tangle in G of order 05 ¢(H,k + 7 - g(k,7)) controlling a K, -thorns, by Lemma 5.6,
there exist Z* C E(G) with |Z*| < & and [A,B] € & — Z* C €& — Z* of order zero
such that G[B] — Z* has no H-immersion, where & = &5 ¢(H,k + 7 - g(k,7)). Note that
& < Os6(H, k+7-g(k,7)) < g(k,1+7) by Lemma 5.6 and the assumption that g is
H-legal.

In addition, G[A] — S does not contain an H-immersion since [A4, B] € £. So every
H-immersion in G[A] intersects an edge in Zg, where Zg is the set of edges of G incident
with S. Hence G[A]—(Z*UZg) and G[B]—(Z*UZg) do not contain H-immersions. Since
[A,B] € &, [A, B] is an edge-cut of G of order less than g(k,1 + 7). By Claim 2, there
exists Z** with Z** C E(G) and |Z**| < (|Z*|+|Zs|+g(k, 1+7))+ (2" =2) f1; , (kg(k, 7+
g, 14+7))) < (2(k, 1+7) + (b — 1)g(k, 7)) + (2" — 2) fiy (kg 7+ gk, 1+ 7)) < f(h,7)
such that G — Z** has no H-immersion, contradicting (ii). This completes the proof. O

Now we drop the requirement of having no isolated vertices from Lemma 7.3.
Lemma 7.4 proves Theorem 1.1 for the case that G has only one component, as ev-
ery 4-edge-connected graph is nearly 3-cut-free.

Lemma 7.4. For every graph H, there exists a function f : N — N such that for every
nearly 3-cut free graph G and every positive integer k, either G contains k edge-disjoint
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H-immersions, or there exists Z C E(GQ) with |Z| < f(k) such that G — Z contains no
H-immersion.

Proof. Let H be a graph. Note that when H has no edge, every graph G contains at
least one H-immersion if and only if G contains at least |V (H)| vertices if and only if
G contains arbitrarily many edge-disjoint H-immersions. So this theorem holds if H has
no edge.

Hence we may assume that H contains at least one edge. Let H’ be the graph obtained
from H by deleting all isolated vertices. So H’ is a graph with at least one edge and
with no isolated vertices. For every positive integer k, define f(k) to be the number
f7.3(k,0), where f;3 is the function mentioned in Theorem 7.3 by taking H to be H'
and further taking g = ¢g*. We apply Theorem 7.3 by further taking S = @ and v to
be a function with empty domain, we know that for every nearly 3-cut free graph G
and positive integer k, either G contains k edge-disjoint H’-immersions, or there exists
Z C E(G) with |Z| < f(k) such that G — Z does not contain an H’-immersion.

We shall prove that f is a function satisfying the conclusion of this lemma.

Let G be a nearly 3-cut free graph. If |[V(G)| < |V(H)|, then clearly G does not
contain an H-immersion, and we are done by choosing Z = ). So we may assume that
[V(G)| > |V(H)|. Hence, for every W C E(G) and every H’-immersion (7{,, %) of
G — W, we can extend 7, to an injection 7y with domain V(H) by further mapping
isolated vertices of H to some vertices of G — 7{,(V(H')) such that (my,n};) is an H-
immersion in G — W with E(r-(E(H"))) = E(r'z(E(H))). Therefore, for every W C
E(G) and every integer k, G — W contains k edge-disjoint H-immersions if and only if
G — W contains k edge-disjoint H’-immersions.

Now let k be a positive integer. If G does not contain k edge-disjoint H-immersions,
then G does not contain k edge-disjoint H’-immersions, so there exists Z C E(G) with
|Z| < fr3(k,0) = f(k) such that G — Z has no H’-immersion by Theorem 7.3. But it
implies that G — Z has no H-immersions. This proves the lemma. 0O

Theorem 1.1 is an immediate corollary of the following theorem.

Theorem 7.5. For every graph H, there exists a function f: N — N such that for every
graph G whose every component is nearly 3-cut free and for every positive integer k, either
G contains k edge-disjoint H-immersions, or there exists Z C E(G) with |Z| < f(k) such
that G — Z contains no H-immersion.

Proof. Let H be a graph, and let ¢ be the number of components of H. We define the
following.

o For every graph R, define fg to be the function f mentioned in Lemma 7.4 by taking
H = R.
o For every i € [c], let F; be the set of graphs consisting of ¢ components of H.
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o For any positive integers m > 2 and n, let fi(n) = (n — 1) - max{fr(n) : R € F1}
and let f,(n) = m" fr,_1(n) + (nm — 1) - max{fr(n) : R € Fp}.
o Define f: N — N to be the function such that f(x) = f.(x) for every z € N.

We claim that for every m € [¢], for every graph W € F,,, for every positive integer
k and for every graph G whose every component is nearly 3-cut free, either G contains
k edge-disjoint W-immersions, or there exists Z C E(G) with |Z| < f,,(k) such that
G — Z does not contain a W-immersion. Note that this claim implies this theorem as
H € F.. We shall prove this claim by induction on m.

Let m € [c], W € Fp,, k a positive integer and G a graph whose every component is
nearly 3-cut free. We assume that G does not contain k edge-disjoint W-immersions. It
suffices to show that there exists Z C E(G) with |Z| < f,,(k) such that G — Z has no
W-immersion.

We first assume that m = 1. Let G, Gy, ..., G be the components of G containing
a W-immersion, and let k; be the maximum number of edge-disjoint W-immersions in
G; for each i € [p]. If > | k; > k, then G contains k edge-disjoint W-immersions, a
contradiction. So Zle k; < k. In particular, p < k. By Lemma 7.4, for every i € [p],
there exists Z; C F(G;) with |Z;| < fw(k; + 1) such that G; — Z; has no W-immersion.
Since m = 1, W is connected, so G—Z has no W-immersion, where Z = (J!_, Z; C E(G).
Note that [Z| < >0 | fw (ki +1) < (k—1)fw (k) < fi(k). This proves the base case of
the induction.

So we may assume that m > 2 and our claim holds for every smaller m.

Note that W has m components. Let Wy, Wa, ..., W,,, be the components of W. For
every i € [m], define S; to be the set of components of G' containing an W;-immersion.
If |S;| > km for every i € [m], then G contains km components G1, ..., Ggm of G such
that G(;_1)k4+; € S; for each i € [m] and each j € [k], so G contains k edge-disjoint
W-immersions, a contradiction. Therefore, there exists ¢ € [m] such that |S;| < km.

Define L to be the disjoint union of the components of G in S;, and define R =
G —V(L). Note that R has no W;-immersion by the definition of S;. Since m > 2, by the
induction hypothesis, if L does not contain k edge-disjoint Wi-immersions, then there
exists Z; C E(L) with |Z;| < fi1(k) < fm(k) such that L — Z; has no Wi-immersion, so
G — Z; has no Wi-immersion (since W; is connected) and hence has no W-immersion.

So we may assume that L contains k edge-disjoint W;-immersions. Hence R does not
contain k edge-disjoint (W —V (W}))-immersions, for otherwise G contains k edge-disjoint
W-immersions. Note that W —V (W;) € F,,—1. By the induction hypothesis, there exists
Zr C E(R) with |Zg| < fm-1(k) such that R — Zgr has no (W — V(W,))-immersion.
So R — Zi has no W-immersion. In addition, for each component C' of L, C' is nearly
3-cut free and has no k edge-disjoint W-immersions, so there exists Z¢o C E(C) with
|Zc| < fw (k) such that C' — Z¢ has no W-immersion.

Define Zy = Zr U Jp Zc, where the second union is taken over all components
C of L. Note that the number of components of L equals |S;| < km — 1. Therefore,
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|Zo| < fin—1(k)+ (km—1) fw(k), and R — Zy and C — Z do not contain a W-immersion
for every component C of L.

Let ¢ be the number of components of L. Define Qo = R, and for every i € [¢], define
Q@; to be the i-th component of L. Note that @); — Zy has no W-immersion for every i
with 0 <1 < /.

We say that (Py, P1, ..., Pp) is a (€ + 1)-partition of [m] if Py, P, ..., Py are pairwise
disjoint (possibly empty) proper subsets of [m] with UszR- = [m]. Since G has no k
edge-disjoint W-immersions, for every (¢+1)-partition P = (P, ..., ;) of [m], there exists
J with 0 < j < £ such that Q; does not contain k edge-disjoint (|J,;c P, W;)-immersions,
so there exists Zp C E(Q;) with [Zp| < fip,|(k) < fm—1(k) such that Q; — Zp has no
(Uie p, Wi)-immersions.

Define Z* to be the union of Zy and Zp over all (£ 4 1)-partitions P of [m]. Since
¢ =S¢ < km — 1 and there are at most m‘*! — 1 different (¢ + 1)-partitions of [m],
12°] < | Zol+ (1) 1 () < fona (6)+(km—1) fir (0) £ (1™ 1) fra 1 (B) < Fo(B).

To prove the theorem, it suffices to prove that G — Z* has no W-immersion. Suppose
to the contrary that G — Z* contains a W-immersion. Since ); — Z* has no W-immersion
for every 0 < i </, there exists a (¢ + 1)-partition P = (P, P, ...P;) of [m] such that
for every j with 0 < j < ¢, Q; — Z* contains a (Uier W;)-immersion. However, it
contradicts the definition of Zp. This completes the proof. 0O

We remark that Kakimura and Kawarabayashi [8] proved that for every integer t,
there exists a function f such that for every 3-minimal-cut free graph G and integer
k, either G contains k edge-disjoint K;-immersions, or there exists Z C FE(G) with
|Z] < f(k) such that G — Z has no K;-immersion, where a graph is 3-minimal-cut free
if it is connected and it cannot be made disconnected by deleting exactly three edges
while it remains connected by deleting at most two of those three edges. This result
is a simple corollary of Theorem 7.5 when ¢ > 3 (and the case t < 2 is easy). Let G
be a 3-minimal-cut free graph, and let G’ be the graph obtained from G by deleting
all cut-edges and loops and then deleting all resulting isolated vertices. Note that every
component of G’ is 2-edge-connected and 3-minimal-cut free. If a 2-edge-connected and
3-minimal-cut free graph has an edge-cut [A4, B] of order three, then one can delete at
most two edges between A and B to make the graph disconnected, but it implies that
some edge in [A, B] is a cut-edge of the original graph, contradicting that it is 2-edge-
connected. Hence every component of G’ does not contain an edge-cut of order three
and hence is nearly 3-cut free. In addition, when ¢ > 3, the optimal solutions for packing
and covering K;-immersions in G are the same as the optimal solutions for packing and
covering Kj-immersions in G'. Hence Theorem 7.5 implies the result in [8].

Now we prove Theorem 1.2. The following is a restatement.

Theorem 7.6. For every loopless graph H, there exists a function f : N — N such
that for every positive integer k and every graph G, either there exists k H -half-integral
immersions (ﬂ"(/),ﬂg)), - (7r€, (k))} in G such that for each edge e of G, there exist
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at most two distinct pairs (i,e') with 1 < i < k and ¢’ € E(H) such that e € wg) (e'),
or there exists Z C E(G) with |Z| < f(k) such that G — Z contains no H-half-integral
1MmMersion.

Proof. Define f to be the function f mentioned in Theorem 7.5 by taking H = H.

Let k be a positive integer. Let G be a graph, and let G’ be the graph obtained from
G by duplicating each edge. Note that every edge-cut of G’ has even order. If [A, B] is
an edge-cut of a component of G’ of order between one and three, then it has order two
and the two edges between A and B are parallel edges with the same ends. So every
component of G’ is nearly 3-cut free. By Theorem 7.5, either G’ contains k edge-disjoint
H-immersions, or there exists 2/ C E(G’) with |Z'| < f(k) such that G’ — Z’ does not
contain an H-immersion.

Note that since H is loopless, for every H-immersion (my,7g) in G’ and e € E(H),
wg(e)is a path in G', so there exists no ¢’ € E(G) such that mg(e) contains e’ and its copy
in G’. So for every H-immersion (7{,, %) in G, there exists an H-half-integral immersion
(mv,mE) such that 7y (v) = 7y, (v) for every v € V(H), and for every e € E(H), mg(e)
consists of the edges z of G such that some copy of z belongs to E(n%;(e)). Similarly, if
G’ contains k edge-disjoint H-immersions, then G contains k H-half-integral immersions
(778)7 wg)), s (w%,k), Wg)) such that for each edge e of G, there exist at most two distinct
pairs (i,e') with 1 <i < k and ¢’ € E(H) such that e € Wg)(e’), so we are done.

So we may assume that there exists Z’ C E(G’) with |Z’|< f(k) such that G' — Z’
has no H-immersion. Then G — Z has no H-half-integral immersion, where Z C E(G)
is the set consisting of the edges of G having a copy in Z’. Note that |Z| < |Z’|. This
completes the proof. O
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