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A graph G contains another graph H as an immersion if 
H can be obtained from a subgraph of G by splitting off 
edges and removing isolated vertices. In this paper, we prove 
an edge-variant of the Erdős-Pósa property with respect to 
the immersion containment in 4-edge-connected graphs. More 
precisely, we prove that for every graph H, there exists a 
function f such that for every 4-edge-connected graph G, 
either G contains k pairwise edge-disjoint subgraphs each 
containing H as an immersion, or there exists a set of at most 
f(k) edges of G intersecting all such subgraphs. This theorem 
is best possible in the sense that the 4-edge-connectivity 
cannot be replaced by the 3-edge-connectivity.
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1. Introduction

In this paper graphs are finite and are permitted to have loops and parallel edges. 

Many questions in graph theory or combinatorial optimization can be formulated as 

follows. Given a set of graphs F and a graph G, what is the maximum number of disjoint 
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subgraphs of G where each isomorphic to a member of F or what is the minimum number 

of vertices that are required to meet all such subgraphs? We call the former problem the 

packing problem and the maximum number the packing number, and we call the latter 

problem the covering problem and the minimum the covering number. For example, if F

consists of the graph K2, then the packing number is the maximum size of a matching 

and the covering number is the minimum size of a vertex cover; if F is the set of cycles, 

the covering number is the minimum size of a feedback vertex set.

In view of combinatorial optimization, the packing problem and the covering problem 

can be formulated as integer programming problems. And the covering problem is the 

dual of the packing problem. Furthermore, it is easy to see that the packing number is 

at most the covering number. On the other hand, it is natural to ask when the covering 

number can be bounded by a function of the packing number from above. In other 

words, we hope that the optimal solutions of the packing problem and covering problem 

are bounded by functions of each other.

Formally, a set of graphs F has the Erdős-Pósa property if for every integer k, there 

exists a number f(k) such that for every graph G, either G contains k disjoint subgraphs 

each isomorphic to a member of F , or there exists Z ⊆ V (G) with |Z| ≤ f(k) such that 

G − Z does not contain a subgraph isomorphic to a member of F . A classical result of 

Erdős and Pósa [6] states that the set of cycles has the Erdős-Pósa property. Hence the 

packing number and the covering number for the set of cycles are tied together.

This theorem was later generalized by Robertson and Seymour in terms of graph 

minors. A graph is a minor of another graph if the former can be obtained from a 

subgraph of the latter by contracting edges. For every graph H, define M(H) to be the 

set of graphs containing H as a minor. Robertson and Seymour [16] proved that M(H)

has the Erdős-Pósa property if and only if H is planar. So the aforementioned result of 

Erdős and Pósa follows from the case that H is the one-vertex graph with one loop.

A variant of the minor containment is the topological minor containment. We say that 

a graph is a topological minor of another graph if the former can be obtained from a 

subgraph of the latter by repeatedly contracting edges incident with at least one vertex 

of degree two. Minor containment and topological minor containment are closely related. 

For example, they are equivalent for characterizing planar graphs.

However, minors and topological minors behave much differently with respect to the 

Erdős-Pósa property. For every graph H, define T M(H) to be the set of graphs contain-

ing H as a topological minor. Unlike graph minors, the Erdős-Pósa property for T M(H)

is not equivalent with the planarity of H. The author, Postle and Wollan [12] provided a 

characterization of graphs H in which T M(H) has the Erdős-Pósa property and proved 

that it is NP-hard to decide whether T M(H) has the Erdős-Pósa property for the input 

graph H.

The topological minor relation can be equivalently defined as follows. A graph H with 

no isolated vertices is a topological minor of another graph G if there exist an injection 

πV from V (H) to V (G) and a function πE that maps the edges e, say with ends u, v, of 

H to paths in G from πV (u) to πV (v) (if e is a loop with the end v, then πE(e) is a cycle 
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in G containing πV (v)) such that πE(e1) and πE(e2) are internally disjoint for distinct 

edges e1, e2 of H. Note that we consider a loop as a cycle as well.

We say that a graph H (allowing isolated vertices) is an immersion of a graph G if the 

mentioned internally disjoint property is replaced by the edge-disjoint property. Formally, 

an H-immersion in G is a pair of functions Π = (πV , πE) such that the following hold.

• πV is an injection from V (H) to V (G).

• πE maps E(H) to the set of subgraphs of G such that for every edge e of H, if e has 

distinct ends x, y, then πE(e) is a path with ends πV (x) and πV (y), and if e is the 

loop with end v, then πE(e) is a cycle containing πV (v).

• If e1, e2 are distinct edges of H, then πE(e1) and πE(e2) are edge-disjoint.

We denote the subgraph 
⋃

e∈E(H) πE(e) ∪
⋃

v∈V (H) πV (v) of G by Π(H). We say that two 

H-immersions Π = (πV , πE) and Π′ = (π′
V , π′

E) are edge-disjoint if 
⋃

W ∈πE(E(H)) E(W )

is disjoint from 
⋃

W ∈π′
E(E(H)) E(W ). (In this paper, for any function f and any subset 

X of its domain, we define f(X) to be the set {f(x) : x ∈ X}.) Equivalently, Π and Π′

are edge-disjoint if and only if Π(H) and Π′(H) are edge-disjoint subgraphs of G.

As immersions consist of edge-disjoint paths, it is reasonable to ask for packing edge-

disjoint copies of immersions instead of disjoint copies. Furthermore, one vertex can 

meet more than one edge-disjoint immersion, so it is more natural to cover these edge-

disjoint subgraphs by edges instead of by vertices. This motivates an edge-variant of the 

Erdős-Pósa property.

We say that a set F of graphs has the edge-variant of the Erdős-Pósa property if 

for every integer k, there exists an integer f(k) such that for every graph G, either G

contains k edge-disjoint subgraphs each isomorphic to a member of F , or there exists 

Z ⊆ E(G) with |Z| ≤ f(k) such that G − Z has no subgraph isomorphic to a member 

of F . Raymond, Sau and Thilikos [14] proved that M(θr) has the edge-variant of the 

Erdős-Pósa property, where θr is the loopless graph on two vertices with r edges.

For every graph H, define I(H) to be the set of graphs containing H as an immersion. 

I(H) does not have the edge-variant of the Erdős-Pósa property for every graph H. 

The necessary conditions for graphs H for which T M(H) has the Erdős-Pósa property 

mentioned in [12] are necessary for graphs H for which I(H) has the edge-variant of 

the Erdős-Pósa property. On the other hand, even though a family of graphs does not 

have the edge-variant of the Erdős-Pósa property, this family possibly has this property 

if we restrict the host graphs to be members of a smaller class of graphs. For example, 

the set of odd cycles does not have the edge-variant of the Erdős-Pósa property, but 

Kawarabayashi and Kobayashi [9] proved that it has the edge-variant of the Erdős-Pósa 

property in 4-edge-connected graphs. We address the same direction in this paper and 

prove that for every graph H, I(H) has the edge-variant of the Erdős-Pósa property in 

4-edge-connected graphs. In fact, we prove the following theorem that is slightly stronger 

than the previous statement.
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Theorem 1.1. For every graph H, there exists a function f : N → N such that for 

every graph G whose every component is 4-edge-connected and for every positive integer 

k, either G contains k edge-disjoint subgraphs each containing H as an immersion, or 

there exists Z ⊆ E(G) with |Z| ≤ f(k) such that G − Z has no H-immersion.

Recall that the necessary conditions for which T M(H) has the Erdős-Pósa property 

mentioned in [12] provide necessary conditions for which I(H) has the edge-variant of the 

Erdős-Pósa property. The constructions in [12] show that the 4-edge-connectivity cannot 

be replaced by the 3-edge-connectivity. In addition, Kakimura and Kawarabayashi [8]

proved that Theorem 1.1 is true if G is 4-edge-connected and H is a complete graph; 

they also provided some example showing that 3-edge-connectivity is not enough. On the 

other hand, Giannopoulou, Kwon, Raymond and Thilikos [7] proved that the requirement 

of being 4-edge-connected can be dropped if H is a loopless connected planar subcubic 

graph.

We remark that statements analogous to Theorem 1.1 with respect to minors and 

topological minors are not true. In other words, there does not exist a constant c such that 

for every graph H, M(H) and T M(H) have the Erdős-Pósa property even if the host 

graphs are c-connected. Let H be a graph such that M(H) (or T M(H), respectively) 

does not have the Erdős-Pósa property. So there exists a positive integer k such that 

for every positive integer N , there exists a graph GN that does not contain k disjoint 

subgraphs where each of them is a member of M(H) (or T M(H), respectively) such that 

there exists no Z ⊆ V (G) with |Z| ≤ N hitting all such subgraphs. For positive integers 

N, c, let Gc,N be the graph obtained from GN by adding c new vertices and adding edges 

from these c vertices to all vertices in GN . Then for any positive integers c, N , the graph 

Gc,N is c-connected but does not contain k + c disjoint subgraphs where each of them is 

a member of M(H) (or T M(H), respectively), and there exists no hitting set in Gc,N

with size at most N . So there is no absolute constant c that would ensure that M(H)

and T M(H) have the Erdős-Pósa property in c-connected graphs.

In fact, we prove a stronger version of Theorem 1.1 (see Theorem 7.5). Theorem 7.5

states that the 4-edge-connectivity can be replaced by the condition of having no edge-

cut of order exactly three. (In fact, Theorem 7.5 is even slightly stronger than this.) 

Note that every Eulerian graph has no edge-cut of order three, so Theorem 7.5 implies 

that the edge-variant of the Erdős-Pósa property holds if the host graphs are Eulerian 

graphs. Recall that Kakimura and Kawarabayashi [8] proved that Theorem 1.1 is true 

if G is 4-edge-connected and H is a complete graph; we remark that what they actually 

proved is stronger: the 4-edge-connectivity of G can be replaced by the condition that 

no “minimal edge-cut” has size three. Our Theorem 7.5 also implies the stronger setting 

in [8]. See the remark after the proof of Theorem 7.5 for the details.

We also consider the following version of the half-integral packing problem in this pa-

per. For every loopless graph H, an H-half-integral immersion in G is a pair of functions 

(πV , πE) such that the following hold.
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• πV is an injection from V (H) to V (G).

• πE maps every edge e with ends u, v of G to a path in G from πV (u) to πV (v).

• For every edge e of G, there exist at most two edges e1, e2 of H such that e ∈ πE(e1)

and e ∈ πE(e2).

The following theorem shows that the 4-edge-connectivity can be dropped if we consider 

the following version of half-integral packing of half-integral immersions.

Theorem 1.2. For every loopless graph H, there exists a function f : N → N such that 

for every graph G and for every positive integer k, either

1. G contains k H-half-integral immersions (π
(1)
V , π

(1)
E ), ..., (π

(k)
V , π

(k)
E ) such that for ev-

ery edge e of G, there exist at most two pairs (i, e′) with 1 ≤ i ≤ k and e′ ∈ E(H)

such that e ∈ π
(i)
E (e′), or

2. there exists Z ⊆ E(G) with |Z| ≤ f(k) such that G − Z has no H-half-integral 

immersion.

We remark that a result about half-integral packing of topological minors was proved 

by the author [11], but the notion of the half-integral packing in [11] is different from 

the one in above theorem.

More recent developments about the Erdős-Pósa property can be found in a survey 

of Raymond and Thilikos [15].

1.1. Overview of this paper

Now we roughly sketch the proof of Theorem 1.1 and describe the organization of this 

paper. More detailed sketches of proofs will be included in later sections when we are 

ready to prove them. We need following ingredients for the proof of Theorem 1.1.

1.1.1. Ingredient 1: edge-tangles

Tangle is one important notion in Robertson and Seymour’s Graph Minors series. It 

defines a “consistent orientation” for each separation of small order in a graph and has 

been proven to be useful in dealing with problems related to the Erdős-Pósa property. If 

one can delete a small number of vertices from a graph such that the packing number of 

every component of the remaining graph is smaller than packing number of the original 

graph, then one can obtain a hitting set of small size by an easy inductive argument. 

So we can assume that there must exist a component whose packing number is not 

smaller than the packing number of the original graph. Note that such a component is 

unique as we cannot have two components whose packing number are not smaller than 

the packing number of the original graph. Hence, as long as we delete a small number 

of vertices, we know which component of the graph obtained by vertex-deletion is the 

“most important”. Given a separation of a graph, by simply seeing which side has this 
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“important” component, we obtain an orientation for separations to define a tangle. 

As we address the edge-variant of the Erdős-Pósa property in this paper, we develop a 

similar machinery called “edge-tangles” which gives an orientation for each edge-cut of 

small order in Section 2. This section is a preparation of many results of this paper and 

includes formal definitions of tangles and edge-tangles.

The notion of edge-tangles is natural but its explicit form seems unnoticed by the com-

munity until the first version of this paper was submitted for publication. We remark that 

Diestel and Oum [4,5] extended the ideas of “consistent orientations” for separations of 

graphs to a much more general setting for “abstract separation systems” to prove a gen-

eral strong duality theorem. After a version of this paper was submitted for publication, 

it was pointed out by Reinhard Diestel (via private communication with the author) 

that the concept of edge-tangles defined in this paper coincides with a special case of 

their abstract separation systems when graphs are loopless. In particular, applying their 

duality theorem for abstract separation systems in [4] to edge-tangles, they [5, Section 

5.2] noted that edge-tangles are dual to low “carving width” as defined by Seymour and 

Thomas [21]. The existence of such a duality theorem for edge-tangles was independently 

asked by Robin Thomas via private communication with the author around 2013 when 

the author introduced the notion of edge-tangles to develop a structure theorem for ex-

cluding immersions. In addition, Diestel, Hundertmark and Lemanczyk [3] applied their 

general work to edge-tangles to derive the classical Gomory-Hu tree theorem. Besides 

those developments for abstract separation systems, in this paper we consider different 

aspects for edge-tangles, mainly on developing structure theorems with respect to im-

mersions and edge-tangles and its application to Erdős-Pósa type problems. We omit the 

details and formal definitions of the terms mentioned in this paragraph, as this paper 

does not rely on them.

In Section 2, we develop basic theory related to edge-tangles. In particular, in Sec-

tions 2.1 and 2.2, we show some basic properties for edge-tangles and build a relationship 

between edge-tangles in a graph G and tangles in the line graph of G. Those results will 

be used in later sections of this paper.

It is known that if a graph G contains a graph H as a minor, then tangles in H

“induce” tangles in G; and every tangle of large order has a “subtangle” induced by a 

large grid minor. We show analogous results in Section 2.3: if a graph G contains a graph 

H as an immersion, then edge-tangles in H “induce” edge-tangles in G (Lemma 2.10); 

every edge-tangle of large order has a “sub-edge-tangle” determined by a large degree 

vertex or induced by a large wall immersion (Lemma 2.16).

We prove other lemmas about edge-tangles in Section 2.4. Those lemmas will be used 

in later sections.

1.1.2. Ingredient 2: a structure theorem for excluding immersions

The next step to prove Theorem 1.1 is to study the structure of minimum coun-

terexamples to Theorem 1.1. If G is a graph that does not contain k edge-disjoint 

H-immersions, then G does not contain an H ′-immersion for some larger graph H ′. 
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So we shall prove a structure theorem for excluding a fixed graph as an immersion. 

Such a structure theorem was developed by the author in an unpublished manuscript 

in 2013. In this paper we include a proof of part of this theorem which is sufficient for 

proving Theorem 1.1. More specifically, we will prove in this paper a structure theorem 

(Theorem 4.6) for graphs that forbids a fixed graph as an immersion with respect to an 

edge-tangle that “grasps” a large set of pairwise edge-disjoint but pairwise intersecting 

subgraphs (called “thorns”). The formal definition of thorns is included in Section 4.

Roughly speaking, Theorem 4.6 states that if an H-immersion free graph G has an 

edge-tangle of large order grasping a large thorns, then we can sweep all except few 

vertices into the non-important side of edge-cuts in this edge-tangle so that the “resulting 

graph” is “simpler” than H in terms of the supply of large degree vertices. To prove 

Theorem 4.6, we first prove strengthenings of some Menger-type results of Robertson 

and Seymour [19] and Marx and Wollan [13] in Section 3, and then we complete the 

proof of this structure theorem in Section 4 by using results proved in Sections 2 and 3.

We remark that a structure theorem about excluding a fixed graph as an immersion 

was proved by Wollan [22]. But it seems to us that Wollan’s structure theorem is not 

sufficiently informative to be applied in this paper. In addition, the structure theorem 

proved in this paper is a “local version” and is a critical component of the proof of a 

“global version” of an excluding immersion structure theorem proved in a later paper of 

the author [10]. The global version has other applications, see [10] for more details.

1.1.3. Ingredient 3: 4-edge-connectivity and thorns

Then, in Section 6 we will show that the 4-edge-connectivity of “sufficiently large” 

graphs can ensure that every edge-tangle “grasps” such a large thorns and hence the 

aforementioned structure theorem can be applied to minimum counterexamples to The-

orem 1.1. This is achieved by Theorem 6.4. Recall that Lemma 2.16 shows that every 

edge-tangle of large order has a sub-edge-tangle determined by a large degree vertex or 

induced by a large wall immersion. Both a large degree vertex and a large grid immersion 

define a large thorns. So the remaining key step in proving Theorem 6.4 is to show that 

in any 4-edge-connected graph, one can obtain a large grid immersion from a large wall 

immersion.

1.1.4. Ingredient 4: preserving edge-connectivity

Finally, we prove Theorems 1.1 and 1.2 in Section 7.

Recall that if one can find an edge-cut of small order such that the subgraph induced 

on each side has smaller packing number for H-immersions, then one can apply induction 

on the packing number to obtain a small hitting set of each of these two subgraphs, and 

one can obtain a hitting set of the whole graph by further collecting the edges between 

the two sides of the edge-cut. Hence in the minimum counterexample to Theorem 1.1, 

no edge-cut of small order has this property. In particular, at most one side can contain 

an H-immersion. Furthermore, when H is connected, at least one side must contain 

an H-immersion, for otherwise the edges between the two sides is a small hitting set. 
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Hence we obtain an orientation of each edge-cut of small order by indicating the side 

having an H-immersion is important, so we obtain an edge-tangle. Our structure theorem 

(Theorem 4.6) ensures that for any H-immersion, one can find an edge-cut of small order 

such that the non-important side contains part of this H-immersion. By repeatedly 

applying machinery developed in Section 3, we can repeatedly enlarge the portion of 

this H-immersion contained in the non-important side until the entire H-immersion is 

contained in the non-important side, which is a contradiction by the definition of the 

edge-tangle. This is the purpose of Section 5 and is achieved by Lemma 5.6.

In fact, careful readers might notice that there are issues with the above strategy 

connected to induction on the packing number and defining an edge-tangle. One concern 

is that we require H to be connected. This concern can be solved relatively easily by 

induction on the number of components of H, and Lemma 5.6 actually already takes 

care of it. The other concern is more substantial: we tried to apply induction hypothesis 

to the subgraphs induced by each side of an edge-cut. Note that such a subgraph is not 

necessarily 4-edge-connected, so we cannot apply induction to it. The key strategy is to 

apply induction to the graph obtained from contracting one side of the edge-cut. Such 

a graph preserves the 4-edge-connectivity, but the packing number is not necessarily 

smaller than the original graph even though the other side of the edge-cut contains an 

H-immersion. To solve this issue, we actually prove a stronger version of Theorem 1.1

by allowing some vertices having labels, where the label of each vertex can be roughly 

considered the number of H-immersions that this vertex represents. More details are 

included in Section 7.

Section 7 formally proves this stronger setting of Theorem 1.1 and solves the afore-

mentioned concern about preserving edge-connectivity. Theorem 7.5 is the strongest 

version in this paper and it implies Theorem 1.1. We remark that we do not require the 

edge-connectivity in Section 5 and Lemma 5.6, as they only require the edge-tangles to 

grasp a thorns. Moreover, Theorem 1.2 is a simple corollary of this stronger version of 

Theorem 1.1, and its proof is included in Section 7.

1.2. Notations

We define some notations to conclude this section. Given a subset X of the vertex-set 

V (G) of a graph G, the subgraph of G induced by X is denoted by G[X], and the set of 

vertices that are not in X but adjacent to some vertices in X is denoted by NG(X). When 

X = {v}, we write NG({v}) as NG(v) for simplicity. We define NG[X] = NG(X) ∪X and 

NG[v] = NG(v) ∪ {v}. A graph is simple if it does not contain parallel edges and loops. 

The line graph of a graph G, denoted by L(G), is the simple graph with V (L(G)) = E(G), 

and every pair of vertices x, y ∈ V (L(G)) are adjacent in L(G) if and only if x, y are two 

edges having a common end in G. For every v ∈ V (G), define cl(v) to be the clique in 

L(G) consisting of the edges of G incident with v. The degree of a vertex v in a graph 

G, denoted by degG(v), is the number of edges of G incident with v, where each loop 

is counted twice. A vertex of G is an isolated vertex in G if it is not incident with any 
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edge. Note that a vertex is non-isolated even if all edges incident with it are loops. If G

is a graph and Y ⊆ V (G), then G − Y is the graph G[V (G) − Y ]; if Y ⊆ E(G), then 

G − Y is the graph with V (G − Y ) = V (G) and E(G − Y ) = E(G) − Y . For a positive 

integer k, a graph G is k-edge-connected if G contains at least two vertices and G − F is 

connected for every F ⊆ E(G) with |F | < k. For every positive integer n, we denote the 

set {1, 2, ..., n} by [n] for short.

2. Tangles and edge-tangles

2.1. Edge-cuts and separations of line graphs

A separation of a graph G is an ordered pair (A, B) of edge-disjoint subgraphs of G

with A ∪ B = G, and the order of (A, B) is |V (A) ∩ V (B)|.

A separation (A, B) of G is normalized if every vertex v ∈ V (A) ∩ V (B) is adjacent 

to a vertex of A − V (B) and adjacent to a vertex in B − V (A). The normalization of a 

separation (A, B) of a graph G is the separation (A∗, B∗) of G defined as follows.

• Let S1 be the set of all non-isolated vertices v in G contained in V (A) ∩ V (B) with 

NA(v) ⊆ V (B). Let A′ be the graph A − S1 and let B′ be the subgraph of G such 

that (A′, B′) is a separation of G with V (A′) ∩ V (B′) = V (A) ∩ V (B) − S1. In 

other words, (A′, B′) is obtained from (A, B) by removing all non-isolated vertices 

v ∈ V (A) ∩ V (B) of G with NA(v) ⊆ V (B) from A and putting all edges of G

incident with v into B. Note that V (B′) = V (B).

• Let S2 be the set of all edges in B′ whose every end is in V (A′) ∩ V (B′). Let 

A′′ = A′ ∪ S2 and B′′ = B′ − S2. Note that (A′′, B′′) is a separation of G, and every 

loop of G incident with some vertex in V (A′′) ∩ V (B′′) belongs to A′′.

• Let S3 be the set of all isolated vertices of B′′. Note that S3 consists of the isolated 

vertices of G contained in V (B′′) and some vertices contained in V (A′′) ∩V (B′′) that 

are not adjacent to any vertex in V (B′′) − V (A′′) by the definition of A′′. Define A∗

to be the graph obtained from A′′ by adding S3 − V (A′′), and define B∗ = B′′ − S3. 

That is, we remove all isolated vertices of B′′ from B′′ and put them into A′′.

The following lemma shows some basic properties of the normalization of a separation 

and will be used in the rest of the section.

Lemma 2.1. Let G be a graph and (A, B) a separation of G. If (A∗, B∗) is the normal-

ization of (A, B), then the following hold.

1. (A∗, B∗) is normalized.

2. The order of (A∗, B∗) is at most the order of (A, B).

3. If e ∈ E(B) − E(B∗), then every end of e belongs to V (A) ∩ V (B).
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4. If e ∈ E(B∗) − E(B), then e is incident with some vertex v in V (A) ∩ V (B) with 

NA(v) ⊆ V (B).

Proof. Let G be a graph, (A, B) a separation of G, and (A∗, B∗) the normalization of 

(A, B). Let S1, S2, S3 be the sets and let (A′, B′), (A′′, B′′) be the separations mentioned 

in the definition of (A∗, B∗), respectively. It is clear that V (A∗) ∩ V (B∗) ⊆ V (A′′) ∩

V (B′′) = V (A′) ∩ V (B′) = V (A) ∩ V (B) − S1, and V (A) − V (B) ⊆ V (A∗) − V (B∗).

We first prove Statement 1. Let v ∈ V (A∗) ∩V (B∗). So v is a non-isolated vertex of G

and v ∈ V (A) ∩ V (B) − S1. Hence NA(v) � V (B). That is, v is adjacent to some vertex 

in V (A) − V (B) ⊆ V (A∗) − V (B∗). Since v ∈ V (B∗), v is not an isolated vertex of B′′. 

So v is adjacent in B′′ to some vertex u ∈ V (B′′). Note that u is not an isolated vertex 

of B′′. Hence u ∈ V (B′′) − S3 = V (B∗). Since v ∈ V (A∗) ∩ V (B∗) ⊆ V (A′) ∩ V (B′), 

u /∈ V (A′) ∩ V (B′), for otherwise every edge incident with both u, v belongs to S2 and u

is not adjacent to v in B′′. Since V (A′′) ∩ V (B′′) = V (A′) ∩ V (B′), u ∈ V (B′′) − V (A′′). 

Since u /∈ S3, u ∈ V (B∗) − V (A∗). So v is adjacent to a vertex in V (B∗) − V (A∗). This 

shows that (A∗, B∗) is normalized.

Statement 2 immediately follows from the fact that V (A∗) ∩ V (B∗) ⊆ V (A) ∩ V (B) −

S1.

Now we prove Statement 3. Let e ∈ E(B) − E(B∗). Since e ∈ E(B), e /∈ E(A). So 

e /∈ E(A′) and hence e ∈ E(B′). Since every vertex in S3 is an isolated vertex in B′′ and 

e /∈ E(B∗), e /∈ E(B′′). So e ∈ E(B′) − E(B′′) ⊆ S2. Hence every end of e belongs to 

V (A′) ∩ V (B′) ⊆ V (A) ∩ V (B). This shows Statement 3.

Finally, we prove Statement 4. Let e ∈ E(B∗) − E(B). Since every vertex in S3 is an 

isolated vertex of B′′, e ∈ E(B∗) = E(B′′) ⊆ E(B′). So e /∈ E(A′). Since e /∈ E(B), 

e ∈ E(A). Hence e is incident with some vertex w in S1. But every vertex in S1 satisfies 

that w ∈ V (A) ∩ V (B) and NA(w) ⊆ V (B). This completes the proof. �

An edge-cut of a graph G is an ordered partition [A, B] of V (G), where some of A

and B is allowed to be empty. The order of an edge-cut [A, B], denoted by |[A, B]|, is 

the number of edges with one end in A and one end in B. For an edge e of G, we write 

e ∈ [A, B] if e has one end in A and one end in B.

The partner of a normalized separation (A, B) of the line graph L(G) of G is the 

edge-cut [A′, B′] of G satisfying that A′ is the union of the set of isolated vertices of G

and the set {v ∈ V (G) : cl(v) ⊆ V (A)}, and B′ = {v ∈ V (G) : cl(v) ⊆ V (B), cl(v) �= ∅}.

Lemma 2.2. Let G be a graph, and let (A, B) be a separation of L(G). If (A, B) is 

normalized, then the partner [A′, B′] of (A, B) is a well-defined edge-cut of G, and the 

order of (A, B) equals the order of [A′, B′].

Proof. We first show that the partner [A′, B′] of (A, B) is a well-defined edge-cut of G. 

That is, A′ ∪ B′ = V (G) and A′ ∩ B′ = ∅. Let v ∈ V (G). If v is an isolated vertex of G, 

then v ∈ A′; otherwise, cl(v) is a non-empty clique, so cl(v) ⊆ V (A) or cl(v) ⊆ V (B), and 



158 C.-H. Liu / Journal of Combinatorial Theory, Series B 151 (2021) 148–222

hence v ∈ A′ ∪ B′. So A′ ∪ B′ = V (G). Suppose to the contrary that v ∈ A′ ∩ B′. Then 

cl(v) ⊆ V (A) ∩ V (B) and cl(v) �= ∅. So there exist e0 ∈ cl(v) and a set X ⊆ V (G) − {v}

with |X| ≤ 1 such that NL(G)(e0) ⊆ cl(v) ∪
⋃

u∈X cl(u). But since (A, B) is normalized 

and e0 ∈ cl(v) ⊆ V (A) ∩ V (B), e0 is adjacent in L(G) to a vertex in A − V (B) and a 

vertex in B −V (A). Since cl(v) ⊆ V (A) ∩V (B), 
⋃

u∈X cl(u) intersects both V (A) −V (B)

and V (B) − V (A). But it is impossible since |X| ≤ 1, a contradiction. This shows that 

[A′, B′] is an edge-cut of G.

Now we show that the order of (A, B) equals the order of [A′, B′]. Let e ∈ [A′, B′]

with ends u, v, where u ∈ A′ and v ∈ B′. So cl(u) ⊆ V (A) and cl(v) ⊆ V (B). Hence, 

e ∈ cl(u) ∩ cl(v) ⊆ V (A) ∩ V (B). This implies that the order of (A, B) is at least the 

order of [A′, B′].

On the other hand, let e ∈ V (A) ∩ V (B). Since (A, B) is normalized, e is adjacent 

to a vertex eA of L(G) in V (A) − V (B) and a vertex eB of L(G) in V (B) − V (A). So 

e and eA have a common end x in G, and e and eB have a common end y of G. Since 

eA /∈ V (B), cl(x) ⊆ V (A) and hence x ∈ A′. Similarly, cl(y) ⊆ V (B) and y ∈ B′. So 

x �= y and they are the ends of e. This proves that e ∈ [A′, B′] and the order of (A, B)

is at most the order of [A′, B′]. �

2.2. Basic properties of edge-tangles

Let θ be an integer. A tangle T in a graph G of order θ is a set of separations of G of 

order less than θ such that

(T1) for every separation (A, B) of G of order less than θ, either (A, B) ∈ T or (B, A) ∈

T ;

(T2) if (A1, B1), (A2, B2), (A3, B3) ∈ T , then A1 ∪ A2 ∪ A3 �= G;

(T3) if (A, B) ∈ T , then V (A) �= V (G).

The notion of tangles was first defined by Robertson and Seymour in [17]. We call (T1), 

(T2) and (T3) the first, second and third tangle axioms, respectively. Note that (T2) 

implies that if (A, B) ∈ T , then (B, A) /∈ T .

An edge-tangle E in a graph G of order θ is a set of edge-cuts of G of order less than 

θ such that the following hold.

(E1) For every edge-cut [A, B] of G of order less than θ, either [A, B] ∈ E or [B, A] ∈ E ;

(E2) If [A1, B1], [A2, B2], [A3, B3] ∈ E , then B1 ∩ B2 ∩ B3 �= ∅.

(E3) If [A, B] ∈ E , then G has at least θ edges incident with vertices in B.

We call (E1), (E2) and (E3) the first, second and third edge-tangle axioms, respectively. 

Note that if an edge-tangle E of order θ ≥ 1 in G exists, then [∅, V (G)] ∈ E by (E1) and 

(E2), so |E(G)| ≥ θ by (E3). Furthermore, for every [A, B] ∈ E , there exists an edge of 

G whose every end is in B by (E3).
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The following lemma is simple but useful. It shows that the “orientation” of the edge-

cuts given by an edge-tangle is “consistent”.

Lemma 2.3. Let θ be a positive integer. Let G be a graph and E an edge-tangle of order 

θ in G. If [A, B], [C, D] ∈ E, then the following hold.

1. If the order of [A ∪ C, B ∩ D] is less than θ, then [A ∪ C, B ∩ D] ∈ E.

2. If A′ ⊆ A and [A′, V (G) −A′] is an edge-cut of G of order less than θ, then [A′, V (G) −

A′] ∈ E.

Proof. We first prove Statement 1. Assume that [A ∪ C, B ∩ D] has order less than θ. 

By (E1), either [A ∪ C, B ∩ D] ∈ E or [B ∩ D, A ∪ C] ∈ E . Since [A, B], [C, D] ∈ E and 

B ∩ D ∩ (A ∪ C) = ∅, [B ∩ D, A ∪ C] /∈ E by (E2). So [A ∪ C, B ∩ D] ∈ E . This shows 

Statement 1.

Now we prove Statement 2. Let A′ ⊆ A, and assume that [A′, V (G) − A′] is an edge-

cut of G of order less than θ. By (E1), either [A′, V (G) − A′] ∈ E or [V (G) − A′, A′] ∈ E . 

Since [A, B] ∈ E and B ∩ A′ = ∅, [V (G) − A′, A′] /∈ E by (E2). So [A′, V (G) − A′] ∈ E . 

This shows Statement 2. �

The following lemma shows that the vertex-set of any component with at most one 

edge can be moved to either side of an edge-cut without flipping the “orientation” given 

by an edge-tangle.

Lemma 2.4. Let θ be an integer with θ ≥ 2 and let G be a graph. Then the following hold.

1. Let S be the vertex-set of a component of G with at most one edge. If [A, B] ∈ E, 

then [A ∪ S, B − S] ∈ E.

2. Let D be the union of the vertex-sets of the components of G with at most one edge. 

If [A, B] ∈ E, then [A ∪ D, B − D] ∈ E.

Proof. We first prove Statement 1. Suppose to the contrary that [A ∪ S, B − S] /∈ E . 

Note that every edge with one end in A ∪ S and one end in B − S is an edge with one 

end in A and one end in B. Hence the order of [A ∪ S, B − S] is at most the order of 

[A, B]. By (E1), [B − S, A ∪ S] ∈ E . The edge-cut [S, V (G) − S] has order 0, so either 

[S, V (G) − S] ∈ E or [V (G) − S, S] ∈ E by (E1). Since θ ≥ 2 and there exists at most one 

edge incident with S, (E3) implies that [V (G) − S, S] /∈ E . So [S, V (G) − S] ∈ E . Hence 

[A, B], [B−S, A ∪S], [S, V (G) −S] are edge-cuts in E such that B∩(A ∪S) ∩V (G) −S = ∅, 

contradicting (E2). This proves Statement 1.

Now we prove Statement 2. Let S1, S2, ..., Sk be the subsets of V (G) such that each 

Si is the vertex-set of some component of G with at most one edge. So D =
⋃k

i=1 Si. 

For every j ∈ [k], let Dj =
⋃j

i=1 Si. We shall prove that [A ∪ Dj , B − Dj ] ∈ E for 

j ∈ [k] by induction on j. The case j = 1 immediately follows from Statement 1 of 
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this lemma. So we may assume that j ≥ 2 and [A ∪ Dj−1, B − Dj−1] ∈ E . Applying 

Statement 1 of this lemma by taking [A, B] = [A ∪ Dj−1, B − Dj−1] and S = Sj , we 

know that [A ∪ Dj , B − Dj ] = [(A ∪ Dj−1) ∪ Sj , (B − Dj−1) − Sj ] ∈ E . This shows that 

[A ∪ Dj , B − Dj ] ∈ E for every j ∈ [k]. Hence [A ∪ D, B − D] = [A ∪ Dk, B − Dk] ∈ E . 

This proves the lemma. �

The next step is to build a relationship between edge-tangles in G and tangles in its 

line graph L(G).

Given an edge-tangle E of order θ in G, the conjugate E of E is the set of separations 

of L(G) of order less than �θ/3� such that (A, B) ∈ E if and only if the partner of the 

normalization of (A, B) is in E .

One reason for considering separations of L(G) of order less than �θ/3� only instead 

of considering separations of L(G) of order less than θ is due to a technicality in the 

proof of the following lemma which shows a relationship between E and E .

Lemma 2.5. Let θ be an integer with θ ≥ 2 and G a graph. If E is an edge-tangle of order 

3θ − 2 of G, then E is a tangle of order θ in L(G).

Proof. Observe that every member of E has order less than �3θ−2
3 � = θ. We shall prove 

that E satisfies tangle axioms (T1), (T2) and (T3). Note that |E(G)| ≥ 3θ − 2 since G

has an edge-tangle of order 3θ − 2.

Claim 1: E satisfies (T1).

Proof of Claim 1: Let (A, B) be a separation of L(G) of order less than θ. Let (A1, B1)

and (B2, A2) be the normalizations of (A, B) and (B, A), respectively. And let [A′
1, B′

1]

and [B′
2, A′

2] be the partners of (A1, B1) and (B2, A2), respectively. If any of [A′
1, B′

1] and 

[B′
2, A′

2] is in E , then (A, B) or (B, A) is in E , and we are done. So we may assume that 

none of [A′
1, B′

1] and [B′
2, A′

2] is in E . By Lemmas 2.1 and 2.2, the order of [A′
1, B′

1] and 

[B′
2, A′

2] are less than θ, so [B′
1, A′

1] and [A′
2, B′

2] are in E by (E1). Let D be the union of the 

vertex-sets of the components of G with at most one edge. Let [B′′
1 , A′′

1 ] = [B′
1∪D, A′

1−D]

and let [A′′
2 , B′′

2 ] = [A′
2 ∪D, B′

2 −D]. By Statement 2 of Lemma 2.4, [B′′
1 , A′′

1 ] and [A′′
2 , B′′

2 ]

are in E .

Let v ∈ A′′
1 ∩ B′′

2 . So v /∈ D and hence v does not belong to any component of G with 

at most one edge. In particular, v is not an isolated vertex in G and cl(v) �= ∅. Note that 

cl(v) is not a set consisting of one isolated vertex in L(G), for otherwise the vertex in cl(v)

is the only edge of some component of G and v ∈ D. Since v ∈ A′′
1 ⊆ A′

1, cl(v) ⊆ V (A1)

as v is not an isolated vertex in G. Similarly, cl(v) ⊆ V (B2). So cl(v) ⊆ V (A1) ∩ V (B2).

Suppose that cl(v) � V (A). Then some vertex in cl(v) is in V (B) − V (A) and is not 

an isolated vertex of B, so this vertex is in V (B1) − V (A1). Hence cl(v) − V (A1) �= ∅, a 

contradiction.

So cl(v) ⊆ V (A). Similarly, cl(v) ⊆ V (B), for otherwise cl(v) − V (B2) �= ∅. Hence 

cl(v) ⊆ V (A) ∩ V (B).
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This shows that 
⋃

u∈A′′
1 ∩B′′

2
cl(u) ⊆ V (A) ∩V (B). Therefore, the number of edges of G

incident with some vertex in A′′
1 ∩ B′′

2 is at most |
⋃

u∈A′′
1 ∩B′′

2
cl(u)| ≤ |V (A) ∩ V (B)| < θ. 

In particular, the number of edges with one end in A′′
1 ∩B′′

2 and one end in B′′
1 ∪A′′

2 is less 

than θ. Hence, (E1) implies that either [A′′
1 ∩B′′

2 , B′′
1 ∪A′′

2 ] ∈ E or [B′′
1 ∪A′′

2 , A′′
1 ∩B′′

2 ] ∈ E . 

But (E3) excludes the latter case, so [A′′
1 ∩B′′

2 , B′′
1 ∪A′′

2 ] ∈ E . However, [B′′
1 , A′′

1 ], [A′′
2 , B′′

2 ]

and [A′′
1 ∩ B′′

2 , B′′
1 ∪ A′′

2 ] belong to E , but A′′
1 ∩ B′′

2 ∩ (B′′
1 ∪ A′′

2) = ∅, contradicting (E2). 

This proves that E satisfies (T1). �

Next, we show that E satisfies (T3). Suppose that (A, B) ∈ E with V (A) = V (L(G)). 

So the partner [A′, B′] of the normalization of (A, B) is in E . Note that 
⋃

v∈B′ cl(v) ⊆

V (B) = V (A) ∩ V (B), so the number of edges incident with vertices in B′ is at most 

|V (A) ∩ V (B)| < θ ≤ 3θ − 2, contradicting (E3). Consequently, E satisfies (T3).

Now we suppose that E does not satisfy (T2). So there exist separations (A1, B1), 

(A2, B2), (A3, B3) in E such that A1 ∪ A2 ∪ A3 = L(G). For each i ∈ [3], let (A∗
i , B∗

i ) be 

the normalization of (Ai, Bi), and let [A′
i, B

′
i] be the partner of (A∗

i , B∗
i ). By the definition 

of E , [A′
i, B

′
i] ∈ E for i ∈ [3]. The number of edges of G incident with vertices in 

⋂3
i=1 B′

i

is at most |
⋃

v∈
⋂3

i=1 B′
i
cl(v)| ≤ |

⋂3
i=1 V (B∗

i )| ≤ |
⋂3

i=1 V (Bi)|. However, 
⋂3

i=1 V (Bi) ⊆
⋃3

i=1 V (Ai ∩ Bi), as A1 ∪ A2 ∪ A3 = L(G). So the number of edges of G incident with 

vertices in 
⋂3

i=1 B′
i is at most |

⋃3
i=1 V (Ai ∩ Bi)| ≤ 3(θ − 1). In addition, |[A′

1 ∪ A′
2, B′

1 ∩

B′
2]| ≤

∑2
i=1|[A′

i, B
′
i]| ≤ 2(θ − 1) < 3θ − 2, so [A′

1 ∪ A′
2, B′

1 ∩ B′
2] ∈ E by Lemma 2.3. 

Similarly, |[A′
1 ∪ A′

2 ∪ A′
3, B′

1 ∩ B′
2 ∩ B′

3]| ≤
∑3

i=1|[A′
i, B

′
i]| ≤ 3(θ − 1) < 3θ − 2, so 

[A′
1 ∪ A′

2 ∪ A′
3, B′

1 ∩ B′
2 ∩ B′

3] ∈ E by Lemma 2.3. Hence by (E3), the number of edges of 

G incident with vertices in 
⋂3

i=1 B′
i is at least 3θ − 2, a contradiction. This proves that 

E satisfies (T3). Consequently, E is a tangle of order θ in L(G). �

Let G be a graph and E a collection of edge-cuts of G of order less than a positive 

number θ, and let X ⊆ E(G). Define E − X to be the set of edge-cuts of G − X of order 

less than θ − |X| such that [A, B] ∈ E − X if and only if [A, B] ∈ E .

Lemma 2.6. Let G be a graph and θ be a positive integer. If E is an edge-tangle in G of 

order θ and X is a subset of E(G) with |X| < θ, then E − X is an edge-tangle in G − X

of order θ − |X|.

Proof. If [A, B] is an edge-cut of order less than θ − |X| in G − X, then [A, B] is an 

edge-cut in G of order less than θ. So for every edge-cut [A, B] of G − X of order less 

than θ − |X|, since E is an edge-tangle in G of order θ, either [A, B] ∈ E or [B, A] ∈ E , 

and hence either [A, B] ∈ E −X or [B, A] ∈ E −X by the definition of E −X. This shows 

that E − X satisfies (E1).

Since E satisfies (E2), B1 ∩B2 ∩B3 �= ∅, for any edge-cuts [A1, B1], [A2, B2], [A3, B3] ∈

E . So for any members [A1, B1], [A2, B2], [A3, B3] of E − X, we have [A1, B1], [A2, B2],

[A3.B3] ∈ E by the definition of E − X, so B1 ∩ B2 ∩ B3 �= ∅. Hence E − X satisfies (E2).
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If [A, B] ∈ E −X, then [A, B] ∈ E , so G contains at least θ edges incident with vertices 

in B. Hence, G − X contains at least θ − |X| edges incident with vertices in B. So E − X

satisfies (E3). This proves that E − X is an edge-tangle of order θ − |X|. �

Let E be an edge-tangle in a graph G. We say that a subset Y of E(G) is free with 

respect to E if there exist no Z ⊆ Y and [A, B] ∈ E − Z of order less than |Y − Z| such 

that every edge in Y − Z has every end in A.

Lemma 2.7. Let G be a graph and E an edge-tangle in G of order θ ≥ 1. Let Z be a 

subset of E(G) with |Z| < θ and let X be a subset of E(G) − Z such that X is free with 

respect to E − Z. If |X| ≤ θ − |Z|, then for every X ′ ⊆ X and Z ′ ⊆ Z, X ′ is free with 

respect to E − Z ′.

Proof. Suppose to the contrary that X ′ is not free with respect to E − Z ′. Then there 

exist W ′ ⊆ X ′ and [A, B] ∈ (E − Z ′) − W ′ = E − (Z ′ ∪ W ′) of order less than |X ′ − W ′|

such that every edge in X ′ − W ′ has every end in A. Let W = W ′ ∪ (X − X ′). So 

X ′ − W ′ = X − W . Since Z ′ ⊆ Z and W ′ ⊆ X ′, [A, B] is an edge-cut of G − Z of order 

less than |X ′ − W ′| + |W ′| ≤ |X ′| ≤ |X| ≤ θ − |Z|. Since E − Z has order θ − |Z| by 

Lemma 2.6, by (E1), either [A, B] ∈ E − Z or [B, A] ∈ E − Z.

Since W ⊆ X and X is free with respect to E − Z, either [A, B] /∈ (E − Z) − W or the 

order of [A, B] in G − (Z ∪ W ) is at least |X − W | = |X ′ − W ′|. Since Z ∪ W ⊇ Z ′ ∪ W ′, 

the order of [A, B] in G − (Z ∪ W ) is at most the order of [A, B] in G − (Z ′ ∪ W ′), 

which is less than |X ′ − W ′|. So [A, B] /∈ (E − Z) − W . Hence [A, B] /∈ E − Z by the 

definition of (E −Z) −W . So [B, A] ∈ E −Z. By the definition of E −Z, [B, A] ∈ E . Since 

[A, B] ∈ E −(Z ′ ∪W ′), the order of [B, A] in G −(Z ′ ∪W ′) is less than θ−|Z ′ ∪W ′|. Since 

[B, A] ∈ E , [B, A] ∈ E − (Z ′ ∪ W ′) by the definition of E − (Z ′ ∪ W ′). So [A, B], [B, A] ∈

E − (Z ′ ∪ W ′), contradicting (E2). �

Let T be a tangle in a graph G. We say that a subset X of V (G) is free with respect 

to T if there does not exist (A, B) ∈ T of order less than |X| such that X ⊆ V (A).

Note that for every graph G, V (L(G)) = E(G). So for every subset of E(G), we can 

consider whether it is free with respect to an edge-tangle E in G and whether it is free 

with respect to the conjugate E of E .

Lemma 2.8. Let E be an edge-tangle in a graph G, and let E be the conjugate of E. Let 

X, Z be disjoint subsets of E(G). If X is free with respect to E − Z, then X is free with 

respect to E − Z.

Proof. Suppose that X is not free with respect to E − Z. Then there exists a separation 

(A, B) ∈ E − Z of L(G) − Z of order less than |X| such that X ⊆ V (A). We may 

assume that the order of (A, B) is as small as possible, and subject to that, V (B) is 

inclusion-wise minimal. So every vertex in V (A) ∩ V (B) − X is adjacent to a vertex in 

V (A) −V (B) and adjacent to a vertex in V (B) −V (A); every vertex in V (A) ∩V (B) ∩X
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is adjacent to a vertex in V (B) − V (A). Furthermore, B has no isolated vertices by the 

minimality of (A, B). Let (A′, B′) be a separation of L(G) with V (A′) = V (A) ∪ Z and 

V (B′) = V (B) ∪Z. Since (A, B) ∈ E −Z, (A′, B′) ∈ E . Let (A∗, B∗) be the normalization 

of (A′, B′). So V (B∗) −Z = V (B′) −Z, V (A∗) ∩V (B∗) −(X∪Z) = V (A′) ∩V (B′) −(X∪Z)

and |V (A∗) ∩ V (B∗) − (X ∪ Z)| = |V (A′) ∩ V (B′)| − |V (A′) ∩ V (B′) ∩ (X ∪ Z)|.

Suppose that (A∗, B∗) /∈ E . Then (B∗, A∗) ∈ E by (T1). By (T1) and (T3), 

(G[V (A′) ∩ V (B′)], G − E(G[V (A′) ∩ V (B′)])) ∈ E . Since V (B′) − Z = V (B∗) − Z, 

we know (A′, B′), (B∗, A∗), (G[V (A′) ∩ V (B′)], G − E(G[V (A′) ∩ V (B′)])) are members 

of E such that A′ ∪ B∗ ∪ G[V (A′) ∩ V (B′)] = L(G), contradicting (T2). So (A∗, B∗) ∈ E .

Let [C, D] be the partner of (A∗, B∗). So [C, D] ∈ E . Let W = (V (A′) ∩ V (B′)) ∩

(X ∪ Z). Note that W is a subset of V (L(G)) = E(G). Every edge e in X − W has every 

end in C since it is a vertex in V (A′) − V (B′). And the order of [C, D] in G − W equals 

|V (A∗) ∩ V (B∗) − (X ∪ Z)| = |V (A′) ∩ V (B′)| − |W | < |X| − |W − Z| ≤ |X − (W ∩ X)|.

Let θ be the order of E . So the order of E is at most �θ/3�. Since (A′, B′) ∈ E , 

|V (A′) ∩V (B′)| < θ/3. So the order of [C, D] in G −W is at most |V (A′) ∩V (B′)| −|W | <

θ/3 − |W | < θ − |W |. Hence [C, D] ∈ E − W .

Therefore, [C, D] ∈ (E − Z) − (W ∩ X) is an edge-cut of (G − Z) − (W ∩ X) of order 

less than |X − (X ∩ W )| such that every edge in X − (X ∩ W ) has every end in C. So 

X is not free with respect to E − Z, a contradiction. �

The converse of Lemma 2.8 is also true when Z = ∅, subject to a requirement on the 

size of the set, as shown in the following lemma.

Lemma 2.9. Let E be an edge-tangle in a graph G of order at least two, and let E be the 

conjugate of E. Let X be a subset of E(G). Denote the order of E by θ. If X is free with 

respect to E and |X| ≤ θ, then X is free with respect to E.

Proof. Suppose to the contrary that X is not free with respect to E . So there exist 

W ⊆ X and [A, B] ∈ E − W of order less than |X − W | such that every edge in X − W

has every end in A. We further assume that the order of [A, B] is as small as possible, 

and subject to that, |A| is as large as possible.

Claim 1: The following hold.

• Every non-isolated vertex of G is incident with an edge of G − W whose every end 

is contained in A or an edge of G − W whose every end is contained in B.

• A contains the vertex-set of every component of G with at most one edge.

Proof of Claim 1: The first statement of this claim immediately follows from the mini-

mality of the order of [A, B]. Furthermore, the minimality of |[A, B]|, the maximality of 

A, and Statement 2 of Lemma 2.4 imply the second statement of this claim. �
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Define B′ to be the induced subgraph of L(G −W ) such that V (B′) is the set of edges 

of G − W incident with vertices of B. Define (A′, B′) to be a separation of L(G − W )

such that V (A′) ∩ V (B′) is the set of edges of G − W with one end in A and one 

end in B. Note that the order of (A′, B′) is at most the order of [A, B] in G − W . So 

|V (A′) ∩ V (B′)| < |X − W |.

Let (A∗, B∗) be a separation of L(G) with V (A∗) = V (A′) ∪W and V (B∗) = V (B′) ∪

W . So X ⊆ V (A∗) and |V (A∗) ∩V (B∗)| < |X| ≤ θ. By (T1), (A∗, B∗) ∈ E or (B∗, A∗) ∈

E .

Let (A′′, B′′) be the normalization of (A∗, B∗). Let [C, D] be the partner of (A′′, B′′)

in G.

Claim 2: [C, D] = [A, B].

Proof of Claim 2: Suppose that there exists a vertex v ∈ C − A. Since A contains 

all isolated vertices in G by Claim 1, v is not an isolated vertex in G. Since v ∈ C, 

cl(v) ⊆ V (A′′). Since v /∈ A, v ∈ B. By Claim 1, v is incident with an edge e of G − W

whose every end is contained in B. So e ∈ V (B′) −V (A′) = V (B∗) −V (A∗). Since v ∈ B, 

e is not the only edge of some component of G by Claim 1. So e is not an isolated vertex 

in B∗. Hence e ∈ V (B′′) − V (A′′). But e ∈ cl(v) − V (A′′), a contradiction. This shows 

C ⊆ A.

Suppose that there exists a vertex u ∈ A − C. Since C contains all isolated vertices of 

G, u is not an isolated vertex of G. Since u ∈ A, u is incident with an edge f of G − W

whose every end in A by Claim 1. Hence f ∈ V (A′) − V (B′) = V (A∗) − V (B∗). So 

f ∈ V (A′′) − V (B′′) and hence cl(u) ⊆ V (A′′). This implies that u ∈ C, a contradiction.

Therefore, A = C. Since {A, B} and {C, D} are partitions of V (G), [A, B] =

[C, D]. �

By Claim 2, since [C, D] = [A, B] ∈ E , (A∗, B∗) ∈ E . But X ⊆ V (A∗) and |V (A∗) ∩

V (B∗)| < |X|, so X is not free with respect to E , a contradiction. This proves that X is 

free with respect to E . �

2.3. Immersions and edge-tangles

The following lemma provides a way to obtain an edge-tangle from an immersion.

Lemma 2.10. Let H be a graph and E ′ an edge-tangle of order θ in H. Let G be a graph 

that contains an H-immersion (πV , πE). If E is the set of all edge-cuts [A, B] of G of 

order less than θ such that there exists [A′, B′] ∈ E ′ with πV (A′) = A ∩ πV (V (H)), then 

E is an edge-tangle of order θ in G.

Proof. We shall show that E satisfies the edge-tangle axioms (E1), (E2) and (E3). Note 

that for every edge-cut [A, B] of G, A ∩ πV (V (H)) and B ∩ πV (V (H)) are two disjoint 
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subsets of πV (V (H)) such that their union is πV (V (H)), so there exists an edge-cut 

[A′, B′] of H such that πV (A′) = A ∩ πV (V (H)) and πV (B′) = B ∩ πV (V (H)).

We first prove that E satisfies (E1). Let [A, B] be an edge-cut of G of order less 

than θ. Let [A′, B′] an edge-cut of H such that πV (A′) = A ∩ πV (V (H)) and πV (B′) =

B ∩ πV (V (H)). Since (πV , πE) is an H-immersion, there are at least |[A′, B′]| edge-

disjoint paths in G from A ∩ πV (V (H)) to B ∩ πV (V (H)). So |[A′, B′]| ≤ |[A, B]| < θ. 

Hence, one of [A′, B′] and [B′, A′] is in E ′, and hence one of [A, B] and [B, A] is in E . So 

E satisfies (E1).

Now we prove that E satisfies (E2). For each i ∈ [3], let [Ai, Bi] ∈ E be an edge-

cut of G. By the definition of E , for each i ∈ [3], there exists [A′
i, B

′
i] ∈ E ′ such that 

πV (A′
i) = Ai ∩ πV (V (H)) and hence πV (B′

i) = Bi ∩ πV (V (H)). Since E ′ is an edge-

tangle in H, B′
1 ∩ B′

2 ∩ B′
3 contains a vertex v of H. So πV (v) ∈ B1 ∩ B2 ∩ B3. This 

proves that E satisfies (E2).

Finally, we prove that E satisfies (E3). Let [A, B] ∈ E . By the definition of E , there 

exists [A′, B′] ∈ E ′ such that πV (A′) = A ∩πV (V (H)) and hence πV (B′) = B∩πV (V (H)). 

Since E ′ satisfies (E3), H contains at least θ edges incident with vertices in B′. So there 

are at least θ edge-disjoint subgraphs of G each containing a vertex in πV (B′) ⊆ B and 

containing an edge of G. Therefore, G contains at least θ edges incident with vertices in 

B. Consequently, E is an edge-tangle in G. �

We call the edge-tangle E defined in Lemma 2.10 the edge-tangle induced by the H-

immersion (πV , πE) and the edge-tangle E ′ in H.

The m ×n wall is the simple graph with vertex-set {(i, j) : 1 ≤ i ≤ n, 1 ≤ j ≤ m} and 

edge-set {(i, j)(i + 1, j) : 1 ≤ i ≤ n − 1, 1 ≤ j ≤ m} ∪ {(2a − 1, 2b − 1)(2a − 1, 2b) : 1 ≤

a ≤ �n/2�, 1 ≤ b ≤ �m/2�} ∪ {(2a, 2b)(2a, 2b + 1) : 1 ≤ a ≤ �n/2�, 1 ≤ b ≤ �(m − 1)/2�}. 

The i-th row of the m × n wall is the subgraph induced by {(x, i) : 1 ≤ x ≤ n}. The 

k-th column of the m × n wall is the subgraph induced by {(x, y) : 2k − 1 ≤ x ≤

min{2k, n}, 1 ≤ y ≤ m}. Hence, the m × n wall contains m rows and �n/2� columns.

It was proved by Robertson, Seymour and Thomas [20] (see Theorem 2.11 below) that 

every tangle is “equivalent” to a subdivision of a wall. The next objective of this section 

is to prove an analogous result (Lemma 2.16) about edge-tangles and immersions, which 

will be used in Section 6.

For a graph H, an H-immersion (πv, πe) is an H-subdivision if

• for every pair of distinct edges e1, e2 of H, V (πE(e1) ∩ πE(e2)) ⊆ πV (S), where S is 

the set of the common ends of e1, e2, and

• for every e ∈ E(H), πV (V (H)) ∩ V (πE(e)) = πV (S), where S is the set of ends of e.

We say that a tangle T is induced by a r × r wall-subdivision (πV , πE) if for every 

(A, B) ∈ T , there exists a row of the wall such that E(B) intersects πE(e) for every edge 

e of this row.
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One corollary of the following restatement of [20, (2.3)] is that every graph with a 

tangle of large order contains a subdivision of a large wall.

Theorem 2.11. [20, (2.3)] Let θ ≥ 2, and let T be a tangle in G of order at least 

20θ4(2θ−1). If T ′ ⊆ T is a tangle of order θ, then T ′ is induced by a θ×θ wall-subdivision.

Lemma 2.12. Let r and θ be positive integers with θ ≤ r. Let G be the r × 2r wall. If 

[A, B] is an edge-cut of order less than θ of G, then

1. exactly one of A and B contains all vertices of a column of G,

2. exactly one of A and B contains all vertices of a row of G,

3. A contains all vertices of a column if and only if A contains all vertices of a row,

4. exactly one of A and B intersects vertices in at least θ columns of G,

5. exactly one of A and B intersects vertices in at least θ rows of G,

6. A intersects vertices in at least θ columns of G if and only if A contains all vertices 

of a column of G, and

7. A intersects vertices in at least θ rows of G if and only if A contains all vertices of 

a column of G.

Proof. Note that G has r rows and r columns. Suppose that A contains all vertices of 

a column and B contains all vertices of another column. Then every row must contain 

an edge in [A, B], so the order of [A, B] is at least r, a contradiction. Suppose that none 

of A and B contains all vertices of a column. Then every column must contain an edge 

in [A, B], so the order of [A, B] is at least r, a contradiction. So exactly one of A and B

contains all vertices of a column. Similarly, exactly one of A and B contains all vertices 

of a row. Furthermore, if A contains all vertices of a column, then B cannot contain all 

vertices of a row, so A contains all vertices of a row as well. Similarly, if B contains all 

vertices of a column, then B contains all vertices of a row. This shows Statements 1-3.

Since r ≥ θ, every column intersects vertices in at least θ rows. By Statement 1, at 

least one of A and B intersects vertices in at least θ rows. If one of A and B contains 

all vertices of a column and the other intersects vertices in at least θ rows, then there 

are at least θ rows containing both vertices in A and in B, so there are at least θ edges 

between A and B, a contradiction. So A contains all vertices of a column if and only if 

A intersects vertices in at least θ rows. This shows Statement 7. Then Statements 1 and 

7 imply Statement 5.

Similarly, A contains all vertices of a row if and only if A intersects vertices in at 

least θ columns. So Statement 6 follows from Statement 3, and Statement 4 follows from 

Statements 5-7. �

Lemma 2.13. Let r and θ be positive integers. Let G be the r × 2r wall. Let E be the set 

of all edge-cuts [A, B] of order less than θ of G satisfying that B intersects vertices in 

at least θ columns of G. If r ≥ 2θ, then E is an edge-tangle of G of order θ.
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Proof. Let [A, B] be an edge-cut of G of order less than θ. By Lemma 2.12, [A, B] or 

[B, A] is in E . Hence, E satisfies (E1).

Let [Ai, Bi] ∈ E be edge-cuts of G for i ∈ [3]. For each i ∈ [3], Bi intersects vertices in 

at least θ columns of G, so Bi contains all vertices of a column of G by Lemma 2.12. For 

each i ∈ [3], let ci be a column of G contained in Bi. Suppose that B1 ∩ B2 ∩ B3 = ∅. If 

c1 = c2, then B3 is disjoint from c1, so A3 contains c1, a contradiction. So by symmetry, 

we may assume that c1, c2, c3 are pairwise distinct. Since c1 is contained in A2 ∪ A3, we 

know that A2 or A3, say A2, contains at least one half vertices of c1, so A2 intersects 

at least r/2 rows. But B2 contains c2, so there are at least r/2 edges with one end in 

A2 and one end in B2. Therefore, [A2, B2] has order at least r/2 ≥ θ, a contradiction. 

Hence, E satisfies (E2).

For every [A, B] ∈ E , B contains a column in G by Lemma 2.12, so there are at 

least r ≥ θ edges in G incident with some vertices in B. This proves that E is an edge-

tangle. �

We call the edge-tangle E mentioned in Lemma 2.13 the natural edge-tangle in the 

r × 2r wall of order θ. Here is a short summary about natural edge-tangles in a wall.

Lemma 2.14. Let r and θ be positive integers with r ≥ 2θ. Let W be the r × 2r wall. 

Let G be a graph and Π = (πV , πE) a W -immersion in G. If E is the edge-tangle in G

induced by Π and the natural edge-tangle of order θ in W , then for every edge-cut [A, B]

of G of order less than θ, the following are equivalent.

1. [A, B] ∈ E.

2. B intersects the image of πV of vertices in at least θ columns of W .

3. B contains the image of πV of all vertices of some column of W .

4. B contains the image of πV of all vertices of some row of W .

Proof. Statements 1 and 2 are equivalent by the definition of E . Statements 2-4 are 

equivalent by Lemma 2.12. �

We need the following lemma to prove Lemma 2.16. It states that whenever each 

“vertex” of a large “grid” is labeled with a bounded number of labels in a way that every 

label is used by a bounded number of times, one can find a large “subgrid” such that 

the sets of labels used in this “subgrid” are pairwise disjoint.

Lemma 2.15. For any nonnegative integers s, t, p, q, there exist integers s∗ = s∗(s, t, p, q),

t∗ = t∗(s, t, p, q) such that the following holds. Let I, J be sets with |I| = t∗ and |J | = s∗. 

Let U be a set, and let f be a function that maps each pair (i, j) ∈ I × J to a subset of 

U of size at most p. If for every u ∈ U , |{(i, j) ∈ I × J : u ∈ f((i, j))}| ≤ q, then there 

exist I ′ ⊆ I with |I ′| = t and J ′ ⊆ J with |J ′| = s such that f((x, y)) ∩ f((x′, y′)) = ∅

for distinct (x, y), (x′, y′) ∈ I ′ × J ′.
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Proof. We shall prove this lemma by induction on s. When s = 0, the lemma holds 

obviously. So we may assume that s ≥ 1 and this lemma holds for every smaller s.

Let s1 = s∗(s − 1, t, p, q) and t1 = t∗(s − 1, t, p, q). Define s∗(s, t, p, q) = s1 + pqt1 + 1

and t∗(s, t, p, q) = pqt1.

Without loss of generality, we may assume that I = [t∗] and J = [s∗]. Note that for 

every x ∈ [t∗], there are at most pq elements x′ ∈ [t∗] such that f((x, 1)) ∩ f((x′, 1)) �= ∅. 

So there exists a subset I1 of I with |I1| = |I|
pq = t1 such that f((x, 1)) ∩ f((x′, 1)) = ∅

for distinct x, x′ ∈ I1. Note that |
⋃

x∈I1
f((x, 1))| ≤ pt1. So there exists a subset J1 of 

J − {1} with |J1| ≥ |J | − 1 − pt1q = s1 such that f((x, y)) ∩ f((i, 1)) = ∅ for every 

(x, y) ∈ I1 × J1 and i ∈ I1. By the induction hypothesis, there exist I2 ⊆ I1 with 

|I2| = t and J2 ⊆ J1 with |J2| = s − 1 such that f((x, y)) ∩ f((x′, y′)) = ∅ for distinct 

(x, y), (x′, y′) ∈ I2 × J2. Define I ′ = I2 and J ′ = {1} ∪ J2. Then f((x, y)) ∩ f((x′, y′)) = ∅

for distinct (x, y), (x′, y′) ∈ I ′ × J ′. �

Lemma 2.16. For every positive integers θ and d with θ ≥ 2, there exists an integer 

w = w(θ, d) such that if E is an edge-tangle in a graph G of order at least w, then either 

there exists v ∈ V (G) incident with at least d edges in G such that v ∈ B for every 

[A, B] ∈ Eθ, or Eθ is induced by a 2θ × 4θ wall-immersion and the natural edge-tangle of 

order θ in the 2θ × 4θ wall, where Eθ is the edge-tangle in G of order θ such that Eθ ⊆ E.

Now we sketch the proof of Lemma 2.16. Since E is an edge-tangle in G of large order, 

E is a tangle in L(G) of large order, so it is induced by a very large wall subdivision 

Π in L(G) by Theorem 2.11. If there exists a vertex v of G such that cl(v) contains 

many branch vertices of Π, then it is not hard to show that this vertex v satisfies the 

conclusion of Lemma 2.16. If there exists no such vertex v exists, then there exists a 

smaller (but still sufficiently large) wall subdivision Π∗ such that every branch vertex of 

Π∗ is a branch vertex of Π, and cl(u) contains at most one branch vertex of Π∗ for every 

u ∈ V (G). Such a wall subdivision Π∗ in L(G) defines a wall immersion Π′ in G in an 

obvious way. Then one can show that the wall immersion Π′ satisfies the conclusion of 

Lemma 2.16 by using the relationship between E and E .

Proof of Lemma 2.16. Let θ and d be positive integers with θ ≥ 2. Let θ′ = s2.15(2θ, 4θ, 4,

(2θd)2) + t2.15(2θ, 4θ, 4, (2θd)2) + 5θ, where s2.15 and t2.15 are the integers s∗ and t∗

mentioned in Lemma 2.15. Define w = 2064θ′ 5

.

Denote the 2θ′ ×2θ′ wall by W . Let G be a graph, and let E be an edge-tangle in G of 

order at least w. By Lemma 2.5, E is a tangle of order at least w/3 − 1 ≥ 20(2θ′)4(4θ′−1)

in L(G). For every integer t, let Et be the tangle in L(G) of order t with Et ⊆ E . By 

Theorem 2.11, E2θ′ is induced by a W -subdivision (πV , πE) in L(G).

Claim 1: If there exists v ∈ V (G) such that cl(v) contains at least (2θd)2 vertices in 

πV (V (W )), then v is incident with at least d edges in G, and v ∈ B for every [A, B] ∈ Eθ.
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Proof of Claim 1: Let v be a vertex of G such that cl(v) contains at least (2θd)2 vertices 

in πV (V (W )). So |cl(v)| ≥ (2θd)2 and v is incident with at least (2θd)2 ≥ d edges in G.

Suppose that there exists an edge-cut [A, B] ∈ Eθ such that v ∈ A. We may assume 

that the order of [A, B] is as small as possible, and subject to that, A is maximal. By 

Lemma 2.3 and the maximality of A, A contains all isolated vertices of G.

Since the order of [A, B] is less than θ and v ∈ A is incident with at least (2θd)2 ≥ θ

edges in G, some edge of G incident with v has every end in A.

We define the following.

(i) Define B′ to be a subgraph of L(G) such that V (B′) consists of the edges of G

incident with vertices in B.

(ii) Define (A′, B′) to be a separation of L(G) such that V (A′) ∩ V (B′) consists of the 

edges of G with one end in A and one end in B.

(iii) Subject to (i) and (ii), E(A′) is maximal.

Since the order of [A, B] is minimal and some edge of G incident with v has every end in 

A, (A′, B′) is normalized. Hence [A, B] is the partner of (A′, B′). Therefore, (A′, B′) ∈ E .

Since |V (A′) ∩ V (B′)| < θ ≤ 2θ′, (A′, B′) ∈ E2θ′ . Since E2θ′ is induced by a W -

subdivision (πV , πE) in L(G), there exists a row r of W such that E(B′) intersects 

πE(e) for every edge e of the row r. Since |V (A′) ∩ V (B′)| < θ, there are at most θ

vertices x of W in r such that πV (x) ∈ V (A′) − V (B′). That is, there are at least 2θ′ − θ

vertices x of W in r such that πV (x) ∈ V (B′).

Suppose that there exists a row r′ of W other than r such that there are at least 

4θ vertices x of r′ such that πV (x) ∈ V (A′) − V (B′). Then there exist 2θ columns 

c1, c2, ..., c2θ of W such that V (A′) −V (B′) intersects the image of πV of some vertices of 

each of ci. Since there are at least 2θ′ − θ vertices x of W in r such that πV (x) ∈ V (B′), 

there are at least θ columns c in {ci : 1 ≤ i ≤ 2θ} such that both V (A′) − V (B′) and 

V (B′) intersect the image of πV of some vertices in c. Hence there are at least θ disjoint 

paths from V (A′) to V (B′), a contradiction.

Therefore, for every row of W , there are at least 2θ′ − 4θ ≥ 1 vertices x of this row 

such that πV (x) ∈ V (B′). In particular, V (B′) intersects the image of πV of the vertices 

of each row. Since |V (A′) ∩ V (B′)| < θ, V (A′) intersects the image of πV of vertices in 

at most θ − 1 rows of W . Since θ′ > θ − 1, V (B′) intersects the image of πV of vertices 

in every column of W .

Since v ∈ A, V (A′) ⊇ cl(v) contains at least (2θd)2 vertices in πV (V (W )). So V (A′)

contains the image of πV of some vertices in either at least 2θd rows of W or at least θd

columns of W . Since V (A′) intersects the image of πV of vertices in at most θ − 1 rows 

of W , the former is impossible. So V (A′) contains the image of πV of some vertices in at 

least θd columns of W . But V (B′) intersects the image of πV of vertices in every column 

of W . So there exist θd ≥ θ disjoint paths from V (A′) to V (B′), a contradiction. �
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By Claim 1, we may assume that for every v ∈ V (G), cl(v) contains at most (2θd)2

vertices in πV (V (W )), for otherwise the lemma holds.

Denote the 2θ × 4θ wall by W ′.

Claim 2: There exists a W ′-subdivision Π∗ = (π∗
V , π∗

E) in L(G) such that

• π∗
V (V (W ′)) ⊆ πV (V (W )) and

– if x ∈ V (W ′) and x′ ∈ V (W ) with π∗
V (x) = πV (x′), then x′ = (i, j) for some i, j

with 2θ + 1 ≤ i ≤ 2θ′ − 2θ and θ + 1 ≤ j ≤ θ′ − θ, and

– if x, y are two vertices in the same row of W ′, then there exist two vertices x′, y′

in the same row of W such that π∗
V (x) = πV (x′) and π∗

V (y) = πV (y′),

•
⋃

e∈E(W ′) π∗
E(e) ⊆

⋃

e∈E(W ) πE(e), and

• for every v ∈ V (G), |cl(v) ∩ π∗
V (V (W ′))| ≤ 1.

Proof of Claim 2: Let I = {i : θ + 1 ≤ i ≤ θ′ − θ} and J = {j : θ + 1 ≤ j ≤ θ′ − θ}. For 

every (i, j) ∈ I × J , define f((i, j)) = {v ∈ V (G) : {πV ((2i − 1, j)), πV ((2i, j))} ∩ cl(v) �=

∅}. Note that |f((i, j))| ≤ 4 for each (i, j) ∈ I × J . In addition, for each v ∈ V (G), 

|{(i, j) ∈ I × J : v ∈ f((i, j))} ≤ |cl(v) ∩ πV (V (W ))| ≤ (2θd)2. By Lemma 2.15, there 

exist I ′ ⊆ I with |I ′| = 4θ and J ′ ⊆ J with |J ′| = 2θ such that f((i, j)) ∩ f((i′, j′)) = ∅

for distinct (i, j), (i′, j′) ∈ I ′ × J ′.

Denote the elements of I ′ by x1 < x2 < ... < x4θ and denote the elements of J ′ by y1 <

y2 < ... < y2θ. For each i ∈ [2θ] and j ∈ [2θ], define π∗
V ((2i −1, j)) = πV ((2x2i−1 −1, yj))

and π∗
V ((2i, j)) = πV ((2x2i, yj)). So π∗

V (V (W ′)) ⊆ πV (V (W )), and for every v ∈ V (G), 

|cl(v) ∩ π∗
V (V (W ′))| ≤ 1. Furthermore, if x, y are two vertices in the same row of W ′, 

then there exist two vertices x′, y′ in the same row of W such that π∗
V (x) = πV (x′) and 

π∗
V (y) = πV (y′). Note θ + 1 ≤ x1 < x4θ ≤ θ′ − θ and θ + 1 ≤ y1 < y2θ ≤ θ′ − θ, so 

if x ∈ V (W ′) and x′ ∈ V (W ) with π∗
V (x) = πV (x′), then x′ = (i, j) for some i, j with 

2θ+1 ≤ i ≤ 2θ′ −2θ and θ+1 ≤ j ≤ θ′ −θ. It is obvious that one can define π∗
E such that 

(π∗
V , π∗

E) is a W ′-subdivision in L(G) such that 
⋃

e∈E(W ′) π∗
E(e) ⊆

⋃

e∈E(W ) πE(e). �

Now we define a W ′-immersion (π′
V , π′

E) in G.

• Define π′
V to be the function that maps each vertex of x of W ′ to a vertex v of G such 

that π∗
V (x) ∈ cl(v) and |NΠ(W ′)(π

∗
V (x)) ∩cl(v)| = maxu∈V (G)|NΠ(W ′)(π

∗
V (x)) ∩cl(u)|.

• Define π′
E to be the function that maps each edge e of W ′ to the path in G whose 

edge-set is the union of the set of internal vertices of π∗
E(e) and the set Ux ∪ Uy, 

where x, y are the ends of e and for each u ∈ {x, y}, the set Uu satisfies

– if the vertex in NπE(e)(u) is not in cl(π′
V (u)), then Uu = {π∗

V (u)}, and

– if the vertex in NπE(e)(u) is in cl(π′
V (u)), then Uu = ∅.

It is clear that (π′
V , π′

E) is a W ′-immersion in G.
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To prove this lemma, it is sufficient to show that Eθ is induced by (π′
V , π′

E) and the 

natural edge-tangle of order θ in W ′. Let E ′′ be the edge-tangle induced by (π′
V , π′

E) and 

the natural edge-tangle of order θ in W ′. Note that E ′′ has order θ.

Suppose to the contrary that Eθ �= E ′′. So there exists [A, B] ∈ Eθ − E ′′. We further 

assume that the order of [A, B] is as small as possible, and subject to that, A is maximal.

Since [{v}, V (G) − {v}] ∈ Eθ ∩ E ′′ for every vertex v of G incident with less than θ

edges of G, A contains all isolated vertices of G by Lemma 2.3 and the maximality of 

A. Similarly, by the minimality of the order of [A, B] and Lemma 2.3, every vertex in A

that is a non-isolated vertex of G is incident with an edge whose every end is in A, and 

every vertex in B that is a non-isolated vertex of G is incident with an edge whose every 

end is in B.

Define (A′, B′) to be the separation of L(G) such that

(iv) V (A′) ∩ V (B′) consists of the vertices of L(G) corresponding to the edges with one 

end in A and one end in B,

(v) V (B′) consists of the vertices of L(G) corresponding to the edges of G incident with 

vertices in B, and

(vi) subject to (iv) and (v), E(A′) is maximal.

Since for every non-isolated vertex of G, it is not an isolated vertex in G[A] or G[B], 

so it has a neighbor in the same side of the edge-cut. Hence every vertex in V (A′) ∩V (B′)

is adjacent to a vertex in V (A′) − V (B′) and a vertex in V (B′) − V (A′). So (A′, B′) is 

normalized. Since A contains all isolated vertices of G, [A, B] is the partner of (A′, B′). 

Since [A, B] ∈ Eθ, (A′, B′) ∈ Eθ. Since E2θ′ is induced by a W -subdivision (πV , πE) in 

L(G), E(B′) intersects every path in the image of πE of all edges of a row of W . Since 

the order of (A′, B′) is less than θ and W is a 2θ′ × 2θ′ wall, V (B′) − V (A′) contains at 

least 2θ′ − 2θ vertices in the image of πV of the vertices of a row of W . Furthermore, for 

each row of W , V (A′) contains at most 6θ vertices in the image of πV of the vertices of 

this row, for otherwise there are at least θ disjoint paths from V (A′) to V (B′). Hence 

for every row of W , V (B′) − V (A′) contains the image of πV of some vertex of this row.

Since [A, B] /∈ E ′′, [B, A] ∈ E ′′ by (E1). So A contains the image of π′
V of all vertices 

of a row of W ′ by Lemma 2.14. Recall that by the definition of π′
V , for every v ∈

π′
V (V (W ′)), cl(v) ∩ π∗

V (V (W ′)) �= ∅. And by Claim 2, for distinct v1, v2 ∈ π′
V (V (W ′)), 

cl(v1) ∩ cl(v2) ∩ π∗
V (V (W ′)) = ∅. In addition, by Claim 2, if x, y are two vertices in the 

same row of W ′, then there exist two vertices x′, y′ in the same row of W such that 

π∗
V (x) = πV (x′) and π∗

V (y) = πV (y′). Hence, there exist a row r of W and a set S such 

that S ⊆ V (A′), and S consist of θ vertices in the image of πV of vertices in the row r. 

By Claim 2, r is the j-th row of W , for some θ + 1 ≤ j ≤ θ′ − θ.

Let S = {v1, v2, ..., vθ}. For each i ∈ [θ], let xi be the vertex of W such that πV (xi) =

vi. Since θ + 1 ≤ j ≤ θ′ − θ, there exist distinct rows r1, r2, ..., rθ of W other than r

such that for every permutation σ : [θ] → [θ], there exist disjoint paths Pσ,1, Pσ,2, ..., Pσ,θ

in L(G) such that for every i ∈ [θ], Pσ,i is from vi to πV (x′
σ,i) for some vertex x′

σ,i of 



172 C.-H. Liu / Journal of Combinatorial Theory, Series B 151 (2021) 148–222

W in the row rσ(i) such that Pσ,i is contained in the image of πE of the column of W

containing xi. Since for each i ∈ [θ], V (B′) − V (A′) contains the image of πV of some 

vertex of each ri, we know that for every permutation σ : [θ] → [θ] and for each i ∈ [θ], 

there exists a path Qσ,i contained in the image of πE of ri such that Qσ,i is from πV (x′
σ,i)

to a vertex in V (B′) − V (A′). In addition, we say Qσ,i is decreasing if the index of the 

column containing πV (x′
σ,i) is at least the index of the column containing the other end 

of Qσ,i; otherwise, we say Qσ,i is increasing.

For each i ∈ [θ], assuming σ∗(i′) is defined for every 1 ≤ i′ ≤ i − 1, define σ∗(i) to be 

the element in [θ] − {σ∗(i′) : 1 ≤ i′ ≤ i − 1} such that Qσ∗,i is decreasing if possible, and 

subject to this,

• if Qσ∗,i is decreasing, then Pσ∗,i is as short as possible, and

• if Qσ∗,i is increasing, then Pσ∗,i is as long as possible.

Then σ∗ is a permutation on [θ]. Since Pσ∗,1∪Qσ∗,1, Pσ∗,2∪Qσ∗,2, ..., Pσ∗,θ ∪Qσ∗,θ cannot 

be θ disjoint paths in L(G) from V (A′) to V (B′) −V (A′), there exist 1 ≤ a < b ≤ θ such 

that Pσ∗,a ∪ Qσ∗,a intersects Pσ∗,b ∪ Qσ∗,b.

Suppose that Qσ∗,a is decreasing. Since Pσ∗,a ∪ Qσ∗,a intersects Pσ∗,b ∪ Qσ∗,b, Qσ∗,b

is decreasing. But the choice of Pσ∗,a implies that Pσ∗,a ∪ Qσ∗,a and Pσ∗,b ∪ Qσ∗,b are 

disjoint, a contradiction.

So Qσ∗,a is increasing. In particular, the ends of Qσ∗,a are not contained in the same 

column. If Qσ∗,b is increasing, then the choice of Pσ∗,a implies that Pσ∗,a ∪ Qσ∗,a and 

Pσ∗,b ∪ Qσ∗,b are disjoint, a contradiction. So Qσ∗,b is decreasing. Since Pσ∗,a ∪ Qσ∗,a

intersects Pσ∗,b∪Qσ∗,b, the choice of Pσ∗,a implies that the index of the column containing 

the end of Qσ∗,b other than πV (x′
σ∗,b) is at most the index of the column containing 

πV (x′
σ∗,a), so Qσ∗,a can be chosen to be decreasing, a contradiction. This proves the 

lemma. �

2.4. Other useful lemmas

The following two lemmas will be used in Section 5.

Lemma 2.17. Let G be a graph and E an edge-tangle in G. Let p be a positive integer 

and let [A1, B1], ..., [Ap, Bp] ∈ E. For each i with 1 ≤ i ≤ p, let Xi be the set of edges 

of G between Ai and Bi. Assume that for every i with 1 ≤ i ≤ p and for every v ∈ Ai, 

there exists a path in G[Ai] from v to an end of an edge in Xi. Assume the order of E

is greater than |
⋃p

i=1 Xi|. If 
⋃p

i=1 Xi is free with respect to E and Xi ∩ Xj = ∅ for every 

pair of distinct i, j, then Ai ∩ Aj = ∅ for every pair of distinct i, j.

Proof. There is nothing to prove if p = 1, so we may assume that p ≥ 2. First, we 

suppose that there exists an edge e ∈ X1 such that both ends of e are in A2. Let 

Z = (
⋃p

i=1 Xi) − e. Since the order of E is greater than |
⋃p

i=1 Xi|, [A2, B2] ∈ E − Z has 
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order zero in G − Z. But both ends of the unique member e of 
⋃p

i=1 Xi − Z are in A2. 

So 
⋃p

i=1 Xi is not free with respect to E , a contradiction. Hence, no edge in X1 has both 

ends in A2.

Similarly, for every pair of distinct i, j, no edge in Xi has both ends in Aj .

Now we suppose that there exist distinct i, j such that Ai ∩ Aj �= ∅. Let v ∈ Ai ∩ Aj . 

Let Pi be a path in G[Ai] from v to an end of an edge e′ in Xi. Since Xi is disjoint from 

Xj and some end of e′ is in Bj , e′ has both ends in Bj . So Pi intersects Xj . But Pi is 

contained in G[Ai], so every edge in Xj ∩ E(Pi) has both ends in Ai, a contradiction. 

This proves the lemma. �

Lemma 2.18. Let ξ be a positive integer. Let G be a graph and E an edge-tangle in G of 

order at least ξ + 2. If Z is a subset of E(G) with |Z| ≤ ξ, then there exists a set W

consisting of two edges of G − Z with at least one common end such that W is free with 

respect to E − Z.

Proof. Suppose to the contrary that every set consisting of two edges of G − Z with 

at least one common end is not free with respect to E − Z. That is, for every edges 

e1, e2 ∈ E(G) − Z sharing at least one common end, there exist Y ⊂ {e1, e2} and 

[A, B] ∈ E − (Y ∪ Z) of order at most 1 − |Y | such that every edge in {e1, e2} − Y has 

every end in A. Let G1, ..., Gc be the components of G − Z.

Claim 1: There exists a unique i with 1 ≤ i ≤ c such that [V (G) −V (Gi), V (Gi)] ∈ E −Z.

Proof of Claim 1: We first prove that there exists i with 1 ≤ i ≤ c such that [V (G) −

V (Gi), V (Gi)] ∈ E − Z. Suppose to the contrary that [V (G) − V (Gi), V (Gi)] /∈ E − Z for 

every i ∈ [c]. Since E−Z has order at least two, by (E1), [V (Gi), V (G) −V (Gi)] ∈ E−Z for 

every i ∈ [c]. We prove that [
⋃k

j=1 V (Gj), V (G) −
⋃k

j=1 V (Gj)] ∈ E − Z for every k ∈ [c]

by induction on k. The case k = 1 is obviously true, so we may assume that k ≥ 2 and 

[
⋃k−1

j=1 V (Gj), V (G) −
⋃k−1

j=1 V (Gj)] ∈ E − Z. Then [
⋃k

j=1 V (Gj), V (G) −
⋃k

j=1 V (Gj)] ∈

E −Z by Lemma 2.3. Hence [
⋃k

j=1 V (Gj), V (G) −
⋃k

j=1 V (Gj)] ∈ E −Z for every k ∈ [c]. 

But when k = c, [V (G), ∅] = [
⋃c

j=1 V (Gj), V (G) −
⋃c

j=1 V (Gj)] ∈ E − Z, contradicting 

(E3). This shows the existence of i.

Now we show the uniqueness of i. Suppose there exist distinct a, b ∈ [c] such that 

[V (G) −V (Ga), V (Ga)] and [V (G) −V (Gb), V (Gb)] belong to E −Z. But a, b are distinct, 

so V (Ga) ∩ V (Gb) = ∅, contradicting (E2). This proves the claim. �

Without loss of generality, we may assume that [V (G) − V (G1), V (G1)] ∈ E − Z. 

Define E ′ to be the set of edge-cuts of G1 such that [A, B] ∈ E ′ if and only if [A, B] has 

order less than two and [A ∪
⋃c

i=2 V (Gi), B] ∈ E − Z.

Suppose that E ′ is not an edge-tangle in G1 of order two. It is easy to see that E ′

satisfies (E2) and (E3). So E ′ does not satisfy (E1). Hence there exists an edge-cut [A, B]

of G1 such that [B, A ∪
⋃c

i=2 V (Gi)] and [A, B ∪
⋃c

i=2 V (Gi)] belong to E − Z, but these 
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two edge-cuts together with [
⋃c

i=2 V (Gi), V (G1)] are three edge-cuts in E − Z such that 

(A ∪
⋃c

i=2 V (Gi)) ∩ (B ∪
⋃c

i=2 V (Gi)) ∩ V (G1) = ∅, contradicting (E2).

Hence E ′ is an edge-tangle in G1 of order two.

By considering the cut-edges of G1, it is well-known that there exist a tree T and a 

partition (Xt : t ∈ V (T )) of V (G1) such that

• G1[Xt] either has only one vertex or is 2-edge-connected for every t ∈ V (T ),

• for every adjacent vertices t1, t2 of T , there exists uniquely one edge between Xt1

and Xt2
, and

• every edge of G1 either has every end in Xt for some t ∈ V (T ), or has one end in 

Xt1
and one end in Xt2

for some adjacent vertices t1, t2 of T .

For each edge e = t1t2 of T , let Te,t1
and Te,t2

be the components of T − e containing t1

and t2, respectively, and define Ye,t1
=

⋃

t∈V (Te,t1 ) Xt and Ye,t2
=

⋃

t∈V (Te,t2 ) Xt. Since 

E ′ has order two, by (E1) and (E2), exactly one of [Ye,t1
, Ye,t2

] and [Ye,t2
, Ye,t1

] ∈ E − Z. 

If the former happens, then we orientate the edge e from t1 to t2; otherwise, we orientate 

the edge e from t2 to t1. So we obtain an orientation of E(T ) and hence T has a vertex 

t∗ of out-degree zero.

Given two edges e, f of G −Z with at least one common end, by the assumption, there 

exist Y ⊂ {e, f} and [Ae,f , Be,f ] ∈ E−Z of order at most 1 −|Y | such that every end of the 

edges in {e, f} −Y is in A. Let [A′
e,f , B′

e,f ] be the edge-cut [Ae,f ∩V (G1), Be,f ∩V (G1)] of 

G1 of order at most 1 −|Y |. If [B′
e,f , A′

e,f ] ∈ E ′, then [(Be,f ∩V (G1)) ∪
⋃c

i=2 V (Gi), Ae,f ∩

V (G1)] ∈ E−Z by the definition of E ′, but [Ae,f , Be,f ] also belongs to E−Z, contradicting 

(E2). So [B′
e,f , A′

e,f ] /∈ E ′. By (E1), [A′
e,f , B′

e,f ] ∈ E ′. Since [A′
e,f , B′

e,f ] has order at most 

one, B′
e,f contains Xt∗ .

We first claim that Xt∗ is a single vertex. Suppose Xt∗ contains at least two vertices. 

Then G1[Xt∗ ] is 2-edge-connected. We choose e, f to be two edges of G1[Xt∗ ] sharing 

at least one common end. By the definition, one of e, f has every end in A′
e,f . But as 

proved in the previous paragraph, B′
e,f contains Xt∗ and hence contains the ends of e

and f . So A′
e,f ∩ B′

e,f �= ∅, a contradiction.

Hence Xt∗ contains exactly one vertex v. Since E ′ has order at least two, v is incident 

with at least two edges of G1. Let e, f be two edges of G1 incident with v. Since one of 

e, f has every end in A′
e,f , v ∈ A′

e,f , a contradiction. This proves the lemma. �

3. Spider theorems

The main result of this section is Lemma 3.3 which is an edge-version of a result 

(see Lemma 3.2 below) that is slightly stronger than a theorem implicitly proved by 

Robertson and Seymour [19] and explicitly proved by Marx and Wollan [13]. Lemma 3.3

enables us to show that given collections of “interesting sets” of edges, either we can 

extend a set free with respect to an edge-tangle by adding many sets from those given 

collections, or we can delete a bounded number of edges to make some collection of 
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“interesting sets” containing no free sets. This lemma will be frequently used in this 

paper.

We need the following lemma, which is a slightly stronger form of [19, Theorem 7.2]. 

And it can be proved by simply modifying the proof in [19].

Lemma 3.1. Let h ≥ 1 and w ≥ 0 be integers. Let T be a tangle in a graph G, and let 

W ⊆ V (G) be free with respect to T with |W | ≤ w. If T has order at least (w+h)h+1 +h, 

then there exists W ′ ⊆ V (G) with W ⊆ W ′ and |W ′| ≤ (w + h)h+1 such that for every 

(C, D) ∈ T of order |W | + hC with W ⊆ V (C), where hC is an integer with hC < h, 

there exists (A∗, B∗) ∈ T with W ′ ⊆ V (A∗ ∩ B∗), |V (A∗ ∩ B∗) − W ′| ≤ hC and C ⊆ A∗.

Proof. For every (A, B) ∈ T and every v ∈ V (A) ∩ V (B), the T -successor of (A, B) via 

v is the separation (A′, B′) of G such that

(i) v /∈ V (B′), A ⊆ A′ and B′ ⊆ B,

(ii) subject to (i), the order of (A′, B′) is as small as possible, and

(iii) subject to (i) and (ii), B′ is minimal.

Let A0 be the graph such that V (A0) = W and E(A0) = ∅. Let T0 = {(A0, G)}, 

and for i ≥ 1, let Ti be the set of all T -successors (A′, B′) of members (A, B) of 

Ti−1 via some vertex in V (A) ∩ V (B) with |V (A′) ∩ V (B′)| < |W | + h. Let W ′ =
⋃

0≤i≤h

⋃

(A,B)∈Ti
(V (A) ∩ V (B)). It is proved in [19, Theorem 7.2] that W ⊆ W ′, 

|W ′| ≤ (w + h)h+1, and every member of Ti has order at least |W | + i − 1 for every 

i ∈ [h + 1].

Let (C, D) ∈ T of order |W | + hC with W ⊆ V (C) for some integer hC with hC < h. 

Note that hC ≥ 0 since W is free with respect to T . Let (C∗, D∗) ∈ T be the separation 

of G such that

(iv) the order of (C∗, D∗) is at most |W | + hC , C ⊆ C∗ and D∗ ⊆ D,

(v) subject to (iv), the order of (C∗, D∗) is minimal, and

(vi) subject to (iv) and (v), C∗ is maximal.

Let (A, B) ∈ Ti for some i with 0 ≤ i ≤ h such that A ⊆ C∗ and D∗ ⊆ B. Note that 

such an (A, B) exists as (A0, G) is a candidate. We assume that i is as large as possible.

Note that if i �= 0, then (A, B) is a T -successor of a member of Ti−1, so either (A, B) =

(C∗, D∗) or the order of (A, B) is smaller than the order of (C∗, D∗), for otherwise 

(C∗, D∗) is a better candidate for being in Ti than (A, B) by (i)-(iii). Furthermore, if 

(A, B) �= (C∗, D∗), then |W | + i − 1 ≤ |V (A) ∩ V (B)| < |V (C∗) ∩ V (D∗)| ≤ |W | + hC , 

so i ≤ hC < h.

Suppose that V (A) ∩ V (B) � V (C∗) ∩ V (D∗). Let v ∈ (V (A) ∩ V (B)) − (V (C∗) ∩

V (D∗)). Let (A′, B′) be the T -successor of (A, B) via v. Note that the order of (A′, B′)

is at most the order of (C∗, D∗) as A ⊆ C∗ and D∗ ⊆ B. Since V (A) ∩ V (B) �
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V (C∗) ∩V (D∗), (A, B) �= (C∗, D∗), so i ≤ h −1. By the maximality of i, either A′ � C∗, 

or D∗ � B′. By the maximality of C∗, the order of (C∗ ∪A′, D∗ ∩B′) is greater than the 

order of (C∗, D∗). So the order of (C∗ ∩ A′, D∗ ∪ B′) is smaller than the order of (A′, B′)

by the submodularity. But v /∈ V (D∗ ∪B′) and A ⊆ C∗ ∩A′ and D∗ ∪B′ ⊆ B, so (A′, B′)

is not the T -successor of (A, B) via v by (ii), a contradiction. Hence, V (A) ∩ V (B) ⊆

V (C∗) ∩ V (D∗).

Let (A∗, B∗) be the separation of G such that V (A∗) = V (C∗) ∪ W ′ and V (B∗) =

V (D∗) ∪ W ′, and subject to that, A∗ is maximal. If i = 0, then the order of (A, B) is 

|W |; if i ≥ 1, then the order of (A, B) is at least |W | + i − 1. So the order of (A, B)

is at least |W |. Since V (A) ∩ V (B) ⊆ V (C∗) ∩ V (D∗) ∩ W ′, the order of (A∗, B∗) is at 

most |V (C∗) ∩ V (D∗)| − |V (A) ∩ V (B)| + |W ′| ≤ (w + h)h+1 + hC . So (A∗, B∗) ∈ T . In 

addition, W ′ ⊆ V (A∗) ∩ V (B∗) and C ⊆ A∗. And |V (A∗) ∩ V (B∗) − W ′| ≤ |V (C∗) ∩

V (D∗)| − |V (A) ∩ V (B)| ≤ hC . �

For every tangle T of order θ in a graph G and every Z ⊆ V (G) with |Z| < θ, we 

define T − Z to be the set of separations (A, B) of G − Z such that (A′, B′) ∈ T for 

some subgraphs A′, B′ of G with V (A′) = V (A) ∪ Z and V (B′) = V (B) ∪ Z. Note that 

T − Z is a tangle in G − Z of order θ − |Z| by [17, Theorem 6.2].

The following is a stronger form of [13, Theorem 3.3] and its proof uses ideas similar 

to that used in [13, Theorem 3.3].

Lemma 3.2. Let G be a graph and T a tangle in G of order θ, and let c be a positive 

integer. For every i ∈ [c], let di, ki be positive integers, and let {Xi,j ⊆ V (G) : j ∈ Ji}

be a family of subsets of V (G) indexed by a set Ji. Let d, k be integers such that θ ≥

(kcd)d+1 + d, di ≤ d and ki ≤ k for i ∈ [c]. Let J∗
i ⊆ Ji with |J∗

i | ≤ ki for each i ∈ [c], 

such that 
⋃c

i=1

⋃

j∈J∗
i

Xi,j is free with respect to T and Xi,j ∩Xi′,j′ = ∅ for distinct pairs 

(i, j), (i′, j′) with 1 ≤ i ≤ i′ ≤ c, j ∈ J∗
i and j′ ∈ J∗

i′ . If |Xi,j | ≤ di for every i ∈ [c] and 

j ∈ Ji, then either

1. there exist J ′
1, J ′

2, ..., J ′
c with J∗

i ⊆ J ′
i ⊆ Ji and |J ′

i | = ki for each i ∈ [c] such that 
⋃

i∈[c]

⋃

j∈J ′
i
Xi,j is free with respect to T , and Xi,j ∩ Xi′,j′ = ∅ for all distinct pairs 

(i, j), (i′, j′) with 1 ≤ i ≤ i′ ≤ c, j ∈ J ′
i and j′ ∈ J ′

i′ , or

2. there exist Z ⊆ V (G) with |Z| ≤ (kcd)d+1 and integer i∗ ∈ [c] with |J∗
i∗ | < ki∗ such 

that for every j ∈ Ji∗ , either Xi∗,j ∩Z �= ∅, or Xi∗,j is not free with respect to T −Z.

Proof. For every i ∈ [c], pick J ′
i with J∗

i ⊆ J ′
i ⊆ Ji and |J ′

i | ≤ ki such that

(i)
⋃

i∈[c]

⋃

j∈J ′
i
Xi,j , denoted by W , is free with respect to T ,

(ii) Xi,j and Xi′,j′ are disjoint for all distinct pairs (i, j), (i′, j′) with 1 ≤ i ≤ i′ ≤ c, 

j ∈ J ′
i and j′ ∈ J ′

i′ , and

(iii) subject to (i) and (ii), the sequence (k1 − |J ′
1|, k2 − |J ′

2|, ..., kc − |J ′
c|), denoted by s, 

is lexicographically minimal.
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Note that such a set W exists since 
⋃c

i=1

⋃

j∈J∗
i

Xi,j is free and Xi,j ∩ Xi′,j′ = ∅ for all 

distinct pairs (i, j), (i′, j′) with 1 ≤ i ≤ i′ ≤ c′, j ∈ J∗
i and j′ ∈ J∗

i′ .

Assume that the first conclusion of this lemma does not hold. So s contains a non-zero 

entry. Let i∗ be the smallest number i such that ki −|J ′
i | > 0. Note that |W | ≤ (kc −1)d. 

Applying Lemma 3.1 by taking (h, w) = (d, (kc −1)d), there exists Z ⊆ V (G) with W ⊆ Z

and |Z| ≤ (kcd)d+1 such that for every (C, D) ∈ T of order |W | + hC with W ⊆ V (C)

for some hC < d, there exists (A′, B′) ∈ T with Z ⊆ V (A′ ∩ B′), |V (A′ ∩ B′) − Z| ≤ hC

and C ⊆ A′.

We shall prove that Z and i∗ satisfy the second conclusion of this lemma. Assume 

that j ∈ Ji∗ such that Xi∗,j ∩ Z = ∅. Since W ⊆ Z, Xi∗,j is disjoint from W . By the 

maximality of W , W ∪ Xi∗,j is not free with respect to T . So there exists a separation 

(C, D) ∈ T of order at most |W | + |Xi∗,j | − 1 with W ∪ Xi∗,j ⊆ V (C). By the choice of 

Z, there exists (A′, B′) ∈ T with Z ⊆ V (A′ ∩ B′), |V (A′ ∩ B′) − Z| ≤ |Xi∗,j | − 1 and 

C ⊆ A′. That is, Xi∗,j ⊆ V (A′) − Z and the order of (A′ − Z, B′ − Z) is less than |Xi∗,j |. 

So Xi∗,j is not free with respect to T − Z. This proves the lemma. �

What we really need in this paper is a version of Lemma 3.2 with respect to edge-

tangles.

Lemma 3.3. Let G be a graph and E an edge-tangle in G of order θ, and let c be a positive 

integer. For every i ∈ [c], let di, ki be positive integers, and let {Xi,j ⊆ E(G) : j ∈ Ji}

be a family of subsets of E(G) indexed by a set Ji. Let d, k be integers such that θ ≥

3(kcd)d+1 + 3d, di ≤ d and ki ≤ k for i ∈ [c]. Let J∗
i ⊆ Ji with |J∗

i | ≤ ki for each i ∈ [c], 

such that 
⋃c

i=1

⋃

j∈J∗
i

Xi,j is free with respect to E and Xi,j ∩ Xi′,j′ = ∅ for distinct pairs 

(i, j), (i′, j′) with 1 ≤ i ≤ i′ ≤ c, j ∈ J∗
i and j′ ∈ J∗

i′ . If |Xi,j | ≤ di for every i ∈ [c] and 

j ∈ Ji, then either

1. there exist J ′
1, J ′

2, ..., J ′
c with J∗

i ⊆ J ′
i ⊆ Ji and |J ′

i | = ki for each i ∈ [c] such that 
⋃c

i=1

⋃

j∈J ′
i
Xi,j is free with respect to E, and Xi,j and Xi′,j′ are disjoint for all 

distinct pairs (i, j), (i′, j′) with 1 ≤ i ≤ i′ ≤ c, j ∈ J ′
i and j′ ∈ J ′

i′ , or

2. there exist Z ⊆ E(G) with |Z| ≤ (kcd)d+1 and integer i∗ ∈ [c] with |J∗
i∗ | < ki∗ such 

that for every j ∈ Ji∗ , either Xi∗,j ∩Z �= ∅, or Xi∗,j is not free with respect to E −Z.

Proof. Since E is an edge-tangle of order θ in G, E is a tangle of order at least �θ/3� ≥

(kcd)d+1 + d in L(G) by Lemma 2.5. Note that for every i ∈ [c] and j ∈ Ji, Xi,j is a 

subset of E(G) so it is a subset of V (L(G)). Since 
⋃c

i=1

⋃

j∈J∗
i

Xi,j is free with respect 

to E , 
⋃c

i=1

⋃

j∈J∗
i

Xi,j is free with respect to E by Lemma 2.8. So by Lemma 3.2, either

(i) there exist J ′
1, J ′

2, ..., J ′
c with J∗

i ⊆ J ′
i ⊆ Ji and |J ′

i | = ki for each i ∈ [c] such that 
⋃c

i=1

⋃

j∈J ′
i
Xi,j is free with respect to E , and Xi,j and Xi′,j′ are disjoint for all 

distinct pairs (i, j), (i′, j′) with 1 ≤ i ≤ i′ ≤ c, j ∈ J ′
i and j′ ∈ J ′

i′ , or
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(ii) there exist Z ⊆ V (L(G)) = E(G) with |Z| ≤ (kcd)d+1 and integer i∗ ∈ [c] with 

|J∗
i∗ | < ki∗ such that for every j ∈ Ji∗ , either Xi∗,j ∩ Z �= ∅, or Xi∗,j is not free with 

respect to E − Z.

If (i) holds, then 
⋃c

i=1

⋃

j∈J ′
i
Xi,j is a set of size at most ckd ≤ �θ/3� that is free 

with respect to E , so 
⋃c

i=1

⋃

j∈J ′
i
Xi,j is free with respect to E by Lemma 2.9, and hence 

Statement 1 of this lemma holds.

So we may assume that Z and i∗ mentioned in (ii) exist. We shall prove that Statement 

2 of this lemma holds. Suppose to the contrary that there exists j ∈ Ji∗ such that 

Xi∗,j ∩ Z = ∅ and Xi∗,j is free with respect to E − Z. So Xi∗,j ∩ Z = ∅ and Xi∗,j is free 

with respect to E − Z by Lemma 2.8, contradicting (ii). This proves the lemma. �

4. Excluding immersions

Given a simple graph H, an H-minor of a graph G is a map α with domain V (H)

such that

• α(h) is a nonempty connected subgraph of G, for every h ∈ V (H);

• if h1 and h2 are different vertices in H, then α(h1) and α(h2) are disjoint;

• if h1h2 is an edge in H, then there exists an edge of G with one end in α(h1) and 

one end in α(h2).

We say that G contains an H-minor if such a function α exists. And for every h ∈ V (H), 

α(h) is called a branch set of α.

Given a simple graph H, an H-thorns of a graph G is a map α with domain V (H)

such that

• α(h) is a connected subgraph of G with at least one edge, for every h ∈ V (H);

• if h1 and h2 are different vertices in H, then α(h1) and α(h2) are edge-disjoint;

• if h1h2 is an edge in H, then V (α(h1)) ∩ V (α(h2)) �= ∅;

We say that G contains an H-thorns if such a function α exists. And for every h ∈ V (H), 

α(h) is called a branch set of α.

Note that if a graph contains a vertex v incident with d edges, then it contains a 

Kd-thorns whose branch sets are the edges incident with v. Another example of thorns 

is that every r × r-grid contains a Kr-thorns by defining α(vi) to be the union of the 

i-th row and the i-th column.

Lemma 4.1. If H is a simple graph, then a graph G contains an H-thorns if and only if 

L(G) contains an H-minor.
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Proof. Let α be an H-thorns in G. For every h ∈ V (H), define β(h) to be the subgraph 

of L(G) induced by E(α(h)). It is clear that β is an H-minor in L(G).

Let β′ be an H-minor in L(G). For every h ∈ V (H), define α′(h) to be the connected 

subgraph of G with E(α′(h)) = V (β′(h)). Then it is obvious that α′ is an H-thorns in 

G. �

The following was proved by Robertson and Seymour [18].

Lemma 4.2 ([18, Theorem 5.4]). Let G be a graph, and let Z be a subset of V (G) with 

|Z| = ξ. Let k ≥ � 3
2ξ�, and let α be a Kk-minor in G. If there is no separation (A, B)

of G of order less than |Z| such that Z ⊆ V (A) and A ∩ α(h) = ∅ for some h ∈ V (Kk), 

then for every partition (Z1, ..., Zn) of Z into non-empty subsets, there are n connected 

subgraphs T1, ..., Tn of G, mutually disjoint and with V (Ti) ∩ Z = Zi for 1 ≤ i ≤ n.

Now, we prove an edge-variant of Lemma 4.2.

Lemma 4.3. Let G be a graph, and let X be a subset of E(G) with |X| = ξ. Let k ≥ �3
2ξ�, 

and let α be a Kk-thorns in G. If there exist no Y ⊆ X and edge-cut [A, B] of G − Y

of order less than ξ − |Y | such that every edge in X − Y is incident with some vertex 

in A and A ∩ V (α(h)) = ∅ for some h ∈ V (Kk), then for every partition (X1, ..., Xn)

of X into non-empty subsets, there are n connected subgraphs T1, ..., Tn of G, mutually 

edge-disjoint and with E(Ti) ∩ X = Xi for 1 ≤ i ≤ n.

Proof. Let β be the Kk-minor in L(G) corresponding to α mentioned in Lemma 4.1.

Claim 1: There does not exist a separation (A′, B′) of L(G) of order less than ξ such 

that X ⊆ V (A′) and A′ ∩ β(h) = ∅ for some h ∈ V (Kk).

Proof of Claim 1: Suppose to the contrary that there exists a separation (A′, B′) of 

L(G) of order less than ξ such that X ⊆ V (A′) and A′ ∩ β(h) = ∅ for some h ∈

V (Kk). We may assume that the order of (A′, B′) is as small as possible. So every vertex 

in V (A′) ∩ V (B′) − X must have an neighbor in V (A′) − V (B′) and a neighbor in 

V (B′) −V (A′), and every vertex in V (A′) ∩V (B′) ∩X has a neighbor in V (B′) −V (A′). 

Define B = {v ∈ V (G) : cl(v) ⊆ V (B′)} and A = V (G) − B. Then [A, B] is an edge-cut 

of G. Let Y be the subset of X consisting of the edges in X with every end in B. Note 

that the order of [A, B] equals |V (A′) ∩V (B′)| −|{v ∈ V (A′) ∩V (B′) : v has no neighbor 

in V (A′) −V (B′)}| = |V (A′) ∩V (B′)| −|Y | < ξ −|Y |. Furthermore, every edge in X −Y

has an end in A. In addition, every vertex of β(h) is in V (B′) − V (A′), so every edge of 

α(h) has every end in B. That is, V (α(h)) ∩ A = ∅, a contradiction. �

Let (X1, X2, ..., Xn) be a partition of X into nonempty sets. By Lemma 4.2 and 

Claim 1, there exist mutually disjoint connected subgraphs T ′
1, ..., T ′

n of L(G) such that 

V (T ′
i ) ∩ X = Xi for every 1 ≤ i ≤ n. For every 1 ≤ i ≤ n, define Ti to be the 
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connected subgraph of G with E(Ti) = V (T ′
i ). Then T1, ..., Tn are mutually edge-disjoint 

and E(Ti) ∩ X = Xi. �

A tangle T in G controls an H-minor α if there do not exist (A, B) ∈ T of order less 

than |V (H)| and h ∈ V (H) such that V (α(h)) ⊆ V (A). An edge-tangle E in G controls

an H-thorns α if V (α(h)) ∩ B �= ∅ for every h ∈ V (H) and every [A, B] ∈ E of order less 

than |V (H)|.

The degree sequence of a graph G is the non-increasing sequence of the degrees of the 

vertices of G.

Lemma 4.4. Let G be a graph and H be a graph on h vertices with degree sequence 

(d1, d2, ..., dh). Let d = d1 and t ≥ 3hd. Let V (H) = {u1, u2, ..., uh}, where degH(ui) = di

for every i ∈ [h]. Let E be an edge-tangle of order at least 2hd in G that controls a Kt-

thorns. Let � be the number of loops of H. Assume that there exist pairwise disjoint 

subsets X0, X1, X2, ..., Xh of E(G) such that 
⋃h

i=0 Xi is free with respect to E, X0 can 

be partitioned into � 2-element subsets S1, S2, ..., S� where the two edges in each Sj share 

at least one common end sj, and for each i ∈ [h], Xi consists of di edges incident 

with a common vertex vi. If v1, v2, ..., vh are distinct and there exists a partition of 

{S1, S2, ..., S�} into sets D1, D2, ..., Dh such that for every i ∈ [h], |Di| equals the number 

of loops incident with ui and vi /∈ {sj : Sj ∈ Di}, then G has an H-immersion (πV , πE)

with πV (V (H)) = {v1, v2, ..., vh}.

Proof. Let α be a Kt-thorns in G controlled by E , and let X =
⋃h

i=0 Xi. Note that 

|X| ≤ 2� + hd ≤ 2hd.

Claim 1: For every positive integer r and every partition (Z1, Z2, ..., Zr) of X into non-

empty subsets, there exist pairwise edge-disjoint connected subgraphs T1, T2, ..., Tr of G

such that E(Ti) ∩ X = Zi for every 1 ≤ i ≤ r.

Proof of Claim 1: Suppose that there exist Y ⊆ X and an edge-cut [A, B] of G − Y of 

order less than |X − Y | such that every edge in X − Y is incident with some vertex in A

and A ∩ V (α(u)) = ∅ for some u ∈ V (Kt). We assume that Y is maximal, so every edge 

in X − Y has every end in A. Since X is free with respect to E , [A, B] /∈ E − Y . But the 

order of [A, B] in G − Y is less than |X − Y | ≤ 2hd − |Y |. So [B, A] ∈ E − Y by (E1). 

Hence [B, A] ∈ E is an edge-cut of G of order less than 2hd ≤ t. However, E controls α, 

so A ∩ V (α(u)) �= ∅, a contradiction. Therefore, this claim follows from Lemma 4.3. �

Let E(H) = {e1, e2, ..., e|E(H)|}, where ej is not a loop for every j ∈ [|E(H)| − �]. 

For every i ∈ [h], let Yi be a subset of Xi such that |Yi| equals the number of non-loops 

incident with ui. For every i ∈ [h], define a bijection fi from Yi to the set of non-loop 

edges of H incident with ui, and define an onto function f ′
i from Xi − Yi to the set of 

loops of H incident with ui such that the preimage of every loop incident with ui has 
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size two. Define fE to be a bijection from the set of loops of H to {S1, S2, ..., S�} such 

that if e is a loop of H incident with ui for some i ∈ [h], then fE(e) ∈ Di.

For each i ∈ [|E(H)| − �], define Zi to be the subset of X consisting of the two edges 

in 
⋃h

j=1 Yj mapped to ei by f1, f2, ..., fh. For each loop e of H, let {Ze,1, Ze,2} be a 

partition of the union of fE(e) and the preimage of e by f ′
1, f ′

2, ..., f ′
h into two sets of size 

two such that |Ze,1 ∩ fE(e)| = |Ze,2 ∩ fE(e)| = 1. So {Z1, Z2, ..., Z|E(H)|−�, Ze,1, Ze,2 : e

is a loop of H} is a partition of X into non-empty sets.

By Claim 1, there exist pairwise edge-disjoint connected subgraphs T1, T2, ...,

T|E(H)|−�, Te,1, Te,2 of G (for every loop e of H) such that E(Ti) ∩ X = Zi for every 

1 ≤ i ≤ |E(H)| − �, and E(Te,j) ∩ X = Ze,j for every loop e of H and j ∈ [2]. Note that 

for every i ∈ [|E(H)| − �], there exists a path in Ti connecting vj , vk, where j, k are the 

indices such that ei belongs to the image of fj and fk. For each loop e of H, there exists 

a cycle contained in Te,1 ∪ Te,2 containing vi, where i is the index such that e is incident 

with ui, since vi /∈ {sj : Sj ∈ Di}.

Define πV : V (H) → V (G) such that πV (ui) = vi for every i ∈ [h]. Define πE to be a 

function that maps each non-loop edge ei of H (for some i ∈ [|E(H)| − �])) to be a path 

in Ti from πV (u) to πV (u′), where u, u′ are the ends of ei, and maps each loop e of H to 

a cycle in Te,1 ∪ Te,2 containing πV (u′′), where u′′ is the end of e. Then (πV , πE) is an 

H-immersion in G with πV (V (H)) = {v1, v2, ..., vh}. �

A family D of edge-cuts of a graph is cross-free if A ∩ C = ∅ for every pair of distinct 

edge-cuts [A, B], [C, D] in D.

Lemma 4.5. Let k, θ be integers. Let G be a graph and E an edge-tangle in G of order at 

least θ. If there exist C ⊆ E(G) with |C| ≤ θ −k and a subset D of E −C such that every 

member of D is an edge-cut of G − C of order less than k, then there exists a cross-free 

family D∗ ⊆ E − C such that every member of D∗ is an edge-cut of G − C of order less 

than k such that 
⋃

[A,B]∈D A =
⋃

[A,B]∈D∗ A.

Proof. Define D∗ to be a subset of E − C with 
⋃

[A,B]∈D A =
⋃

[A,B]∈D∗ A such that 

every member of D∗ is an edge-cut of G − C of order less than k, and subject to that, 
∑

[A,B]∈D∗ |A| is as small as possible. Note that such a family D∗ exists as D is a candi-

date. To prove this lemma, it suffices to show that D∗ is cross-free.

Suppose that D∗ is not cross-free. Then there exist [A1, B1], [A2, B2] ∈ D∗ such that 

A1 �= A2 and A1∩A2 �= ∅. By the submodularity, |[A1∩B2, B1∪A2]| +|[A1∪B2, B1∩A2]| ≤

|[A1, B1]| +|[B2, A2]| ≤ 2(k−1), so one of [A1∩B2, B1∪A2] and [B1∩A2, A1∪B2] has order 

at most k−1. By symmetry, we may assume that [A1∩B2, B1∪A2] has order at most k−1. 

Note that the order of E − C is at least θ − |C| ≥ k. By Lemma 2.3, [A1 ∩ B2, B1 ∪ A2] ∈

E − C, since [A1, B1] ∈ E − C. Let D′ = (D∗ − {[A1, B1]}) ∪ {[A1 ∩ B2, A2 ∪ B1]}. Since 

A1 ⊆ (A1 ∩ B2) ∪ A2, D′ is contained in E − C and is a family of edge-cuts of G − C of 

order at most k − 1 such that 
⋃

[A,B]∈D′ A =
⋃

[A,B]∈D∗ A =
⋃

[A,B]∈D A. Hence, by the 
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minimality of D∗, |A1 ∩B2| ≥ |A1|. This implies that A1 = A1 ∩B2 ⊆ B2, so A1 ∩A2 = ∅, 

a contradiction. Therefore, D∗ is cross-free. �

A graph is exceptional if it contains exactly one vertex of degree at least two, and this 

vertex is incident with a loop.

Theorem 4.6 is a structure theorem for excluding a fixed non-exceptional graph as an 

immersion in a graph with an edge-tangle controlling a big complete graph-thorns.

Theorem 4.6. For any positive integers d, h, there exist positive integers θ = θ(d, h)

and ξ = ξ(d, h) such that the following holds. If H is a non-exceptional graph with 

degree sequence (d1, d2, ..., dh), where d1 = d, and G is a graph that does not contain an 

H-immersion, then for every edge-tangle E of order at least θ in G controlling a K3dh-

thorns, there exist C ⊆ E(G) with |C| ≤ ξ, U ⊆ V (G) with |U | ≤ h − 1 and a cross-free 

family D ⊆ E − C such that for every vertex v ∈ V (G) − U , there exists [A, B] ∈ D of 

order at most d|U |+1 − 1 with v ∈ A.

Now we sketch the proof of Theorem 4.6. We greedily pick a vertex v and a set Xv of 

sufficiently many edges incident with it such that v is not picked before, Xv is disjoint 

from all previously picked sets of edges, and the union of Xv and all previously picked 

sets is free with respect to E , until we cannot find such a vertex or a such set of edges. 

We first assume that H has no loops. If we picked at least |V (H)| vertices in the process, 

then we can construction an H-immersion by Lemma 4.4, a contradiction. So the set U

of picked vertices has size at most |V (H)| − 1. If we can further repeatedly pick a vertex 

v and a set Xv of d|U |+1 edges incident with v such that v is not picked before, Xv is 

disjoint from all previously picked sets of edges, and the union of Xv and all previously 

picked sets is free with respect to E , until we get |V (H)| vertices, then again we can 

construct an H-immersion, a contradiction. So Lemma 3.3 implies that one can delete 

a bounded number of edges such that each vertex in V (G) − U is contained in the first 

entry of an edge-cut in the edge-tangle, and we are done. The case that H has loops 

is similar but takes extra work. Lemma 4.4 implies that we cannot further pick many 

disjoint set of two edges sharing a common end such that the union of those sets is free, 

so that Lemma 3.3 implies that for every vertex, there exists an edge-cut of order at 

most one such that this vertex belongs to the first entry of the edge-cut.

Proof of Theorem 4.6. For any positive integers d, h, define ξ(d, h) = (h +1)((3hd2)d+1 +

dh) and θ(d, h) = 3(2hd2)d+1 + 3dh + ξ.

Let d, h be positive integers. Denote ξ(d, h) and θ(d, h) by ξ and θ, respectively. Let H

be a non-exceptional graph on h vertices with degree sequence (d1, d2, ..., dh) and d1 = d. 

Since there exists no graph on one vertex with maximum degree one, this theorem holds 

if d = h = 1. Suppose that (d, h) is a pair of positive integers with d + h minimum such 

that this theorem does not hold. That is, there exists a graph G that does not contain 

an H-immersion and there exists an edge-tangle E in G of order at least θ controlling 
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a K3dh-thorns such that there do not exist C ⊆ E(G) with |C| ≤ ξ, U ⊆ V (G) with 

|U | ≤ h − 1 and a cross-free family D ⊆ E − C such that for every vertex v ∈ V (G) − U , 

there exists [A, B] ∈ D of order at most d|U |+1 − 1 with v ∈ A.

Claim 1: |V (G)| ≥ h and H does not contain an isolated vertex.

Proof of Claim 1: It is clear that |V (G)| ≥ h, for otherwise choosing C = ∅, U = V (G)

and D = ∅ leads to a contradiction. Suppose that H contains an isolated vertex u. 

Let H ′ = H − u. Note that the degree sequence of H ′ is (d1, d2, ..., dh−1), and H ′ is 

non-exceptional. Since |V (G)| ≥ h and G does not contain an H-immersion, G does 

not contain an H ′-immersion. By the minimality of d + h, there exist C ⊆ E(G) with 

|C| ≤ ξ(d, h − 1) ≤ ξ(d, h), U ⊆ V (G) with |U | ≤ (h − 1) − 1 and a cross-free family 

D ⊆ E − C such that for every vertex v ∈ V (G) − U , there exists [A, B] ∈ D of order at 

most d|U |+1 − 1 with v ∈ A, a contradiction. �

Claim 2: There do not exist C ⊆ E(G) with |C| ≤ ξ and U ⊆ V (G) with |U | ≤ h −1 such 

that for every v ∈ V (G) − U , there exists [Av, Bv] ∈ E − C of order at most d|U |+1 − 1

such that v ∈ Av.

Proof of Claim 2: Suppose to the contrary that there exist C ⊆ E(G) with |C| ≤ ξ and 

U ⊆ V (G) with |U | ≤ h −1 such that for every v ∈ V (G) −U , there exists [Av, Bv] ∈ E−C

of order at most d|U |+1 − 1 such that v ∈ Av. That is, there exists a family D′ ⊆ E − C

of edge-cuts of G − C of order at most d|U |+1 − 1 such that for every v ∈ V (G) − U , 

there exists [A, B] ∈ D′ such that v ∈ A. In particular, V (G) − U ⊆
⋃

[A,B]∈D′ A. By 

Lemma 4.5, there exists a cross-free family D ⊆ E − C of edge-cuts of G − C of order 

at most d|U |+1 − 1 such that 
⋃

[A,B]∈D A =
⋃

[A,B]∈D′ A ⊇ V (G) − U . Hence for every 

v ∈ V (G) − U , there exists [A, B] ∈ D with v ∈ A, a contradiction. �

For each i ∈ [d], define Ui to be a subset of V (G) and define S∗
i to be a collection of 

subsets of E(G) such that Ui and S∗
i satisfy the following properties.

(i) For every S ∈ S∗
i , S consists of d −i +1 edges of G with a common end vS /∈

⋃i−1
j=1 Uj , 

and S is disjoint from S′ for every S′ ∈
⋃i−1

j=1 S∗
j .

(ii) For every pair of distinct sets S, S′ ∈ S∗
i , we have S ∩ S′ = ∅ and vS �= vS′ .

(iii)
⋃i

j=1

⋃

S∈S∗
j

S is free with respect to E .

(iv) Subject to (i)-(iii), S∗
i is maximal.

(v) Ui = {vS : S ∈ S∗
i }.

If there exists k ∈ [d] such that |
⋃k

i=1 Ui| < |{u ∈ V (H) : degH(u) ≥ d − k + 1}|, then 

define r to the minimum such k; if there does not exist such k, then |
⋃d

i=1 Ui| ≥ |{u ∈

V (H) : degH(u) ≥ 1}| = h since H has no isolated vertex, and we define r = d.

If |
⋃r

i=1 Ui| ≤ h, then define U∗ =
⋃r

i=1 Ui; otherwise, r = d and we define U∗ to be 

a set with 
⋃j−1

i=1 Ui ⊆ U∗ ⊆
⋃j

i=1 Ui with |U∗| = h, where j is the minimum such that 
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∑j
i=1|Ui| ≥ h. Define S∗ = {S ∈

⋃r
i=1 S∗

i : vS ∈ U∗}. Note that |S∗| = |U∗| ≤ h, and 

members of S∗ are pairwise disjoint and 
⋃

S∈S∗ S is free with respect to E . For every 

v ∈ V (G), define Sv to be the collection of the sets of d|U∗|+1 edges of G −
⋃

S∈S∗ S

incident with v, where we define di = 0 if i > h. Note that Sv = ∅ if v is incident with 

less than d|U∗|+1 edges.

Claim 3: There exist distinct v1, v2, ..., vh−|U∗| ∈ V (G) − U∗ and pairwise disjoint sets 

X1, X2, ..., Xh−|U∗| such that 
⋃

S∈S∗ S ∪
⋃h−|U∗|

i=1 Xi is free with respect to E, and for each 

i ∈ [h − |U∗|], Xi ∈ Svi
.

Proof of Claim 3: There is nothing to prove if |U∗| ≥ h. So we may assume that |U∗| < h.

Let S1 = S∗ and let S2 =
⋃

v∈V (G)−U∗ Sv. For i ∈ [2], let Ji be a set such that we 

can write Si = {Xi,j : j ∈ Ji}. Let J∗
1 = J1 and J∗

2 = ∅. So 
⋃2

i=1

⋃

j∈J∗
i

Xi,j =
⋃

X∈S∗ X

is free with respect to E , and Xi,j ∩ Xi′,j′ = ∅ for every distinct pairs (i, j), (i′, j′) with 

1 ≤ i ≤ i′ ≤ 2, j ∈ J∗
i and j′ ∈ J∗

i′ . Let k1 = |S1| and k2 = (d − 1)(h − 1) + 1. Let 

k = dh. Note that k1 = |U∗| ≤ h − 1. So k ≥ max{k1, k2} and θ ≥ 3(2kd)d+1 + 3d. Since 

every member of S1 has size at most d and every member of S2 has size d|U∗|+1 ≤ d, by 

Lemma 3.3, either

(i’) there exist J ′
1, J ′

2 with J∗
i ⊆ J ′

i ⊆ Ji and |J ′
i | = ki for i ∈ [2] such that 

⋃2
i=1

⋃

j∈J ′
i
Xi,j is free with respect to E , and Xi,j ∩ Xi′,j′ = ∅ for every distinct 

pairs (i, j), (i′, j′) with 1 ≤ i ≤ i′ ≤ 2, j ∈ J ′
i and j′ ∈ J ′

i′ , or

(ii’) there exist Z ⊆ E(G) with |Z| ≤ (2dk)d+1 and integer i∗ ∈ [2] with |J∗
i∗ | < ki∗

such that for every j ∈ Ji∗ , either Xi∗,j ∩ Z �= ∅, or Xi∗,j is not free with respect to 

E − Z.

Suppose that (ii’) holds. Define C = Z ∪
⋃

X∈S∗ X. Then |C| ≤ |Z| + d|S∗| ≤

(2dk)d+1 + dh ≤ ξ. Since |J∗
1 | = |J1| = k1, i∗ = 2. So every member X of S1 ∪ S2 disjoint 

from C belongs to S2 = Si∗ and hence is not free with respect to E − Z and hence is 

not free with respect to E − C by Lemma 2.7. By Claim 2, there exists v ∈ V (G) − U∗

such that there does not exist [Av, Bv] ∈ E − C of order at most d|U∗|+1 − 1 such that 

v ∈ Av, for otherwise choosing C = C and U = U∗ contradicts Claim 2. In particular, 

v ∈ V (G) − U∗ is incident with at least d|U∗|+1 edges in G − C. Hence there exists 

X ∈ Sv ⊆ S2 such that every edge in X is incident with v and X ∩ C = ∅. So X is not 

free with respect to E −C. Hence there exist Y ⊆ X and an edge-cut [A, B] ∈ E −(C ∪Y )

of G − (C ∪Y ) of order less than |X −Y | such that every edge in X −Y has every end in 

A. Since every edge in X − Y is incident with v, we have that v ∈ A and [A, B] ∈ E − C

is an edge-cut of G − C of order less than |X| = d|U∗|+1, a contradiction.

So (i’) holds. Note that J1 = J ′
1 = J∗

1 . If there exist h − |U∗| distinct vertices 

v1, v2, ..., vh−|U∗| ∈ V (G) − U∗ and j1, j2, ..., jh−|U∗| ∈ J ′
2 such that X2,ji

∈ Svi
for 

each i ∈ [h − |U∗|], then the claim holds.
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So we may assume that there exist at most h − |U∗| − 1 ≤ h − 1 vertices 

v1, v2, ..., vh−|U∗|−1 in V (G) − U∗ such that {X2,j : j ∈ J ′
2} ⊆

⋃h−|U∗|−1
i=1 Svi

. Since 

|J ′
2| = (d − 1)(h − 1) + 1, there exists j∗ ∈ [h − |U∗| − 1] such that Svj∗ contains at 

least d members of {X2,j : j ∈ J ′
2}. Let W be a subset of 

⋃

X∈Svj∗ ∩{X2,j :j∈J ′
2} X of size 

d. Note that such a set W exists since members of {X2,j : j ∈ J ′
2} are pairwise disjoint 

and non-empty. Since 
⋃2

i=1

⋃

j∈J ′
i
Xi,j is free with respect to E , W ∪ (

⋃

S∈S∗
1

S) is free 

with respect to E . But W is disjoint from 
⋃

S∈S∗
1

S and consists of d edges incident with 

vj∗ /∈ U1, contradicting the maximality of S∗
1 . This proves the claim. �

Claim 4: H contains a loop, h ≥ 2 and d2 ≥ 2.

Proof of Claim 4: Let Y1, Y2, ..., Y|S∗| be the members of S∗ such that |Yj | ≥ |Yk| for 

every 1 ≤ j ≤ k ≤ |S∗|. Let Y|S∗|+i = Xi for every i ∈ [h − |U∗|], where Xi is defined in 

the statement of Claim 3.

We first show that |Yj | ≥ dj for every j ∈ [h]. Suppose to the contrary that there 

exists j ∈ [h] with |Yj | < dj . It is clear that |Yj | ≥ d|U∗|+1 ≥ dj when |U∗| + 1 ≤ j ≤ h. 

So there exists ij ∈ [r] such that Yj ∈ S∗
ij

. Since Yj ∈ S∗
ij

, d − ij + 1 = |Yj | < dj , so 

d − dj + 1 < ij . Since |Yj | < dj , |
⋃d−dj+1

i=1 Ui| = |
⋃d−dj+1

i=1 S∗
i | ≤ j − 1 < |{u ∈ V (H) :

degH(u) ≥ d − (d − dj + 1) + 1}|, so d − dj + 1 ≥ r ≥ ij by the definition of r, a 

contradiction.

So |Yj | ≥ dj for every j ∈ [h]. Hence for every j ∈ [h], there exists Y ′
j ⊆ Yj with 

|Y ′
j | = dj . Since Y1, Y2, ..., Yh are pairwise disjoint and 

⋃h
j=1 Yj is free with respect to E

by Claim 3, we know Y ′
1 , Y ′

2 , ..., Y ′
h are pairwise disjoint and 

⋃h
j=1 Y ′

j is free with respect 

to E . If H does not contain a loop, then G contains an H-immersion by Lemma 4.4, a 

contradiction.

So H contains a loop. Since H is not exceptional, h ≥ 2 and d2 ≥ 2. �

Claim 5: For every v ∈ U∗ ∪ {vi : 1 ≤ i ≤ h − |U∗|}, there exist Zv ⊆ E(G) with 

|Zv| ≤ (3hd2)d+1 + dh and [Av, Bv] ∈ E − Zv of order at most one such that v ∈ Av.

Proof of Claim 5: Let v be a vertex in U∗ ∪ {vi : 1 ≤ i ≤ h − |U∗|}. Let S1 = S∗ ∪ {Xi :

1 ≤ i ≤ h − |U∗|}. Let S2 = {W ⊆ E(G) : W consists of two edges of G incident with 

v}. Let S3 = {W ⊆ E(G) : W consists of two edges of G sharing at least one common 

end u ∈ V (G) − {v}}.

For i ∈ [3], let Ji be a set such that Si can be written as {Yi,j : j ∈ Ji}. Let J∗
1 = J1, 

J∗
2 = ∅, and J∗

3 = ∅. So 
⋃3

i=1

⋃

j∈J∗
i

Yi,j is free with respect to E . Let k1 = |S1|. Let 

k2 = dh and let k3 = dh. So max{k1, k2, k3} ≤ hd. Note that for every S ∈
⋃3

i=1 Si, 

|S| ≤ max{d, 2} ≤ d since d2 ≥ 2. Since θ ≥ 3(hd · 3 · d)d+1 + 3d, by Lemma 3.3, either

(i’) there exist J ′
1, J ′

2, J ′
3 with J∗

i ⊆ J ′
i ⊆ Ji and |J ′

i | = ki for each i ∈ [3] such that 
⋃3

i=1

⋃

j∈J ′
i
Yi,j is free with respect to E , and Xi,j ∩ Xi′,j′ = ∅ for all distinct pairs 

(i, j), (i′, j′) with 1 ≤ i ≤ i′ ≤ 3, j ∈ J ′
i and j′ ∈ J ′

i′ , or
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(ii’) there exists Z ′
v ⊆ E(G) with |Z ′

v| ≤ (3hd2)d+1 and i∗ ∈ [3] with |J∗
i∗ | < ki∗ such 

that for every j ∈ Ji∗ , either Yi∗,j ∩Z ′
v �= ∅ or Yi∗,j is not free with respect to E −Z ′

v.

Suppose that (i’) holds. Let S ′
2 = {Y2,j : j ∈ J ′

2} and S ′
3 = {Y3,j : j ∈ J ′

3}. Let 

X0 =
⋃

Y ∈S′
2∪S′

3
Y . Let Dv = S ′

3. Since |J ′
2| = hd, there exists a partition (Du : u ∈

(U∗ ∪ {vi : 1 ≤ i ≤ h − |U∗|}) − {v}) of S ′
2 into subsets of size at least d. Note that 

each member of Dv consists of two edges incident with a vertex in V (G) − {v}, and for 

every u ∈ (U∗ ∪ {vi : 1 ≤ i ≤ h − |U∗|}) − {v}, each member of Du consists of two 

edges incident with v ∈ V (G) − {u}. Hence G contains an H-immersion by Lemma 4.4, 

a contradiction.

Therefore, (ii’) holds. Since k1 = |J∗
1 |, i∗ ∈ {2, 3}. Let Zv = Z ′

v ∪
⋃

S∈S1
S. So |Zv| ≤

(3hd2)d+1 + dh ≤ ξ.

If i∗ = 2, then let u = v; otherwise, let u be a vertex in V (G) − {v} such that there 

exists X ∈ Si∗ such that u is a common end of all edges in X. If there exists at most 

one edge of G − Zv incident with u, then there exists [Au, Bu] ∈ E − Zv of order at 

most one such that u ∈ Au. If there exist at least two edges of G − Zv incident with 

u, then let W be a set of two edges of G − Zv incident with u, so W ∈ Si∗ . Since W

is disjoint from Z ′
v, W is not free with respect to E − Zv, so there exists W ′ ⊆ W and 

[AW , BW ] ∈ E − (Zv ∪ W ′) of order less than |W − W ′| = 2 − |W ′| such that every edge 

in W − W ′ has every end in AW . Since u is an end of any edge of W , u ∈ AW . Note 

that [AW , BW ] ∈ E − Zv has order at most one.

So the claim follows if i∗ = 2. Hence we may assume that i∗ = 3. Define U = {v} and 

C = Zv. Then for every w ∈ V (G) − U , either w is incident with at most one edge in 

G − Zv, or w ∈ V (G) − {v} is a common end of all edges in X for some X ∈ S3. But in 

either case, there exists [Aw, Bw] ∈ E − Zv of order at most 1 ≤ d2 − 1 = d|U |+1 − 1 such 

that w ∈ Aw, contradicting Claim 2. �

Claim 6: There exists Z0 ⊆ E(G) with |Z0| ≤ (2hd2)d+1 + hd such that for every v ∈

V (G) − (U∗ ∪ {vi : 1 ≤ i ≤ h − |U∗|}), there exists [Av, Bv] ∈ E − Z0 of order at most 

one such that v ∈ Av.

Proof of Claim 6: Let S1 = S∗ ∪ {Xi : 1 ≤ i ≤ h − |U∗|}. Let S2 = {W ⊆ E(G) : W

consists of two edges of G sharing at least one common end u ∈ V (G) − (U∗ ∪ {vi : 1 ≤

i ≤ h − |U∗|})}. For i ∈ [2], let Ji be a set such that Si can be written as {Yi,j : j ∈ Ji}. 

Let J∗
1 = J1 and J∗

2 = ∅. Let k1 = |J∗
1 | and k2 = hd. Note that max{k1, k2} ≤ hd and 

|S| ≤ max{d, 2} = d for every S ∈ S1 ∪ S2, since d2 ≥ 2. Since θ ≥ 3(hd · 2 · d)d+1 + 3d

and |J∗
1 | = k1, by Lemma 3.3, either

(i’) there exist J ′
1, J ′

2 with J∗
i ⊆ J ′

i ⊆ Ji and with |J ′
i | = ki for each i ∈ [2] such that the 

members of {Y1,j : j ∈ J ′
1} ∪{Y2,j : j ∈ J ′

2} are pairwise disjoint, and 
⋃2

i=1

⋃

j∈J ′
i
Yi,j

is free with respect to E , or

(ii’) there exists Z ′
0 ⊆ E(G) with |Z ′

0| ≤ (2hd2)d+1 such that for every Y2,j ∈ S2, either 

Y2,j ∩ Z ′
0 �= ∅, or Y2,j is not free with respect to E − Z ′

0.
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If (i’) holds, then G contains an H-immersion by Lemma 4.4. So (ii’) holds. Let Z0 = Z ′
0∪

⋃

Y ∈S1
Y . Then |Z0| ≤ (2hd2)d+1+hd. For every v ∈ V (G) −(U∗∪{vi : 1 ≤ i ≤ h −|U∗|}), 

either v is incident with at most one edge of G − Z0, or there exists W ∈ S2 consisting 

of two edges of G − Z0 incident with v such that W is not free with respect to E − Z0. 

For the former, there exists [Av, Bv] ∈ E − Z0 of order at most one such that v ∈ Av

and we are done. So we may assume that there exists W ∈ S2 consisting of two edges 

of G − Z0 incident with v such that W is not free with respect to E − Z0. Since W is 

disjoint from Z ′
0, W is not free with respect to E − Z0, so there exists W ′ ⊆ W and 

[AW , BW ] ∈ E − (Z0 ∪ W ′) of order less than |W − W ′| = 2 − |W ′| such that every edge 

in W − W ′ has every end in AW . Since v is an end of any edge of W , v ∈ AW . Note that 

[AW , BW ] ∈ E − Z0 has order at most one. This proves the claim. �

Define C = Z0 ∪
⋃

v∈U∗∪{vi:1≤i≤h−|U∗|} Zv. So |C| ≤ (2hd2)d+1 +hd +h · ((3hd2)d+1 +

dh) ≤ ξ. By Claims 5 and 6, for every v ∈ V (G), there exists [Av, Bv] ∈ E − C of order 

at most 1 ≤ d1 − 1 such that v ∈ Av. It is a contradiction to Claim 2 by choosing U = ∅. 

This proves the theorem. �

5. Isolating an immersion

The main result of this section is Lemma 5.6 which states that if a graph that does 

not contain many edge-disjoint H-immersions has an edge-tangle E of large order that 

controls a large complete graph-thorns, then one can delete a bounded number of edges 

to push all H-immersions in the remaining graph into the first entry of an edge-cut 

belonging to E . The proof of Lemma 5.6 follows from an induction on the number of 

components of H. The main difficulty lies at the base case, namely the case that H is 

connected. This base case will be proved in Lemma 5.5.

Now we sketch the proof of Lemma 5.5. Assume that G does not contain k edge-disjoint 

H-immersions. Then G does not contain a large graph H ′ with |V (H ′)| = |V (H)| as an 

immersion. So Theorem 4.6 implies that one can delete a bounded number of edges 

from G such that for every vertex v in the remaining graph not contained in a set U

with |U | ≤ |V (H)| − 1, there exists an edge-cut [Av, Bv] in E of small order such that 

v ∈ Av. Hence for every H-immersion Π in the remaining graph, there exists an edge-cut 

[AΠ, BΠ] in E of bounded order such that all its branch vertices are contained in U ∪AΠ, 

and AΠ contains at least one branch vertex.

Assume that we can further delete a set of edges of bounded size from G to either 

decrease |U | or decrease the order of [AΠ, BΠ] for all H-immersions Π. As |U | is bounded, 

by repeatedly deleting small sets of edges a bounded number of times, at some point we 

will keep decreasing the order of [AΠ, BΠ] for all H-immersions Π, so that eventually 

[AΠ, BΠ] will have order 0 for all H-immersions Π. It implies that Π(H) is contained in 

G[AΠ] as H is connected and AΠ contains at least one branch vertex. So Lemma 5.5 is 

proved.

So it suffices to show that we can further delete a set of edges of bounded size to 

either decrease |U | or decrease the order of [AΠ, BΠ] for all H-immersions Π.
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First we show that if we cannot delete a small number of edges to reduce |U |, then 

one can find a set Su of many edges incident with u for every vertex u ∈ U , such that Su′

and Su′′ are pairwise disjoint for distinct u′, u′′ ∈ U , and 
⋃

u∈U Su is free with respect to 

E . This is the purpose of Lemma 5.1 and can be proved by an application of Menger’s 

theorem.

We may assume that we cannot delete a small set of edges to decrease |U |, for otherwise 

we are done. So we may assume that those sets Su’s exist. Then we shall show that we can 

delete a bounded number of edges to reduce the order of [AΠ, BΠ] for all H-immersions 

Π. This is the purpose of Lemma 5.2. Then Lemma 5.5 follows from repeatedly applying 

Lemma 5.2.

Now we sketch the proof of Lemma 5.2. For each H-immersion Π = (πV , πE), since all 

branch vertices of Π are contained in AΠ ∪ U , for every edge e ∈ E(H) with V (πE(e)) ∩

U = ∅, V (πE(e)) ∩ AΠ �= ∅. We say that G[AΠ] “fully realizes” an edge e of H if πE(e) ⊆

G[AΠ]; G[AΠ] “partially realizes” an edge e of H if πE(e) � G[AΠ] but V (πE(e)) ∩AΠ �=

∅. Since AΠ contains at least one branch vertex, at least one edge of H is fully realized 

or partially realized by G[AΠ]. This leads to the notion of “shell” defined right above 

the statement of Lemma 5.2, which is a collection of subgraphs of H indicating what 

the vertices of H whose corresponding branch vertices are contained in U are, what the 

edges fully realized by G[AΠ] are, and what the edges partially realized by G[AΠ] are. 

Note that for each partially realized edge e of H, one can find an edge between AΠ and 

BΠ contained in πE(e).

Hence, if we can find many H-immersions Π1, Π2, ..., where G[AΠi
] ∩ Πi(H) are pair-

wise edge-disjoint, such that the union of 
⋃

u∈U Su and the set of edges between AΠi

and BΠi
over all i is free, then we can “link” those edges to create k edge-disjoint H-

immersions by using Lemma 4.3 to obtain a contradiction. So it implies that we cannot 

find such H-immersions. Then Lemma 3.3 implies one can delete a bounded number of 

edges to reduce the order of [AΠ, BΠ] for all H-immersions Π, so that Lemma 5.2 is 

proved.

Now we formally prove all results in this section.

Lemma 5.1. For any positive integers h, w, there exists a nonnegative integer ξ∗ =

ξ∗(h, w) such that the following holds. Let θ, ξ, p be positive integers with θ ≥ ξ + ξ∗ + 1. 

Let G be a graph and E an edge-tangle in G of order at least θ. Assume that there exist 

Y0 ⊆ E(G) with |Y0| ≤ ξ, U0 ⊆ V (G) with |U0| ≤ h − 1 and a family F0 ⊆ E − Y0

of edge-cuts of G − Y0 of order less than p. Then there exist U ⊆ U0, a set Z with 

Y0 ⊆ Z ⊆ E(G) with |Z| ≤ |Y0| + ξ∗, a family F ⊆ E − Z of edge-cuts of G − Z of order 

less than p and a collection {Su : u ∈ U} such that the following hold.

1. U0 − U ⊆
⋃

[A,B]∈F A and F0 ⊆ F .

2. For every u ∈ U , Su consists of w edges of G − Z incident with u.

3. Su ∩ Su′ = ∅ for distinct u, u′ ∈ U .

4.
⋃

u∈U Su is free with respect to E − Z.
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Proof. Let a0 = 0, and for every positive integer i, let ai = ai−1+2h2w. Define ξ∗ = ah−1.

Let r be an integer with 0 ≤ r ≤ h − 1 such that there exist Yr ⊆ E(G) with Y0 ⊆ Yr

and |Yr| ≤ |Y0| + ar, Ur ⊆ U0 with |Ur| ≤ |U0| − r and a family Fr ⊆ E − Yr of edge-cuts 

of G − Yr of order less than p with U0 − Ur ⊆
⋃

[A,B]∈Fr
A and F0 ⊆ Fr. Note that such 

a number r exists as we can choose r = 0. We assume that r is as large as possible.

We shall prove that this lemma is true if we take U = Ur, Z = Yr and F = Fr. It 

suffices to prove the existence of a collection {Su : u ∈ Ur} satisfying Statements 2-4.

If r ≥ |U0|, then Ur = ∅, so Statements 2-4 hold. So we may assume that r ≤ |U0| −1 ≤

h − 2.

Claim 1: There exists a collection {Su : u ∈ Ur} of pairwise disjoint sets such that for 

every u ∈ Ur, Su consists of w edges of G − Yr incident with u.

Proof of Claim 1: Let U ′
r be a minimal subset of Ur such that there exists a collection 

{Su : u ∈ Ur − U ′
r} of pairwise disjoint sets such that for every u ∈ Ur − U ′

r, Su consists 

of w edges incident with u of G − Yr whose every end is in Ur − U ′
r. So for every two 

distinct u, u′ ∈ U ′
r, there exist at most 2w − 1 edges of G − Yr between u, u′ by the 

minimality of U ′
r. Let Y be the set consists of the non-loop edges whose both ends are 

in U ′
r. Note that |Y | ≤

(

|U ′
r|

2

)

(2w − 1) ≤ (h − 1)2(2w − 1). Let G′ = G − (Yr ∪ Y ).

To prove this claim, it suffices to show that there exists a collection {Su : u ∈ U ′
r} of 

pairwise disjoint sets such that for every u ∈ U ′
r, Su consists of w edges of G′ incident 

with u.

Define H ′ to be the directed graph such that the following hold.

• V (H ′) is the disjoint union of a set Q and a set R, where Q is a copy of U ′
r and R

is a copy of V (G). For each u ∈ U ′
r, we denote the copy of u in Q by u′; for each 

v ∈ V (G), we denote the copy of v in R by v′.

• Every edge of H ′ is from Q to R.

• For every u′ ∈ Q and v′ ∈ R with u �= v, the number of edges of H ′ from u′ to v′

equals the number of edges of G′ with ends u, v.

• For every u′ ∈ Q and v′ ∈ R with u = v, the number of edges of H ′ from u′ to v′

equals the number of loops of G′ incident with u.

Note that no two distinct vertices in U ′
r are adjacent in G′. So there exists a bijection g

between E(H ′) and the set of edges of G′ incident with U ′
r such that for every edge e of 

E(H ′), the ends of g(e) are exactly the originals of ends of e. Define H to be the directed 

graph obtained from H ′ by adding two new vertices s, t and adding w edges from s to 

u′ and w|U ′
r| edges from v′ to t for each u′ ∈ Q and v′ ∈ R.

Assume that there exist w|U ′
r| edge-disjoint directed paths P1, P2, ..., Pw|U ′

r| in H from 

s to t. So every edge of H incident with s belongs to 
⋃w|U ′

r|
i=1 Pi. Hence for every u′ ∈ Q, 

there exist w edges in 
⋃w|U ′

r|
i=1 Pi from u′ to R. For each u ∈ U ′

r, define Su = {g(e) : e ∈

E(
⋃w|U ′

r|
i=1 Pi), e is from u to R}. Then the collection {Su : u ∈ U ′

r} consists of pairwise 
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disjoint sets, and Su consists of w edges of G′ incident with u for each u ∈ U ′
r. So the 

claim holds.

Hence we may assume that there do not exist w|U ′
r| edge-disjoint directed paths in H

from s to t. By Menger’s Theorem, there exists X ⊆ E(H) with |X| < w|U ′
r| such that 

there exists no directed path in H − X from s to t. We assume that |X| is minimum. 

Since for each v′ ∈ R, there exist w|U ′
r| > |X| edges from v′ to t, we know there exists an 

edge in H −X from v′ to t. So X does not contain any edge incident with t, for otherwise 

removing any edge incident with t from X does not create a directed path from s to t, 

contradicting the minimality of X. Let T be the subset of Q consisting of the vertices 

that can be reached from s by a directed path in H −X. So there exists no directed path 

in H − X from T to t. Note that T �= ∅ since there are more than |X| edges incident 

with s. Since X does not contain any edge incident with t, there exist no directed path 

in H − X from T to R. Let X ′ = {g(e) : e ∈ E(H − s) ∩ X}. Then X ′ contains all the 

edges of G′ incident with {u ∈ U ′
r : u′ ∈ T}.

Let [A, B] = [{u ∈ U ′
r : u′ ∈ T}, V (G) −{u ∈ U ′

r : u′ ∈ T}]. Define Yr+1 = Yr ∪Y ∪X ′, 

Ur+1 = Ur−{u ∈ U ′
r : u′ ∈ T} and Fr+1 = Fr∪{[A, B]}. Then |Yr+1| ≤ |Yr| +|Y | +|X ′| ≤

(|Y0| +ar) +(h −1)2(2w−1) +w|U ′
r| −1 ≤ (|Y0| +ar) +(h −1)2(2w−1) +(w(h −1) −1) ≤

|Y0| + ar+1. And |Ur+1| = |Ur| − |T | ≤ |U0| − (r + 1). Note that [A, B] is an edge-cut of 

G − Yr+1 of order zero. So Fr+1 is a family of edge-cuts of G − Yr+1 of order less than p

such that U0 − Ur+1 = (U0 − Ur) ∪ {u ∈ U ′
r : u′ ∈ T} ⊆

⋃

[A′,B′]∈Fr+1
A′. Since there are 

at most |Y ∪ X ′| < (h − 1)2(2w − 1) + (w(h − 1) − 1) ≤ θ − |Yr| edges of G − Yr incident 

with A, [A, B] ∈ E − Yr by (E1) and (E3). So [A, B] ∈ E − Yr+1. This contradicts the 

maximality of r. �

Let {Su : u ∈ Ur} be a collection mentioned in Claim 1. To prove the claim, it suffices 

to prove that 
⋃

u∈Ur
Su is free with respect to E − Yr.

Suppose to the contrary that 
⋃

u∈Ur
Su is not free with respect to E − Yr. Then there 

exist X ⊆
⋃

u∈Ur
Su and [A, B] ∈ E − (Yr ∪ X) of order less than |(

⋃

u∈Ur
Su) − X| such 

that every edge in (
⋃

u∈Ur
Su) − X has every end in A. Note that (

⋃

u∈Ur
Su) − X �= ∅

since there exists no edge-cut of order less than 0. Let X ′ be the union of X and the set 

of edges of G − Yr with one end in A and one end in B. So |X ′| ≤ |X| + |
⋃

u∈Ur
Su| ≤

2|
⋃

u∈Ur
Su| ≤ 2(h − 1)w.

Define Yr+1 = Yr ∪ X ′, Ur+1 = Ur − A, and Fr+1 = Fr ∪ {[A, B]}. So |Yr+1| ≤

|Yr| +|X ′| ≤ |Y0| +ar+2(h −1)w ≤ |Y0| +ar+1. Note that every edge in (
⋃

u∈Ur
Su) −X �= ∅

has every end in A, so Ur ∩ A �= ∅. Hence |Ur+1| ≤ |Ur| − 1 ≤ |U0| − (r + 1). Since 

[A, B] ∈ E − Yr, [A, B] ∈ E − Yr+1 is an edge-cut of G − Yr+1 of order 0. So Fr ⊆ Fr+1

and U0 − Ur+1 ⊆
⋃

[A′,B′]∈Fr+1
A′. This contradicts the maximality of r and proves the 

lemma. �

Let G be a graph and S a subgraph of G. We define S+
G to be the graph obtained 

from S by attaching degG(v) − degS(v) leaves to v, for each v ∈ V (S). So every vertex 

in V (S+
G) − V (S) corresponds to an edge in E(G) − E(S). Note that if e is an edge in 



C.-H. Liu / Journal of Combinatorial Theory, Series B 151 (2021) 148–222 191

E(G) − E(S) with both ends u, v in V (S), then e contributes two leaves to S+
G , where 

one is adjacent to u and one is adjacent to v. In particular, if e ∈ E(G) − E(S) is a loop 

incident with a vertex v in S, then e contributes two leaves adjacent to v in S+
G .

Let G and H be graphs, and let S, R be subgraphs of G, H, respectively. We say that 

S+
G realizes R+

H if S+
G contains a R+

H -immersion (πV , πE) such that πV (V (R+
H) −V (R)) ⊆

V (S+
G) − V (S) and πV (V (R)) ⊆ V (S).

Let H be a graph. A shell of H is a collection of disjoint connected subgraphs of H such 

that every vertex of H is contained in a member of the collection. For any H-immersion 

Π = (πV , πE) in a graph G, we denote the subgraph 
⋃

e∈E(H) πE(e) ∪
⋃

v∈V (H) πV (v) of 

G by Π(H).

Lemma 5.2. For every connected graph H and for positive integers k, p, ξ′
0, there ex-

ist integers θ∗ = θ∗(H, k, p, ξ′
0), w∗ = w∗(H, k, p, ξ′

0), ξ∗ = ξ∗(H, k, p, ξ′
0) such that the 

following holds. Assume that G is a graph that does not contain k edge-disjoint H-

immersions and E is an edge-tangle in G of order at least θ∗ controlling a Kw-thorns 

for some w ≥ w∗. If there exist U ′ ⊆ V (G) with |U ′| ≤ |V (H)| − 1, Z ′
0 ⊆ E(G) with 

|Z ′
0| ≤ ξ′

0 and a family F ′ ⊆ E − Z ′
0 of edge-cuts of G − Z ′

0 of order less than p such that 

for every H-immersion L = (πV , πE) in G − Z ′
0, there exists [A′

L, B′
L] ∈ F ′ such that 

πV (V (H)) ⊆ U ′ ∪ A′
L, then there exist U ⊆ U ′, Z∗ ⊆ E(G) with |Z∗| ≤ ξ∗ and a family 

F∗ ⊆ E − Z∗ of edge-cuts of G − Z∗ such that either

1. U ⊂ U ′, every member of F∗ has order less than |V (H)|p, and for every H-

immersion Π = (πV , πE) in G − Z∗, there exists [A∗
Π, B∗

Π] ∈ F∗ such that 

πV (V (H)) ⊆ U ∪ A∗
Π, or

2. every member of F∗ has order less than p − 1, and for every H-immersion Π =

(πV , πE) in G − Z∗, either there exists [A, B] ∈ E − Z∗ of order zero such that 

Π(H) ⊆ G[A], or there exists [A∗
Π, B∗

Π] ∈ F∗ such that πV (V (H)) ⊆ U ∪ A∗
Π.

Proof. Let H be a connected graph with degree sequence (d1, d2, ..., dh), where h =

|V (H)|. Let k, p, ξ′
0 be positive integers. We define the following.

• Let ξ0 = ξ′
0 + ξ5.1, where ξ5.1 is the number ξ∗(h, kd1) mentioned in Lemma 5.1.

• Let ξ′′
0 = (khd1(kh + 2)(kd1 + p))kd1+p+1.

• Define ξ∗ = ξ0 + (2h2d1)hξ′′
0 , w∗ = 6k2h2d1p + ξ∗ and θ∗ = ξ∗ + w∗ + hp.

Let G be a graph that does not contain k edge-disjoint H-immersions, and let E be 

an edge-tangle of order at least θ∗ in G controlling a Kw-thorns α for some w ≥ w∗. 

Assume there exist U ′ ⊆ V (G) with |U ′| ≤ |V (H)| − 1, Z ′
0 ⊆ E(G) with |Z ′

0| ≤ ξ′
0

and a family F ′ ⊆ E − Z ′
0 of edge-cuts of G − Z ′

0 of order less than p such that for 

every H-immersion L = (πV , πE) in G − Z ′
0, there exists [A′

L, B′
L] ∈ F ′ such that 

πV (V (H)) ⊆ U ′ ∪ A′
L.
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By Lemma 5.1, there exist U ⊆ U ′, a set Z0 with Z ′
0 ⊆ Z0 ⊆ E(G) with |Z0| ≤ ξ0, a 

family F ⊆ E−Z0 of edge-cuts of G −Z0 of order less than p and a collection {Su : u ∈ U}

such that the following hold.

• U ′ − U ⊆
⋃

[A,B]∈F A and F ′ ⊆ F .

• For every u ∈ U , Su consists of kd1 edges of G − Z0 incident with u.

• Su ∩ Su′ = ∅ for distinct u, u′ ∈ U .

•
⋃

u∈U Su is free with respect to E − Z0.

We may assume that U is inclusion-wise minimal subject to the conditions above. So for 

every u ∈ U , there exists no [A, B] ∈ E − Z0 of order less than p such that u ∈ A, for 

otherwise, we may add [A, B] ∈ F and remove u from U .

For any subset Z of E(G), we say an H-immersion Π in G − Z is active (with respect 

to Z) if there does not exist [A, B] ∈ E − Z of order zero such that Π(H) ⊆ G[A].

Suppose that this lemma does not hold.

Claim 1: G − Z0 contains an active H-immersion with respect to Z0, and U = U ′.

Proof of Claim 1: If G − Z0 contains no active H-immersion with respect to Z0, then 

Statement 2 of this lemma holds by taking Z∗ = Z0 and F∗ = ∅, a contradiction. So 

G − Z0 contains an active H-immersion with respect to Z0.

Now we suppose that U ⊂ U ′. Since U ′ − U ⊆
⋃

[A,B]∈F A, for each u ∈ U ′ − U , there 

exists [Au, Bu] ∈ F with u ∈ Au. Since the order of E − Z0 is at least hp, we know for 

every [A, B] ∈ F , [A ∪
⋃

u∈U ′−U Au, B ∩
⋂

u∈U ′−U Bu] is an edge-cut of order less than 

|[A, B]| + (h − 1)p < hp and hence belongs to E − Z0 by Lemma 2.3. Since for every 

H-immersion L = (πV , πE) in G −Z0 ⊆ G −Z ′
0, there exists [AL, BL] ∈ F ′ ⊆ F such that 

πV (V (H)) ⊆ U ′ ∪ AL, we know πV (V (H)) ⊆ U ∪ AL ∪
⋃

u∈U ′−U Au. So Statement 1 of 

this lemma follows if we take Z∗ = Z0 and F∗ = {[A ∪
⋃

u∈U ′−U Au, B ∩
⋂

u∈U ′−U Bu] :

[A, B] ∈ F}, a contradiction. �

For any member S of some shell of H and any active H-immersion L = (πV , πE) in 

G − Z0 with respect to Z0, we say that an edge-cut [A, B] of G − Z0 is useful for L, S if 

the following hold.

• [A, B] ∈ E − Z0 and the order of [A, B] is less than p.

• πV (V (H)) ⊆ A ∪ U .

• G[A]+G realizes S+
H .

• For every vertex in A, there exists a path in G[A] − Z0 from this vertex to an end of 

an edge between A and B.

Claim 2: For every active H-immersion L = (πV , πE) in G −Z0 with respect to Z0, there 

exist a shell PL of H and [AL, BL] ∈ E − Z0 of order less than p such that {v} ∈ PL for 
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every v ∈ V (H) with πV (v) ∈ U , and [AL, BL] is useful for L, S for every member S of 

PL − {{v} : πV (v) ∈ U}.

Proof of Claim 2: Let L = (πV , πE) be an active H-immersion in G − Z0 with respect to 

Z0. Note that L is an H-immersion in G − Z ′
0, so there exists [AL, BL] ∈ F ′ ⊆ F such 

that πV (V (H)) ⊆ U ′ ∪ AL = U ∪ AL. Since F ′ ⊆ E − Z0 and every member of F ′ is 

an edge-cut G − Z ′
0 of order less than p, we know [AL, BL] ∈ E − Z0 is an edge-cut of 

G − Z0 of order less than p.

Let S′ be the subgraph of H such that V (S′) = {v ∈ V (H) : πV (v) ∈ AL} and 

E(S′) = {e ∈ E(H) : πE(e) ⊆ G[AL]}. Let PL be the shell of H that is the union of 

the set {{v} : v ∈ V (H) − V (S′)} and the collection consisting of the components of S′. 

Since for every u ∈ U , there exists no [A, B] ∈ E − Z0 of order less than p such that 

u ∈ A, we know that {{v} : v ∈ V (H) − V (S′)} = {{v} : v ∈ V (H), πV (v) ∈ U}. Since 

|U | ≤ h − 1, πV (v) /∈ U for some v ∈ V (H), so S′ contains at least one vertex. Then 

G[AL]+G realizes S+
H for every member S of PL − {{v} : v ∈ V (H), πV (v) ∈ U}.

So there exists [AL, BL] ∈ E − Z0 satisfying the first three conditions of being useful 

for L, S, for every member S of PL − {{v} : v ∈ V (H), πV (v) ∈ U}. We further choose 

such [AL, BL] such that the order of [AL, BL] is as small as possible, and subject to 

that, AL is minimal. To show that [AL, BL] is useful for L, S for every member S of 

PL − {{v} : v ∈ V (H), πV (v) ∈ U}, it suffices to show that for every vertex in AL, there 

exists a path in G[AL] − Z0 from this vertex to an end of an edge between AL and BL.

Since L is active, the order of [AL, BL] is greater than zero. Suppose that there exists 

a vertex in AL such that there exists no path in G[AL] − Z0 from this vertex to an 

edge between AL and BL. Then there exists a component C of G[AL] − Z0 such that 

there exists no path in G − Z0 from V (C) to any edge between AL and BL. We define 

[A′
L, B′

L] = [AL − V (C), BL ∪ V (C)]. Since the order of [A′
L, B′

L] is the same as the 

order of [AL, BL], we know [A′
L, B′

L] ∈ E − Z0 by Lemma 2.3. By the minimality of AL, 

V (C) contains πV (v) for some v ∈ V (H). Since H is connected and C is a component 

of G[AL] − Z0, C contains πE(E(H)). So [V (C), V (G) − V (C)] is an edge-cut of G − Z0

of order zero such that C contains πE(E(H)) and hence G[V (C)]+G realizes H+
H . Note 

that it implies that πV (V (H)) ∩ U = ∅, so {H} is a shell P ′ of H with {v} ∈ P ′ for each 

v ∈ V (H) with πV (v) ∈ U . In addition, [V (C), V (G) − V (C)] ∈ E − Z0 by Lemma 2.3. 

Since the order of [AL, BL] is greater than 0, it contradicts the minimality of the order 

of [AL, BL]. �

For every shell P of H and every subset D of {v ∈ V (H) : {v} ∈ P} of size at most 

|U |, we define the following.

• Define HP,D to be the graph obtained from the disjoint union of k copies of H by 

for each v ∈ D, identifying the k copies of v into a vertex. Note that |V (HP,D)| =

k(|V (H)| − |D|) + |D|, and for any two (not necessarily distinct) vertices in D, if 

there are � edges of H between then, then there are k� edges of HP,D between them. 
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Note that G contains no HP,D-immersion, for otherwise G contains k edge-disjoint 

H-immersions.

• Define QP,D to be the shell of HP,D consisting of {v}, for each v ∈ D, and the 

members of P − {{v} : v ∈ D} in each copy of H.

• For each S ∈ QP,D, define XS = {X : X is the set of edges between AL and BL, for 

some active H-immersion L in G − Z0 and some edge-cut [AL, BL] of G − Z0 that is 

useful for L, S}. Note that each member of XS has size at most p.

Define X0 = {Su : u ∈ U}. Recall that 
⋃

X∈X0
X is free with respect to E − Z0. Define 

XE to be the collection of the 2-element subsets of E(G − Z0) each consisting of two 

edges having at least one common end. Define X ∗
0 = X0, k0 = |U |, X ∗

E = ∅, kE = khd1, 

X ∗
S = ∅ and kS = kh for each S ∈ QP,D − {{v} : v ∈ D}. Note that |QP,D| ≤ kh.

Claim 3: For every shell P of H and every subset D of {v ∈ V (H) : {v} ∈ P} of size at 

most |U |, there exist ZP,D ⊆ E(G) −Z0 with |ZP,D| ≤ ξ′′
0 and S ∈ QP,D −{{v} : v ∈ D}

such that for every X ∈ XS, either X ∩ ZP,D �= ∅, or X is not free with respect to 

E − (Z0 ∪ ZP,D).

Proof of Claim 3: Let P be a shell of H and D a subset of {v ∈ V (H) : {v} ∈ P} of size 

at most |U |. Notice that |X ∗
0 | = k0. By Lemma 3.3, one of the following holds.

(i) There exist a collection X ′
0 of size k0 with X ∗

0 ⊆ X ′
0 ⊆ X0, a collection X ′

E of size 

kE = khd1 with X ∗
E ⊆ X ′

E ⊆ XE and collections X ′
S of size kS = kh with X ∗

S ⊆ X ′
S ⊆

XS for each S ∈ QP,D − {{v} : v ∈ D} such that X ′
0 ∪ X ′

E ∪
⋃

S∈QP,D−{{v}:v∈D} X ′
S

consists of pairwise disjoint members, and the union of its members is free with 

respect to E − Z0.

(ii) There exist ZP,D ⊆ E(G) − Z0 with |ZP,D| ≤ (khd1(|QP,D| − |D| + 2)(kd1 +

p))kd1+p+1 ≤ ξ′′
0 and S ∈ QP,D − {{v} : v ∈ D} such that for every X ∈ XS , either 

X ∩ ZP,D �= ∅, or X is not free with respect to E − (Z0 ∪ ZP,D).

(iii) There exists ZP,D ⊆ E(G) − Z0 with |ZP,D| ≤ (khd1(|QP,D| − |D| + 2)(kd1 +

p))kd1+p+1 ≤ ξ′′
0 such that every set of two edges of G − (Z0 ∪ZP,D) sharing at least 

one common end is not free with respect to E − (Z0 ∪ ZP,D).

Note that Statement (iii) cannot hold by Lemma 2.18 since θ ≥ ξ0 + ξ′′
0 + 2. To prove 

this claim, it suffices to show that Statement (i) does not hold.

Suppose to the contrary that Statement (i) holds. We shall derive a contradiction by 

showing that G contains k edge-disjoint H-immersions.

Let X be the union of the members of X ′
0 ∪ X ′

E ∪
⋃

S∈QP,D−{{v}:v∈DP } X ′
S . So X is 

free with respect to E − Z0, and |X| ≤ hkd1 + 2hkd1 + kh · kh · p ≤ 4h2k2d1p. Since α

is a Kw-thorns controlled by E , there exists a Kw−ξ0
-thorns α′ in G − Z0 controlled by 

E − Z0. Note that w − ξ0 ≥ w∗ − ξ0 ≥ 3
2 |X|.

Suppose that there exist Y ⊆ X and an edge-cut [A, B] of G − (Z0 ∪ Y ) of order 

less than |X| − |Y | such that every edge in X − Y is incident with vertices in A and 
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A ∩V (α′(t)) = ∅ for some t ∈ V (Kw−ξ0
). By (E1), [A, B] or [B, A] is in E −(Z0 ∪Y ), and 

hence [A, B] or [B, A] is in E −Z0. Since X is free with respect to E −Z0, [A, B] /∈ E −Z0. 

Since E − Z0 controls α′, [B, A] /∈ E − Z0, a contradiction.

Therefore, there do not exist Y ⊆ X and an edge-cut [A, B] of G − (Z0 ∪ Y ) of order 

less than |X| − |Y | ≤ 2
3 (w∗ − ξ0) − |Y | such that every edge in X − Y is incident with 

vertices in A and A ∩ V (α′(t)) = ∅ for some t ∈ V (Kw−ξ0
).

For each S ∈ QP,D − {{v} : v ∈ D} and XS ∈ X ′
S ,

• define LS to be an H-immersion (π
(S)
V , π

(S)
E ) in G − Z0 such that XS is the set of 

edges between ALS
and BLS

, where [ALS
, BLS

] is a useful edge-cut of G − Z0 for 

LS , S,

• let (π
(S,1)
V , π

(S,1)
E ) be an S+

H -immersion in G[ALS
]+G such that πV (V (S+

H) − V (S)) ⊆

V (G[ALS
]+G) − ALS

and πV (V (S)) ⊆ ALS
, and

• let fXS
be the injection from V (S+) − V (S) to XS such that for every x ∈ V (S+) −

V (S), fXS
(x) is the edge in XS contained in π

(S,1)
E (e), where e is the edge in S+

H

incident with x.

Define ιD to be an injection from D to U , and for every v ∈ D, define f ′
X{v}

to be an 

injection from the set of edges of HP,D incident with v to the set SιD(v), and define fX{v}

to be the injection from V (HP,D[{v}]+HP,D
) −{v} to SιD(v) such that fX{v}

(e) = f ′
X{v}

(e′)

for every e ∈ V (HP,D[{v}])+
HP,D

− {v} and edge e′ of HP,D[{v}]+HP,D
(so e′ is an edge of 

HP,D) incident with e. Note that for every v ∈ D, {v} is a member of QP,D. So for every 

S ∈ QP,D, fXS
is defined. In addition, kE ≥ |E(HP,D)|, so there exists an injection ι

from E(HP,D) to X ′
E .

For each edge e of HP,D not contained in any member of QP,D, we define the following.

• Say e has one end in S1 ∈ QP,D and one end in S2 ∈ QP,D. Note that S1 and S2

are not necessarily distinct, and e corresponds to a leaf e1 in S+
1 and a leaf e2 in S+

2 , 

where e1 �= e2 even if S1 = S2 or e is a loop. We define We = {fXS1
(e1), fXS2

(e2)}.

• Define W ′
e = ι(e). Note that W ′

e is a member of X ′
E .

• Define {We,1, We,2} to be a partition of We ∪ W ′
e into two sets of size two each 

containing exactly one element in We.

Let W be the union of We,1 ∪We,2 over all edges e of HP,D not contained in any member 

of QP,D. Let W = {We,1, We,2 : e ∈ E(HP,D) not contained in any member of QP,D}. 

Note that W is a subset of X and W is a partition of W . Let R = {{x} : x ∈ X − W}, 

and let R∗ = R ∪ W. Note that R is a partition of X − W and R∗ is a partition of X.

Recall that there do not exist Y ⊆ X and an edge-cut [A, B] of G − (Z0 ∪ Y ) of order 

less than |X| − |Y | ≤ 2
3 (w − ξ0) − |Y | such that every edge in X − Y is incident with 

vertices in A and A ∩ V (α′(t)) = ∅ for some t ∈ V (Kw−ξ0
). So by Lemma 4.3 (where 

the partition mentioned in Lemma 4.3 is taken to be R∗), there exists a collection 

{Tx : x ∈ X − W} ∪ {Te,i : i ∈ [2], e ∈ E(HP,D) not contained in any member of QP,D}
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of pairwise edge-disjoint connected subgraphs in G − Z0 such that x ∈ E(Tx) for every 

x ∈ X − W , and E(Te,i) ∩ X = E(Te,i) ∩ W = We,i for each e and i.

Let Q′
P,D = QP,D − {{v} : v ∈ D}. Note that 

⋃

S∈Q′
P,D,XS∈X ′

S
XS contains all 

edges between 
⋃

S∈Q′
P,D,XS∈X ′

S
ALS

and 
⋂

S∈Q′
P,D,XS∈X ′

S
BLS

. Suppose there exists an 

edge x ∈ X whose every end is in 
⋃

S∈Q′
P,D,XS∈X ′

S
ALS

. Let Y = X − {x}. Hence, 

[
⋃

S∈Q′
P,D,XS∈X ′

S
ALS

,
⋂

S∈Q′
P,D,XS∈X ′

S
BLS

] is an edge-cut of G − (Z0 ∪ Y ) of order 0 <

|X| − |Y | such that every edge in X − Y has every end in 
⋃

S∈Q′
P,D,XS∈X ′

S
ALS

. Note 

that [
⋃

S∈Q′
P,D,XS∈X ′

S
ALS

,
⋂

S∈Q′
P,D,XS∈X ′

S
BLS

] ∈ E − (Z0 ∪ Y ) by Lemma 2.3. So X is 

not free with respect to E − Z0, a contradiction.

Hence every edge in X has at most one end in 
⋃

S∈Q′
P,D,XS∈X ′

S
ALS

. In partic-

ular, since 
⋃

S∈Q′
P,D,XS∈X ′

S
XS contains all edges between 

⋃

S∈Q′
P,D,XS∈X ′

S
ALS

and 
⋂

S∈Q′
P,D,XS∈X ′

S
BLS

, every edge in a member of X ′
E has every end in 

⋂

S∈Q′
P,D,XS∈X ′

S
BLS

. 

Therefore, X consists of all edges between 
⋃

S∈Q′
P,D,XS∈X ′

S
ALS

and 
⋂

S∈Q′
P,D,XS∈X ′

S
BLS

, 

and some edge whose every end is in 
⋂

S∈Q′
P,D,XS∈X ′

S
BLS

. It follows that each subgraph 

Te,i does not contain an edge whose every end is in 
⋃

S∈Q′
P,D,XS∈X ′

S
ALS

.

Since X is free with respect to E − Z0 and XS′ ∩ XS′′ = ∅ for distinct S′, S′′ ∈ Q′
P,D, 

we have ALS′ ∩ ALS′′ = ∅ for distinct S′, S′′ ∈ Q′
P,D by Lemma 2.17. So the subgraphs 

Te,i together with the intersection of the image of π
(S)
E and G[ALS

], for each S ∈ Q′
P,D, 

define a subgraph of G − Z0 containing an HP,D-immersion (πV , πE) in G − Z0 with 

πV (v) = ιD(v) for every v ∈ D, a contradiction. This proves the claim. �

Let Z∗ be the union of Z0 and the sets ZP,D over all shells P of H and subsets D

of {v ∈ V (H) : {v} ∈ P} of size at most |U | mentioned in Claim 3. Note that there are 

at most hh(hd1)h different shells of H, and for each shell P of H, there are at most 2h

different subsets of {v ∈ V (H) : {v} ∈ P}. So |Z∗| ≤ ξ0 + (2h2d1)hξ′′
0 ≤ ξ∗.

Note that we may assume that there exists an active H-immersion in G − Z∗ with 

respect to Z∗, for otherwise Statement 2 of this lemma holds by taking F∗ = ∅. Note 

that every H-immersion in G − Z∗ is an immersion in G − Z ′
0.

Claim 4: For every active H-immersion L = (πV , πE) in G −Z∗ with respect to Z∗, there 

exists [A∗
L, B∗

L] ∈ E − Z∗ of order less than p − 1 such that πV (V (H)) ⊆ U ∪ A∗
L.

Proof of Claim 4: Let L = (πV , πE) be an active H-immersion in G − Z∗ with respect 

to Z∗. So L is an active H-immersion in G − Z0 with respect to Z0. By Claim 2, 

there exist a shell PL of H and [AL, BL] ∈ E − Z0 of order less than p such that 

{v} ∈ PL for every v ∈ V (H) with πV (v) ∈ U , and [AL, BL] is useful for L, S for every 

member S of PL − {{v} : πV (v) ∈ U}. Let X be the set of edges of G − Z0 between 

AL and BL. So |X| ≤ p − 1. Let D = {v ∈ V (H) : πV (v) ∈ U}. So D is a subset of 

{v ∈ V (H) : {v} ∈ PL} of size at most |U |. Since |U | ≤ |V (H)| − 1, X ∈ XS for every 

member S of QPL,D − {{v} : v ∈ D}.

By Claim 3, either X ∩ Z∗ �= ∅ or X is not free with respect to E − Z∗. If X ∩ Z∗ �= ∅, 

then [AL, BL] is an edge-cut of G −Z∗ of order less than its order in G −Z0, so [AL, BL] ∈
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E − Z∗ is an edge-cut of G − Z∗ of order less than p − 1 such that πV (V (H)) ⊆ U ∪ AL

and we are done. So we may assume that X ∩ Z∗ = ∅.

Hence X is not free with respect to E − Z∗. So there exist Y ⊆ X and [A, B] ∈

E − (Z∗ ∪ Y ) of order less than |X| − |Y | such that every edge in X − Y has every end 

in A. We assume that the order of [A, B] is as small as possible, and subject to that, A

is maximal.

Since [A, B] is an edge-cut of G − Z∗ of order less than |X| ≤ p − 1, [A, B] ∈ E − Z∗. 

So we are done if AL ⊆ A.

So we may assume that AL � A. Let A∗ = A ∪ AL and B∗ = B ∩ BL. Since every 

edge of G − (Z∗ ∪ Y ) between AL, BL is an edge in X − Y , it is not incident with B. So 

[A∗, B∗] is an edge-cut of G − (Z∗ ∪Y ) of order at most the order of [A, B] with A∗ ⊃ A. 

Hence [A∗, B∗] ∈ E − (Z∗ ∪ Y ) by Lemma 2.3. But this contradicts the choice of [A, B]. 

This proves the claim. �

Define F∗ = {[A∗
L, B∗

L] : L is an active H-immersion in G − Z∗ with respect to Z∗}, 

where [A∗
L, B∗

L] is the edge-cut mentioned in Claim 4. Then Statement 2 of this lemma 

follows. �

Lemma 5.3. For every connected graph H and for positive integers k, p, ξ, there exist 

integers θ∗ = θ∗(H, k, p, ξ), w∗ = w∗(H, k, p, ξ), ξ∗ = ξ∗(H, k, p, ξ), p∗ = p∗(H, k, p, ξ)

such that the following holds. Assume that G is a graph that does not contain k edge-

disjoint H-immersions and E is an edge-tangle of G of order at least θ∗ controlling a 

Kw-thorns for some w ≥ w∗. If there exist U ′ ⊆ V (G) with |U ′| ≤ |V (H)| −1, Z ⊆ E(G)

with |Z| ≤ ξ and a family F ′ ⊆ E − Z of edge-cuts of G − Z of order less than p such 

that for every H-immersion L = (πV , πE) in G −Z, there exists [A′
L, B′

L] ∈ F ′ such that 

πV (V (H)) ⊆ U ′ ∪ A′
L, then there exist U ⊆ U ′, Z∗ ⊆ E(G) with |Z∗| ≤ ξ∗ and a family 

F∗ ⊆ E − Z∗ of edge-cuts of G − Z∗ such that either

1. U ⊂ U ′, every member of F∗ has order less than p∗, and for every H-immersion 

Π = (πV , πE) in G − Z∗, there exists [A∗
Π, B∗

Π] ∈ F∗ such that πV (V (H)) ⊆ U ∪ A∗
Π, 

or

2. for every H-immersion Π in G − Z∗, there exists [A, B] ∈ E − Z∗ of order zero such 

that Π(H) ⊆ G[A].

Proof. Let H be a connected graph and k, p, ξ be positive integers. Let h = |V (H)|. We 

define the following.

• Let ξ0 = ξ, θ0 = 0 and w0 = 0.

• For every positive integer i with 1 ≤ i ≤ p, define θi = θi−1 +θ5.2(H, k, p −i +1, ξi−1), 

wi = wi−1 + w5.2(H, k, p − i + 1, ξi−1), and ξi = ξ5.2(H, k, p − i + 1, ξi−1), where 

θ5.2, w5.2, ξ5.2 are the numbers θ∗, w∗, ξ∗ mentioned in Lemma 5.2, respectively.

• Define θ∗ =
∑p

i=1 θi, w
∗ =

∑p
i=1 wi, ξ

∗ =
∑p

i=1 ξi and p∗ = hp.
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Let G be a graph that does not contain k edge-disjoint H-immersions, and let E be an 

edge-tangle of G of order at least θ∗ controlling a Kw-thorns for some w ≥ w∗. Assume 

that there exist U ′ ⊆ V (G) with |U ′| ≤ |V (H)| − 1, Z ⊆ E(G) with |Z| ≤ ξ and a family 

F ′ ⊆ E − Z of edge-cuts of G − Z of order less than p such that for every H-immersion 

L = (πV , πE) in G − Z, there exists [A′
L, B′

L] ∈ F ′ such that πV (V (H)) ⊆ U ′ ∪ A′
L.

Let Z0 = Z and F0 = F ′. Let r be an integer with 0 ≤ r ≤ p − 1 such that there 

exist a set Zr ⊆ E(G) with |Zr| ≤ ξr and a family Fr ⊆ E − Zr of edge-cuts of G − Zr

of order less than p − r such that for every H-immersion Π = (πV , πE) in G − Zr, there 

exists [A, B] ∈ Fr such that πV (V (H)) ⊆ U ′ ∪ A. Note that such an integer r exists as 

r = 0 is a candidate. We assume that r is as large as possible.

Applying Lemma 5.2 by taking (H, k, p, ξ′
0, U ′, Z ′

0, F ′) = (H, k, p − r, ξr, U ′, Zr, Fr), 

there exist U ⊆ U ′, Z∗ ⊆ E(G) with |Z∗| ≤ ξr+1 and a family F∗ ⊆ E − Z∗ of edge-cuts 

of G − Z∗ such that either

(i) U ⊂ U ′, every member of F∗ has order less than h ·(p −r), and for every H-immersion 

Π = (πV , πE) in G − Z∗, there exists [A, B] ∈ F∗ such that πV (V (H)) ⊆ U ∪ A, or

(ii) every member of F∗ has order less than p − r − 1 and for every H-immersion Π =

(πV , πE) in G − Z∗, either there exists [A, B] ∈ E − Z∗ of order zero such that 

Π(H) ⊆ G[A], or there exists [A∗
Π, B∗

Π] ∈ F∗ such that πV (V (H)) ⊆ U ∪ A∗
Π.

If (i) holds, then since ξ∗ ≥ ξr+1 and p∗ ≥ h(p − r), Statement 1 of this lemma holds. 

So we may assume that (ii) holds.

Assume that r = p − 1. Since there exists no edge-cut of order less than zero, F∗ = ∅. 

So for every H-immersion Π in G − Z∗, there exists [A, B] ∈ E − Z∗ of order zero such 

that Π(H) ⊆ G[A]. Hence Statement 2 of this lemma holds.

So we may assume that r ≤ p −2. Define Zr+1 = Z∗, and define Fr+1 = F∗ ∪{[A, B] ∈

E − Z∗ : [A, B] is an edge-cut of G − Z∗ of order zero}. Since r ≤ p − 2, every member of 

Fr+1 has order less than p − r − 1. This contradicts the maximality of r and completes 

the proof. �

Lemma 5.4. For every connected graph H on at least two vertices and for every positive 

integer k, there exist integers θ = θ(H, k), w = w(H, k), ξ = ξ(H, k) with θ > w + ξ

such that the following holds. If G is a graph that does not contain k edge-disjoint H-

immersions and E is an edge-tangle in G of order at least θ controlling a Kw′-thorns for 

some w′ ≥ w, then there exist Z ⊆ E(G) with |Z| ≤ ξ and [A, B] ∈ E − Z of order zero 

such that G[A] contains all H-immersions in G − Z.

Proof. Let H be a connected graph with degree sequence (d1, d2, ..., dh), where h =

|V (H)| ≥ 2. Let k be a positive integer. We define the following.

• Let θ0 = θ4.6(kd1, h) and let ξ0 = ξ4.6(kd1, h), where θ4.6 and ξ4.6 are the numbers θ

and ξ mentioned in Theorem 4.6, respectively.
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• Let p0 = kd1h and w0 = 3kd1h.

• For every positive integer i, let θi = θi−1 +θ5.3(H, k, pi−1, ξi−1), wi = w5.3(H, k, pi−1,

ξi−1), ξi = ξ5.3(H, k, pi−1, ξi−1) and pi = p5.3(H, k, pi−1, ξi−1), where θ5.3, w5.3, ξ5.3

and p5.3 are the numbers θ∗, w∗, ξ∗ and p∗ mentioned in Lemma 5.3, respectively.

• Define ξ =
∑h

i=0 ξi, w = wh + ξ and θ = θh + w + ξ +
∑h

i=0 pi.

Let G be a graph that does not contain k edge-disjoint H-immersions, and let E be an 

edge-tangle of order at least θ in G controlling a Kw′-thorns α for some w′ ≥ w. We may 

assume that k ≥ 2, for otherwise the lemma holds by choosing Z = ∅.

Define Hk to be the graph obtained from H by duplicating each edge k times. Note 

that Hk is a graph on h vertices with maximum degree kd1. Since h ≥ 2 and H is 

connected, d2 ≥ 1. So Hk contains at least two vertices of degree at least k ≥ 2 and hence 

is not an exceptional graph. Since G does not contain k edge-disjoint H-immersions, 

G does not contain an Hk-immersion. By Theorem 4.6, there exist Z0 ⊆ E(G) with 

|Z0| ≤ ξ0, U0 ⊆ V (G) with |U0| ≤ h − 1 and a family F ′
0 ⊆ E − Z0 of edge-cuts such that 

for each v ∈ V (G) − U0, there exists [Av, Bv] ∈ F ′
0 of order less than kd1 with v ∈ Av.

For every H-immersion L=(πV, πE) in G −Z0, define [A∗
L, B∗

L]=[
⋃

v∈V(H),πV (v)/∈U0
AπV (v),

⋂

v∈V (H),πV (v)/∈U0
BπV (v)]. Note that each [A∗

L, B∗
L] has order less than kd1h and hence 

belongs to E − Z0 by Lemma 2.3. Define F0 = {[A∗
L, B∗

L] : L is an H-immersion in 

G − Z0} to be a collection of edge-cuts of G − Z0. Note that for every H-immersion 

L = (πV , πE) in G − Z0, πV (V (H)) ⊆ U0 ∪ A∗
L.

Let r be an integer with 0 ≤ r ≤ h − 1 such that there exist Ur ⊆ V (G) with 

|Ur| ≤ h − 1 − r, Zr ⊆ E(G) with |Zr| ≤ ξr and a family Fr ⊆ E − Zr of edge-cuts of 

G − Zr of order less than pr such that for every H-immersion L = (πV , πE) in G − Zr, 

there exists [A′
L, B′

L] ∈ Fr such that πV (V (H)) ⊆ Ur ∪ A′
L. Note that such an integer r

exists since r = 0 is a candidate. We assume that r is as large as possible.

Apply Lemma 5.3 by taking (H, k, p, ξ, U ′, Z, F ′) = (H, k, pr, ξr, Ur, Zr, Fr), there 

exist U ⊆ Ur, Z∗ ⊆ E(G) with |Z∗| ≤ ξr+1 and a family F∗ ⊆ E − Z∗ of edge-cuts of 

G − Z∗ such that either

(i) U ⊂ Ur, every member of F∗ has order less than pr+1, and for every H-immersion 

Π = (πV , πE) in G − Z∗, there exists [A∗
Π, B∗

Π] ∈ F∗ such that πV (V (H)) ⊆ U ∪ A∗
Π, 

or

(ii) for every H-immersion Π in G − Z∗, there exists [A∗
Π, B∗

Π] ∈ E − Z∗ of order zero 

such that Π(H) ⊆ G[A∗
Π].

We first suppose that (i) holds. If r = h − 1, then Ur = ∅, so (i) does not hold, a 

contradiction. So r ≤ h − 2. But it is a contradiction to the maximality of r by defining 

Ur+1 = U , Zr+1 = Z∗ and Fr+1 = F∗.

Hence (i) does not hold. So (ii) holds. Let [A, B] = [
⋃

L A∗
L, 

⋂

L B∗
L], where the union 

and intersection are over all H-immersions L in G −Z∗ and each [A∗
L, B∗

L] is the member 

of E − Z∗ mentioned in (ii). Note that [A, B] has order zero. So [A, B] ∈ E − Z∗ by 
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Lemma 2.3. Note that for every H-immersion Π in G − Z∗, Π(H) ⊆ G[A]. Then this 

lemma follows by taking Z = Z∗. �

Now we drop the requirement of the number of vertices of H from Lemma 5.4.

Lemma 5.5. For every connected graph H and for every positive integer k, there exist 

integers θ = θ(H, k), w = w(H, k), ξ = ξ(H, k) with θ > w + ξ such that the following 

holds. If G is a graph that does not contain k edge-disjoint H-immersions and E is an 

edge-tangle in G of order at least θ controlling a Kw′-thorns for some w′ ≥ w, then there 

exist Z ⊆ E(G) with |Z| ≤ ξ and [A, B] ∈ E − Z of order zero such that G[A] contains 

all H-immersions in G − Z.

Proof. Let H be a connected graph and let k be a positive integer. By Lemma 5.4, we 

may assume |V (H)| = 1. Note that we may assume |E(H)| ≥ 1, for otherwise every graph 

on at least one vertex contains arbitrarily many edge-disjoint H-immersions. Hence H

is a one-vertex graph with at least one loop. Let H ′ be the graph obtained from H by 

subdividing one edge of H once.

Define ξ = ξ5.4(H ′, k) + (k − 1)(k|E(H)| − 1), w = w5.4(H ′, k) and θ = θ5.4(H ′, k) +

w+ξ, where ξ5.4, w5.4, θ5.4 are the numbers ξ, w, θ mentioned in Lemma 5.4, respectively.

Let G be a graph that does not contain k edge-disjoint H-immersions and E an edge-

tangle in G of order at least θ controlling a Kw′-thorns for some w′ ≥ w. Since G does not 

contain k edge-disjoint H-immersions, no vertex of G is incident with at least k|E(H)|

loops, and there are at most k − 1 vertices of G incident with at least |E(H)| loops. 

Hence there exists Z0 ⊆ E(G) with |Z0| ≤ (k − 1)(k|E(H)| − 1) such that no vertex in 

G − Z0 is incident with at least |E(H)| loops in G − Z0.

Since G does not contain k edge-disjoint H-immersions, G does not contain k edge-

disjoint H ′-immersions. By Lemma 5.4, there exist Z ′ ⊆ E(G) with |Z ′| ≤ ξ5.4(H ′, k)

and [A, B] ∈ E − Z ′ of order zero such that G[A] contains all H ′-immersions in G − Z ′. 

Let Z = Z0 ∪ Z ′. So |Z| ≤ ξ and [A, B] ∈ E − Z is an edge-cut of G − Z of order zero.

Suppose that there exists an H-immersion Π in G − Z such that Π(H) � G[A]. Since 

H is connected, Π(H) ⊆ G[B]. So Π(H) does not contain an H ′-immersion. Hence Π(H)

consists of one vertex and |E(H)| loops. But no vertex in G − Z is incident with at least 

|E(H)| loops in G − Z, a contradiction. This proves the lemma. �

The following is the main result of this section, which says that the connectivity of 

the graph H in Lemma 5.5 can be dropped.

Lemma 5.6. For every graph H and for every positive integer k, there exist integers 

θ = θ(H, k), w = w(H, k), ξ = ξ(H, k) with θ > w + ξ such that the following holds. If G

is a graph that does not contain k edge-disjoint H-immersions and E is an edge-tangle 

in G of order at least θ controlling a Kw′-thorns for some w′ ≥ w, then there exist 

Z ⊆ E(G) with |Z| ≤ ξ and [A, B] ∈ E − Z of order zero in G − Z such that G[B] − Z

contains no H-immersion.
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Proof. Let H be a graph and let k be a positive integer. Let p be the number of compo-

nents of H. We shall prove this lemma by induction on p. When p = 1, this lemma holds 

by taking θ, w, ξ to be the numbers θ5.5(H, k), w5.5(H, k), ξ5.5(H, k), where θ5.5, w5.5, ξ5.5

are the integers θ, w, ξ mentioned in Lemma 5.5. So we may assume that p ≥ 2 and the 

lemma holds for every graph with less than p components.

Define F1 to be the set of graphs that can be obtained from H by adding an edge 

between different components. Define F2 to be the set of graphs that can be obtained 

from H by subdividing an edge and adding an edge between this new vertex and another 

component of H. Define F3 to be the set of graphs that can be obtained from H by 

subdividing two edges in different components and either adding an edge between those 

two new vertices or identifying the two new vertices. Define F4 to be the set of graphs 

that can be obtained from H by subdividing an edge and identify this new vertex with 

a vertex in another component. Let F = F1 ∪ F2 ∪ F3 ∪ F4. Note that |F| ≤ |V (H)|2 +

|E(H)||V (H)| +2|E(H)|2 + |E(H)||V (H)| ≤ 5(|V (H)|2 + |E(H)|2). Since every graph in 

F contains less than p components, by the induction hypothesis, for every graph F ∈ F , 

there exist integers θ(F, k), w(F, k), ξ(F, k) such that the lemma holds.

Define w(H, k) =
∑

F ∈F w(F, k), ξ(H, k) =
∑

F ∈F ξ(F, k), and θ(H, k) = w(H, k) +

ξ(H, k) +
∑

F ∈F θ(F, k). We shall prove that the numbers θ(H, k), w(H, k) and ξ(H, k)

satisfy the lemma. Let θ = θ(H, k), w = w(H, k) and ξ = ξ(H, k).

Let G be a graph that does not contain k edge-disjoint H-immersions and E an edge-

tangle in G of order at least θ controlling a Kw′-thorns for some w′ ≥ w. Note that for 

every F ∈ F and every Z ⊆ E(G), any subgraph of G − Z containing an F -immersion 

contains an H-immersion. So for every F ∈ F , G does not contain k edge-disjoint F -

immersions. By the induction hypothesis, for every F ∈ F , there exist ZF ∈ E(G) with 

|ZF | ≤ ξ(F, k) and [AF , BF ] ∈ E − ZF of order zero in G − ZF such that G[BF ] − ZF

contains no F -immersion. Define Z =
⋃

F ∈F ZF and [C, D] = [
⋃

F ∈F AF , 
⋂

F ∈F BF ]. So 

[C, D] has order zero in G − Z and G[D] − Z contains no F -immersion for each F ∈ F . 

Since [C, D] has order zero, [C, D] ∈ E − Z by Lemma 2.3. Define [A, B] to be the edge-

cut of G −Z of order zero such that [A, B] ∈ E −Z and C ⊆ A, and subject to those, A is 

maximal. Then the maximality of A implies that G[B] − Z is connected by Lemma 2.3.

Suppose that G[B] −Z contains an H-immersion. Then for each i ∈ [p], G[B] −Z con-

tains an Hi-immersion Πi = (π
(i)
V , π

(i)
E ), where Hi is the i-th component of H, such that 

the images of π
(1)
V , ..., π

(p)
V are pairwise disjoint and the images of π

(1)
E , ..., π

(p)
E are pairwise 

edge-disjoint. If there exist distinct i, j ∈ [p] such that V (Πi(Hi)) ∩V (Πj(Hj)) �= ∅, then 

G[B] − Z contains an F ′-immersion for some F ′ ∈ F3 ∪ F4 ⊆ F , a contradiction. Since 

G[B] − Z is connected, there exist distinct i, j ∈ [p] and a path P in G[B] − Z of length 

at least one from V (Πi(Hi)) to V (Πj(Hj)) internally disjoint from 
⋃p

�=1 V (Π�(H�)). But 

it implies that G[B] − Z contains an F ′-immersion for some F ′ ∈ F1 ∪ F2 ∪ F3 ⊆ F , a 

contradiction. Therefore, G[B] − Z contains no H-immersion. �
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6. Edge-tangles in 4-edge-connected graphs

A m × n grid is the graph with vertex-set {1, 2, ..., n} × {1, 2, ..., m} and two vertices 

(x, y), (x′, y′) are adjacent if and only if |x − x′| + |y − y′| = 1. For every i ∈ [m], the i-th 

row of a m × n grid is the subgraph induced by {(x, i) : x ∈ [n]}. For every j ∈ [n], the 

j-th column of a m × n grid is the subgraph induced by {(j, y) : y ∈ [m]}.

For every positive integer r, the diagonal vertices of the r × 2r wall are the vertices 

{(2i − 1, i) : 1 ≤ i ≤ r}.

Lemma 6.1 ([1, Theorem (1.5)]). For every g > 1, there exists b ≥ 0 such that the 

following holds. Let (πV , πE) be a wall-subdivision in a graph G, and let S be a subset of 

the image of πV of the diagonal vertices of the wall such that for every pair of distinct 

vertices x, y in S, G contains four edge-disjoint paths from x to y. If |S| ≥ b, then there 

exists a g × g grid-immersion (π′
V , π′

E) in G such that the image of π′
V is contained in 

S.

In fact, in [1], Chudnovsky et al. proved that the grid-immersion (π′
V , π′

E) mentioned 

in Lemma 6.1 is a “strong immersion.” We omit the definition of strong immersions as 

we do not need this notion in the rest of the paper. But we remark that every H-strong 

immersion is an H-immersion. On the other hand, the following lemma shows that if 

we do not require (π′
V , π′

E) to be a strong immersion, we can strengthen Lemma 6.1

by showing that the mentioned wall-subdivision (πV , πE) can be replaced by a wall-

immersion.

Lemma 6.2. For every g > 1, there exists b ≥ 0 such that the following holds. Let (πV , πE)

be a wall-immersion in a graph G, and let S be a subset of the image of πV of the diagonal 

vertices of the wall such that for every pair of distinct vertices x, y in S, G contains four 

edge-disjoint paths from x to y. If |S| ≥ b, then there exists a g × g grid-immersion 

(π′
V , π′

E) in G such that the image of π′
V is contained in S.

Proof. Let g be an integer with g > 1. Define b to be the number b mentioned in 

Lemma 6.1.

Let G be a graph and let W be a wall such that (πV , πE) is a W -immersion in G. Let 

S be a subset of the image of πV of the diagonal vertices of W . Assume that |S| ≥ b, 

and for every pair of distinct vertices x, y in S, G contains four edge-disjoint paths from 

x to y.

Since W is simple, πE(e) does not contain any loop of G for every e ∈ E(W ). In 

addition, for every pair of distinct vertices x, y in S, any path from x to y does not 

contain any loop. So we may assume that G is loopless by deleting all loops of G.

Let G′ be the graph obtained from G by subdividing every edge once. Let H be the 

graph obtained from L(G′) by for each v ∈ V (G) ⊆ V (G′), adding a vertex uv adjacent 

to every vertex in cl(v) in G′. Then it is clear that H admits a W -subdivision (π′′
V , π′′

E)
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such that π′′
V (x) = uπV (x) for every x ∈ V (W ). In particular, π′′

V (π−1
V (S)) = {us : s ∈ S}. 

Note that since G is loopless, for every edge e of G with ends x, y, there exists an edge 

in H with one end in V (cl(x)) and one end in V (cl(y)), and we also denote this edge in 

H as e. Since every wall does not contain a loop, the image of π′′
E of each edge of W is 

path in H.

For every pair of distinct vertices x, y of S, there exist four edge-disjoint paths 

P1, P2, P3, P4 in G from x to y, so there exist four paths Q1, Q2, Q3, Q4 in H from ux

to uy such that E(Qi) contains E(Pi) for 1 ≤ i ≤ 4. If we choose those paths Q1, ..., Q4

such that the sum of their length is minimum, then Q1, ..., Q4 are pairwise edge-disjoint. 

Therefore, by Lemma 6.1, there exists a g × g grid-immersion (π′′′
V , π′′′

E ) in H such that 

the image of π′′′
V is contained in {us : s ∈ S}.

Note that if for every v ∈ V (G), we identify the vertices in {uv} ∪ cl(v) into a vertex 

and delete all resulting loops, then we obtain G. By the same procedure, we know there 

exists a g × g wall-immersion (π∗
V , π∗

E) in G such that the image of π∗
V is {s ∈ S : us is 

in the image of π′′′
V }. This proves the lemma. �

Recall that every large wall has a natural edge-tangle in it by Lemma 2.13, and every 

immersion induces an edge-tangle by Lemma 2.10. The following lemma shows that every 

graph with no edge-cut of order three but with an edge-tangle induced by an immersion 

of a large wall has an edge-tangle controlling a large complete graph-thorns.

Lemma 6.3. For any positive integers θ and t, there exists a positive integer w = w(θ, t)

with w > θ such that the following holds. If G is a graph with no edge-cut of order three, 

and E is an edge-tangle in G of order w induced by a 2w × 4w wall-immersion and the 

natural tangle of order w in the 2w × 4w wall, then there exists an edge-tangle E ′ ⊆ E of 

order at least θ in G controlling a Kt-thorns.

Proof. Let θ and t be positive integers. Let θ′ = θ + t. Let b be the number mentioned in 

Lemma 6.2 by taking g = 4θ′. Define w = b +2. Note that w ≥ (4θ′)2 +2 > θ′ +2 > θ+2.

Denote the 2w ×4w wall by W and denote the 4θ′ ×4θ′ grid by R. Let S be the set of 

diagonal vertices of W not contained in the first and the last column of W . So |S| ≥ b. 

Let G be a graph with no edge-cut of order three, and let E be an edge-tangle in G of 

order w induced by a W -immersion (πV , πE) in G and the natural edge-tangle in W of 

order w. By Lemma 2.14, for every edge-cut [A, B] of G of order less than w, [A, B] ∈ E

if and only if B contains the image of πV of all vertices of a column of W .

Claim 1: For any two vertices x, y in πV (S), there exist four edge-disjoint paths in G

between x and y.

Proof of Claim 1: Let x, y ∈ πV (S). So there exist x′, y′ ∈ S such that x = πV (x′)

and y = πV (y′). Since x′ and y′ are diagonal vertices in W not belong to the first and 

last column of W , there exist three edge-disjoint paths in W from x′ to y′. Hence there 

exist three edge-disjoint paths in G from x to y. Suppose that there do not exist four 
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edge-disjoint paths in G from x to y. Then there exists an edge-cut [A, B] of G of order 

at most three such that x ∈ A and y ∈ B. Since there are three edge-disjoint paths in G

from x to y, the order of [A, B] is exactly three, contradiction that G has no edge-cut of 

order three. �

By Lemma 6.2 and Claim 1, G admits an R-immersion (π′
V , π′

E) such that π′
V (V (R))

is contained in πV (S). Define E ′ to be the collection of all edge-cuts [A, B] of G of order 

less than θ′ such that B contains the image of π′
V of all vertices of a row of R.

A wall that is a subgraph of R is canonical if every its row is a subgraph of a row 

of R and every its column is a subgraph of the union of two consecutive columns of R. 

Note that for every canonical 2θ′ × 4θ′ wall W ′ and for every [A, B] ∈ E ′, B contains the 

image of π′
V of all vertices of a row of W ′, so B intersects the image of π′

V of vertices in 

at least θ′ columns of W ′.

Since R contains a canonical 2θ′ × 4θ′ wall W ∗ as a subgraph, for every [A, B] ∈ E ′, 

B intersects the image of π′
V of vertices in at least θ′ columns of W ∗. By Lemma 2.14, 

E ′ is the edge-tangle in G of order θ′ ≥ θ induced by an W ∗-immersion and the nature 

edge-tangle in W ∗ of order θ′.

For every i with 1 ≤ i ≤ t ≤ θ′, define α(vi) to be the union of the image of π′
E

of the edges in the i-th column and the edges in the i-th row of R, where we write 

V (Kt) = {vj : 1 ≤ j ≤ t}. So α is a Kt-thorns.

We claim that E ′ controls α. Suppose to the contrary that there exist [A, B] ∈ E ′

with order less than t and v ∈ V (Kt) such that V (α(v)) ∩ B = ∅. Since [A, B] ∈ E ′, B

contains the image of π′
V of all vertices of a row of R. Since α(v) intersects the image of 

π′
V of each row, B ∩ V (α(v)) �= ∅, a contradiction. Hence E ′ controls a Kt-thorns α.

It suffices to prove that E ′ ⊆ E to complete the proof. Let [A, B] ∈ E ′. So the order 

of [A, B] is less than θ′. Since π′
V (V (R)) ⊆ πV (S) and B contains the image of π′

V of all 

vertices of a row of R, we know B contains at least θ′ vertices in πV (S). Since different 

vertices in S belong to different columns of W , B intersects the image of πV of vertices 

in at least θ′ columns of W . Since θ′ < w, [A, B] ∈ E by Lemma 2.14. This proves that 

E ′ ⊆ E . �

The following theorem is the main result of this section.

Theorem 6.4. For any positive integers k and θ with θ > k, there exists a positive integer 

w = w(k, θ) such that if G is a graph with no edge-cut of order three, and E is an edge-

tangle in G of order at least w, then Eθ controls a Kk-thorns, where Eθ is the edge-tangle 

in G of order θ such that Eθ ⊆ E.

Proof. Let k and θ be positive integers with θ > k. Note that θ ≥ 2. Let w1 = w6.3(θ, k), 

where w6.3 is the integer w mentioned in Lemma 6.3. Note that w1 > θ ≥ 2 by Lemma 6.3. 

Define w = w2.16(w1, k), where w2.16 is the integer w mentioned in Lemma 2.16.

For every integer t and for every edge-tangle E in a graph of order at least t, let Et be 

the edge-tangle in the same graph of order t such that Et ⊆ E .
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Let G be a graph with no edge-cut of order three, and let E be an edge-tangle in G

of order at least w. By Lemma 2.16, either

(i) there exists v ∈ V (G) incident with at least k edges in G such that v ∈ B for every 

[A, B] ∈ Ew1
, or

(ii) Ew1
is induced by a 2w1 × 4w1 wall-immersion and the natural edge-tangle of order 

w1 in the 2w1 × 4w1 wall.

We first assume that (i) holds. Define α to be a Kk-thorns such that α(h) is an edge of 

G incident with v for each h ∈ V (Kk). We shall prove that Eθ controls α. Let [A, B] ∈ Eθ

with order less than k. Since θ < w1, [A, B] ∈ Ew1
. Hence, v ∈ B ∩ V (α(h)) for every 

h ∈ V (Kk). Therefore, Eθ controls a Kk-thorns.

So we may assume that (ii) holds. That is, Ew1
is induced by a 2w1 × 4w1 wall-

immersion and the natural edge-tangle of order w1 in the 2w1 ×4w1 wall. By Lemma 6.3, 

there exists an edge-tangle E ′ ⊆ Ew1
of order at least θ in G controlling a Kk-thorns. 

Therefore, Eθ = E ′
θ controls a Kk-thorns. �

7. Erdős-Pósa property

We say that a graph G is nearly 3-cut free if |V (G)| ≥ 2, G is connected and for every 

edge-cut of G of order three, the edges between A and B are parallel with the same ends.

Lemma 7.1. If G is either a nearly 3-cut free graph or a graph with |V (G)| = 1, then 

there exist a tree T and a partition {Xt : t ∈ V (T )} of V (G) such that the following 

hold.

1. For every t ∈ V (T ), either |Xt| = 1 or G[Xt] does not have an edge-cut of order 

three.

2. If there is an edge of G with one end in Xt1
and one end in Xt2

for some distinct 

t1, t2 ∈ V (T ), then t1 is adjacent to t2 in T .

3. For every edge t1t2 of T , there are exactly three edges with one end in Xt1
and one 

end in Xt2
, and those edges are parallel with the same ends.

Proof. We prove this lemma by induction on |V (G)|. If either G does not have an edge-

cut of order three or G has only one vertex, then we are done by taking the tree on one 

vertex and the partition of V (G) with one part. This proves the base case and we may 

assume that |V (G)| ≥ 2 and the lemma holds for every nearly 3-cut free graph on less 

than |V (G)| vertices. And we may assume that there exists an edge-cut [A, B] of G of 

order three. Since G is nearly 3-cut free with |V (G)| ≥ 2, the edges between A and B

are three parallel edges with the same ends u, v, say u ∈ A and v ∈ B.

Suppose that |A| ≥ 2 and G[A] is not nearly 3-cut free. Then there exists an edge-cut 

[A′, B′] of G[A] of order zero or three such that either there is no edge between A′ and 
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B′, or the edges between A′, B′ are not parallel with the same ends. By symmetry, we 

may assume that u ∈ B′. So [A′, B′ ∪B] is an edge-cut of G such that the edges between 

A′, B′ ∪ B are the edges between A′, B′. Since G is nearly 3-cut free, there is at least one 

edge between A′, B′ ∪ B, and the edges between A′, B′ ∪ B are parallel with the same 

ends. Therefore, there is at least one edge between A′, B′, and the edges between A′, B′

are parallel with the same ends, a contradiction.

Hence either |A| = 1 or G[A] is nearly 3-cut free. Similarly, either |B| = 1 or G[B]

is nearly 3-cut free. By the induction hypothesis, there exist trees TA, TB, a partition 

{Yt : t ∈ V (TA)} of A and a partition {Zt : t ∈ V (TB)} of B satisfying the three 

properties mentioned in the lemma. Let tu ∈ V (TA) and tv ∈ V (TB) be the vertices 

such that u ∈ Xtu
and v ∈ Xtv

. Define T to be the tree obtained from the union of TA

and TB by adding the edge tutv. For every t ∈ V (T ), define Xt = Yt if t ∈ V (TA), and 

Xt = Zt if t ∈ V (TB). Then T and the partition {Xt : t ∈ V (T )} of V (G) satisfy the 

three properties mentioned in the lemma. �

Now we are ready to address the Erdős-Pósa property. The purpose of Lemma 7.3 is to 

deal with the main difficulty of the proof of Theorem 1.1. Lemma 7.3 implies Theorem 1.1

for the case when H has no isolated vertices and G is nearly 3-cut free.

We give the intuition of the statement of Lemma 7.3 and sketch its proof. We shall 

prove that given a nearly 3-cut free graph G, if G does not contain k edge-disjoint H-

immersions, then we can hit all H-immersions in G by a set of edges with bounded size. 

We assume that H is connected in the proof sketch, as the case that H is disconnected 

follows from a relatively easier argument by (more or less) induction on the number 

of components of H. We shall prove it by induction on k, and assume that G does not 

contain k edge-disjoint H-immersions. Note that as long as there exist an edge-cut [A, B]

of G, a hitting set of H-immersions of G[A] and a hitting set of H-immersions of G[B], 

we can obtain a hitting set of H-immersions of G by taking the union of those two 

hitting sets together with all edges between A, B, since H is connected. So there is a 

win if there exists an edge-cut [A, B] of G of small order such that each G[A] and G[B]

has a hitting set of small size. If both G[A] and G[B] contain H-immersions, then each 

of G[A] and G[B] does not contain k − 1 edge-disjoint H-immersions, so we expect to 

obtain hitting sets of H-immersions in G[A] and G[B] by induction on k. However, the 

induction does not apply, as G[A] and G[B] might not be nearly 3-cut free. So instead 

of considering G[A] = G − B and G[B] = G − A, we consider the graph GA obtained 

from G by contracting B and the graph GB obtained from G by contracting A. Note 

that GA and GB are nearly 3-cut free. But contracting a subset of V (G) can create more 

H-immersions. So we should treat those new vertices obtained by contractions as special 

vertices. This is the purpose of the set S and function γ stated in Lemma 7.3. It can be 

helpful (though not completely true) to think that each vertex v in S corresponds to a 

subset of vertices that induces a subgraph that contains γ(v) edge-disjoint H-immersions. 

This setting allows us to apply induction on k −
∑

v∈S γ(v) for GA and GB. In addition, 

each of those special vertices is obtained by contracting one side of an edge-cut, so its 



C.-H. Liu / Journal of Combinatorial Theory, Series B 151 (2021) 148–222 207

degree equals the order of the edge-cut. As we will only contract the sides of edge-cuts 

of bounded order, the degree of those special vertices in S is bounded. Since H has no 

isolated vertices, each H-immersion in G intersecting S must intersect an edge incident 

with a vertex in S. Hence if we can hit all H-immersions in G − S by a set of edges of 

bounded size, then we can hit all H-immersions in G by a set of edges of bounded size 

by further including all edges incident with S, as long as |S| is bounded. Indeed, |S| is 

bounded by 
∑

v∈S γ(v).

Further intuition and proof sketch of Lemma 7.3 will be stated after we prove the 

following easy lemma which is the base case of Lemma 7.3.

Lemma 7.2. For every connected graph H that has exactly one edge and every function 

g : N × (N ∪ {0}) → N ∪ {0}, there exists a function f : N × (N ∪ {0}) → N ∪ {0}

such that for every graph G, every positive integer k, every S ⊆ V (G) and every function 

γ : S → N, if S does not contain any vertex of degree at least g(k, 
∑

v∈S γ(v)), then either 

G − S contains k −
∑

v∈S γ(v) edge-disjoint H-immersions, or there exists Z ⊆ E(G)

with |Z| ≤ f(k, 
∑

v∈S γ(v)) such that G − Z does not contain an H-immersion.

Proof. Let H be a connected graph that has exactly one edge, and let g : N×(N∪{0}) →

N ∪ {0} be a function. Note that H is either K2 or the one-vertex graph with one loop. 

It was shown in [2, Chapter 9, Exercise 6] that there exists a function h : N → N such 

that for every simple graph G, either G contains k edge-disjoint cycles, or there exists 

Z ⊆ E(G) with |Z| ≤ h(k) such that G − Z has no cycle. Define f to be the function 

such that f(x, y) = h(x + yg(x, y)) + 2(x + yg(x, y))2 for any x ∈ N and y ∈ N ∪ {0}.

Let G be a graph, k a positive integer, S a subset of V (G) and γ : S → N a function 

such that S does not contain any vertex of degree at least g(k, 
∑

v∈S γ(v)). Let d =
∑

v∈S γ(v).

Since every vertex of S has degree less than g(k, d), if G contains k + |S|g(k, d) edge-

disjoint H-immersions, then G − S contains k ≥ k − d edge-disjoint H-immersions. Note 

that |S| ≤ d since γ(v) ≥ 1 for every v ∈ S. So to prove this lemma, it suffices to prove 

that either G contains k+dg(k, d) edge-disjoint H-immersions, or there exists Z ⊆ E(G)

with |Z| ≤ f(k, d) such that G − Z does not contain an H-immersion.

We first assume that H = K2. If G contains at least k + dg(k, d) non-loop edges, 

then G contains k + dg(k, d) edge-disjoint H-immersions; if G has less than k + dg(k, d)

non-loop edges, there exists Z ⊆ E(G) with |Z| ≤ k + dg(k, d) ≤ f(k, d) such that G −Z

has no non-loop edge and has no H-immersion. So this lemma holds if H = K2.

Now we assume that H is the one-vertex graph with one loop. We assume that G

does not contain k + dg(k, d) edge-disjoint H-immersions and show that there exists a 

set Z ⊆ E(G) with |Z| ≤ f(k, d) such that G − Z has no H-immersion. So G does not 

contain k+dg(k, d) loops, and there do not exist two distinct vertices such that there are 

2(k + dg(k, d)) parallel edges between them. In addition, G does not contain k + dg(k, d)

distinct pairs of distinct vertices of G such that there are at least two edges between each 

pair. Hence G has at most k + dg(k, d) − 1 loops, no pair of distinct vertices of G has at 
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least 2(k + dg(k, d)) edges between them, and there are at most k + dg(k, d) − 1 pairs 

of distinct vertices having parallel edges between them. So there exists Z1 ⊆ E(G) with 

|Z1| ≤ k + dg(k, d) − 1 + (k + dg(k, d) − 1)(2(k + dg(k, d)) − 1) ≤ 2(k + dg(k, d))2 such 

that G − Z1 is simple. Since G does not contain k + dg(k, d) edge-disjoint H-immersions, 

G − Z1 is a simple graph that does not contain k + dg(k, d) edge-disjoint cycles. By [2, 

Chapter 9, Exercise 6], there exists Z2 ⊆ E(G − Z1) with |Z2| ≤ h(k + dg(k, d)) such 

that G − (Z1 ∪ Z2) is a simple graph with no cycle and hence has no H-immersion. This 

proves the lemma since |Z1 ∪ Z2| ≤ h(k + dg(k, d)) + 2(k + dg(k, d))2 ≤ f(k, d). �

Now we continue the intuition and proof sketch of Lemma 7.3. Recall that we aim to 

prove that given a nearly 3-cut free graph G and a connected graph H, if G −S does not 

contain k −
∑

v∈S γ(v) edge-disjoint H-immersions, then we can hit all H-immersions in 

G by a set of edges with bounded size, where S is a special set of vertices whose size is 

bounded by 
∑

v∈S γ(v). Also recall that our setting for the set S of special vertices allows 

us to apply induction on GA and GB whenever we have an edge-cut [A, B] of small order 

such that both G[A] and G[B] contain H-immersions, and the degree of the vertices in S

can be bounded if we only work on edge-cuts of bounded order. So now we may assume 

that there exists no edge-cut [A, B] of G of small order such that each G[A] and G[B]

contains an H-immersion. This will allow us to define an edge-tangle in G of large order 

(see Claims 3-5), by simply seeing which side of each edge-cut contains an H-immersion. 

Note that the order of the edge-tangle is related to the degree of the vertices in S and 

the order of the edge-cuts that we can work with. For a technical reason, we need this 

number to be depend on |S| (or more precisely, 
∑

v∈S γ(v)). And that is the reason why 

we consider the function g in Lemma 7.3 to indicate the degree condition of the vertices 

of S. For another technical reason, we want this function g growing sufficiently quickly, 

and that is the motivation of the notion of “H-legal” functions defined below. If G has 

no edge-cut of order three, then we know this edge-tangle controls a Kw-thorns for some 

large w by Theorem 6.4, and hence we can obtain a hitting set by Lemma 5.6. So we 

may assume that G is nearly 3-cut free but has an edge-cut of order three. Hence we 

can decompose G into pieces with no edge-cut of order three in a tree-like fashion by 

Lemma 7.1. Claims 6-8 tell us that we can use the tree to reduce the problem to a piece 

of G with no edge-cut of order three and hence complete the proof.

Recall that an isolated vertex in a graph is a vertex of degree zero. For a graph H

with no isolated vertices, we say that a function g is H-legal if g is a function from 

N × (N ∪ {0}) to N ∪ {0} satisfying that

• g(x, y) ≥ g(x, y′) + 2y and g(x, y) ≥ g(x′, y) for every x, x′ ∈ N, y, y′ ∈ N ∪ {0} with 

x ≥ x′ and y > y′, and

• for any positive integers m and n,

g(m, n)



C.-H. Liu / Journal of Combinatorial Theory, Series B 151 (2021) 148–222 209

≥ max
H′

{

w6.4

(

w5.6(H ′, m + (n − 1) · g(m, n − 1)), θ5.6(H ′, m + (n − 1) · g(m, n − 1))
)

+ 3m|V (H ′)|dH′

}

,

where the maximum is over all graphs H ′ with no isolated vertices and with 

|E(H ′)| ≤ |E(H)|, and w6.4 is the integer w mentioned in Theorem 6.4, and θ5.6, w5.6

are the integers θ, w mentioned in Lemma 5.6, respectively, and dH′ is the maximum 

degree of H ′.

Note that if g is H-legal for some graph H with no isolated vertices, then g is H ′′-legal 

for any graph H ′′ with no isolated vertices with |E(H ′′)| ≤ |E(H)|. And it is easy to see 

that H-legal functions exist for any graph H with no isolated vertices.

Lemma 7.3. For every graph H with no isolated vertices, there exists an H-legal function 

g∗ : N × (N ∪ {0}) → N ∪ {0} such that for every H-legal function g : N × (N ∪ {0}) →

N ∪ {0} with g ≥ g∗, there exists a function f : N × (N ∪ {0}) → N ∪ {0} such that 

for every nearly 3-cut free graph G, every positive integer k, every S ⊆ V (G) and every 

function γ : S → N, if S does not contain any vertex of degree at least g(k, 
∑

v∈S γ(v)), 

then either G − S contains k −
∑

v∈S γ(v) edge-disjoint H-immersions, or there exists 

Z ⊆ E(G) with |Z| ≤ f(k, 
∑

v∈S γ(v)) such that G −Z does not contain an H-immersion.

Proof. Let H be a graph with no isolated vertices. Denote |V (H)| by h and the maximum 

degree of H by d. Since H has no isolated vertices, d ≥ 1.

We shall prove this lemma by induction on |E(H)|. If H contains only one edge, then 

H is connected since H has no isolated vertices, so the lemma holds by Lemma 7.2

by choosing g∗ to be any H-legal function. This proves the base case of the induction. 

We assume that this lemma is true for every graph H ′ without isolated vertices with 

|E(H ′)| < |E(H)| and denote the corresponding function g∗ and the corresponding 

function f (when some H ′-legal function g with g ≥ g∗ is given) by g∗
H′ and fH′,g, 

respectively.

We define the following.

• Define g∗ : N × (N ∪ {0}) → N ∪ {0} such that the following hold.

– For every positive integer m, define g∗(m, 0) = w6.4(w5.6(H, m), θ5.6(H, m)) +

3mhd +
∑

H′ g∗
H′(m, 0), where w6.4 is the integer w mentioned in Theorem 6.4, 

and θ5.6, w5.6 are the integers θ, w mentioned in Lemma 5.6, respectively, and the 

last sum is over all graphs H ′ with no isolated vertices and with less edges than 

H.

– For every positive integers m, n, define g∗(m, n) = w6.4(w5.6(H, m + (n − 1) ·

g∗(m, n − 1)), θ5.6(H, m + (n − 1) · g∗(m, n − 1))) + 3mhd + g∗(m, n − 1) + 2n +

θ5.6(H, m + (n − 1) · g∗(m, n − 1)) +
∑

H′ g∗
H′(m, n), where the last sum is over all 

graphs H ′ with no isolated vertices and with less edges than H.
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Note that θ5.6(H, t) > w5.6(H, t) for any positive integer t by Lemma 5.6. Clearly, 

g∗ is H-legal.

• For every H-legal function g with g ≥ g∗, we define the following.

– Let f ′
H,g : N → N ∪ {0} be the function such that f ′

H,g(k) =
∑

H′

∑k
i=0 fH′,g(k, i)

for every positive integer k, where the first sum is taken over all graphs H ′ with no 

isolated vertices having less edges than H. Note that there are only finitely many 

such graphs H ′, as H ′ has no isolated vertices.

– Define f : N × (N ∪ {0}) → N ∪ {0} to be the function satisfying the following.

∗ f(m, n) = 0 for every integers m, n with 0 < m ≤ n.

∗ f(m, n) = 2f(m, n + 1) + (m + n + 2)g(m, n + 1) + (2h+1 − 4)f ′
H,g(mg(m, n +

2g(m, n + 1))) + mhd for every integers m, n with m > n ≥ 0.

Note that f depends on g, but we do not add subscript g to describe f for simplicity 

of notations.

We shall prove that the functions g∗ and f defined above satisfy the conclusion of 

this lemma for the graph H. That is, we shall prove that for every H-legal function g

with g ≥ g∗, the function f satisfies the property that for every nearly 3-cut free graph 

G, every positive integer k, every set S ⊆ V (G) and every function γ : S → N such 

that S does not contain any vertex of degree at least g(k, 
∑

v∈S γ(v)), either G − S

contains k −
∑

v∈S γ(v) edge-disjoint H-immersions, or there exists Z ⊆ E(G) with 

|Z| ≤ f(k, 
∑

v∈S γ(v)) such that G − Z does not contain an H-immersion.

We do induction on k −
∑

v∈S γ(v). Suppose to the contrary that there exists a tuple 

(g, G, k, S, γ) such that the following hold.

(i) g is an H-legal function with g ≥ g∗, G is a nearly 3-cut free graph, k is a positive 

integer, S is a subset of V (G), and γ : S → N is a function such that S does not 

contain any vertex of degree at least g(k, 
∑

v∈S γ(v)).

(ii) G −S does not contain k−
∑

v∈S γ(v) edge-disjoint H-immersions, but there does not 

exist Z ⊆ E(G) with |Z| ≤ f(k, 
∑

v∈S γ(v)) such that G − Z has no H-immersion.

(iii) Subject to (i) and (ii), k −
∑

v∈S γ(v) is minimum.

Note that (ii) implies that k −
∑

v∈S γ(v) ≥ 1, so the minimum mentioned in (iii) exists.

In the rest of the proof, we denote 
∑

v∈S γ(v) by r̄.

For every edge-cut [A, B] of G with A �= ∅ �= B, define GA (and GB, respectively) to 

be the graphs obtained from G by identifying B (and A, respectively) into one new vertex 

vB (and vA, respectively), and deleting all resulting loops. Define SA = (S ∩ A) ∪ {vB}

and SB = (S ∩ B) ∪ {vA}. Note that the degree of vB in GA and the degree of vA in GB

are the order of [A, B].

Claim 1: For every edge-cut [A, B] of G with A �= ∅ �= B, GA and GB are nearly 3-cut 

free.
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Proof of Claim 1: Since A �= ∅ �= B, GA and GB contain at least two vertices. Since G

is nearly 3-cut free, G is connected, so GA and GB are connected. If GA is not nearly 

3-cut free, then there exists an edge-cut [X, Y ] of GA with vB ∈ Y of order three such 

that the edges between X and Y are not parallel edges with the same ends. But then 

[X, (Y − {vB}) ∪ B] is an edge-cut of G of order three such that the edges in between 

are not parallel edges with the same ends, a contradiction. So GA is nearly 3-cut free. 

Similarly, GB is nearly 3-cut free. �

Claim 2: Let θ be a positive integer. If there exist W ⊆ V (G), an edge-cut [A, B] of G of 

order less than θ and a set Z0 ⊆ E(G) containing all edges between A and B such that 

G[A] − (W ∪Z0) and G[B] − (W ∪Z0) do not contain H-immersions, then there exists Z

with Z0 ⊆ Z ⊆ E(G) and |Z| ≤ |Z0| + (2h − 2)f ′
H,g(kg(k, ̄r + θ)) such that G − (W ∪ Z)

has no H-immersion.

Proof of Claim 2: If A = ∅, then G = G[B], so we are done by taking Z = Z0. Similarly, 

we are done if B = ∅. So we may assume that A �= ∅ �= B and hence GA and GB contain 

at least two vertices and are nearly 3-cut free by Claim 1.

If H is connected, then every H-immersion in G − Z0 must be in G[A] or G[B], as Z0

contains all edges between A and B. So we are done by taking Z = Z0.

Now we assume that H is not connected. Let H1, H2, ..., Hp be the components of H, 

where p ≥ 2. For every set I with ∅ ⊂ I ⊂ [p], define QI to be the disjoint union of Hi

over all i ∈ I.

Since H has no isolated vertices, every H-immersion in GA (or GB , respectively) 

intersecting SA (or SB, respectively) must intersect an edge incident with a vertex in 

SA (or SB, respectively). Since every vertex in SA − {vB} has degree in GA at most 

g(k, ̄r) − 1 in GA and vB has degree in GA at most θ − 1, for every I with ∅ ⊂ I ⊂ [p]

and any nonnegative integer k′, if GA contains at least k′ + (|SA| − 1)(g(k, ̄r) − 1) + θ − 1

edge-disjoint QI -immersions, then G[A] − SA contains k′ edge-disjoint QI -immersions. 

Similarly, for every I with ∅ ⊂ I ⊂ [p] and any nonnegative integer k′, if GB contains at 

least k′ + (|SB | − 1)(g(k, ̄r) − 1) + θ − 1 edge-disjoint QI -immersions, then G[B] − SB

contains k′ edge-disjoint QI -immersions.

Note that for every nonnegative integer k′ and set I with ∅ ⊂ I ⊂ [p], if G[A] − SA

contains k′ edge-disjoint QI -immersions and G[B] − SB contains k′ edge-disjoint Q[p]−I -

immersions, then G − S contains k′ edge-disjoint H-immersions. Hence, since G − S has 

no k − r̄ edge-disjoint H-immersions, for every I with ∅ ⊂ I ⊂ [p], either GA does not 

contain (k − r̄) + (|SA| − 1)(g(k, ̄r) − 1) + θ − 1 edge-disjoint QI -immersions, or GB does 

not contain (k − r̄) + (|SB | − 1)(g(k, ̄r) − 1) + θ − 1 edge-disjoint Q[p]−I -immersions.

As k−r̄ ≥ 1, max{|SA|, |SB |} ≤ |S| +1 ≤ r̄+1 ≤ k. Hence, for every I with ∅ ⊂ I ⊂ [p], 

either GA does not contain (k − 1)g(k, ̄r) − r̄ + θ edge-disjoint QI -immersions, or GB

does not contain (k − 1)g(k, ̄r) − r̄ + θ edge-disjoint Q[p]−I -immersions.

Define γA : SA → N to be the function such that γA(vB) = θ +
∑

v∈S∩B γ(v) and 

γA(x) = γ(x) for every x ∈ S ∩ A. Define γB : SB → N to be the function such that 

γB(vA) = θ +
∑

v∈S∩A γ(v) and γB(x) = γ(x) for every x ∈ S ∩ B.
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Note that 
∑

v∈SA
γA(v) = θ + r̄ and 

∑

v∈SB
γB(v) = θ + r̄. So g(k, 

∑

v∈SA
γA(v)) =

g(k, θ + r̄) ≥ g(k, ̄r) + 2θ since g is H-legal. Similarly, g(k, 
∑

v∈SB
γB(v)) ≥ g(k, ̄r) + 2θ.

Let kA = kg(k, 
∑

v∈SA
γA(v)) and let kB = kg(k, 

∑

v∈SB
γB(v)). Hence, if I is 

a set with ∅ ⊂ I ⊂ [p] such that GA − SA does not contain (k − 1)g(k, ̄r) −

r̄ + θ edge-disjoint QI -immersions, then GA − SA does not contain ((k − 1)g(k, ̄r) −

r̄ + θ +
∑

v∈SA
γA(v)) −

∑

v∈SA
γA(v) = ((k − 1)g(k, ̄r) + 2θ) −

∑

v∈SA
γA(v) ≤

kg(k, 
∑

v∈SA
γA(v)) −

∑

v∈SA
γA(v) = kA −

∑

v∈SA
γA(v) edge-disjoint QI -immersions. 

Similarly, if I is a set with ∅ ⊂ I ⊂ [p] such that GB − SB does not contain 

(k − 1)g(k, ̄r) − r̄ + θ edge-disjoint Q[p]−I -immersions, then GB − SB does not contain 

kB −
∑

v∈SB
γB(v) edge-disjoint Q[p]−I -immersions.

Therefore, for every I with ∅ ⊂ I ⊂ [p], either GA − SA does not contain kA −
∑

v∈SA
γA(v) edge-disjoint QI -immersions, or GB does not contain kB −

∑

v∈SB
γB(v)

edge-disjoint Q[p]−I -immersions.

Note that every vertex in SA has degree in GA less than g(k, ̄r) +θ ≤ g(k, 
∑

v∈SA
γA(v))

≤ g(kA, 
∑

v∈SA
γA(v)), since g is H-legal. Similarly, every vertex in SB has degree in 

GB less than g(k, ̄r) + θ ≤ g(kB , 
∑

v∈SB
γB(v)).

Recall that GA and GB are nearly 3-cut free graphs. For every I with ∅ ⊂ I ⊂ [p], 

QI and Q[p]−I are graphs with no isolated vertices and with less edges than H, g is 

QI -legal and Q[p]−I -legal, and g ≥ g∗ ≥ g∗
QI

+ g∗
Q[p]−I

, so by the induction hypothesis, 

either there exists ZA,I ⊆ E(GA) with |ZA,I | ≤ fQI ,g(kA, 
∑

v∈SA
γA(v)) such that GA −

ZA,I does not contain an QI-immersion, or there exists ZB,I ⊆ E(GB) with |ZB,I | ≤

fQ[p]−I ,g(kB , 
∑

v∈SB
γB(v)) such that GB − ZB,I does not contain an Q[p]−I-immersion.

Note that kA = kg(k, 
∑

v∈SA
γA(v)) ≥

∑

v∈SA
γA(v) and kB = kg(k, 

∑

v∈SB
γB(v)) ≥

∑

v∈SB
γB(v) since g is H-legal. Therefore, for every I with ∅ ⊂ I ⊂ [p], there ex-

ists ZI ⊆ E(G) with |ZI | ≤ fQI ,g(kA,
∑

v∈SA
γA(v)) + fQ[p]−I ,g(kB , 

∑

v∈SB
γB(v)) ≤

∑kA

i=0 fQI ,g(kA, i) +
∑kB

i=0 fQ[p]−I ,g(kB , i) ≤ f ′
H,g(kg(k, r̄ + θ)) such that either GA − ZI

has no QI -immersion or GB − ZI has no Q[p]−I -immersion.

Define Z = Z0 ∪
⋃

∅⊂I⊂[p] ZI . Note that |Z| ≤ |Z0| + (2p − 2) · f ′
H,g(kg(k, ̄r + θ)) ≤

|Z0| + (2h − 2)f ′
H,g(kg(k, ̄r + θ)), since p ≤ h.

Suppose that G −(W ∪Z) contains an H-immersion. Since Z contains all edges between 

A and B, and G[A] − (W ∪Z0) and G[B] − (W ∪Z0) do not contain H-immersions, there 

exists I with ∅ ⊂ I ⊂ [p] such that G[A] − Z contains a QI -immersion and G[B] − Z

contains a Q[p]−I -immersion, contradicting the existence of ZI . This proves the claim. �

Claim 3: There exists no edge-cut [A, B] of G of order less than g(k, 1 + r̄) such that 

G[A] − S contains an H-immersion and G[B] − S contains an H-immersion.

Proof of Claim 3: Suppose to the contrary that there exists an edge-cut [A, B] of G of 

order less than g(k, 1 + r̄) such that G[A] − S contains an H-immersion and G[B] − S

contains an H-immersion. Note that degGA
(vB) < g(k, 1 +r̄) and degGB

(vA) < g(k, 1 +r̄). 

Since both G[A] and G[B] contain H-immersions, A �= ∅ �= B, so GA and GB are nearly 

3-cut free by Claim 1.
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Since G[B] − S contains an H-immersion, GA − SA = G[A] − S does not contain 

k − r̄ − 1 edge-disjoint H-immersions, for otherwise G − S contains k − r̄ edge-disjoint 

H-immersions, contradicting (ii). Define γA : SA → N to be the function such that 

γA(vB) = 1 +
∑

v∈S∩B γ(v), and γA(x) = γ(x) for every x ∈ S ∩ A. So GA − SA does 

not contain k − r̄ − 1 = k −
∑

v∈SA
γA(v) edge-disjoint H-immersions. Furthermore, 

every vertex in SA has degree in GA less than max{g(k, ̄r), g(k, 1 + r̄)} = g(k, 1 + r̄) =

g(k, 
∑

v∈SA
γA(v)) since g is H-legal. Hence the tuple (g, GA, k, SA, γA) satisfies (i). Since 

k −
∑

v∈SA
γA(v) = k − 1 − r̄ < k − r̄, by (iii), (g, GA, k, SA, γA) does not satisfy (ii). 

So there exists ZA ⊆ E(GA) with |ZA| ≤ f(k, 
∑

v∈SA
γA(v)) = f(k, ̄r + 1) such that 

GA − ZA does not contain an H-immersion.

Similarly, there exists ZB ⊆ E(GB) with |ZB | ≤ f(k, ̄r + 1) such that GB − ZB does 

not contain an H-immersion. Note that every edge of GA incident with vB is an edge 

between A and B. So ZA is a subset of E(G). Similarly, ZB is a subset of E(G).

Let Z ′ be the set of edges of G with one end in A and one end in B. Define Z0 =

ZA ∪ ZB ∪ Z ′. Note that |Z0| ≤ 2f(k, ̄r + 1) + g(k, 1 + r̄).

Since G[A] −Z0 is a subgraph of GA −ZA and G[B] −Z0 is a subgraph of GB −ZB , we 

know that G[A] −Z0 and G[B] −Z0 do not contain H-immersions. Note that Z0 contains 

all edges between A and B. Applying Claim 2 by taking θ = g(k, 1 + r̄) and W = ∅, we 

know that there exists Z with Z0 ⊆ Z ⊆ E(G) and |Z| ≤ |Z0| + (2h − 2)f ′
H,g(kg(k, ̄r +

g(k, 1 + r̄))) ≤ f(k, ̄r) such that G − Z has no H-immersion. Hence (g, G, k, S, γ) does 

not satisfy (ii), a contradiction. �

Claim 4: For every edge-cut [A, B] of G of order less than g(k, 1 + r̄), exactly one of 

G[A] − S or G[B] − S contains an H-immersion.

Proof of Claim 4: Suppose to the contrary that this claim does not hold. So there exists 

an edge-cut [A, B] of G of order less than g(k, 1 + r̄) such that G[A] − S and G[B] − S

do not contain H-immersions by Claim 3. Applying Claim 2 by taking θ = g(k, 1 + r̄), 

W = S and Z0 to be the set of the edges between A and B, we obtain Z ⊆ E(G) with 

|Z| ≤ g(k, 1 + r̄) + (2h − 2)f ′
H,g(kg(k, ̄r + g(k, 1 + r̄))) such that G − (S ∪ Z) has no 

H-immersion.

Let Z ′ be the union of Z and the set of edges incident with vertices in S. Since 

|S| ≤ r̄ ≤ k − 1 and every vertex in S has degree less than g(k, ̄r), |Z ′| ≤ |Z| + (k −

1)(g(k, ̄r) − 1) ≤ kg(k, 1 + r̄) + (2h − 2)f ′
H,g(kg(k, ̄r + g(k, 1 + r̄))) ≤ f(k, ̄r). Since H has 

no isolated vertices, G − Z ′ has no H-immersion, contradicting (ii). �

Define E to be the collection of edge-cuts of G such that [A, B] ∈ E if and only if 

[A, B] has order less than g(k, 1 + r̄) and G[B] − S contains an H-immersion. Note that 

Claim 4 implies that G[A] − S does not contain an H-immersion for every [A, B] ∈ E .

Claim 5: E is an edge-tangle in G of order g(k, 1 + r̄).

Proof of Claim 5: Claim 4 implies that E satisfies (E1).
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Suppose that E does not satisfy (E2). So there exist edge-cuts [A1, B1], [A2, B2],

[A3, B3] ∈ E with B1 ∩ B2 ∩ B3 = ∅. Hence {A1, B1 ∩ A2, B1 ∩ B2 ∩ A3} is a parti-

tion of V (G). Let [C1, D1] = [A1 ∪(B1 ∩A2), B1 ∩B2 ∩A3]. Note that G[C1] −(A1 ∪S) ⊆

G[B1 ∩ A2] − S ⊆ G[A2] − S. Since [A2, B2] ∈ E , G[C1] − (A1 ∪ S) does not con-

tain an H-immersion. Since [A3, B3] ∈ E , G[D1] − (A1 ∪ S) ⊆ G[A3] − (A1 ∪ S)

does not contain an H-immersion. Note that every edge between C1, D1 is either be-

tween A1, B1 or between A2, B2. So the order of [C1, D1] is less than 2g(k, 1 + r̄). 

Applying Claim 2 by taking θ = 2g(k, 1 + r̄), W = A1 ∪ S, [A, B] = [C1, D1] and 

Z0 to be the set of all edges between C1 and D1, there exists Z∗
1 ⊆ E(G) with 

|Z∗
1 | ≤ 2g(k, 1 + r̄) + (2h − 2)f ′

H,g(kg(k, ̄r + 2g(k, 1 + r̄))) such that G − (A1 ∪ S ∪ Z∗
1 )

has no H-immersion. Hence G[B1] − (S ∪ Z∗
1 ) = G − (A1 ∪ S ∪ Z∗

1 ) does not con-

tain an H-immersion. Since [A1, B1] ∈ E , G[A1] − (S ∪ Z∗
1 ) does not contain an 

H-immersion. Applying Claim 2 by taking θ = g(k, 1 + r̄), W = S, [A, B] = [A1, B1]

and Z0 to be the union of Z∗
1 and the set of all edges between A1, B1, there exists 

Z∗
2 ⊆ E(G) with |Z∗

2 | ≤ (|Z∗
1 | + g(k, 1 + r̄)) + (2h − 2)f ′

H,g(kg(k, ̄r + g(k, 1 + r̄))) ≤

3g(k, 1 + r̄) + (2h − 2)f ′
H,g(kg(k, ̄r + 2g(k, 1 + r̄))) + (2h − 2)f ′

H,g(kg(k, ̄r + g(k, 1 + r̄))) ≤

3g(k, 1 + r̄) +2(2h −2)f ′
H,g(kg(k, ̄r+2g(k, 1 + r̄))) such that G −(S ∪Z∗

2 ) does not contain 

an H-immersion. Let Z∗
3 be the union of Z∗

2 and the set of all edges of G incident with 

S. Since H has no isolated vertices, G −Z∗
3 does not contain an H-immersion. Note that 

|Z∗
3 | ≤ |Z∗

2 | + |S|(g(k, ̄r) −1) ≤ (r̄ +3)g(k, 1 + r̄) +2(2h −2)f ′
H,g(kg(k, ̄r +2g(k, 1 + r̄))) ≤

f(k, ̄r). It contradicts (ii). So E satisfies (E2).

Finally, suppose that there exists [A, B] ∈ E such that there are less than g(k, 1 + r̄)

edges incident with B, then G[B] −(E(G[B]) ∪S) has no H-immersion. Since [A, B] ∈ E , 

G[A] − (E(G[B]) ∪ S) = G[A] − S has no H-immersion. Applying Claim 2 by taking θ =

g(k, 1 + r̄), W = S, and Z0 to be the union of E(G[B]) and the set of edges between A, B, 

we know there exists Z ⊆ E(G) with |Z| ≤ 2g(k, 1 +r̄) +(2h−2)f ′
H,g(kg(k, ̄r+g(k, 1 +r̄)))

such that G − (Z ∪ S) has no H-immersion. Let Z∗ be the union of Z and the set of 

all edges of G incident with S. Then G − Z∗ does not contain an H-immersion. But 

|Z∗| ≤ 2g(k, 1 + r̄) + (2h − 2)f ′
H,g(kg(k, ̄r + g(k, 1 + r̄))) + r̄(g(k, ̄r) − 1) ≤ (r̄ + 2)g(k, 1 +

r̄) + (2h − 2)f ′
H,g(kg(k, ̄r + g(k, 1 + r̄))) ≤ f(k, ̄r), contradicting (ii). Hence E satisfies 

(E3). �

Let T be the tree and P = {Xt : t ∈ V (T )} the partition of V (G) satisfying 

Lemma 7.1. For each t ∈ (T ), we call Xt the bag at t. For each edge e ∈ E(T ), there 

exists an edge-cut [Ae, Be] of G such that each Ae and Be is the union of the bags of 

the vertices in a component of T − e. So [Ae, Be] has order at most three and the edges 

between Ae and Be are the parallel edges with the same ends. Since E is an edge-tangle 

of order greater than three, [Ae, Be] ∈ E or [Be, Ae] ∈ E but not both. If [Ae, Be] ∈ E , 

then we direct e such that Be contains the bag of the head of e; otherwise, we direct e

in the opposite direction. Hence, we obtain an orientation of T and there exists a vertex 

t∗ of T of out-degree zero.
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Claim 6: There exist a set R of loops of G[Xt∗ ] with |R| ≤ (k −1)hd and a set U ⊆ E(T )

with |U | ≤ (k − 1)hd such that every edge in U is incident with t∗, and for every H-

immersion Π = (πV , πE) in G, one of the following holds.

• Π(H) intersects S.

• Π(H) contains a non-loop edge of G[Xt∗ ].

• Π(H) contains an edge in R.

• V (Π(H)) ∩ Xt∗ �= ∅ and there exists e ∈ U such that V (Π(H)) ∩ Ae �= ∅.

Proof of Claim 6: Recall that for any edge e of T , the edges between [Ae, Be] are parallel 

edges. So for every H-immersion Π = (πV , πE) in G and every edge x of H, since 

πE(x) is a path or a cycle, there are at most two edges e of T incident with t∗ such 

that V (πE(x)) ∩ Ae �= ∅. Therefore, for every H-immersion Π = (πV , πE) in G, there 

exists a set WΠ of edges of T incident with t∗ with |WΠ| ≤ 2|E(H)| ≤ hd such that 

Π(H) ∩ G[
⋂

e∈WΠ
Be] − Xt∗ = ∅, and for every e ∈ WΠ, V (Π(H)) ∩ Ae �= ∅. In addition, 

for every H-immersion Π = (πV , πE) in G, Π(H) contains a loop e′ of G only if there 

exists a loop e of H such that πE(e) = e′. So for every H-immersion Π = (πV , πE) in 

G, there exists a set RΠ of loops of G incident with Xt∗ with |RΠ| ≤ |E(H)| ≤ hd such 

that RΠ consists of the loops of G incident with Xt∗ contained in Π(H).

Let C be a maximal collection of H-immersions in G − S such that

• for every member Π of C, Π(H) does not contain any non-loop edge of G[Xt∗ ], and

• for distinct members Π1, Π2 of C, RΠ1
∩ RΠ2

= ∅ and WΠ1
∩ WΠ2

= ∅.

Note that members of C are pairwise edge-disjoint H-immersions in G − S. So |C| <

k − r̄ ≤ k.

Define R =
⋃

Π∈C RΠ and define U =
⋃

Π∈C WΠ. Hence |R| ≤ (k − 1)hd and |U | ≤

(k − 1)hd.

Let Π be an H-immersion in G. We may assume that Π does not satisfy the first two 

conclusions of this claim, for otherwise we are done. So Π is an H-immersion in G − S.

Suppose that V (Π(H)) ∩ Xt∗ = ∅. Since Π(H) ∩ G[
⋂

e∈WΠ
Be] − Xt∗ = ∅, Π(H) ⊆

G[
⋃

e∈WΠ
Ae]. Hence Π is an H-immersion in G[

⋃

e∈WΠ
Ae] −S. So [

⋃

e∈WΠ
Ae, 

⋂

e∈WΠ
Be]

/∈ E by the definition of E . Since |WΠ| ≤ hd, the order of [
⋃

e∈WΠ
Ae, 

⋂

e∈WΠ
Be] is 

at most 3hd which is less than the order of E . Since [Ae, Be] ∈ E for each e ∈ WΠ, 

[
⋃

e∈WΠ
Ae, 

⋂

e∈WΠ
Be] ∈ E by Claim 5 and Lemma 2.3, a contradiction.

Hence V (Π(H)) ∩ Xt∗ �= ∅. Suppose RΠ = ∅ and WΠ = ∅. Since WΠ = ∅, Π(H) ⊆

G[Xt∗ ]. Since RΠ = ∅ and Π(H) ⊆ G[Xt∗ ], Π(H) does not contain any loop of G. Since 

H has no isolated vertex, Π(H) contains a non-loop edge of G[Xt∗ ], so Π satisfies the 

second conclusion of this claim, a contraction.

Hence either RΠ �= ∅ or WΠ �= ∅. If Π ∈ C and RΠ �= ∅, then Π satisfies the third 

conclusion of this claim. If Π ∈ C and WΠ �= ∅, then Π satisfies the fourth conclusion of 

this claim. So we may assume that Π /∈ C. By the maximality of C, there exists Π′ ∈ C
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such that either RΠ ∩ RΠ′ �= ∅ or WΠ ∩ WΠ′ �= ∅. If RΠ ∩ RΠ′ �= ∅, then Π(H) contains 

an edge in R, so Π satisfies the third conclusion of this claim. So we may assume that 

WΠ ∩ WΠ′ �= ∅. Then there exists e ∈ WΠ′ ⊆ U such that V (Π(H)) ∩ Ae �= ∅. So Π

satisfies the fourth conclusion of this claim. �

Claim 7: For every [A, B] ∈ E of order less than g(k, 1 + r̄) − 3(k − 1)hd, G[B ∩ Xt∗ ]

contains at least f(k, ̄r) − kg(k, 1 + r̄) − (k − 1)hd − (2h − 2)f ′
H,g(kg(k, ̄r + g(k, 1 + r̄)))

non-loop edges.

Proof of Claim 7: Let m = f(k, ̄r) − kg(k, 1 + r̄) − (k − 1)hd − (2h − 2)f ′
H,g(kg(k, ̄r +

g(k, 1 + r̄))). Suppose to the contrary that there exists [A, B] ∈ E of order less than 

g(k, 1 + r̄) − 3(k − 1)hd such that G[B ∩ Xt∗ ] contains less than m non-loop edges.

Let U be the set of edges of T incident with t∗ and R the set of loops of G[Xt∗ ]

mentioned in Claim 6. Note that |U | ≤ (k − 1)hd and |R| ≤ (k − 1)hd. Let A′ =

A ∪
⋃

e∈U Ae and B′ = B ∩
⋂

e∈U Be. Note that the order of [A′, B′] is at most |[A, B]| +

3(k −1)hd < g(k, 1 + r̄). By Lemma 2.3, [A′, B′] ∈ E . By Claim 6, for every H-immersion 

Π = (πV , πE) in G − S, one of the following holds.

• Π(H) contains a non-loop edge of G[Xt∗ ] or a loop in R.

• V (Π(H)) ∩ A′ �= ∅.

Let Z0 be the set consisting of all non-loop edges in G[B ∩ Xt∗ ] and all edges of G

between A′ and B′. Let Z = Z0 ∪ R. Then G[B′] − (S ∪ Z) has no H-immersion. 

In addition, by the definition of E , G[A′] − S has no H-immersion. Applying Claim 2 

by taking (θ, W, [A, B], Z0) = (g(k, 1 + r̄), S, [A′, B′], Z), there exists Z ′ ⊆ E(G) with 

|Z ′| ≤ |Z| + (2h − 2)f ′
H,g(kg(k, ̄r + g(k, 1 + r̄))) ≤ (m + g(k, 1 + r̄) + (k − 1)hd) + (2h −

2)f ′
H,g(kg(k, ̄r + g(k, 1 + r̄))) ≤ f(k, ̄r) − (k − 1)g(k, ̄r) such that G − (S ∪ Z ′) has no 

H-immersion.

Let ZS be the set of edges incident with vertices S. So |ZS| ≤ (k − 1)g(k, ̄r). Let 

Z∗ = Z ′ ∪ ZS . Then |Z∗| ≤ f(k, ̄r) and G − Z∗ has no H-immersion, contradicting 

(ii). �

Since f(k, ̄r) − kg(k, 1 + r̄) − (k − 1)hd − (2h − 2)f ′
H,g(kg(k, ̄r + g(k, 1 + r̄))) ≥ 2, 

Claim 7 implies that Xt∗ contains at least two vertices and hence G[Xt∗ ] does not have 

an edge-cut of order three.

For every vertex v in Xt∗ , define Qv = {u ∈ V (G) − Xt∗ : every path in G from u

to Xt∗ contains v}. Note that Qv is empty if NG(v) ⊆ Xt∗ . Furthermore, since G is 

connected, by Lemma 7.1, for every u ∈ V (G) − Xt∗ , there exists a unique v ∈ Xt∗ such 

that u ∈ Qv.

Define E ′ to be the set of edge-cuts [A′, B′] of G[Xt∗ ] of order less than g(k, 1 + r̄) −

3(k − 1)hd such that [A′, B′] ∈ E ′ if and only if [A′ ∪
⋃

v∈A′ Qv, B′ ∪
⋃

v∈B′ Qv] ∈ E .

Claim 8: E ′ is an edge-tangle of order g(k, 1 + r̄) − 3(k − 1)hd in G[Xt∗ ].
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Proof of Claim 8: For every edge-cut [A′, B′] of G[Xt∗ ], the order of [A′ ∪
⋃

v∈A′ Qv, B′ ∪
⋃

v∈B′ Qv] equals the order of [A′, B′]. Since E is an edge-tangle, either [A′ ∪
⋃

v∈A′ Qv, B′ ∪
⋃

v∈B′ Qv] ∈ E or [B′ ∪
⋃

v∈B′ Qv, A′ ∪
⋃

v∈A′ Qv] ∈ E . So E ′ satisfies 

(E1).

If there exist [A′
i, B

′
i] ∈ E ′ for i ∈ [3] such that A′

1 ∪ A′
2 ∪ A′

3 = Xt∗ , then [A′
i ∪

⋃

v∈A′
i
Qv, B′

i ∪
⋃

v∈B′
i
Qv] ∈ E for i ∈ [3], but A′

1 ∪ A′
2 ∪ A′

3 ∪
⋃

v∈A′
1∪A′

2∪A′
3

Qv = V (G), 

a contradiction. So E ′ satisfies (E2).

In addition, for every edge-cut [A′, B′] ∈ E ′, the number of edges of G[Xt∗ ] incident 

with B′ is at least |E(G[B′])| = |E(G[(B′ ∪
⋃

v∈B′ Qv) ∩ Xt∗ ])| ≥ f(k, ̄r) − kg(k, 1 + r̄) −

(k − 1)hd − (2h − 2)f ′
H,g(kg(k, ̄r + g(k, 1 + r̄))) ≥ g(k, 1 + r̄) − 3(k − 1)hd by Claim 7. So 

E ′ satisfies (E3). �

By Claim 8, E ′ is an edge-tangle of order g(k, 1 + r̄) − 3(k − 1)hd ≥ w6.4(w5.6(H, k +

r̄ · g(k, ̄r)), θ5.6(H, k + r̄ · g(k, ̄r))) in G[Xt∗ ], where the last inequality follows from the 

assumption that g is H-legal.

Define Ek and E ′
k to be the subsets of E and E ′ consisting of edge-cuts of order less 

than θ5.6(H, k+r̄ ·g(k, ̄r)), respectively. So Ek and E ′
k are edge-tangles of order θ5.6(H, k+

r̄ · g(k, ̄r)) in G and G[Xt∗ ], respectively. Let wk = w5.6(H, k + r̄ · g(k, ̄r)).

Since G[Xt∗ ] does not have an edge-cut of order three, by Theorem 6.4, E ′
k controls a 

Kwk
-thorns α in G[Xt∗ ]. Since α is in G[Xt∗ ] ⊆ G, Ek controls α.

Since G − S does not contain k − r̄ edge-disjoint H-immersions and every vertex in 

S has degree in G at most g(k, ̄r) − 1, G does not contain k − r̄ + |S|(g(k, ̄r) − 1) ≤

k − r̄ + r̄ · g(k, ̄r) ≤ k + r̄ · g(k, ̄r) edge-disjoint H-immersions. Since Ek is an edge-

tangle in G of order θ5.6(H, k + r̄ · g(k, ̄r)) controlling a Kwk
-thorns, by Lemma 5.6, 

there exist Z∗ ⊆ E(G) with |Z∗| ≤ ξk and [A, B] ∈ Ek − Z∗ ⊆ E − Z∗ of order zero 

such that G[B] − Z∗ has no H-immersion, where ξk = ξ5.6(H, k + r̄ · g(k, ̄r)). Note that 

ξk < θ5.6(H, k + r̄ · g(k, ̄r)) ≤ g(k, 1 + r̄) by Lemma 5.6 and the assumption that g is 

H-legal.

In addition, G[A] − S does not contain an H-immersion since [A, B] ∈ E . So every 

H-immersion in G[A] intersects an edge in ZS , where ZS is the set of edges of G incident 

with S. Hence G[A] −(Z∗∪ZS) and G[B] −(Z∗∪ZS) do not contain H-immersions. Since 

[A, B] ∈ E , [A, B] is an edge-cut of G of order less than g(k, 1 + r̄). By Claim 2, there 

exists Z∗∗ with Z∗∗ ⊆ E(G) and |Z∗∗| ≤ (|Z∗| +|ZS | +g(k, 1 + r̄)) +(2h−2)f ′
H,g(kg(k, ̄r+

g(k, 1 + r̄))) ≤ (2g(k, 1 + r̄) + (k − 1)g(k, ̄r)) + (2h − 2)f ′
H(kg(k, ̄r + g(k, 1 + r̄))) ≤ f(k, ̄r)

such that G −Z∗∗ has no H-immersion, contradicting (ii). This completes the proof. �

Now we drop the requirement of having no isolated vertices from Lemma 7.3. 

Lemma 7.4 proves Theorem 1.1 for the case that G has only one component, as ev-

ery 4-edge-connected graph is nearly 3-cut-free.

Lemma 7.4. For every graph H, there exists a function f : N → N such that for every 

nearly 3-cut free graph G and every positive integer k, either G contains k edge-disjoint 
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H-immersions, or there exists Z ⊆ E(G) with |Z| ≤ f(k) such that G − Z contains no 

H-immersion.

Proof. Let H be a graph. Note that when H has no edge, every graph G contains at 

least one H-immersion if and only if G contains at least |V (H)| vertices if and only if 

G contains arbitrarily many edge-disjoint H-immersions. So this theorem holds if H has 

no edge.

Hence we may assume that H contains at least one edge. Let H ′ be the graph obtained 

from H by deleting all isolated vertices. So H ′ is a graph with at least one edge and 

with no isolated vertices. For every positive integer k, define f(k) to be the number 

f7.3(k, 0), where f7.3 is the function mentioned in Theorem 7.3 by taking H to be H ′

and further taking g = g∗. We apply Theorem 7.3 by further taking S = ∅ and γ to 

be a function with empty domain, we know that for every nearly 3-cut free graph G

and positive integer k, either G contains k edge-disjoint H ′-immersions, or there exists 

Z ⊆ E(G) with |Z| ≤ f(k) such that G − Z does not contain an H ′-immersion.

We shall prove that f is a function satisfying the conclusion of this lemma.

Let G be a nearly 3-cut free graph. If |V (G)| < |V (H)|, then clearly G does not 

contain an H-immersion, and we are done by choosing Z = ∅. So we may assume that 

|V (G)| ≥ |V (H)|. Hence, for every W ⊆ E(G) and every H ′-immersion (π′
V , π′

E) of 

G − W , we can extend π′
V to an injection πV with domain V (H) by further mapping 

isolated vertices of H to some vertices of G − π′
V (V (H ′)) such that (πV , π′

E) is an H-

immersion in G − W with E(π′
E(E(H ′))) = E(π′

E(E(H))). Therefore, for every W ⊆

E(G) and every integer k, G − W contains k edge-disjoint H-immersions if and only if 

G − W contains k edge-disjoint H ′-immersions.

Now let k be a positive integer. If G does not contain k edge-disjoint H-immersions, 

then G does not contain k edge-disjoint H ′-immersions, so there exists Z ⊆ E(G) with 

|Z| ≤ f7.3(k, 0) = f(k) such that G − Z has no H ′-immersion by Theorem 7.3. But it 

implies that G − Z has no H-immersions. This proves the lemma. �

Theorem 1.1 is an immediate corollary of the following theorem.

Theorem 7.5. For every graph H, there exists a function f : N → N such that for every 

graph G whose every component is nearly 3-cut free and for every positive integer k, either 

G contains k edge-disjoint H-immersions, or there exists Z ⊆ E(G) with |Z| ≤ f(k) such 

that G − Z contains no H-immersion.

Proof. Let H be a graph, and let c be the number of components of H. We define the 

following.

• For every graph R, define fR to be the function f mentioned in Lemma 7.4 by taking 

H = R.

• For every i ∈ [c], let Fi be the set of graphs consisting of i components of H.
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• For any positive integers m ≥ 2 and n, let f1(n) = (n − 1) · max{fR(n) : R ∈ F1}

and let fm(n) = mnmfm−1(n) + (nm − 1) · max{fR(n) : R ∈ Fm}.

• Define f : N → N to be the function such that f(x) = fc(x) for every x ∈ N.

We claim that for every m ∈ [c], for every graph W ∈ Fm, for every positive integer 

k and for every graph G whose every component is nearly 3-cut free, either G contains 

k edge-disjoint W -immersions, or there exists Z ⊆ E(G) with |Z| ≤ fm(k) such that 

G − Z does not contain a W -immersion. Note that this claim implies this theorem as 

H ∈ Fc. We shall prove this claim by induction on m.

Let m ∈ [c], W ∈ Fm, k a positive integer and G a graph whose every component is 

nearly 3-cut free. We assume that G does not contain k edge-disjoint W -immersions. It 

suffices to show that there exists Z ⊆ E(G) with |Z| ≤ fm(k) such that G − Z has no 

W -immersion.

We first assume that m = 1. Let G1, G2, ..., Gp be the components of G containing 

a W -immersion, and let ki be the maximum number of edge-disjoint W -immersions in 

Gi for each i ∈ [p]. If 
∑p

i=1 ki ≥ k, then G contains k edge-disjoint W -immersions, a 

contradiction. So 
∑p

i=1 ki < k. In particular, p < k. By Lemma 7.4, for every i ∈ [p], 

there exists Zi ⊆ E(Gi) with |Zi| ≤ fW (ki + 1) such that Gi − Zi has no W -immersion. 

Since m = 1, W is connected, so G −Z has no W -immersion, where Z =
⋃p

i=1 Zi ⊆ E(G). 

Note that |Z| ≤
∑p

i=1 fW (ki + 1) ≤ (k − 1)fW (k) ≤ f1(k). This proves the base case of 

the induction.

So we may assume that m ≥ 2 and our claim holds for every smaller m.

Note that W has m components. Let W1, W2, ..., Wm be the components of W . For 

every i ∈ [m], define Si to be the set of components of G containing an Wi-immersion. 

If |Si| ≥ km for every i ∈ [m], then G contains km components G1, ..., Gkm of G such 

that G(i−1)k+j ∈ Si for each i ∈ [m] and each j ∈ [k], so G contains k edge-disjoint 

W -immersions, a contradiction. Therefore, there exists t ∈ [m] such that |St| < km.

Define L to be the disjoint union of the components of G in St, and define R =

G −V (L). Note that R has no Wt-immersion by the definition of St. Since m ≥ 2, by the 

induction hypothesis, if L does not contain k edge-disjoint Wt-immersions, then there 

exists Zt ⊆ E(L) with |Zt| ≤ f1(k) ≤ fm(k) such that L − Zt has no Wt-immersion, so 

G − Zt has no Wt-immersion (since Wt is connected) and hence has no W -immersion.

So we may assume that L contains k edge-disjoint Wt-immersions. Hence R does not 

contain k edge-disjoint (W −V (Wt))-immersions, for otherwise G contains k edge-disjoint 

W -immersions. Note that W −V (Wt) ∈ Fm−1. By the induction hypothesis, there exists 

ZR ⊆ E(R) with |ZR| ≤ fm−1(k) such that R − ZR has no (W − V (Wt))-immersion. 

So R − ZR has no W -immersion. In addition, for each component C of L, C is nearly 

3-cut free and has no k edge-disjoint W -immersions, so there exists ZC ⊆ E(C) with 

|ZC | ≤ fW (k) such that C − ZC has no W -immersion.

Define Z0 = ZR ∪
⋃

C ZC , where the second union is taken over all components 

C of L. Note that the number of components of L equals |St| ≤ km − 1. Therefore, 
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|Z0| ≤ fm−1(k) +(km −1)fW (k), and R −Z0 and C −Z0 do not contain a W -immersion 

for every component C of L.

Let � be the number of components of L. Define Q0 = R, and for every i ∈ [�], define 

Qi to be the i-th component of L. Note that Qi − Z0 has no W -immersion for every i

with 0 ≤ i ≤ �.

We say that (P0, P1, ..., P�) is a (� + 1)-partition of [m] if P0, P1, ..., P� are pairwise 

disjoint (possibly empty) proper subsets of [m] with 
⋃�

i=0 Pi = [m]. Since G has no k

edge-disjoint W -immersions, for every (� +1)-partition P = (P0, ..., P�) of [m], there exists 

j with 0 ≤ j ≤ � such that Qj does not contain k edge-disjoint (
⋃

i∈Pj
Wi)-immersions, 

so there exists ZP ⊆ E(Qj) with |ZP | ≤ f|Pj |(k) ≤ fm−1(k) such that Qj − ZP has no 

(
⋃

i∈Pj
Wi)-immersions.

Define Z∗ to be the union of Z0 and ZP over all (� + 1)-partitions P of [m]. Since 

� = |St| ≤ km − 1 and there are at most m�+1 − 1 different (� + 1)-partitions of [m], 

|Z∗| ≤ |Z0| +(m�+1−1)fm−1(k) ≤ fm−1(k) +(km −1)fW (k) +(mkm−1)fm−1(k) ≤ fm(k).

To prove the theorem, it suffices to prove that G − Z∗ has no W -immersion. Suppose 

to the contrary that G −Z∗ contains a W -immersion. Since Qi −Z∗ has no W -immersion 

for every 0 ≤ i ≤ �, there exists a (� + 1)-partition P = (P0, P1, ...P�) of [m] such that 

for every j with 0 ≤ j ≤ �, Qj − Z∗ contains a (
⋃

i∈Pj
Wi)-immersion. However, it 

contradicts the definition of ZP . This completes the proof. �

We remark that Kakimura and Kawarabayashi [8] proved that for every integer t, 

there exists a function f such that for every 3-minimal-cut free graph G and integer 

k, either G contains k edge-disjoint Kt-immersions, or there exists Z ⊆ E(G) with 

|Z| ≤ f(k) such that G − Z has no Kt-immersion, where a graph is 3-minimal-cut free

if it is connected and it cannot be made disconnected by deleting exactly three edges 

while it remains connected by deleting at most two of those three edges. This result 

is a simple corollary of Theorem 7.5 when t ≥ 3 (and the case t ≤ 2 is easy). Let G

be a 3-minimal-cut free graph, and let G′ be the graph obtained from G by deleting 

all cut-edges and loops and then deleting all resulting isolated vertices. Note that every 

component of G′ is 2-edge-connected and 3-minimal-cut free. If a 2-edge-connected and 

3-minimal-cut free graph has an edge-cut [A, B] of order three, then one can delete at 

most two edges between A and B to make the graph disconnected, but it implies that 

some edge in [A, B] is a cut-edge of the original graph, contradicting that it is 2-edge-

connected. Hence every component of G′ does not contain an edge-cut of order three 

and hence is nearly 3-cut free. In addition, when t ≥ 3, the optimal solutions for packing 

and covering Kt-immersions in G are the same as the optimal solutions for packing and 

covering Kt-immersions in G′. Hence Theorem 7.5 implies the result in [8].

Now we prove Theorem 1.2. The following is a restatement.

Theorem 7.6. For every loopless graph H, there exists a function f : N → N such 

that for every positive integer k and every graph G, either there exists k H-half-integral 

immersions (π
(1)
V , π

(1)
E ), ..., (π

(k)
V , π

(k)
E )} in G such that for each edge e of G, there exist 
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at most two distinct pairs (i, e′) with 1 ≤ i ≤ k and e′ ∈ E(H) such that e ∈ π
(i)
E (e′), 

or there exists Z ⊆ E(G) with |Z| ≤ f(k) such that G − Z contains no H-half-integral 

immersion.

Proof. Define f to be the function f mentioned in Theorem 7.5 by taking H = H.

Let k be a positive integer. Let G be a graph, and let G′ be the graph obtained from 

G by duplicating each edge. Note that every edge-cut of G′ has even order. If [A, B] is 

an edge-cut of a component of G′ of order between one and three, then it has order two 

and the two edges between A and B are parallel edges with the same ends. So every 

component of G′ is nearly 3-cut free. By Theorem 7.5, either G′ contains k edge-disjoint 

H-immersions, or there exists Z ′ ⊆ E(G′) with |Z ′| ≤ f(k) such that G′ − Z ′ does not 

contain an H-immersion.

Note that since H is loopless, for every H-immersion (πV , πE) in G′ and e ∈ E(H), 

πE(e) is a path in G′, so there exists no e′ ∈ E(G) such that πE(e) contains e′ and its copy 

in G′. So for every H-immersion (π′
V , π′

E) in G′, there exists an H-half-integral immersion 

(πV , πE) such that πV (v) = π′
V (v) for every v ∈ V (H), and for every e ∈ E(H), πE(e)

consists of the edges z of G such that some copy of z belongs to E(π′
E(e)). Similarly, if 

G′ contains k edge-disjoint H-immersions, then G contains k H-half-integral immersions 

(π
(1)
V , π

(1)
E ), ..., (π

(k)
V , π

(k)
E ) such that for each edge e of G, there exist at most two distinct 

pairs (i, e′) with 1 ≤ i ≤ k and e′ ∈ E(H) such that e ∈ π
(i)
E (e′), so we are done.

So we may assume that there exists Z ′ ⊆ E(G′) with |Z ′|≤ f(k) such that G′ − Z ′

has no H-immersion. Then G − Z has no H-half-integral immersion, where Z ⊆ E(G)

is the set consisting of the edges of G having a copy in Z ′. Note that |Z| ≤ |Z ′|. This 

completes the proof. �
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