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Fasting is a component of many species’ life history due to environmental factors or behavioral patterns that limit
access to food. Despite metabolic and physiological challenges associated with these life history stages, fasting-
adapted wild vertebrates exhibit few if any signs of oxidative stress, suggesting that fasting promotes redox
homeostasis. Here we review mammalian, avian, reptilian, amphibian, and piscine examples of animals un-
dergoing fasting during prolonged metabolic suppression (e.g. hibernation and estivation) or energetically
demanding processes (e.g. migration and breeding) to better understand the mechanisms underlying fasting
tolerance in wild vertebrates. These studies largely show beneficial effects of fasting on redox balance via limited
oxidative damage. Though some species exhibit signs of oxidative stress due to energetically or metabolically
extreme processes, fasting wild vertebrates largely buffer themselves from the negative consequences of
oxidative damage through specific strategies such as elevating antioxidants, selectively maintaining redox bal-
ance in critical tissues, or modifying behavioral patterns. We conclude with suggestions for future research to
better elucidate the protective effects of fasting on oxidative stress as well as disentangle the impacts from other
life history stages. Further research in these areas will facilitate our understanding of the mechanisms wild
vertebrates use to mitigate the negative impacts associated with metabolically-extreme life history stages as well
as potential translation into therapeutic interventions in non-fasting-adapted species including humans.

1. Introduction dismutation to yield hydrogen peroxide (H2O9; Loschen et al., 1974), the

highly reactive hydroxyl radical (HO®; Florence, 1984), and water. The

1.1. Oxidants, antioxidants, and oxidative stress

Free radicals are short-lived chemical species containing one or more
unpaired electrons (Slater, 1984; Cheeseman and Slater, 1993). Oxygen-
derived free radicals and their related non-radical reactive species (e.g.
H203) are collectively known as reactive oxygen species (ROS). Mito-
chondria generate ROS as byproducts of aerobic metabolism during the
reduction of molecular oxygen (Oy) in the electron transport chain
(Babcock, 1999; Semenza, 2007). The sequential one-electron reduction
of O, produces superoxide radical (O3~; Sies, 1997) which undergoes

reaction of transition metals with O3~ and Hy05 (e.g. Fenton reaction)
also yields HO® (Butler and Halliwell, 1982), which generates alkyl or
peroxyl radicals when acting on fatty acids (Nelson et al., 1994; Sies,
1997). O3 can also react with nitric oxide (NO®) to generate perox-
ynitrite (ONOO™), a strong oxidant classified as a reactive nitrogen
species (Blough and Zafiriou, 1985; Koppenol et al., 1992; Radi, 2018).
In addition to the electron transport chain, several enzymes generate
ROS as their main catalytic products. Major oxidant-generating enzymes
include xanthine oxidase (XO; McCord et al., 1985), NADPH oxidases
(Babior, 1999), the membrane-bound microsomal monooxygenase
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Fig. 1. Endogenous sources of oxidant generation (A) and antioxidant defenses (B).

system (cytochromes P450; Zangar et al., 2004), nitric oxide synthases
(NOS; Miller et al., 1997), and membrane-associated enzymes such as
lipoxygenases and cyclooxygenase (Cho et al., 2011). The main endog-
enous sources of oxidant generation are summarized in Fig. 1A.
Increased oxidant generation or decreased antioxidant levels can
cause oxidative stress, a landmark of multiple pathological conditions
(Sies, 1985; Gospodaryov and Lushchak, 2012), aging (Sies, 1985; Vina
etal., 2013), and frailty (Inglés et al., 2014; Vina et al., 2018). Oxidative
stress induces oxidative damage to proteins, lipids, carbohydrates, and
nucleic acids, subsequently impairing the physiological functions of
these molecules (Bokov et al., 2004). Lipids are highly susceptible to
oxidative damage via lipid peroxidation (Cheeseman and Slater, 1993;
Rikans and Hornbrook, 1997), which can be reversed by enzymes that
either reduce phospholipid hydroperoxides or hydrolyze and re-acylate
phospholipid fatty acyl bonds (Ursini et al., 1982; Sevanian et al., 1983;

Fisher et al., 2018). Proteins also scavenge a high proportion of ROS
(Davies et al., 1999); however, in contrast to lipids, protein oxidation is
usually irreversible (Dean et al., 1993; Shacter, 2000) and dysfunctional
oxidized proteins must be degraded by the proteasome (Grune et al.,
1997). Oxidative stress disrupts physiological redox signaling (Jones,
2006), which is typically maintained by low levels of oxidants (oxidative
eustress; Sies, 2019) including H2O2, a well-known second messenger
for numerous physiological functions across phyla (Suzuki et al., 1997;
Veal and Day, 2011).

Antioxidants maintain ROS levels within a physiological range by
acting at three tiers of protection: prevention, interception, and repair
(Sies, 1993). Low concentrations of antioxidants delay or inhibit the
oxidation of cellular substrates (Halliwell, 1990; Halliwell and Gutter-
idge, 1995). Antioxidant enzymes detoxify oxidants by converting these
compounds into less harmful molecules: superoxide dismutases (SOD)
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Box 1
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Reactive species, antioxidants, oxidative damage products and redox sensitive transcription factors mentioned in this review.

Reactive species Antioxidants Oxidative damage Redox-sensitive transcription factors
Enzymatic Non-enzymatic Lipid peroxidation Protein oxidation
products products
Superoxide radical (037) Superoxide dismutases (SOD) Glutathione Malondialdehyde (MDA) Nitrotyrosine Nuclear factor erythroid 2-related
(GSH) factor 2 (Nrf2)
Hydrogen peroxide (H,05) Catalase Vitamins (C and F2-isoprostanes Protein carbonyls Hypoxia-inducible factor 1 (HIF-1)
E)
Hydroxyl radical (HO®) Glutathione peroxidases Uric acid 4-hydroxy-2-nonenal (4- Nuclear factor Kappa B (NF-kB)
(GPx) HNE)

Lipid radicals (e.g., peroxyl: ~ Peroxiredoxins (Prdx)
ROOe)

Nitric oxide (éNO) Glutathione- disulfide

reductase (GR)

Peroxynitrite (ONOO )

Lipid hydroperoxides

convert O3 into O5 and Hy0, (McCord and Fridovich, 1969), while
glutathione peroxidases (GPx; Cohen and Hochstein, 1963), catalase
(Mueller et al., 1997), and peroxiredoxins (Prdx; Kang et al., 1998)
decompose Hy0; into water and O, (Halliwell, 1974), preventing the
formation of HO®. The particular role of each of those enzymes in HyO,
detoxification depends on subcellular localization and intracellular
H50, levels (Chance et al., 1979).

Excessive oxidant production can saturate antioxidant enzymes.
Non-enzymatic antioxidants prevent existing ROS from participating in
chain reactions by deactivating them into non-reactive products or by
transferring the radical function to compartments less vulnerable to
oxidative damage (Sies, 1997). Glutathione (GSH) is the main non-
enzymatic antioxidant in mammalian cells (Dickinson and Forman,
2002). GSH can scavenge ROS directly and also serves as a cofactor for
several antioxidant enzymes including glutaredoxins, GPx, and some
Prdx (Fernandez-Marcos and Nobrega-Pereira, 2016). GSH is synthe-
sized de novo from glutamine, cysteine and glycine in a two-step enzy-
matic reaction catalyzed by glutamate-cysteine ligase and GSH
synthetase. The cellular pool of GSH is maintained by glutathione-
disulfide reductase (GR), which recycles GSH from glutathione

Fasting Physiology

Species- and behavior- specific

disulfide (GSSG; Harlan et al., 1984). GSH also contributes to main-
taining the reduced state of non-enzymatic antioxidants vitamin C (May
et al., 1996) and vitamin E (Scholz et al., 1989). Fig. 1B illustrates the
main endogenous antioxidant defenses.

The nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcrip-
tion factor that regulates the expression of GR and glutamate-cysteine
ligase, maintaining GSH homeostasis. Nrf2 is activated in response to
oxidative stress (Harvey et al., 2009; Nguyen et al., 2009; Ma, 2013).
Upon oxidation of key cysteine residues in Nrf2’s cytosolic inhibitor
Kelch-like ECH-associated protein 1, Nrf2 translocates into the nucleus
where it binds to antioxidant-response elements in the promoter region
of several antioxidants and other cellular defense genes (Nguyen et al.,
2009; Ma, 2013). Therefore, Nrf2 mediates an adaptive response to
physiological challenges that induce oxidative eustress (Galie et al.,
2019; Sies, 2020). Upregulation of endogenous antioxidants via Nrf2
activation is a key mechanism used by several species adapted to cope
with environmental and metabolic changes that increase ROS genera-
tion (Giraud-Billoud et al., 2019). Box 1 lists the major reactive species,
antioxidants, oxidative damage products and redox-sensitive transcrip-
tion factors reviewed in this manuscript.
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Fig. 2. Metabolic responses to fasting.

The timeline from fasting to starvation follows a continuum that is species- and behavior-specific. The predominant metabolized substrate changes for each of the 3
phases of fasting. Body mass decreases at a different pace during each phase, and metabolic rate slows progressively. Fasting-adapted species typically extend Phase IT
to spare protein catabolism. Phase III involves the high risk of losing homeostasis with consequent organ failure and death unless the animal refeeds to recover.
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1.2. Fasting ameliorates oxidative stress: results from humans and
biomedical models

Fasting and starvation are characterized by the lack of ingestion and
the use of endogenous reserves as energy sources (McCue, 2010).
Although these terms are often used interchangeably, fasting and star-
vation differ in the state of metabolic homeostasis. Fasting animals adapt
to maintain homeostasis and preserve organ function. In contrast, star-
vation leads to the loss of homeostatic control, compromised organ
function and eventually death (Castellini and Rea, 1992; McCue, 2012).
Fasting begins with Phase I, a relatively short period characterized by a
daily loss of body mass and a decline in metabolic rate. During Phase I,
substrates derived from the last ingested meal are no longer available
and body reserves of glycogen, lipids, and protein become the sources of
energy to sustain cellular function (Secor and Carey, 2016). During
Phase II, the use of amino acids decreases while lipid oxidation and the
resultant production of ketone bodies increase (Cahill, 2006). These
adjustments in substrate utilization allow maintenance of tissue function
and structure (Nordgy and Blix, 1991; Castellini and Rea, 1992; Secor
and Carey, 2016). A transition into Phase III occurs if feeding does not
resume before the depletion of lipid stores. Phase III is characterized by
increased protein catabolism (Castellini and Rea, 1992; Lindgard et al.,
1992; Secor and Carey, 2016). During Phase III, loss of body mass ac-
celerates, exacerbated by lean tissue degradation (cachexia). Phase III
induces death from starvation if the animal cannot recover with
refeeding (Viscarra and Ortiz, 2013; Secor and Carey, 2016). Thus, the
traditional view considers that the progression of fasting/starvation
follows three discrete, sequential phases defined by specific physiolog-
ical changes such as loss of body mass, or by the main fuel substrate used
during each phase. However, there is controversy surrounding the sep-
aration into phases, and how the continuity in the physiological re-
sponses fits in the traditional model (McCue, 2010). In clinical models,
the substrate used to generate ATP is a well-known indicator of the
progression from fasting to starvation: reliance on glucose oxidation at
the early stage, the transition to lipid oxidation, and, finally, to lean
tissue degradation and protein catabolism (Viscarra and Ortiz, 2013).
Fasting-adapted species, however, exhibit extraordinary control over
metabolic fuel utilization. Many fasting-adapted vertebrates (e.g. seals,
penguins) consume lipid-heavy diets and likely do not meet the bulk of
their energetic needs via glucose oxidation. In addition, fasting-adapted
animals typically extend Phase II to spare their protein reserves, thereby
prolonging vital organ function ( Boismenu et al., 1992; Castellini and
Rea, 1992; McCue, 2012). Fig. 2 summarizes the current understanding
of fasting physiology and how fasting-adapted species differ from the
traditional laboratory models.

Interventional studies with biomedical models show that fasting
optimizes energy metabolism, boosts cellular protection, and reduces
inflammation and oxidative stress (Longo and Mattson, 2014). Fasting
also prevents the development of aging-related diseases, and is thus
considered a behavioral anti-aging intervention (de Cabo et al., 2014).
However, identification of the specific fasting regimens that improve
health and protect against disease remains challenging. Intermittent
fasting (IF) is the most commonly studied fasting regime in rodents and
humans (Mattson et al., 2017; de Cabo and Mattson, 2019). During IF,
the eating pattern alternates between periods with little or no energy
intake (e.g., 16-48 h) and periods of regular food ingestion (Mattson
et al.,, 2017). Of note, IF is becoming a popular alternative to caloric
restriction (CR), a prolonged reduction in caloric intake without
malnutrition. While CR benefits health and aging, IF appears to improve
health outcomes to a greater extent (Anton et al., 2018; de Cabo and
Mattson, 2019).

A reduction in oxidative stress caused by both IF and CR is one of the
main positive effects of these interventions (Sohal and Weindruch, 1996;
Longo and Mattson, 2014). Studies in rodents and macaques provide
valuable knowledge about how IF and CR affect oxidative stress. In mice,
daily 30% CR for 6 months decreases the levels of the lipid peroxidation
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product 4-hydroxy-2-nonenal (4-HNE) and protein carbonyls (a marker
of protein oxidation), while lowering the GSH:GSSG ratio (a marker of
oxidative stress), via sirtuin 3-mediated SOD2 activation (Qiu et al.,
2010). CR also attenuates oxidative stress in male rats on a high fat diet.
Moreover, a 40% reduction in caloric intake over 10 weeks decreases the
lipid peroxidation product malondialdehyde (MDA) and reverses the
increased expression of hepatic Nrf2 and heme oxygenase-1 (HO-1).
Similarly, CR normalizes SOD2 levels in adipose tissue of rats on a high
fat diet (Park et al., 2012). The first study to localize and quantify
oxidative damage in aging mammalian skeletal muscle included a CR
intervention in rhesus macaques. Here, Zanai and colleagues found that
CR attenuates age-dependent increases in 4-HNE-modified proteins in
skeletal muscle after 10 years of CR (Zainal et al., 2000). Moreover, CR
in old rhesus macaques prevented an increase in lipid peroxidation
(plasma isoprostanes levels, 8-isoPGF) and improved the animals’
metabolic profile (Mattison et al., 2012). Overall, the interventions in
non-human biomedical models show a remarkable effect of both IF and
CR on mitigating lipid peroxidation.

Most findings from human studies recapitulate the results from ro-
dent and rhesus macaque work. In overweight asthmatic adults, alter-
nate day CR for 8 weeks decreases circulating 8-isoPGF, nitrotyrosine (a
marker of protein nitration), protein carbonyls, and 4-HNE. CR for 6
months also reduces DNA damage (Johnson et al., 2007). A similar but
longer CR intervention lowered urinary isoprostanes while short-term
fasting in women reduced urinary 8-isoPGF and MDA levels (Lee
et al., 2006). Similarly, the first human trial of early time restricted
feeding (a 6-hour feeding period with dinner before 3 p.m.) showed
decreased 8-isoPGF levels in overweight men with diabetes (Sutton
et al., 2018). Interestingly, a modified 3 week IF intervention of a
combined 25% reduction in caloric intake with feasting days
(consuming 175% of caloric intake) did not promote significant changes
in oxidative stress markers (Wegman et al., 2015), but overall, studies in
humans, macaques and rodents show that fasting ameliorates oxidative
stress.

During the holy month of Ramadan, Muslims abstain from food
consumption between dawn and sunset. Thus, Ramadan-related fasting
(RF) presents an opportunity to study the effects of intermittent fasting
on oxidative stress in humans (Alharbi et al., 2017); however, variations
in diet and lifestyle accompanying RF have led to contradictory results.
A recent meta-analysis examined changes in MDA in healthy subjects
before and after Ramadan, concluding that RF causes a minor reduction
in MDA (Faris et al., 2019). Other studies, however, show that RF de-
creases erythrocyte MDA and total carotenoids in plasma, but has no
effect on serum MDA, plasma protein carbonyls, or other antioxidants
(Ibrahim et al., 2008). Similarly, a study conducted in healthy volun-
teers shows that urinary 8-isoPGF levels remain unchanged during RF
but increase one month later (Faris et al., 2012). In contrast, diabetic
patients show improved lipid profiles and glycemic control after RF.
Moreover, both diabetic patients and nondiabetic subjects show a
reduction in serum MDA and increased blood GSH during the last week
of RF. Furthermore, MDA levels are lower and GSH is higher after six
weeks of RF compared to pre-fasting conditions (Al-Shafei, 2014). RF
also increases the expression of Nrf2 and SOD2 in nondiabetic obese
subjects. Therefore, RF may reduce the risk of developing obesity-
related disorders, such as diabetes, in which oxidative stress consti-
tutes a significant risk factor (Meigs et al., 2007; Madkour et al., 2019).
Overall, despite contradictory results related to variations in dietary
composition and lifestyle, these studies suggest that upregulation of the
endogenous antioxidant defense system during RF boosts protection
against oxidative stress. Together, studies in humans and biomedical
models demonstrate that various fasting regimes attenuate oxidative
stress, though these species are not naturally adapted to fast and the
regimes studied typically limit food deprivation periods to 48 h.

In contrast to the biomedical studies described above, several ver-
tebrates undergo prolonged periods of food deprivation as part of their
life histories. In nature, fasting is an adaptive response to overcome lack
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of food availability and facilitate natural biological cycles. Even in the
presence of food, some species allocate their time and energy to other
activities related to different life history traits instead of eating (e.g.
hibernation, estivation, migration, molting, reproduction, maturation,
and predator avoidance; Castellini and Rea, 1992; McCue, 2010; Secor
and Carey, 2016). Here, we review the physiological strategies wild
vertebrates use to prevent or attenuate oxidative stress during naturally
fasting conditions.

2. Fasting as a life history component in the natural world
2.1. Mammals

A wide range of mammals utilize fasting within the context of varied
life histories. Bears, ground squirrels, and bats fast while hibernating
during seasons of food scarcity. Seals, in comparison, fast during several
energetically expensive life history stages including breeding and post-
natal development. Each of these taxa faces unique metabolic challenges
with respect to managing oxidative stress while fasting.

Winter conditions typically constrain food availability, requiring
animals to adopt varied metabolic and behavioral strategies to avoid
starvation. Two such strategies involve altering the means by which
animals obtain food during this period: some species stockpile food
while others migrate to regions with greater food availability. Hiber-
nation stands in contrast to both of these strategies; hibernating animals
undertake extended fasts during which they minimize energetic re-
quirements and rely on existing body nutrient stores rather than attempt
to mitigate limited food availability. Decreased metabolic and physical
activity during hibernation raises the risk of muscle atrophy and dys-
regulated redox signaling (Pellegrino et al., 2011), which may nega-
tively impact fitness upon emergence from hibernation. Despite these
potential risks, bears and squirrels remain protected against excessive
muscle loss and tissue injury during hibernating fasts (Lohuis et al.,
2007; Wei et al., 2018; Chazarin et al., 2019).

Ground squirrels are well known for their extreme hibernations,
which generally occur as bouts of torpor and arousal. During torpor
squirrels allow body temperature to cool substantially, sometimes to
near freezing (Hut et al., 2002). Metabolic activity is reduced up to 95%
and perfusion of many tissues limited for days at a time. Periodic
rewarming events (interbout arousals) driven by non-shivering ther-
mogenesis in brown adipose tissue (BAT) increase metabolic rate and
reperfuse ischemic tissues (Boyer and Barnes, 1999). During non-
shivering thermogenesis metabolic substrates are consumed but ATP is
not produced; rather, the cycle yields heat (Chaffee et al., 1975). The use
of this strategy by a fasting animal appears paradoxical, particularly as
comparable reperfusion events impact redox balance in many non-
hibernating species and characterize pathological human conditions
including myocardial infarction and ischemic stroke (Granger and Kvi-
etys, 2015). Antioxidants are thus essential in preserving redox balance
during hibernating fasts in squirrels, though expression profiles appear
to be species- and tissue-specific, and complete avoidance of oxidative
damage is not observed in all tissues.

Metabolic activity in BAT drives rewarming during interbout
arousals in squirrels and this tissue thus may be at risk for oxidative
stress during hibernating fasts. Nrf2 expression increases in BAT from
13-lined ground squirrels (Spermophilus tridecemlineatus) during all
torpor stages and late arousal periods (Morin et al., 2008). Nrf2 regu-
lates the expression of SOD and GPx (Ma, 2013); accordingly, SOD
expression and activity are higher in BAT from hibernating than active
European (Citellus citellus) and arctic ground squirrels (Spermophilus
parryii) (Buzadzic et al., 1990; Yan et al., 2006), and no increases in lipid
peroxidation (conjugated dienes) or nuclear factor kappa B, which
drives ischemic inflammation, are observed in BAT from torpid 13-lined
ground squirrels (Carey et al., 2000). Interestingly, expression of
glucose-regulated protein 75 (GRP75), the mitochondrial form of the
stress-responsive chaperone heat shock protein 70 (HSP70), is low in
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BAT from torpid 13-lined ground squirrels (Carey et al., 1999), though
animals were not sampled during the non-shivering thermogenesis-
dependent arousal stage in this study. These data suggest that BAT re-
mains protected against oxidative stress throughout hibernation despite
potential oxidant generation by mitochondria during non-shivering
thermogenesis.

Protection of the squirrel brain and heart against oxidative stress
during hibernation likely depends on hypoxia-inducible factor 1 (HIF-1)
and Nrf2 activation. In arctic ground squirrels, arterial Pop remains high
during torpor but declines rapidly during arousal as whole animal ox-
ygen consumption rates increase (Ma et al., 2005). Accordingly, brain
HIF-1a protein levels increase in late arousal, concomitant with
declining arterial Pgoy (Ma et al., 2005) and there is no evidence for
increased oxidative damage in the brain of hibernating versus euthermic
animals (Orr et al., 2009). Nrf2 levels are highest in the brain during late
torpor and early arousal in both Daurian (Spermophilus dauricus) and 13-
lined ground squirrels (Morin et al., 2008; Wei et al., 2018). In Daurian
ground squirrels, brain MDA and H50- levels also increase during late
torpor (immediately prior to arousal) but decline during the arousal
period, potentially due to increased Nrf2-dependent expression of the
antioxidant enzymes SOD1 and GPx1 during interbout arousal (Wei
et al., 2018). Heart levels of Nrf2, H,O,, and MDA are similar to those
observed in brain, with Nrf2 activation during late torpor and early
arousal mitigating increases in MDA and H202 via increased expression
of SOD1 and HO-1 (Morin et al., 2008; Wei et al., 2018). Therefore,
squirrels appear to mitigate oxidative damage to the brain and heart
during hibernation via upregulation of the hypoxia- and redox-sensitive
transcription factors HIF-1 and Nrf2 and their target genes.

Fasting animals rely heavily on lipid stores to fuel metabolism, but
several organs such as the brain remain obligate consumers of glucose.
Gluconeogenesis in the liver produces most of the glucose required by
glucose-dependent tissues during fasting, but this process demands the
catabolism of other substrates. Torpor substantially decreases substrate
oxidation and mitochondrial respiration rates in the liver of 13-lined
ground squirrels, though free radical leak is higher in this tissue in
torpor than during interbout arousals (Brown et al., 2012). Concomitant
increases in Nrf2 and GRP75 expression in the liver during torpor and
early arousal may limit leak-related oxidative damage in this tissue,
though this has not been measured specifically in 13-lined ground
squirrels (Carey et al., 1999; Morin et al., 2008). However, hibernating
arctic ground squirrels display decreased available GSH without
increasing MDA or protein carbonyls (Orr et al., 2009), and liver MDA
levels decrease rapidly after torpor in Daurian ground squirrels, sug-
gesting a high capacity for recovery after hibernation (Wei et al., 2018).

Ground squirrels appear to prioritize protection of BAT, brain, heart,
and liver against oxidative stress during hibernating fasts. However,
universal avoidance of oxidative damage in all tissues is energetically
expensive as it requires constitutive synthesis of antioxidants and
therefore may be infeasible in a fasting animal. Interestingly, lipid
peroxidation levels (conjugated dienes), nuclear factor kappa B activa-
tion, and GSH oxidation increase in the gut of hibernating 13-lined
ground squirrels, indicating that the ischemic, fasting gut does experi-
ence oxidative stress during hibernation, despite increased expression of
GRP75 (Carey et al., 1999, 2000, 2003). Together, the above studies
suggest that squirrels utilize tissue-specific strategies for managing
oxidative stress during hibernating fasts.

Contrary to squirrels, hibernating bears maintain relatively high
body temperatures, decoupling metabolic suppression from core tem-
perature (Hissa et al., 1994; Tgien et al., 2011). Studies of fasting in
hibernating bears have focused on skeletal muscle, blood, and liver due
to technical constraints in obtaining tissues such as heart and brain.
Hibernating brown bears (Ursus arctos) upregulate expression of cyto-
solic but not mitochondrial antioxidants in skeletal muscle, and down-
regulate expression of mitochondrial complexes I, II and III (Chazarin
etal., 2019). Nrf2-dependent antioxidant levels increase and MDA levels
decrease in skeletal muscle from hibernating brown bears, suggesting
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that suppressed mitochondrial activity limits oxidative damage during
hibernation, and that Nrf2-dependent Prdx6 expression may prevent or
repair lipid peroxidation resulting from oxidant generation (Li et al.,
2015; Fisher et al., 2018; Chazarin et al., 2019). Skeletal muscle from
hibernating American black bears (Ursus americanus) upregulates
expression of genes involved in protein synthesis (Fedorov et al., 2009);
this may minimize muscle atrophy and loss of strength despite inactivity
during hibernation (Lohuis et al., 2007; Hershey et al., 2008). Interest-
ingly, both the ubiquitin-proteasome and autophagy pathways are
activated in skeletal muscle from Japanese black bears (Ursus thibetanus
Jjaponicus) one week post-hibernation, though simultaneous inhibition of
myostatin appears to protect against predicted rates of atrophy in these
animals (Miyazaki et al., 2019). Ecological and seasonal contexts also
play a major role in bears’ resistance to muscle atrophy. In polar bears
(Ursus maritimus), winter hibernating muscle protein loss is predicted to
be approximately twice as high as for black and brown bears, and these
losses are further compounded by summer food shortages in polar cli-
mates (Whiteman et al., 2017).

In circulation, black bears display increased MDA levels in red blood
cell membranes and plasma during hibernation (Chauhan et al., 2002),
but markers of systemic inflammation (C-reactive protein, pentraxin-
related protein) do not increase in hibernating brown bears (Sten-
vinkel et al., 2013). As red blood cells turn over more frequently than
other somatic cell types, bears may tolerate limited oxidative damage to
these cells while protecting other tissues. As in muscle, liver from hi-
bernating American black bears upregulates expression of genes
involved in protein synthesis, including several elongation factors.
However, GPX3 and SOD2 expression were lower in the liver of hiber-
nating versus summer active bears (Fedorov et al., 2009). Liver from
hibernating Japanese black bears upregulates expression of
gluconeogenesis-related genes while down-regulating expression of
genes involved in amino acid catabolism. Increased hepatic expression
of uncoupling protein 2 during hibernating fasts may also protect
against oxidant generation in the presence of accumulated fatty acids
(Shimozuru et al., 2012). Though the systems-level metabolic strategies
for tolerating extended fasting differ between bears and squirrels, it
appears that both employ tissue-specific strategies to mitigate oxidative
damage.

Hibernating fasts in bats have been understudied but are potentially
interesting from the perspective of redox balance. Active bats rely on
flight, which is an energetically expensive form of locomotion that
carries the potential for oxidative damage. In hibernating bat species,
however, flight during active periods may stimulate a conditioning
response to oxidant generation (Gomez-Cabrera et al., 2008; Gomes
et al., 2012). Indeed, no changes in brain MDA were observed for two
bat species (Myotis ricketti and Rhinolophus ferrumequinum) across torpor,
arousal, or active states and reactive oxygen and nitrogen species gen-
eration remained relatively consistent. Brains from hibernating bat
species have less MDA than non-hibernating species (Rhinolophus
leschenaultia and Cynopterus sphinx), regardless of hibernation stage,
suggesting that the brains of hibernating bats are protected against
oxidative damage, though the predominant antioxidants vary with
species (Yin et al., 2016).

In contrast to the prolonged metabolic suppression and inactivity
observed in hibernating mammals, many marine mammals fast simul-
taneous with energy-demanding processes, including reproduction,
migration, and molting (Vazquez-Medina et al., 2011a, 2011b, 2012).
Among these, the interaction between oxidative stress and fasting has
been most intensively studied in elephant seals (Mirounga spp.), which
breed, lactate, molt, and mature during prolonged terrestrial fasts. En-
ergetic output for male and female adult northern elephant seals (Mir-
ounga angustirostris) fasting during the breeding season is 3 to 6 times
their predicted standard metabolic rate (Crocker et al., 2001, 2012).
High energy outputs in the absence of nutrient intake carry the risk of
increased oxidant generation and oxidative damage, which may further
exacerbate energetic demands as oxidized lipids and proteins must be
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enzymatically repaired or removed. Plasma XO activity increases across
the breeding season in male elephant seals, as does SOD and GPx ac-
tivities. However, males show increased oxidative damage to lipids and
DNA in circulation across the breeding season, suggesting that the
observed increase in antioxidant activity does not completely prevent
oxidative damage in these animals as the breeding season progresses
(Sharick et al., 2015). Female elephant seals do not engage in physical
fighting during the breeding season but must produce energy-rich milk
while fasting. Plasma XO activity increases across the breeding fast in
females. Catalase and GPx activities also increase, but SOD activity and
vitamin C levels do not change across lactation. There is no evidence for
oxidative damage to DNA or lipids associated with the lactating fast in
females, though circulating levels of nitrotyrosine are higher in females
later in the lactation period (Sharick et al., 2015). In addition to
breeding, adult elephant seals undertake an annual terrestrial molt of
approximately one month, during which the entire pelage is replaced. As
described earlier, fasting and physical inactivity typically drive skeletal
muscle atrophy. In elephant seals, however, muscle mass and respiratory
capacity are maintained during the (physically inactive) molting fast,
perhaps due to the maintenance of antioxidant gene expression, which
does not decline (Worthy et al., 1992; Wright et al., 2020).

Weaned elephant seal pups fast on land for 2-3 months prior to
departing on their first marine foraging trip. During this terrestrial fast
pups mobilize blubber stores to fuel an increase in mass-specific blood
and muscle oxygen stores, which support extended breath hold diving
(Champagne et al., 2012). The renin-angiotensin system (RAS) is acti-
vated during this fast (Ortiz et al., 2000), and is known to drive oxidative
damage in other species via the activation of NADPH oxidases. Despite
RAS activation, and increased XO and NADPH oxidase expression and
activity during the postweaning fast, elephant seal pups do not show
increased oxidative damage in circulation or skeletal muscle (Vazquez-
Medina et al., 2010, 2013; Sonanez-Organis et al., 2012). Protection in
these animals is potentially driven by HIF-1a stabilization, Nrf2 acti-
vation and glutathione biosynthesis, all of which increase across the fast
(Vazquez-Medina et al., 2011c, 2013; Sonanez-Organis et al., 2013).
Accordingly, expression and activity of the Nrf2 dependent antioxidant
enzymes Prdx6, glutathione S-transferase (GST), GPx, and GR are
elevated in muscle late in the fast, as are catalase expression and activity
and expression of both the mitochondrial and cytosolic isoforms of SOD
(Vazquez-Medina et al., 2010, 2011c). SOD, catalase, and GPx activities
also increase in red blood cells across the postweaning fast (Vazquez-
Medina et al., 2010). Serum vitamin C levels in these animals are
maintained across the postweaning fast but are generally low, perhaps
due to the increased expression and activity of enzymatic antioxidants as
diving capacity develops (Boaz et al., 2012). Oxidative damage in
blubber has not been comprehensively assessed in fasting elephant seal
pups, but a recent transcriptomics study shows an increase in blubber
GPx3 expression across the fast, while expression of peroxidasin-like
protein and GPx7 - both of which have lost peroxidase activity - de-
creases during fasting in these animals (Martinez et al., 2018). Together,
the redox changes and limited oxidative stress observed during pro-
longed fasting in elephant seals mimic those of short duration protective
fasts in humans, but elephant seals can sustain these fasts for months
without incurring substantial oxidative damage.

2.2. Birds

Birds experience many challenging physiological conditions that can
cause oxidative stress such as seasonal migration and breeding (Cos-
tantini et al., 2007; Colominas-Ciur¢ et al., 2017); these behaviors often
coincide with fasting. For example, many species migrate from low to
high food quality areas annually (Berthold, 2001). During these trips,
migrating birds are fasting and exhibit elevated metabolic rates due to
constant exercise (McWilliams et al., 2004). While lack of food during
such an energetically demanding time requires these animals to rely on
energy from fat and protein stores (Berthold, 2001), these fasts may be
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protective by stimulating the antioxidant system (Jenni-Eiermann et al.,
2014; Schull et al., 2016) or decreasing tissue-specific metabolic de-
mands (Dewasmes et al., 1980). Similar to migration, some sea birds
undergo intermittent fasting during the breeding season (Costantini and
Bonadonna, 2010; Colominas-Ciur¢ et al., 2017; Pap et al., 2018) sug-
gesting that the protective benefits of fasting may extend across multiple
life history stages. By comparing adaptive strategies among these
different life history stages, we can better understand the role of fasting
in redox homeostasis in birds.

While traveling facilitates resource acquisition in migratory birds,
such as European robins (Erithacus rubecula) and garden warblers (Sylvia
borin), these species experience intense endurance exercise and high
metabolic rates that can cause oxidative damage (Berthold, 2001;
Cooper-Mullin and McWilliams, 2016). However, through fasting and
other physiological adjustments, migratory birds largely avoid excessive
oxidative damage. Whereas birds typically have higher basal metabolic
rates than terrestrial mammals, birds’ decreased proportion of electron
flow across the mitochondrial membrane limits mitochondrial O3~
production compared to mammals (Ku and Sohal, 1993; Perez-Campo
et al., 1998). Limited mitochondrial ROS generation combined with an
effective enzymatic antioxidant system, elevated serum total antioxi-
dant capacity, and optimized fuel utilization may limit oxidative dam-
age in birds (Gutiérrez et al., 2019). Additionally, a decreased metabolic
rate due to fasting may further prevent oxidative damage (Dewasmes
et al.,, 1980). Fasting migratory birds, such as the ruff (Philomachus
pugnax), primarily utilize lipid and protein as fuel sources, which likely
generate less mitochondrial ROS than carbohydrates (Weber, 2009;
Kuzmiak et al., 2012). Storing and metabolizing lipids can lead to
elevated lipid peroxidation (Skrip et al., 2015), but the lipid composition
of avian cells makes them less susceptible to lipid peroxidation than
mammalian cells (Hulbert et al., 2007). Additionally, uric acid, a
byproduct of protein catabolism, is both the main nitrogenous waste in
birds (Wright, 1995) and a primary non-enzymatic antioxidant (Halli-
well and Gutteridge, 1995). Taken together, these studies suggest that
birds remain largely protected from oxidative stress due to the compo-
sition of their cell membranes, the type of fuel they utilize, and increased
levels of non-enzymatic antioxidants while fasting.

Despite decreased ROS generation, high uric acid levels, and the
potential benefits of fasting, some birds exhibit oxidative stress due to
biotic and abiotic factors associated with migration (Costantini et al.,
2007; Jenni-Eiermann et al., 2014; Bodey et al., 2019). European robins
captured during migration show elevated protein carbonyls and GPx
activity in red blood cells compared to resting birds, with both param-
eters negatively correlated with protein, but not fat stores (Jenni-Eier-
mann et al., 2014). In contrast, there are positive correlations between
plasma hydroperoxides and total antioxidant capacity, and both fat, and
protein stores in garden warblers and barn swallows (Hirundo rustica)
while migrating (Costantini et al., 2007). In addition to body condition,
abiotic factors such as environmental temperature are associated with
elevations in lipid peroxidation (MDA) in light bellied brent geese
(Branta bernicla; Bodey et al., 2019). Strikingly, body condition has no
impact on lipid peroxidation in this species, suggesting that the rela-
tionship between redox homeostasis and body condition may be species-
specific or at least tissue-specific (Wei et al., 2018). Additionally,
migratory birds in general show higher MDA levels and non-enzymatic
antioxidant capacity than non-migratory birds, suggesting a funda-
mental difference in redox balance due to migration and fasting (Eike-
naar et al., 2017). While the confluence of migration and fasting can still
lead to oxidative stress, behavioral strategies that decrease oxidant
generation or increase antioxidant pools may prevent oxidative damage.

Birds utilize specific strategies that promote redox homeostasis to
prepare for migration-induced oxidative stress. In birds partaking in
long migrations, circulating antioxidant capacity increases while lipid
peroxidation (thiobarbituric acid reactive substances; TBARS) decreases
across the pre-migratory season (Gutiérrez et al., 2019). This physio-
logical preparation may be increased by the consumption of food high in
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dietary antioxidants, such as fruits and polychaetes (Alan et al., 2013;
Martinez-Curci et al., 2015). Additionally, pre-migratory fat stores are
positively associated with non-enzymatic antioxidant capacity and lipid
peroxidation (Skrip et al., 2015); increased lipid peroxidation may
represent a cost of increasing fat supply and utilization (Pérez-Rodriguez
etal., 2015; Skrip et al., 2015). Stopovers can achieve similar elevations
in antioxidant levels as pre-migratory behaviors (Skrip et al., 2015;
Eikenaar et al., 2020). During these stopovers, garden warblers reduce
circulating oxidative damage (hydroperoxides; Skrip et al., 2015) in-
dependent of the amount of food consumed or body fuel stores gained
(Eikenaar et al., 2020). Interestingly, though oxidative damage de-
creases across the stopover, non-enzymatic antioxidant capacity does
not vary, suggesting an alternative driver in the modulation of oxidative
damage (Eikenaar et al., 2020) such as upregulation of antioxidant en-
zymes. Though migration is a confounding factor when assessing the
relationship between fasting and oxidative stress in birds, we can tease
apart patterns to elucidate the role of fasting on oxidative stress by
comparing migration with other challenging physiological conditions
that coincide with fasting.

Breeding, similar to migration, carries physiological costs for many
avian species (Costantini and Bonadonna, 2010) as reproduction is a
major driver of oxidative stress in birds (Wiersma et al., 2004; Pap et al.,
2018). Increased breeding effort elevates plasma MDA, and higher
hatching success is positively correlated with lipid peroxidation (as
measured by TBARS) in breeding females (Alonso-Alvarez et al., 2010;
Pap et al., 2018). However, while increased breeding effort did not lead
to changes in survival rate between years, oxidative damage was nega-
tively correlated and GSH levels were positively correlated with survival
rates of barn swallows (Pap et al., 2018). Interestingly, during breeding
both old and young birds have higher levels of oxidative damage than
middle aged birds, suggesting that oxidative stress may be associated
with both senescence and selective mortality (Nussey et al., 2008;
Alonso-Alvarez et al., 2010). Combined, these data suggest that oxida-
tive damage is negatively correlated with survival, but it is not clear
whether breeding in particular or the related fasting drives these
changes in redox homeostasis (Schull et al., 2016).

As various avian species frequently cope with fasting periods during
the breeding season, these studies provide both an ecological and
mechanistic lens to examine oxidative stress. In addition to the species
described above, recent studies have begun to explore how fasting im-
pacts oxidative stress in breeding penguins (Schull et al., 2016; Colo-
minas-Ciuro et al., 2017). Initial data suggest that while short-term
fasting in king penguins (Aptenodytes patagonicus) increases SOD activ-
ity, prolonged fasting increases hydroperoxides (Schull et al., 2016).
Moreover, refeeding leads to decreased hydroperoxides, but there is a
positive correlation between the rate of mass gain and hydroperoxide
levels after the foraging trip in advance fasting individuals only (Schull
et al., 2016). These results suggest that while fasting-derived oxidative
damage is largely avoided in king penguins, there may be potential long-
term effects on oxidative damage from foraging due to increased
foraging effort or fasting duration. Fasting-associated increases in anti-
oxidants may protect penguins from oxidant generation during
breeding, as neither incubation nor chick rearing while fasting increases
hydroperoxide levels (Colominas-Ciur6 et al., 2017), however, antioxi-
dant levels (total plasma antioxidant capacity and total non-protein
thiols) decrease in incubating adult Magellanic penguins (Spheniscus
magellanicus). These data suggest that incubating eggs may be more
demanding than chick rearing due to potential antioxidant depletion
(Colominas-Ciuro et al., 2017). Therefore, fasting may help limit
oxidative stress in penguins, however, the underlying mechanism of this
effect and its applicability to other species are still unknown.

Examining the impacts of fasting on mitochondrial function and
metabolic hormones may help elucidate the mechanisms by which
fasting mitigates oxidative stress. Early work shows that fasting in king
penguins decreases mitochondrial oxygen consumption and uncoupling
protein activity (Rey et al., 2008). While decreased mitochondrial
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respiration could limit oxidant generation, a decrease in uncoupling
proteins would undermine this effect (Harper et al., 2004). A recent
study proposed that animals living in extreme conditions may have
evolved physiological mechanisms to protect against environmental or
oxidative stress (Stier et al., 2019). In king penguins, elevated basal
levels of glucocorticoids are positively correlated with increased GSH
and decreased mitochondrial efficiency (Stier et al., 2019). There are
likely other mechanisms modulating redox homeostasis besides gluco-
corticoids, as basal glucocorticoids increase during advanced fasting in
adults (Cherel et al., 1988) but not in chicks (Le Ninan et al., 1988).
However, the increase in glucocorticoids due to fasting is present in
other species and offers a promising avenue to understand how fasting
regulates redox balance (Angelier et al., 2015). House sparrows (Passer
domesticus) show similar results to king penguins as glucocorticoids
decrease MDA in these animals (Vagasi et al., 2018), suggesting that the
protective nature of glucocorticoids and fasting may be broader than in
Spheniscidae alone. Blue petrels (Halobaena caerulea) that fast for long
periods have higher antioxidant capacity and lower oxidative damage
than shorter fasting Antarctic Prions (Pachyptila desolata; Costantini and
Bonadonna, 2010), which further supports the idea of a protective role
for fasting in redox homeostasis. Taken together, data from birds cor-
roborates mammalian studies that show a protective effect of fasting on
oxidative stress. Across endothermic species and life history stages,
fasting is associated with elevated antioxidants and decreased oxidative
damage. Due to a temporal overlap between fasting and physiologically
expensive activities such as reproduction and migration, the mecha-
nisms underlying such effects remain largely elusive, however, studies in
birds highlight the potential roles of fuel utilization, mitochondrial
function, and glucocorticoids in sustaining redox balance in naturally
fasting animals.

2.3. Reptiles and amphibians

Fasting-associated metabolic depression allows ectothermic verte-
brates to optimize the use of endogenous energy reserves in challenging
environmental conditions. Some amphibians and reptiles can reduce
their metabolic rate by 60-90% and fast for over a year (Secor and Carey,
2016). Fluctuations in tissue oxygen availability during arousal, how-
ever, likely increase ROS generation. Thus, preparation for oxidative
stress (Hermes-Lima et al., 2015) or rapid increases in antioxidant de-
fenses during arousal are important strategies for preventing or miti-
gating oxidative damage.

Similar to mammals, many reptiles and amphibians cope with
oxidative stress using physiological and metabolic adjustments associ-
ated with fasting. Tegu lizards (Salvator merianae) decrease their meta-
bolic rate by 80% wupon entering dormancy during subtropical
hibernation. This transition decreases intestinal GSH, GPx, and GST, but
lipid hydroperoxides also decrease, suggesting that winter dormancy in
Tegu lizards does not induce oxidative stress despite antioxidant
depletion (Moreira et al., 2018). In contrast, the European common
lizard (Lacerta vivipara) survives freezing during hibernation by upre-
gulating SOD and GPx (Voituron et al., 2006). Transcriptomic and
proteomic analyses in hibernating Central bearded dragons (Pogona
vitticeps) show upregulation of genes and proteins involved in antioxi-
dant defense and mitochondrial upkeep in the brain, muscle and heart
(Capraro et al., 2019). Moreover, freezing in wood frogs (Rana sylvatica)
increases ferritin heavy chain and SOD2 protein abundance (Gupta
et al., 2020), while freezing in Garter snakes (Thamnophis sirtalis parie-
talis) increases muscle GSH, catalase and GPx, along with lung catalase,
suggesting that freezing activates systems involved in peroxide removal
in preparation for increased ROS generation during thawing (Hermes-
Lima and Storey, 1993). Likewise, grass snakes (Natrix natrix) increase
GST activity after hibernation. This increase likely mitigates oxidative
damage associated with reoxygenation, possibly via reduction of lipid
hydroperoxides (Yang et al., 2001), despite decreases in GR and catalase
in this species (Gavric et al., 2015). Paradoxically, high metabolic rates
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may also help reptiles avoid oxidative damage during arousal. Grass
snakes acclimated to warm temperatures (32°C) have 7-fold higher
metabolic rates compared to cold-acclimated snakes (18°C). Hydroper-
oxide levels are lower in warm- than in cold-acclimated snakes, sug-
gesting that high metabolic rates help limit oxidative stress (Bury et al.,
2018). While the mechanism underlying such reductions in lipid hy-
droperoxides remains unknown, the glutathione system plays an inte-
gral role in this process and overall maintenance of redox homeostasis
across many species of hibernators.

In contrast to the protection against oxidative stress described above,
some reptiles and amphibians incur selective oxidative damage associ-
ated with hibernating fasts. The soft-shelled turtle (Pelodiscus sinensis)
experiences lipid peroxidation (as measured by TBARS) in the spleen, in
which vitamin C levels are nearly exhausted during hibernation (Chen
et al., 2019), while the heart, brain and liver remain protected (Baker
et al., 2007). These animals activate Nrf2 and upregulate SOD, catalase,
and GPx3 expression upon arousal (Zhang et al., 2017). Vitamin C levels,
which decrease during hibernation in most soft-shelled turtle tissues,
recover to pre-hibernating or even higher levels and are associated with
decreased splenic MDA during arousal (Chen et al., 2019). Similarly,
increased vitamin C levels during arousal from hibernation provide
neuronal cytoprotection to pond slider turtles (Trachemys scripta) (Rice
et al., 2002). In contrast, Asian toads (Duttaphrynus melanostictus)
display increased lipid peroxidation (as measured by TBARS), protein
oxidation and a shift toward GSSG in the liver and brain during hiber-
nation despite high vitamin C levels (Sahoo and Patnaik, 2020), and
hibernation suppresses antioxidant defenses inducing oxidative stress in
Nanorana parkeri frogs (Niu et al., 2018). Overall, these results are
consistent with findings in hibernating mammals, which show species-,
tissue-, and time-specific patterns of antioxidant protection. Moreover,
these results also suggest that some species including Asian toads and
N. parkeri frogs likely mitigate oxidative damage by upregulating anti-
oxidant defenses upon arousal.

Dry conditions, high temperatures, and low food availability pose a
threat to ectotherms; some frog species estivate to mitigate the detri-
mental effects of these conditions. In green-striped burrowing frogs
(Cyclorana alboguttata) estivation decreases metabolism by 70%, muscle
and heart mitochondrial HpO5 generation by 88-94% (Reilly et al.,
2014), and causes global changes in gene expression (Reilly et al., 2013).
Muscle genes differentially expressed during this period participate in
cytoskeletal remodeling, energy metabolism, redox homeostasis, the
cellular stress response and apoptotic signaling (Reilly et al., 2013).
Moreover, estivation maintains or increases SOD activity and expres-
sion, HSP70 abundance, and total antioxidant capacity; accordingly,
lipid peroxidation (MDA) does not increase during estivation (Hudson
et al., 2006; Young et al., 2013a, 2013b). Similarly, the Brazilian Caa-
tinga’s frog (Proceratophrys cristiceps) prepares for arousal-induced ROS
generation by increasing GSH, catalase and GPx during estivation
(Moreira et al., 2020). Thus, transcriptional and biochemical changes
during estivation help frogs conserve cellular functions and avoid
oxidative stress and muscle atrophy during arousal.

Hibernation and estivation represent energy-saving strategies which
coincide with fasting. In contrast, some reptiles also fast during ener-
getically expensive capital breeding seasons. In the aspic viper (Vipera
aspis) reproduction increases lipid peroxidation despite upregulation of
antioxidant defenses in pregnant snakes (Stier et al., 2017), suggesting
that oxidative stress is a cost of reproduction. In loggerhead sea turtles
(Caretta caretta) plasma SOD decreases as the nesting season progresses
(Perrault and Stacy, 2018). Although oxidative damage markers have
not been measured concurrently, these results suggest that oxidative
damage may be a cost of reproduction in sea turtles. Thus, while most
fasting amphibians and reptiles avoid oxidative damage derived from
hibernation and estivation, oxidative stress is likely a trade-off for
reproduction in fasting capital breeders.
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Fig. 3. Responses that mitigate oxidative stress in fasting-adapted species.

Hibernation, estivation, breeding, maturation, or migration alter metabolic rates in a variety of animals. These fluctuations often elevate rates of reactive oxygen and
reactive nitrogen species generation, increasesing the potential for oxidative damage. Fasting-adapted organisms such as seals, bears, squirrels, penguins, and turtles
elevate antioxidant levels, prioritize redox balance in key tissues, and alter behavior to mitigate oxidative damage.

2.4. Fish

Temperate salmonids fast during migration, though their fasting
strategies vary widely. Adult salmonids incur reproductive costs due to
long migrations (Healey, 2001). In contrast, parr optimize migration
using bimodal feeding; they either fast during the autumn-winter
months and defer migration for a year, or feed and migrate sooner
(Metcalfe and Thorpe, 1992). Additionally, when exposed to cold tem-
peratures, trouts (Salmonidae) stop feeding or defer food assimilation
(Simpkins and Hubert, 2000). While some studies have measured the
effects of fasting on oxidative stress during natural conditions, most
reports evaluate changes in redox homeostasis during experimental
conditions in salmonids and other teleost species.

Fasting promotes cold resistance in zebrafish by modulating lipid
catabolism and autophagy, and by increasing SOD, GPx, and HSPa5
expression (Danio rerio; Lu et al., 2019). Similarly, fasting upregulates
catalase, GPx, GR, and mitochondrial and cytosolic SOD activities in
estivating African slender lungfish (Protopterus dolloi; Page et al., 2010).
Moreover, intermittent fasting increases liver activity of SOD and lyso-
zyme in crucian carp (Carassius auratus; Li et al., 2019). Short-term
fasting (2 days) simulates Nrf2 and upregulates SOD1, SOD2, catalase
GPx, and GST in skeletal muscle of juvenile Chinese perch (Siniperca
chuatsi; Wu et al., 2020), while fasting for seven days increases GST, GR,
GPx and catalase activities in catfish (Hoplosternum littorale) gills (Rossi
et al., 2015), and hepatic SOD, GPx, GST, and catalase expression in
rockbream (Oplegnathus fasciatus; Nam et al., 2005). Overall, these data
show that fasting upregulates enzymatic antioxidants across multiple
fish species.

In contrast, experimental long-term (21-28 days) food deprivation
increases lipid peroxidation (as measured by TBARS) in catfish (Rossi
et al., 2015), and decreases hepatic GST and GPx expression in rainbow
trout (Oncorhynchus mykiss; Salem et al., 2007) and zebrafish (Drew

et al., 2008). Moreover, food deprivation for two weeks reduces hepatic
metabolic capacity while increasing mitochondrial HyO5 generation in
brown trout (Salmo trutta; Salin et al., 2018). These results show that
while short-term fasting prevents oxidative stress by modulating
endogenous antioxidants in fish, prolonged food deprivation promotes
ROS generation and oxidative damage (Furne and Sanz, 2018).

Detrimental effects of long migrations in salmons include reduced
offspring output and oxidative stress (Shpak and Proulx, 2007). Hepatic
lipid peroxidation increases through the return journey in the kidney of
Chinook salmon, Oncorhynchus tshawytscha. Similarly, lipid hydroper-
oxides increase with migration in juvenile Chinook salmon while
vitamin E levels decrease (Welker and Congleton, 2005). Moreover,
hepatic and ovary thiamine (vitamin B1) concentrations decrease along
the spawning run in Atlantic salmon (Salmo salar). These changes are
associated with increased hepatic MDA and decreased glucose-6-
phosphate dehydrogenase activity (Vuorinen et al., 2020), which is
critical for maintaining intracellular GSH levels (Salvemini et al., 1999).
Moreover, the antioxidant response is tissue-specific in Pacific salmon
(Oncorhynchus spp.) in which DNA damage and total antioxidant ca-
pacity increase at the end of migration in plasma and brain, but not in
liver, red, or white muscle (Wilson et al., 2014). Overall, these studies
suggest that long migrations promote oxidative stress in salmon by
decreasing antioxidant defenses.

Behavioral strategies during reproductive migrations ameliorate
oxidative stress in glass eels (Anguilla anguilla). Eel hatchlings can
become temporary estuarine residents, which have lower oxidative
stress compared to their oceanic counterparts (Bolliet et al., 2017).
Similarly, salmon undergo a pre-migration fasting period triggered by
fluctuations in water chemistry (e.g., salinity, pH), which stimulates
oxidative phosphorylation and glycolytic potential, likely decreasing
ROS generation (Miller et al., 2009). Moreover, migrating salmonids
(Salmo trutta) have higher GSH levels and total antioxidant capacity than
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Table 1

Protective redox mechanisms altered by fasting across different life history

events and taxa.

Taxonomic Life history Redox strategy Citation
group event
Mammals Squirrels Hibernation 1 NRF2, HIF-1a, Carey et al.
SOD1, GPx1, HO- (1999, 2000,
1, GRP75 2003); Ma
| body temp, et al. (2005)
metabolic rate Morin et al.
(2008); Ma
(2013); Wei
et al. (2018)
Bears Hibernation 1 NRF2, Prdx6, Chauhan
uncoupling et al. (2002);
protein 2 Fedorov
| mitochondrial et al. (2009);
electron transfer Shimozuru
chain complexes et al. (2012);
I, I1, and III Stenvinkel
et al. (2013);
Li et al.
(2015);
Chazarin
et al. (2019)
Bats Hibernation 1 antioxidants, Gomez-
conditioning Cabrera et al.
response (2008);
Gomes et al.
(2012); Yin
et al. (2016)
Elephant Breeding, 1 Nrf2, XO, SOD, Véazquez-
seals maturation GPx, catalase, Medina et al.
HIF-1a, GSH, (2010,
Prdx6, GST, GR 2011c,
2013);
Sonanez-
Organis et al.
(2012,
2013);
Sharick et al.
(2015)
Birds Migratory Migration 1 Lipid and Ku and Sohal
birds protein (1993);
utilization, GPx, Perez-
glucocorticoids, Campo et al.
consumption of (1998);
foods high in Hulbert et al.
antioxidants, (2007);
antioxidant Weber
upregulation (2009);
| mitochondrial Kuzmiak
O3 generation, et al. (2012);
metabolic rate, Jenni-
carbohydrate Eiermann
utilization et al. (2014);
Eikenaar
et al. (2017,
2020);
Végasi et al.
(2018)
Penguins Breeding 1 SOD, GSH, Rey et al.
glucocorticoids (2008);
| mitochondrial Schull et al.
oxygen (2016);
consumption Colominas-
Ciuro et al.
(2017); Stier
et al. (2019)
Reptiles Lizards, Dormancy, 1 Nrf2, SOD, GPx, Hermes-
frogs, hibernation, GSH, catalase, Lima and
snakes, arousal GST, vitamin C, Storey
turtles mitochondrial (1993);
upkeep Yang et al.

(2001); Rice
et al. (2002);
Voituron
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Table 1 (continued)

Taxonomic
group

Life history
event

Redox strategy

Citation

Amphibians

Fish

Frogs

Fish

Estivation,
arousal

Cold
exposure,
migration,
reproduction

1 SOD, HSP70,
GSH, catalase,
GPx

1 Nrf2, SOD, GPx,
HSPa5, catalase,
GPx, GR,
lysozyme, GST,
glycolytic
potential, GSH,
total antioxidant
capacity, HSP70
Choose to migrate
or not

et al. (2006);
Gavric et al.
(2015);
Zhang et al.
(2017); Bury
et al. (2018);
Moreira

et al. (2018);
Capraro

et al. (2019);
Chen et al.
(2019)
Hudson et al.
(2006);
Young et al.
(2013a,
2013b);
Moreira

et al. (2020)
Page et al.
(2010); Nam
et al. (2005);
Miller et al.
(2009); Iq
and Shu-
Chien
(2011);
Rossi et al.
(2015);

Birnie-
Gauvin et al.
(2017);
Bolliet et al.
(2017); Lu
et al. (2019);
Lietal.
(2019)

residents, and future migration date is negatively correlated with anti-
oxidant capacity, suggesting that antioxidant potential is associated
with migratory capacity in salmonids (Birnie-Gauvin et al., 2017).
Overall, these results show that behavioral strategies and
environmentally-dependent antioxidant responses mitigate migration-
induced oxidative stress in glass eels and migrating salmons.

Fasting associated with mouthbrooding (Faber-Hammond et al.,
2019), increases circulating hydroperoxides while decreasing gill cata-
lase expression in East African cichlids (Astatotilapia burtoni; Keller et al.,
2017; Sawecki et al., 2019). In contrast, mouthbrooding increases
abundance of HSP70 and natural killer cell enhancing factor, which has
peroxidase activity, in oral mucus of tilapia fish (Oreochromis spp.; Iq and
Shu-Chien, 2011). In smallmouth bass (Micropterus dolomieu), parental
care decreases feeding opportunities (Hanson et al., 2009), but does not
increase lipid hydroperoxides, protein or DNA oxidation (Wilson et al.,
2012). Thus, these studies show that while energetically expensive
reproductive behaviors that limit food consumption alter redox ho-
meostasis in fish, they do not always result in oxidative damage. This
further highlights the importance of measuring antioxidants as well as
oxidative damage markers when examining oxidative stress.

3. Conclusions and future directions

Prolonged food deprivation in wild vertebrates accompanies a range
of extreme or energetically expensive life history events. Notably,
fasting-adapted animals avoid starvation during prolonged food depri-
vation by using lipids as a fuel source, effectively extending Phase II, but
increasing the risk of lipid peroxidation. Oxidative stress is also a po-
tential consequence of oxygen fluctuations resulting from prolonged
metabolic suppression and inactivity (hibernation, estivation) or
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energetically-demanding processes (migration, reproduction), which
may jeopardize fitness. Naturally fasting-tolerant vertebrates, however,
are well-equipped to handle oxidative stress associated with these life
history events and share some similarities (Fig. 3), though some of the
molecular strategies for coping with these conditions appear to be spe-
cies-, tissue-, and life history stage-specific (Table 1). Despite the broad
range of strategies employed, the redox-sensitive transcription factor
Nrf2 plays a major role in the maintenance of redox homeostasis during
fasting across taxa. Additionally, selective maintenance of redox balance
in specific tissues such as the brain and heart suggests that complete
prevention of oxidative damage is often prohibitively expensive and that
animals can maintain fitness by protecting key tissues while allowing
selective injury in other repairable systems such as lipid stores.

Disentanglement of the metabolic and molecular components of
fasting from concurrent life states (e.g. migration, reproduction) re-
mains challenging, but expanded sampling regimes, inter-species com-
parisons, and a combination of field and laboratory studies when
possible, will bolster our current understanding of how fasting-tolerant
species cope with metabolic challenges while preventing oxidative
damage. Moreover, the study of these physiological responses in natu-
rally fasting-adapted species can provide a better understanding of the
protective effects of fasting in non-adapted species including humans,
with subsequent implications for the prevention of metabolic and age-
associated pathologies and possibly lifespan extension.

In addition to the myriad strategies employed by different taxa for
coping with prolonged fasting, generalization is further complicated by
the range of assays employed in the studies reviewed in this manuscript.
TBARS, a popular colorimetric assay of lipid peroxidation, is not specific
for lipid peroxidation products (MDA) unless these are detected by mass
spectroscopy. F2-isoprostane levels are a more accurate measure of lipid
peroxidation, though true specificity is again only achieved using mass
spectroscopy (Forman et al., 2015). The determination of protein
carbonylation is the most extensively used marker for protein oxidation,
but not all the methods are equal in robustness, accuracy, and reliability
(Suzuki et al., 2010; Rogowska-Wrzesinska et al., 2014). Though fasting
regimes differ between natural events in wild animals and interventions
in humans and laboratory models, the similarities in the redox response
underscore potentially similar adaptive mechanisms behind the bene-
ficial effects of fasting on ameliorating oxidative stress in humans.
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