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A B S T R A C T   

Fasting is a component of many species’ life history due to environmental factors or behavioral patterns that limit 
access to food. Despite metabolic and physiological challenges associated with these life history stages, fasting- 
adapted wild vertebrates exhibit few if any signs of oxidative stress, suggesting that fasting promotes redox 
homeostasis. Here we review mammalian, avian, reptilian, amphibian, and piscine examples of animals un
dergoing fasting during prolonged metabolic suppression (e.g. hibernation and estivation) or energetically 
demanding processes (e.g. migration and breeding) to better understand the mechanisms underlying fasting 
tolerance in wild vertebrates. These studies largely show beneficial effects of fasting on redox balance via limited 
oxidative damage. Though some species exhibit signs of oxidative stress due to energetically or metabolically 
extreme processes, fasting wild vertebrates largely buffer themselves from the negative consequences of 
oxidative damage through specific strategies such as elevating antioxidants, selectively maintaining redox bal
ance in critical tissues, or modifying behavioral patterns. We conclude with suggestions for future research to 
better elucidate the protective effects of fasting on oxidative stress as well as disentangle the impacts from other 
life history stages. Further research in these areas will facilitate our understanding of the mechanisms wild 
vertebrates use to mitigate the negative impacts associated with metabolically-extreme life history stages as well 
as potential translation into therapeutic interventions in non-fasting-adapted species including humans.   

1. Introduction 

1.1. Oxidants, antioxidants, and oxidative stress 

Free radicals are short-lived chemical species containing one or more 
unpaired electrons (Slater, 1984; Cheeseman and Slater, 1993). Oxygen- 
derived free radicals and their related non-radical reactive species (e.g. 
H2O2) are collectively known as reactive oxygen species (ROS). Mito
chondria generate ROS as byproducts of aerobic metabolism during the 
reduction of molecular oxygen (O2) in the electron transport chain 
(Babcock, 1999; Semenza, 2007). The sequential one-electron reduction 
of O2 produces superoxide radical (O2

•−; Sies, 1997) which undergoes 

dismutation to yield hydrogen peroxide (H2O2; Loschen et al., 1974), the 
highly reactive hydroxyl radical (HO•; Florence, 1984), and water. The 
reaction of transition metals with O2

•− and H2O2 (e.g. Fenton reaction) 
also yields HO• (Butler and Halliwell, 1982), which generates alkyl or 
peroxyl radicals when acting on fatty acids (Nelson et al., 1994; Sies, 
1997). O2

•− can also react with nitric oxide (NO•) to generate perox
ynitrite (ONOO−), a strong oxidant classified as a reactive nitrogen 
species (Blough and Zafiriou, 1985; Koppenol et al., 1992; Radi, 2018). 
In addition to the electron transport chain, several enzymes generate 
ROS as their main catalytic products. Major oxidant-generating enzymes 
include xanthine oxidase (XO; McCord et al., 1985), NADPH oxidases 
(Babior, 1999), the membrane-bound microsomal monooxygenase 
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system (cytochromes P450; Zangar et al., 2004), nitric oxide synthases 
(NOS; Miller et al., 1997), and membrane-associated enzymes such as 
lipoxygenases and cyclooxygenase (Cho et al., 2011). The main endog
enous sources of oxidant generation are summarized in Fig. 1A. 

Increased oxidant generation or decreased antioxidant levels can 
cause oxidative stress, a landmark of multiple pathological conditions 
(Sies, 1985; Gospodaryov and Lushchak, 2012), aging (Sies, 1985; Viña 
et al., 2013), and frailty (Inglés et al., 2014; Viña et al., 2018). Oxidative 
stress induces oxidative damage to proteins, lipids, carbohydrates, and 
nucleic acids, subsequently impairing the physiological functions of 
these molecules (Bokov et al., 2004). Lipids are highly susceptible to 
oxidative damage via lipid peroxidation (Cheeseman and Slater, 1993; 
Rikans and Hornbrook, 1997), which can be reversed by enzymes that 
either reduce phospholipid hydroperoxides or hydrolyze and re-acylate 
phospholipid fatty acyl bonds (Ursini et al., 1982; Sevanian et al., 1983; 

Fisher et al., 2018). Proteins also scavenge a high proportion of ROS 
(Davies et al., 1999); however, in contrast to lipids, protein oxidation is 
usually irreversible (Dean et al., 1993; Shacter, 2000) and dysfunctional 
oxidized proteins must be degraded by the proteasome (Grune et al., 
1997). Oxidative stress disrupts physiological redox signaling (Jones, 
2006), which is typically maintained by low levels of oxidants (oxidative 
eustress; Sies, 2019) including H2O2, a well-known second messenger 
for numerous physiological functions across phyla (Suzuki et al., 1997; 
Veal and Day, 2011). 

Antioxidants maintain ROS levels within a physiological range by 
acting at three tiers of protection: prevention, interception, and repair 
(Sies, 1993). Low concentrations of antioxidants delay or inhibit the 
oxidation of cellular substrates (Halliwell, 1990; Halliwell and Gutter
idge, 1995). Antioxidant enzymes detoxify oxidants by converting these 
compounds into less harmful molecules: superoxide dismutases (SOD) 

Fig. 1. Endogenous sources of oxidant generation (A) and antioxidant defenses (B).  
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convert O2
•− into O2 and H2O2 (McCord and Fridovich, 1969), while 

glutathione peroxidases (GPx; Cohen and Hochstein, 1963), catalase 
(Mueller et al., 1997), and peroxiredoxins (Prdx; Kang et al., 1998) 
decompose H2O2 into water and O2 (Halliwell, 1974), preventing the 
formation of HO•. The particular role of each of those enzymes in H2O2 
detoxification depends on subcellular localization and intracellular 
H2O2 levels (Chance et al., 1979). 

Excessive oxidant production can saturate antioxidant enzymes. 
Non-enzymatic antioxidants prevent existing ROS from participating in 
chain reactions by deactivating them into non-reactive products or by 
transferring the radical function to compartments less vulnerable to 
oxidative damage (Sies, 1997). Glutathione (GSH) is the main non- 
enzymatic antioxidant in mammalian cells (Dickinson and Forman, 
2002). GSH can scavenge ROS directly and also serves as a cofactor for 
several antioxidant enzymes including glutaredoxins, GPx, and some 
Prdx (Fernandez-Marcos and Nóbrega-Pereira, 2016). GSH is synthe
sized de novo from glutamine, cysteine and glycine in a two-step enzy
matic reaction catalyzed by glutamate-cysteine ligase and GSH 
synthetase. The cellular pool of GSH is maintained by glutathione- 
disulfide reductase (GR), which recycles GSH from glutathione 

disulfide (GSSG; Harlan et al., 1984). GSH also contributes to main
taining the reduced state of non-enzymatic antioxidants vitamin C (May 
et al., 1996) and vitamin E (Scholz et al., 1989). Fig. 1B illustrates the 
main endogenous antioxidant defenses. 

The nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcrip
tion factor that regulates the expression of GR and glutamate-cysteine 
ligase, maintaining GSH homeostasis. Nrf2 is activated in response to 
oxidative stress (Harvey et al., 2009; Nguyen et al., 2009; Ma, 2013). 
Upon oxidation of key cysteine residues in Nrf2’s cytosolic inhibitor 
Kelch-like ECH-associated protein 1, Nrf2 translocates into the nucleus 
where it binds to antioxidant-response elements in the promoter region 
of several antioxidants and other cellular defense genes (Nguyen et al., 
2009; Ma, 2013). Therefore, Nrf2 mediates an adaptive response to 
physiological challenges that induce oxidative eustress (Galiè et al., 
2019; Sies, 2020). Upregulation of endogenous antioxidants via Nrf2 
activation is a key mechanism used by several species adapted to cope 
with environmental and metabolic changes that increase ROS genera
tion (Giraud-Billoud et al., 2019). Box 1 lists the major reactive species, 
antioxidants, oxidative damage products and redox-sensitive transcrip
tion factors reviewed in this manuscript. 

Box 1 
Reactive species, antioxidants, oxidative damage products and redox sensitive transcription factors mentioned in this review.  

Reactive species Antioxidants Oxidative damage Redox-sensitive transcription factors 

Enzymatic Non-enzymatic Lipid peroxidation 
products 

Protein oxidation 
products 

Superoxide radical (O2
•−) Superoxide dismutases (SOD) Glutathione 

(GSH) 
Malondialdehyde (MDA) Nitrotyrosine Nuclear factor erythroid 2–related 

factor 2 (Nrf2) 
Hydrogen peroxide (H2O2) Catalase Vitamins (C and 

E) 
F2-isoprostanes Protein carbonyls Hypoxia-inducible factor 1 (HIF-1) 

Hydroxyl radical (HO•) Glutathione peroxidases 
(GPx) 

Uric acid 4-hydroxy-2-nonenal (4- 
HNE)  

Nuclear factor Kappa B (NF-κB) 

Lipid radicals (e.g., peroxyl: 
ROO•) 

Peroxiredoxins (Prdx)  Lipid hydroperoxides   

Nitric oxide (•NO) Glutathione- disulfide 
reductase (GR)     

Peroxynitrite (ONOO−)       

Fig. 2. Metabolic responses to fasting. 
The timeline from fasting to starvation follows a continuum that is species- and behavior-specific. The predominant metabolized substrate changes for each of the 3 
phases of fasting. Body mass decreases at a different pace during each phase, and metabolic rate slows progressively. Fasting-adapted species typically extend Phase II 
to spare protein catabolism. Phase III involves the high risk of losing homeostasis with consequent organ failure and death unless the animal refeeds to recover. 
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1.2. Fasting ameliorates oxidative stress: results from humans and 
biomedical models 

Fasting and starvation are characterized by the lack of ingestion and 
the use of endogenous reserves as energy sources (McCue, 2010). 
Although these terms are often used interchangeably, fasting and star
vation differ in the state of metabolic homeostasis. Fasting animals adapt 
to maintain homeostasis and preserve organ function. In contrast, star
vation leads to the loss of homeostatic control, compromised organ 
function and eventually death (Castellini and Rea, 1992; McCue, 2012). 
Fasting begins with Phase I, a relatively short period characterized by a 
daily loss of body mass and a decline in metabolic rate. During Phase I, 
substrates derived from the last ingested meal are no longer available 
and body reserves of glycogen, lipids, and protein become the sources of 
energy to sustain cellular function (Secor and Carey, 2016). During 
Phase II, the use of amino acids decreases while lipid oxidation and the 
resultant production of ketone bodies increase (Cahill, 2006). These 
adjustments in substrate utilization allow maintenance of tissue function 
and structure (Nordøy and Blix, 1991; Castellini and Rea, 1992; Secor 
and Carey, 2016). A transition into Phase III occurs if feeding does not 
resume before the depletion of lipid stores. Phase III is characterized by 
increased protein catabolism (Castellini and Rea, 1992; Lindgård et al., 
1992; Secor and Carey, 2016). During Phase III, loss of body mass ac
celerates, exacerbated by lean tissue degradation (cachexia). Phase III 
induces death from starvation if the animal cannot recover with 
refeeding (Viscarra and Ortiz, 2013; Secor and Carey, 2016). Thus, the 
traditional view considers that the progression of fasting/starvation 
follows three discrete, sequential phases defined by specific physiolog
ical changes such as loss of body mass, or by the main fuel substrate used 
during each phase. However, there is controversy surrounding the sep
aration into phases, and how the continuity in the physiological re
sponses fits in the traditional model (McCue, 2010). In clinical models, 
the substrate used to generate ATP is a well-known indicator of the 
progression from fasting to starvation: reliance on glucose oxidation at 
the early stage, the transition to lipid oxidation, and, finally, to lean 
tissue degradation and protein catabolism (Viscarra and Ortiz, 2013). 
Fasting-adapted species, however, exhibit extraordinary control over 
metabolic fuel utilization. Many fasting-adapted vertebrates (e.g. seals, 
penguins) consume lipid-heavy diets and likely do not meet the bulk of 
their energetic needs via glucose oxidation. In addition, fasting-adapted 
animals typically extend Phase II to spare their protein reserves, thereby 
prolonging vital organ function ( Boismenu et al., 1992; Castellini and 
Rea, 1992; McCue, 2012). Fig. 2 summarizes the current understanding 
of fasting physiology and how fasting-adapted species differ from the 
traditional laboratory models. 

Interventional studies with biomedical models show that fasting 
optimizes energy metabolism, boosts cellular protection, and reduces 
inflammation and oxidative stress (Longo and Mattson, 2014). Fasting 
also prevents the development of aging-related diseases, and is thus 
considered a behavioral anti-aging intervention (de Cabo et al., 2014). 
However, identification of the specific fasting regimens that improve 
health and protect against disease remains challenging. Intermittent 
fasting (IF) is the most commonly studied fasting regime in rodents and 
humans (Mattson et al., 2017; de Cabo and Mattson, 2019). During IF, 
the eating pattern alternates between periods with little or no energy 
intake (e.g., 16–48 h) and periods of regular food ingestion (Mattson 
et al., 2017). Of note, IF is becoming a popular alternative to caloric 
restriction (CR), a prolonged reduction in caloric intake without 
malnutrition. While CR benefits health and aging, IF appears to improve 
health outcomes to a greater extent (Anton et al., 2018; de Cabo and 
Mattson, 2019). 

A reduction in oxidative stress caused by both IF and CR is one of the 
main positive effects of these interventions (Sohal and Weindruch, 1996; 
Longo and Mattson, 2014). Studies in rodents and macaques provide 
valuable knowledge about how IF and CR affect oxidative stress. In mice, 
daily 30% CR for 6 months decreases the levels of the lipid peroxidation 

product 4-hydroxy-2-nonenal (4-HNE) and protein carbonyls (a marker 
of protein oxidation), while lowering the GSH:GSSG ratio (a marker of 
oxidative stress), via sirtuin 3-mediated SOD2 activation (Qiu et al., 
2010). CR also attenuates oxidative stress in male rats on a high fat diet. 
Moreover, a 40% reduction in caloric intake over 10 weeks decreases the 
lipid peroxidation product malondialdehyde (MDA) and reverses the 
increased expression of hepatic Nrf2 and heme oxygenase-1 (HO-1). 
Similarly, CR normalizes SOD2 levels in adipose tissue of rats on a high 
fat diet (Park et al., 2012). The first study to localize and quantify 
oxidative damage in aging mammalian skeletal muscle included a CR 
intervention in rhesus macaques. Here, Zanai and colleagues found that 
CR attenuates age-dependent increases in 4-HNE-modified proteins in 
skeletal muscle after 10 years of CR (Zainal et al., 2000). Moreover, CR 
in old rhesus macaques prevented an increase in lipid peroxidation 
(plasma isoprostanes levels, 8-isoPGF) and improved the animals’ 
metabolic profile (Mattison et al., 2012). Overall, the interventions in 
non-human biomedical models show a remarkable effect of both IF and 
CR on mitigating lipid peroxidation. 

Most findings from human studies recapitulate the results from ro
dent and rhesus macaque work. In overweight asthmatic adults, alter
nate day CR for 8 weeks decreases circulating 8-isoPGF, nitrotyrosine (a 
marker of protein nitration), protein carbonyls, and 4-HNE. CR for 6 
months also reduces DNA damage (Johnson et al., 2007). A similar but 
longer CR intervention lowered urinary isoprostanes while short-term 
fasting in women reduced urinary 8-isoPGF and MDA levels (Lee 
et al., 2006). Similarly, the first human trial of early time restricted 
feeding (a 6-hour feeding period with dinner before 3 p.m.) showed 
decreased 8-isoPGF levels in overweight men with diabetes (Sutton 
et al., 2018). Interestingly, a modified 3 week IF intervention of a 
combined 25% reduction in caloric intake with feasting days 
(consuming 175% of caloric intake) did not promote significant changes 
in oxidative stress markers (Wegman et al., 2015), but overall, studies in 
humans, macaques and rodents show that fasting ameliorates oxidative 
stress. 

During the holy month of Ramadan, Muslims abstain from food 
consumption between dawn and sunset. Thus, Ramadan-related fasting 
(RF) presents an opportunity to study the effects of intermittent fasting 
on oxidative stress in humans (Alharbi et al., 2017); however, variations 
in diet and lifestyle accompanying RF have led to contradictory results. 
A recent meta-analysis examined changes in MDA in healthy subjects 
before and after Ramadan, concluding that RF causes a minor reduction 
in MDA (Faris et al., 2019). Other studies, however, show that RF de
creases erythrocyte MDA and total carotenoids in plasma, but has no 
effect on serum MDA, plasma protein carbonyls, or other antioxidants 
(Ibrahim et al., 2008). Similarly, a study conducted in healthy volun
teers shows that urinary 8-isoPGF levels remain unchanged during RF 
but increase one month later (Faris et al., 2012). In contrast, diabetic 
patients show improved lipid profiles and glycemic control after RF. 
Moreover, both diabetic patients and nondiabetic subjects show a 
reduction in serum MDA and increased blood GSH during the last week 
of RF. Furthermore, MDA levels are lower and GSH is higher after six 
weeks of RF compared to pre-fasting conditions (Al-Shafei, 2014). RF 
also increases the expression of Nrf2 and SOD2 in nondiabetic obese 
subjects. Therefore, RF may reduce the risk of developing obesity- 
related disorders, such as diabetes, in which oxidative stress consti
tutes a significant risk factor (Meigs et al., 2007; Madkour et al., 2019). 
Overall, despite contradictory results related to variations in dietary 
composition and lifestyle, these studies suggest that upregulation of the 
endogenous antioxidant defense system during RF boosts protection 
against oxidative stress. Together, studies in humans and biomedical 
models demonstrate that various fasting regimes attenuate oxidative 
stress, though these species are not naturally adapted to fast and the 
regimes studied typically limit food deprivation periods to 48 h. 

In contrast to the biomedical studies described above, several ver
tebrates undergo prolonged periods of food deprivation as part of their 
life histories. In nature, fasting is an adaptive response to overcome lack 
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of food availability and facilitate natural biological cycles. Even in the 
presence of food, some species allocate their time and energy to other 
activities related to different life history traits instead of eating (e.g. 
hibernation, estivation, migration, molting, reproduction, maturation, 
and predator avoidance; Castellini and Rea, 1992; McCue, 2010; Secor 
and Carey, 2016). Here, we review the physiological strategies wild 
vertebrates use to prevent or attenuate oxidative stress during naturally 
fasting conditions. 

2. Fasting as a life history component in the natural world 

2.1. Mammals 

A wide range of mammals utilize fasting within the context of varied 
life histories. Bears, ground squirrels, and bats fast while hibernating 
during seasons of food scarcity. Seals, in comparison, fast during several 
energetically expensive life history stages including breeding and post
natal development. Each of these taxa faces unique metabolic challenges 
with respect to managing oxidative stress while fasting. 

Winter conditions typically constrain food availability, requiring 
animals to adopt varied metabolic and behavioral strategies to avoid 
starvation. Two such strategies involve altering the means by which 
animals obtain food during this period: some species stockpile food 
while others migrate to regions with greater food availability. Hiber
nation stands in contrast to both of these strategies; hibernating animals 
undertake extended fasts during which they minimize energetic re
quirements and rely on existing body nutrient stores rather than attempt 
to mitigate limited food availability. Decreased metabolic and physical 
activity during hibernation raises the risk of muscle atrophy and dys
regulated redox signaling (Pellegrino et al., 2011), which may nega
tively impact fitness upon emergence from hibernation. Despite these 
potential risks, bears and squirrels remain protected against excessive 
muscle loss and tissue injury during hibernating fasts (Lohuis et al., 
2007; Wei et al., 2018; Chazarin et al., 2019). 

Ground squirrels are well known for their extreme hibernations, 
which generally occur as bouts of torpor and arousal. During torpor 
squirrels allow body temperature to cool substantially, sometimes to 
near freezing (Hut et al., 2002). Metabolic activity is reduced up to 95% 
and perfusion of many tissues limited for days at a time. Periodic 
rewarming events (interbout arousals) driven by non-shivering ther
mogenesis in brown adipose tissue (BAT) increase metabolic rate and 
reperfuse ischemic tissues (Boyer and Barnes, 1999). During non- 
shivering thermogenesis metabolic substrates are consumed but ATP is 
not produced; rather, the cycle yields heat (Chaffee et al., 1975). The use 
of this strategy by a fasting animal appears paradoxical, particularly as 
comparable reperfusion events impact redox balance in many non- 
hibernating species and characterize pathological human conditions 
including myocardial infarction and ischemic stroke (Granger and Kvi
etys, 2015). Antioxidants are thus essential in preserving redox balance 
during hibernating fasts in squirrels, though expression profiles appear 
to be species- and tissue-specific, and complete avoidance of oxidative 
damage is not observed in all tissues. 

Metabolic activity in BAT drives rewarming during interbout 
arousals in squirrels and this tissue thus may be at risk for oxidative 
stress during hibernating fasts. Nrf2 expression increases in BAT from 
13-lined ground squirrels (Spermophilus tridecemlineatus) during all 
torpor stages and late arousal periods (Morin et al., 2008). Nrf2 regu
lates the expression of SOD and GPx (Ma, 2013); accordingly, SOD 
expression and activity are higher in BAT from hibernating than active 
European (Citellus citellus) and arctic ground squirrels (Spermophilus 
parryii) (Buzadzić et al., 1990; Yan et al., 2006), and no increases in lipid 
peroxidation (conjugated dienes) or nuclear factor kappa B, which 
drives ischemic inflammation, are observed in BAT from torpid 13-lined 
ground squirrels (Carey et al., 2000). Interestingly, expression of 
glucose-regulated protein 75 (GRP75), the mitochondrial form of the 
stress-responsive chaperone heat shock protein 70 (HSP70), is low in 

BAT from torpid 13-lined ground squirrels (Carey et al., 1999), though 
animals were not sampled during the non-shivering thermogenesis- 
dependent arousal stage in this study. These data suggest that BAT re
mains protected against oxidative stress throughout hibernation despite 
potential oxidant generation by mitochondria during non-shivering 
thermogenesis. 

Protection of the squirrel brain and heart against oxidative stress 
during hibernation likely depends on hypoxia-inducible factor 1 (HIF-1) 
and Nrf2 activation. In arctic ground squirrels, arterial PO2 remains high 
during torpor but declines rapidly during arousal as whole animal ox
ygen consumption rates increase (Ma et al., 2005). Accordingly, brain 
HIF-1α protein levels increase in late arousal, concomitant with 
declining arterial PO2 (Ma et al., 2005) and there is no evidence for 
increased oxidative damage in the brain of hibernating versus euthermic 
animals (Orr et al., 2009). Nrf2 levels are highest in the brain during late 
torpor and early arousal in both Daurian (Spermophilus dauricus) and 13- 
lined ground squirrels (Morin et al., 2008; Wei et al., 2018). In Daurian 
ground squirrels, brain MDA and H2O2 levels also increase during late 
torpor (immediately prior to arousal) but decline during the arousal 
period, potentially due to increased Nrf2-dependent expression of the 
antioxidant enzymes SOD1 and GPx1 during interbout arousal (Wei 
et al., 2018). Heart levels of Nrf2, H2O2, and MDA are similar to those 
observed in brain, with Nrf2 activation during late torpor and early 
arousal mitigating increases in MDA and H2O2 via increased expression 
of SOD1 and HO-1 (Morin et al., 2008; Wei et al., 2018). Therefore, 
squirrels appear to mitigate oxidative damage to the brain and heart 
during hibernation via upregulation of the hypoxia- and redox-sensitive 
transcription factors HIF-1 and Nrf2 and their target genes. 

Fasting animals rely heavily on lipid stores to fuel metabolism, but 
several organs such as the brain remain obligate consumers of glucose. 
Gluconeogenesis in the liver produces most of the glucose required by 
glucose-dependent tissues during fasting, but this process demands the 
catabolism of other substrates. Torpor substantially decreases substrate 
oxidation and mitochondrial respiration rates in the liver of 13-lined 
ground squirrels, though free radical leak is higher in this tissue in 
torpor than during interbout arousals (Brown et al., 2012). Concomitant 
increases in Nrf2 and GRP75 expression in the liver during torpor and 
early arousal may limit leak-related oxidative damage in this tissue, 
though this has not been measured specifically in 13-lined ground 
squirrels (Carey et al., 1999; Morin et al., 2008). However, hibernating 
arctic ground squirrels display decreased available GSH without 
increasing MDA or protein carbonyls (Orr et al., 2009), and liver MDA 
levels decrease rapidly after torpor in Daurian ground squirrels, sug
gesting a high capacity for recovery after hibernation (Wei et al., 2018). 

Ground squirrels appear to prioritize protection of BAT, brain, heart, 
and liver against oxidative stress during hibernating fasts. However, 
universal avoidance of oxidative damage in all tissues is energetically 
expensive as it requires constitutive synthesis of antioxidants and 
therefore may be infeasible in a fasting animal. Interestingly, lipid 
peroxidation levels (conjugated dienes), nuclear factor kappa B activa
tion, and GSH oxidation increase in the gut of hibernating 13-lined 
ground squirrels, indicating that the ischemic, fasting gut does experi
ence oxidative stress during hibernation, despite increased expression of 
GRP75 (Carey et al., 1999, 2000, 2003). Together, the above studies 
suggest that squirrels utilize tissue-specific strategies for managing 
oxidative stress during hibernating fasts. 

Contrary to squirrels, hibernating bears maintain relatively high 
body temperatures, decoupling metabolic suppression from core tem
perature (Hissa et al., 1994; Tøien et al., 2011). Studies of fasting in 
hibernating bears have focused on skeletal muscle, blood, and liver due 
to technical constraints in obtaining tissues such as heart and brain. 
Hibernating brown bears (Ursus arctos) upregulate expression of cyto
solic but not mitochondrial antioxidants in skeletal muscle, and down
regulate expression of mitochondrial complexes I, II and III (Chazarin 
et al., 2019). Nrf2-dependent antioxidant levels increase and MDA levels 
decrease in skeletal muscle from hibernating brown bears, suggesting 
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that suppressed mitochondrial activity limits oxidative damage during 
hibernation, and that Nrf2-dependent Prdx6 expression may prevent or 
repair lipid peroxidation resulting from oxidant generation (Li et al., 
2015; Fisher et al., 2018; Chazarin et al., 2019). Skeletal muscle from 
hibernating American black bears (Ursus americanus) upregulates 
expression of genes involved in protein synthesis (Fedorov et al., 2009); 
this may minimize muscle atrophy and loss of strength despite inactivity 
during hibernation (Lohuis et al., 2007; Hershey et al., 2008). Interest
ingly, both the ubiquitin-proteasome and autophagy pathways are 
activated in skeletal muscle from Japanese black bears (Ursus thibetanus 
japonicus) one week post-hibernation, though simultaneous inhibition of 
myostatin appears to protect against predicted rates of atrophy in these 
animals (Miyazaki et al., 2019). Ecological and seasonal contexts also 
play a major role in bears’ resistance to muscle atrophy. In polar bears 
(Ursus maritimus), winter hibernating muscle protein loss is predicted to 
be approximately twice as high as for black and brown bears, and these 
losses are further compounded by summer food shortages in polar cli
mates (Whiteman et al., 2017). 

In circulation, black bears display increased MDA levels in red blood 
cell membranes and plasma during hibernation (Chauhan et al., 2002), 
but markers of systemic inflammation (C-reactive protein, pentraxin- 
related protein) do not increase in hibernating brown bears (Sten
vinkel et al., 2013). As red blood cells turn over more frequently than 
other somatic cell types, bears may tolerate limited oxidative damage to 
these cells while protecting other tissues. As in muscle, liver from hi
bernating American black bears upregulates expression of genes 
involved in protein synthesis, including several elongation factors. 
However, GPX3 and SOD2 expression were lower in the liver of hiber
nating versus summer active bears (Fedorov et al., 2009). Liver from 
hibernating Japanese black bears upregulates expression of 
gluconeogenesis-related genes while down-regulating expression of 
genes involved in amino acid catabolism. Increased hepatic expression 
of uncoupling protein 2 during hibernating fasts may also protect 
against oxidant generation in the presence of accumulated fatty acids 
(Shimozuru et al., 2012). Though the systems-level metabolic strategies 
for tolerating extended fasting differ between bears and squirrels, it 
appears that both employ tissue-specific strategies to mitigate oxidative 
damage. 

Hibernating fasts in bats have been understudied but are potentially 
interesting from the perspective of redox balance. Active bats rely on 
flight, which is an energetically expensive form of locomotion that 
carries the potential for oxidative damage. In hibernating bat species, 
however, flight during active periods may stimulate a conditioning 
response to oxidant generation (Gómez-Cabrera et al., 2008; Gomes 
et al., 2012). Indeed, no changes in brain MDA were observed for two 
bat species (Myotis ricketti and Rhinolophus ferrumequinum) across torpor, 
arousal, or active states and reactive oxygen and nitrogen species gen
eration remained relatively consistent. Brains from hibernating bat 
species have less MDA than non-hibernating species (Rhinolophus 
leschenaultia and Cynopterus sphinx), regardless of hibernation stage, 
suggesting that the brains of hibernating bats are protected against 
oxidative damage, though the predominant antioxidants vary with 
species (Yin et al., 2016). 

In contrast to the prolonged metabolic suppression and inactivity 
observed in hibernating mammals, many marine mammals fast simul
taneous with energy-demanding processes, including reproduction, 
migration, and molting (Vázquez-Medina et al., 2011a, 2011b, 2012). 
Among these, the interaction between oxidative stress and fasting has 
been most intensively studied in elephant seals (Mirounga spp.), which 
breed, lactate, molt, and mature during prolonged terrestrial fasts. En
ergetic output for male and female adult northern elephant seals (Mir
ounga angustirostris) fasting during the breeding season is 3 to 6 times 
their predicted standard metabolic rate (Crocker et al., 2001, 2012). 
High energy outputs in the absence of nutrient intake carry the risk of 
increased oxidant generation and oxidative damage, which may further 
exacerbate energetic demands as oxidized lipids and proteins must be 

enzymatically repaired or removed. Plasma XO activity increases across 
the breeding season in male elephant seals, as does SOD and GPx ac
tivities. However, males show increased oxidative damage to lipids and 
DNA in circulation across the breeding season, suggesting that the 
observed increase in antioxidant activity does not completely prevent 
oxidative damage in these animals as the breeding season progresses 
(Sharick et al., 2015). Female elephant seals do not engage in physical 
fighting during the breeding season but must produce energy-rich milk 
while fasting. Plasma XO activity increases across the breeding fast in 
females. Catalase and GPx activities also increase, but SOD activity and 
vitamin C levels do not change across lactation. There is no evidence for 
oxidative damage to DNA or lipids associated with the lactating fast in 
females, though circulating levels of nitrotyrosine are higher in females 
later in the lactation period (Sharick et al., 2015). In addition to 
breeding, adult elephant seals undertake an annual terrestrial molt of 
approximately one month, during which the entire pelage is replaced. As 
described earlier, fasting and physical inactivity typically drive skeletal 
muscle atrophy. In elephant seals, however, muscle mass and respiratory 
capacity are maintained during the (physically inactive) molting fast, 
perhaps due to the maintenance of antioxidant gene expression, which 
does not decline (Worthy et al., 1992; Wright et al., 2020). 

Weaned elephant seal pups fast on land for 2-3 months prior to 
departing on their first marine foraging trip. During this terrestrial fast 
pups mobilize blubber stores to fuel an increase in mass-specific blood 
and muscle oxygen stores, which support extended breath hold diving 
(Champagne et al., 2012). The renin-angiotensin system (RAS) is acti
vated during this fast (Ortiz et al., 2000), and is known to drive oxidative 
damage in other species via the activation of NADPH oxidases. Despite 
RAS activation, and increased XO and NADPH oxidase expression and 
activity during the postweaning fast, elephant seal pups do not show 
increased oxidative damage in circulation or skeletal muscle (Vázquez- 
Medina et al., 2010, 2013; Soñanez-Organis et al., 2012). Protection in 
these animals is potentially driven by HIF-1ɑ stabilization, Nrf2 acti
vation and glutathione biosynthesis, all of which increase across the fast 
(Vázquez-Medina et al., 2011c, 2013; Soñanez-Organis et al., 2013). 
Accordingly, expression and activity of the Nrf2 dependent antioxidant 
enzymes Prdx6, glutathione S-transferase (GST), GPx, and GR are 
elevated in muscle late in the fast, as are catalase expression and activity 
and expression of both the mitochondrial and cytosolic isoforms of SOD 
(Vázquez-Medina et al., 2010, 2011c). SOD, catalase, and GPx activities 
also increase in red blood cells across the postweaning fast (Vázquez- 
Medina et al., 2010). Serum vitamin C levels in these animals are 
maintained across the postweaning fast but are generally low, perhaps 
due to the increased expression and activity of enzymatic antioxidants as 
diving capacity develops (Boaz et al., 2012). Oxidative damage in 
blubber has not been comprehensively assessed in fasting elephant seal 
pups, but a recent transcriptomics study shows an increase in blubber 
GPx3 expression across the fast, while expression of peroxidasin-like 
protein and GPx7 - both of which have lost peroxidase activity - de
creases during fasting in these animals (Martinez et al., 2018). Together, 
the redox changes and limited oxidative stress observed during pro
longed fasting in elephant seals mimic those of short duration protective 
fasts in humans, but elephant seals can sustain these fasts for months 
without incurring substantial oxidative damage. 

2.2. Birds 

Birds experience many challenging physiological conditions that can 
cause oxidative stress such as seasonal migration and breeding (Cos
tantini et al., 2007; Colominas-Ciuró et al., 2017); these behaviors often 
coincide with fasting. For example, many species migrate from low to 
high food quality areas annually (Berthold, 2001). During these trips, 
migrating birds are fasting and exhibit elevated metabolic rates due to 
constant exercise (McWilliams et al., 2004). While lack of food during 
such an energetically demanding time requires these animals to rely on 
energy from fat and protein stores (Berthold, 2001), these fasts may be 
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protective by stimulating the antioxidant system (Jenni-Eiermann et al., 
2014; Schull et al., 2016) or decreasing tissue-specific metabolic de
mands (Dewasmes et al., 1980). Similar to migration, some sea birds 
undergo intermittent fasting during the breeding season (Costantini and 
Bonadonna, 2010; Colominas-Ciuró et al., 2017; Pap et al., 2018) sug
gesting that the protective benefits of fasting may extend across multiple 
life history stages. By comparing adaptive strategies among these 
different life history stages, we can better understand the role of fasting 
in redox homeostasis in birds. 

While traveling facilitates resource acquisition in migratory birds, 
such as European robins (Erithacus rubecula) and garden warblers (Sylvia 
borin), these species experience intense endurance exercise and high 
metabolic rates that can cause oxidative damage (Berthold, 2001; 
Cooper-Mullin and McWilliams, 2016). However, through fasting and 
other physiological adjustments, migratory birds largely avoid excessive 
oxidative damage. Whereas birds typically have higher basal metabolic 
rates than terrestrial mammals, birds’ decreased proportion of electron 
flow across the mitochondrial membrane limits mitochondrial O2

•−

production compared to mammals (Ku and Sohal, 1993; Perez-Campo 
et al., 1998). Limited mitochondrial ROS generation combined with an 
effective enzymatic antioxidant system, elevated serum total antioxi
dant capacity, and optimized fuel utilization may limit oxidative dam
age in birds (Gutiérrez et al., 2019). Additionally, a decreased metabolic 
rate due to fasting may further prevent oxidative damage (Dewasmes 
et al., 1980). Fasting migratory birds, such as the ruff (Philomachus 
pugnax), primarily utilize lipid and protein as fuel sources, which likely 
generate less mitochondrial ROS than carbohydrates (Weber, 2009; 
Kuzmiak et al., 2012). Storing and metabolizing lipids can lead to 
elevated lipid peroxidation (Skrip et al., 2015), but the lipid composition 
of avian cells makes them less susceptible to lipid peroxidation than 
mammalian cells (Hulbert et al., 2007). Additionally, uric acid, a 
byproduct of protein catabolism, is both the main nitrogenous waste in 
birds (Wright, 1995) and a primary non-enzymatic antioxidant (Halli
well and Gutteridge, 1995). Taken together, these studies suggest that 
birds remain largely protected from oxidative stress due to the compo
sition of their cell membranes, the type of fuel they utilize, and increased 
levels of non-enzymatic antioxidants while fasting. 

Despite decreased ROS generation, high uric acid levels, and the 
potential benefits of fasting, some birds exhibit oxidative stress due to 
biotic and abiotic factors associated with migration (Costantini et al., 
2007; Jenni-Eiermann et al., 2014; Bodey et al., 2019). European robins 
captured during migration show elevated protein carbonyls and GPx 
activity in red blood cells compared to resting birds, with both param
eters negatively correlated with protein, but not fat stores (Jenni-Eier
mann et al., 2014). In contrast, there are positive correlations between 
plasma hydroperoxides and total antioxidant capacity, and both fat, and 
protein stores in garden warblers and barn swallows (Hirundo rustica) 
while migrating (Costantini et al., 2007). In addition to body condition, 
abiotic factors such as environmental temperature are associated with 
elevations in lipid peroxidation (MDA) in light bellied brent geese 
(Branta bernicla; Bodey et al., 2019). Strikingly, body condition has no 
impact on lipid peroxidation in this species, suggesting that the rela
tionship between redox homeostasis and body condition may be species- 
specific or at least tissue-specific (Wei et al., 2018). Additionally, 
migratory birds in general show higher MDA levels and non-enzymatic 
antioxidant capacity than non-migratory birds, suggesting a funda
mental difference in redox balance due to migration and fasting (Eike
naar et al., 2017). While the confluence of migration and fasting can still 
lead to oxidative stress, behavioral strategies that decrease oxidant 
generation or increase antioxidant pools may prevent oxidative damage. 

Birds utilize specific strategies that promote redox homeostasis to 
prepare for migration-induced oxidative stress. In birds partaking in 
long migrations, circulating antioxidant capacity increases while lipid 
peroxidation (thiobarbituric acid reactive substances; TBARS) decreases 
across the pre-migratory season (Gutiérrez et al., 2019). This physio
logical preparation may be increased by the consumption of food high in 

dietary antioxidants, such as fruits and polychaetes (Alan et al., 2013; 
Martínez-Curci et al., 2015). Additionally, pre-migratory fat stores are 
positively associated with non-enzymatic antioxidant capacity and lipid 
peroxidation (Skrip et al., 2015); increased lipid peroxidation may 
represent a cost of increasing fat supply and utilization (Pérez-Rodríguez 
et al., 2015; Skrip et al., 2015). Stopovers can achieve similar elevations 
in antioxidant levels as pre-migratory behaviors (Skrip et al., 2015; 
Eikenaar et al., 2020). During these stopovers, garden warblers reduce 
circulating oxidative damage (hydroperoxides; Skrip et al., 2015) in
dependent of the amount of food consumed or body fuel stores gained 
(Eikenaar et al., 2020). Interestingly, though oxidative damage de
creases across the stopover, non-enzymatic antioxidant capacity does 
not vary, suggesting an alternative driver in the modulation of oxidative 
damage (Eikenaar et al., 2020) such as upregulation of antioxidant en
zymes. Though migration is a confounding factor when assessing the 
relationship between fasting and oxidative stress in birds, we can tease 
apart patterns to elucidate the role of fasting on oxidative stress by 
comparing migration with other challenging physiological conditions 
that coincide with fasting. 

Breeding, similar to migration, carries physiological costs for many 
avian species (Costantini and Bonadonna, 2010) as reproduction is a 
major driver of oxidative stress in birds (Wiersma et al., 2004; Pap et al., 
2018). Increased breeding effort elevates plasma MDA, and higher 
hatching success is positively correlated with lipid peroxidation (as 
measured by TBARS) in breeding females (Alonso-Alvarez et al., 2010; 
Pap et al., 2018). However, while increased breeding effort did not lead 
to changes in survival rate between years, oxidative damage was nega
tively correlated and GSH levels were positively correlated with survival 
rates of barn swallows (Pap et al., 2018). Interestingly, during breeding 
both old and young birds have higher levels of oxidative damage than 
middle aged birds, suggesting that oxidative stress may be associated 
with both senescence and selective mortality (Nussey et al., 2008; 
Alonso-Alvarez et al., 2010). Combined, these data suggest that oxida
tive damage is negatively correlated with survival, but it is not clear 
whether breeding in particular or the related fasting drives these 
changes in redox homeostasis (Schull et al., 2016). 

As various avian species frequently cope with fasting periods during 
the breeding season, these studies provide both an ecological and 
mechanistic lens to examine oxidative stress. In addition to the species 
described above, recent studies have begun to explore how fasting im
pacts oxidative stress in breeding penguins (Schull et al., 2016; Colo
minas-Ciuró et al., 2017). Initial data suggest that while short-term 
fasting in king penguins (Aptenodytes patagonicus) increases SOD activ
ity, prolonged fasting increases hydroperoxides (Schull et al., 2016). 
Moreover, refeeding leads to decreased hydroperoxides, but there is a 
positive correlation between the rate of mass gain and hydroperoxide 
levels after the foraging trip in advance fasting individuals only (Schull 
et al., 2016). These results suggest that while fasting-derived oxidative 
damage is largely avoided in king penguins, there may be potential long- 
term effects on oxidative damage from foraging due to increased 
foraging effort or fasting duration. Fasting-associated increases in anti
oxidants may protect penguins from oxidant generation during 
breeding, as neither incubation nor chick rearing while fasting increases 
hydroperoxide levels (Colominas-Ciuró et al., 2017), however, antioxi
dant levels (total plasma antioxidant capacity and total non-protein 
thiols) decrease in incubating adult Magellanic penguins (Spheniscus 
magellanicus). These data suggest that incubating eggs may be more 
demanding than chick rearing due to potential antioxidant depletion 
(Colominas-Ciuró et al., 2017). Therefore, fasting may help limit 
oxidative stress in penguins, however, the underlying mechanism of this 
effect and its applicability to other species are still unknown. 

Examining the impacts of fasting on mitochondrial function and 
metabolic hormones may help elucidate the mechanisms by which 
fasting mitigates oxidative stress. Early work shows that fasting in king 
penguins decreases mitochondrial oxygen consumption and uncoupling 
protein activity (Rey et al., 2008). While decreased mitochondrial 
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respiration could limit oxidant generation, a decrease in uncoupling 
proteins would undermine this effect (Harper et al., 2004). A recent 
study proposed that animals living in extreme conditions may have 
evolved physiological mechanisms to protect against environmental or 
oxidative stress (Stier et al., 2019). In king penguins, elevated basal 
levels of glucocorticoids are positively correlated with increased GSH 
and decreased mitochondrial efficiency (Stier et al., 2019). There are 
likely other mechanisms modulating redox homeostasis besides gluco
corticoids, as basal glucocorticoids increase during advanced fasting in 
adults (Cherel et al., 1988) but not in chicks (Le Ninan et al., 1988). 
However, the increase in glucocorticoids due to fasting is present in 
other species and offers a promising avenue to understand how fasting 
regulates redox balance (Angelier et al., 2015). House sparrows (Passer 
domesticus) show similar results to king penguins as glucocorticoids 
decrease MDA in these animals (Vágási et al., 2018), suggesting that the 
protective nature of glucocorticoids and fasting may be broader than in 
Spheniscidae alone. Blue petrels (Halobaena caerulea) that fast for long 
periods have higher antioxidant capacity and lower oxidative damage 
than shorter fasting Antarctic Prions (Pachyptila desolata; Costantini and 
Bonadonna, 2010), which further supports the idea of a protective role 
for fasting in redox homeostasis. Taken together, data from birds cor
roborates mammalian studies that show a protective effect of fasting on 
oxidative stress. Across endothermic species and life history stages, 
fasting is associated with elevated antioxidants and decreased oxidative 
damage. Due to a temporal overlap between fasting and physiologically 
expensive activities such as reproduction and migration, the mecha
nisms underlying such effects remain largely elusive, however, studies in 
birds highlight the potential roles of fuel utilization, mitochondrial 
function, and glucocorticoids in sustaining redox balance in naturally 
fasting animals. 

2.3. Reptiles and amphibians 

Fasting-associated metabolic depression allows ectothermic verte
brates to optimize the use of endogenous energy reserves in challenging 
environmental conditions. Some amphibians and reptiles can reduce 
their metabolic rate by 60-90% and fast for over a year (Secor and Carey, 
2016). Fluctuations in tissue oxygen availability during arousal, how
ever, likely increase ROS generation. Thus, preparation for oxidative 
stress (Hermes-Lima et al., 2015) or rapid increases in antioxidant de
fenses during arousal are important strategies for preventing or miti
gating oxidative damage. 

Similar to mammals, many reptiles and amphibians cope with 
oxidative stress using physiological and metabolic adjustments associ
ated with fasting. Tegu lizards (Salvator merianae) decrease their meta
bolic rate by 80% upon entering dormancy during subtropical 
hibernation. This transition decreases intestinal GSH, GPx, and GST, but 
lipid hydroperoxides also decrease, suggesting that winter dormancy in 
Tegu lizards does not induce oxidative stress despite antioxidant 
depletion (Moreira et al., 2018). In contrast, the European common 
lizard (Lacerta vivipara) survives freezing during hibernation by upre
gulating SOD and GPx (Voituron et al., 2006). Transcriptomic and 
proteomic analyses in hibernating Central bearded dragons (Pogona 
vitticeps) show upregulation of genes and proteins involved in antioxi
dant defense and mitochondrial upkeep in the brain, muscle and heart 
(Capraro et al., 2019). Moreover, freezing in wood frogs (Rana sylvatica) 
increases ferritin heavy chain and SOD2 protein abundance (Gupta 
et al., 2020), while freezing in Garter snakes (Thamnophis sirtalis parie
talis) increases muscle GSH, catalase and GPx, along with lung catalase, 
suggesting that freezing activates systems involved in peroxide removal 
in preparation for increased ROS generation during thawing (Hermes- 
Lima and Storey, 1993). Likewise, grass snakes (Natrix natrix) increase 
GST activity after hibernation. This increase likely mitigates oxidative 
damage associated with reoxygenation, possibly via reduction of lipid 
hydroperoxides (Yang et al., 2001), despite decreases in GR and catalase 
in this species (Gavric et al., 2015). Paradoxically, high metabolic rates 

may also help reptiles avoid oxidative damage during arousal. Grass 
snakes acclimated to warm temperatures (32◦C) have 7-fold higher 
metabolic rates compared to cold-acclimated snakes (18◦C). Hydroper
oxide levels are lower in warm- than in cold-acclimated snakes, sug
gesting that high metabolic rates help limit oxidative stress (Bury et al., 
2018). While the mechanism underlying such reductions in lipid hy
droperoxides remains unknown, the glutathione system plays an inte
gral role in this process and overall maintenance of redox homeostasis 
across many species of hibernators. 

In contrast to the protection against oxidative stress described above, 
some reptiles and amphibians incur selective oxidative damage associ
ated with hibernating fasts. The soft-shelled turtle (Pelodiscus sinensis) 
experiences lipid peroxidation (as measured by TBARS) in the spleen, in 
which vitamin C levels are nearly exhausted during hibernation (Chen 
et al., 2019), while the heart, brain and liver remain protected (Baker 
et al., 2007). These animals activate Nrf2 and upregulate SOD, catalase, 
and GPx3 expression upon arousal (Zhang et al., 2017). Vitamin C levels, 
which decrease during hibernation in most soft-shelled turtle tissues, 
recover to pre-hibernating or even higher levels and are associated with 
decreased splenic MDA during arousal (Chen et al., 2019). Similarly, 
increased vitamin C levels during arousal from hibernation provide 
neuronal cytoprotection to pond slider turtles (Trachemys scripta) (Rice 
et al., 2002). In contrast, Asian toads (Duttaphrynus melanostictus) 
display increased lipid peroxidation (as measured by TBARS), protein 
oxidation and a shift toward GSSG in the liver and brain during hiber
nation despite high vitamin C levels (Sahoo and Patnaik, 2020), and 
hibernation suppresses antioxidant defenses inducing oxidative stress in 
Nanorana parkeri frogs (Niu et al., 2018). Overall, these results are 
consistent with findings in hibernating mammals, which show species-, 
tissue-, and time-specific patterns of antioxidant protection. Moreover, 
these results also suggest that some species including Asian toads and 
N. parkeri frogs likely mitigate oxidative damage by upregulating anti
oxidant defenses upon arousal. 

Dry conditions, high temperatures, and low food availability pose a 
threat to ectotherms; some frog species estivate to mitigate the detri
mental effects of these conditions. In green-striped burrowing frogs 
(Cyclorana alboguttata) estivation decreases metabolism by 70%, muscle 
and heart mitochondrial H2O2 generation by 88-94% (Reilly et al., 
2014), and causes global changes in gene expression (Reilly et al., 2013). 
Muscle genes differentially expressed during this period participate in 
cytoskeletal remodeling, energy metabolism, redox homeostasis, the 
cellular stress response and apoptotic signaling (Reilly et al., 2013). 
Moreover, estivation maintains or increases SOD activity and expres
sion, HSP70 abundance, and total antioxidant capacity; accordingly, 
lipid peroxidation (MDA) does not increase during estivation (Hudson 
et al., 2006; Young et al., 2013a, 2013b). Similarly, the Brazilian Caa
tinga’s frog (Proceratophrys cristiceps) prepares for arousal-induced ROS 
generation by increasing GSH, catalase and GPx during estivation 
(Moreira et al., 2020). Thus, transcriptional and biochemical changes 
during estivation help frogs conserve cellular functions and avoid 
oxidative stress and muscle atrophy during arousal. 

Hibernation and estivation represent energy-saving strategies which 
coincide with fasting. In contrast, some reptiles also fast during ener
getically expensive capital breeding seasons. In the aspic viper (Vipera 
aspis) reproduction increases lipid peroxidation despite upregulation of 
antioxidant defenses in pregnant snakes (Stier et al., 2017), suggesting 
that oxidative stress is a cost of reproduction. In loggerhead sea turtles 
(Caretta caretta) plasma SOD decreases as the nesting season progresses 
(Perrault and Stacy, 2018). Although oxidative damage markers have 
not been measured concurrently, these results suggest that oxidative 
damage may be a cost of reproduction in sea turtles. Thus, while most 
fasting amphibians and reptiles avoid oxidative damage derived from 
hibernation and estivation, oxidative stress is likely a trade-off for 
reproduction in fasting capital breeders. 
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2.4. Fish 

Temperate salmonids fast during migration, though their fasting 
strategies vary widely. Adult salmonids incur reproductive costs due to 
long migrations (Healey, 2001). In contrast, parr optimize migration 
using bimodal feeding; they either fast during the autumn-winter 
months and defer migration for a year, or feed and migrate sooner 
(Metcalfe and Thorpe, 1992). Additionally, when exposed to cold tem
peratures, trouts (Salmonidae) stop feeding or defer food assimilation 
(Simpkins and Hubert, 2000). While some studies have measured the 
effects of fasting on oxidative stress during natural conditions, most 
reports evaluate changes in redox homeostasis during experimental 
conditions in salmonids and other teleost species. 

Fasting promotes cold resistance in zebrafish by modulating lipid 
catabolism and autophagy, and by increasing SOD, GPx, and HSPa5 
expression (Danio rerio; Lu et al., 2019). Similarly, fasting upregulates 
catalase, GPx, GR, and mitochondrial and cytosolic SOD activities in 
estivating African slender lungfish (Protopterus dolloi; Page et al., 2010). 
Moreover, intermittent fasting increases liver activity of SOD and lyso
zyme in crucian carp (Carassius auratus; Li et al., 2019). Short-term 
fasting (2 days) simulates Nrf2 and upregulates SOD1, SOD2, catalase 
GPx, and GST in skeletal muscle of juvenile Chinese perch (Siniperca 
chuatsi; Wu et al., 2020), while fasting for seven days increases GST, GR, 
GPx and catalase activities in catfish (Hoplosternum littorale) gills (Rossi 
et al., 2015), and hepatic SOD, GPx, GST, and catalase expression in 
rockbream (Oplegnathus fasciatus; Nam et al., 2005). Overall, these data 
show that fasting upregulates enzymatic antioxidants across multiple 
fish species. 

In contrast, experimental long-term (21-28 days) food deprivation 
increases lipid peroxidation (as measured by TBARS) in catfish (Rossi 
et al., 2015), and decreases hepatic GST and GPx expression in rainbow 
trout (Oncorhynchus mykiss; Salem et al., 2007) and zebrafish (Drew 

et al., 2008). Moreover, food deprivation for two weeks reduces hepatic 
metabolic capacity while increasing mitochondrial H2O2 generation in 
brown trout (Salmo trutta; Salin et al., 2018). These results show that 
while short-term fasting prevents oxidative stress by modulating 
endogenous antioxidants in fish, prolonged food deprivation promotes 
ROS generation and oxidative damage (Furne and Sanz, 2018). 

Detrimental effects of long migrations in salmons include reduced 
offspring output and oxidative stress (Shpak and Proulx, 2007). Hepatic 
lipid peroxidation increases through the return journey in the kidney of 
Chinook salmon, Oncorhynchus tshawytscha. Similarly, lipid hydroper
oxides increase with migration in juvenile Chinook salmon while 
vitamin E levels decrease (Welker and Congleton, 2005). Moreover, 
hepatic and ovary thiamine (vitamin B1) concentrations decrease along 
the spawning run in Atlantic salmon (Salmo salar). These changes are 
associated with increased hepatic MDA and decreased glucose-6- 
phosphate dehydrogenase activity (Vuorinen et al., 2020), which is 
critical for maintaining intracellular GSH levels (Salvemini et al., 1999). 
Moreover, the antioxidant response is tissue-specific in Pacific salmon 
(Oncorhynchus spp.) in which DNA damage and total antioxidant ca
pacity increase at the end of migration in plasma and brain, but not in 
liver, red, or white muscle (Wilson et al., 2014). Overall, these studies 
suggest that long migrations promote oxidative stress in salmon by 
decreasing antioxidant defenses. 

Behavioral strategies during reproductive migrations ameliorate 
oxidative stress in glass eels (Anguilla anguilla). Eel hatchlings can 
become temporary estuarine residents, which have lower oxidative 
stress compared to their oceanic counterparts (Bolliet et al., 2017). 
Similarly, salmon undergo a pre-migration fasting period triggered by 
fluctuations in water chemistry (e.g., salinity, pH), which stimulates 
oxidative phosphorylation and glycolytic potential, likely decreasing 
ROS generation (Miller et al., 2009). Moreover, migrating salmonids 
(Salmo trutta) have higher GSH levels and total antioxidant capacity than 

Fig. 3. Responses that mitigate oxidative stress in fasting-adapted species. 
Hibernation, estivation, breeding, maturation, or migration alter metabolic rates in a variety of animals. These fluctuations often elevate rates of reactive oxygen and 
reactive nitrogen species generation, increasesing the potential for oxidative damage. Fasting-adapted organisms such as seals, bears, squirrels, penguins, and turtles 
elevate antioxidant levels, prioritize redox balance in key tissues, and alter behavior to mitigate oxidative damage. 
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residents, and future migration date is negatively correlated with anti
oxidant capacity, suggesting that antioxidant potential is associated 
with migratory capacity in salmonids (Birnie-Gauvin et al., 2017). 
Overall, these results show that behavioral strategies and 
environmentally-dependent antioxidant responses mitigate migration- 
induced oxidative stress in glass eels and migrating salmons. 

Fasting associated with mouthbrooding (Faber-Hammond et al., 
2019), increases circulating hydroperoxides while decreasing gill cata
lase expression in East African cichlids (Astatotilapia burtoni; Keller et al., 
2017; Sawecki et al., 2019). In contrast, mouthbrooding increases 
abundance of HSP70 and natural killer cell enhancing factor, which has 
peroxidase activity, in oral mucus of tilapia fish (Oreochromis spp.; Iq and 
Shu-Chien, 2011). In smallmouth bass (Micropterus dolomieu), parental 
care decreases feeding opportunities (Hanson et al., 2009), but does not 
increase lipid hydroperoxides, protein or DNA oxidation (Wilson et al., 
2012). Thus, these studies show that while energetically expensive 
reproductive behaviors that limit food consumption alter redox ho
meostasis in fish, they do not always result in oxidative damage. This 
further highlights the importance of measuring antioxidants as well as 
oxidative damage markers when examining oxidative stress. 

3. Conclusions and future directions 

Prolonged food deprivation in wild vertebrates accompanies a range 
of extreme or energetically expensive life history events. Notably, 
fasting-adapted animals avoid starvation during prolonged food depri
vation by using lipids as a fuel source, effectively extending Phase II, but 
increasing the risk of lipid peroxidation. Oxidative stress is also a po
tential consequence of oxygen fluctuations resulting from prolonged 
metabolic suppression and inactivity (hibernation, estivation) or 

Table 1 
Protective redox mechanisms altered by fasting across different life history 
events and taxa.   

Taxonomic 
group 

Life history 
event 

Redox strategy Citation 

Mammals Squirrels Hibernation ↑ NRF2, HIF-1α, 
SOD1, GPx1, HO- 
1, GRP75 

Carey et al. 
(1999, 2000, 
2003); Ma 
et al. (2005)  
Morin et al. 
(2008); Ma 
(2013); Wei 
et al. (2018) 

↓ body temp, 
metabolic rate 

Bears Hibernation ↑ NRF2, Prdx6, 
uncoupling 
protein 2 

Chauhan 
et al. (2002); 
Fedorov 
et al. (2009); 
Shimozuru 
et al. (2012); 
Stenvinkel 
et al. (2013); 
Li et al. 
(2015);  
Chazarin 
et al. (2019) 

↓ mitochondrial 
electron transfer 
chain complexes 
I, II, and III 

Bats Hibernation ↑ antioxidants, 
conditioning 
response 

Gómez- 
Cabrera et al. 
(2008);  
Gomes et al. 
(2012); Yin 
et al. (2016) 

Elephant 
seals 

Breeding, 
maturation 

↑ Nrf2, XO, SOD, 
GPx, catalase, 
HIF-1ɑ, GSH, 
Prdx6, GST, GR 

Vázquez- 
Medina et al. 
(2010, 
2011c, 
2013);  
Soñanez- 
Organis et al. 
(2012, 
2013);  
Sharick et al. 
(2015) 

Birds Migratory 
birds 

Migration ↑ Lipid and 
protein 
utilization, GPx, 
glucocorticoids, 
consumption of 
foods high in 
antioxidants, 
antioxidant 
upregulation 

Ku and Sohal 
(1993);  
Perez- 
Campo et al. 
(1998);  
Hulbert et al. 
(2007);  
Weber 
(2009);  
Kuzmiak 
et al. (2012); 
Jenni- 
Eiermann 
et al. (2014); 
Eikenaar 
et al. (2017, 
2020);  
Vágási et al. 
(2018) 

↓ mitochondrial 
O2

•− generation, 
metabolic rate, 
carbohydrate 
utilization 

Penguins Breeding ↑ SOD, GSH, 
glucocorticoids 

Rey et al. 
(2008);  
Schull et al. 
(2016);  
Colominas- 
Ciuró et al. 
(2017); Stier 
et al. (2019) 

↓ mitochondrial 
oxygen 
consumption 

Reptiles Lizards, 
frogs, 
snakes, 
turtles 

Dormancy, 
hibernation, 
arousal 

↑ Nrf2, SOD, GPx, 
GSH, catalase, 
GST, vitamin C, 
mitochondrial 
upkeep 

Hermes- 
Lima and 
Storey 
(1993);  
Yang et al. 
(2001); Rice 
et al. (2002); 
Voituron  

Table 1 (continued )  

Taxonomic 
group 

Life history 
event 

Redox strategy Citation 

et al. (2006); 
Gavric et al. 
(2015);  
Zhang et al. 
(2017); Bury 
et al. (2018); 
Moreira 
et al. (2018); 
Capraro 
et al. (2019); 
Chen et al. 
(2019) 

Amphibians Frogs Estivation, 
arousal 

↑ SOD, HSP70, 
GSH, catalase, 
GPx 

Hudson et al. 
(2006);  
Young et al. 
(2013a, 
2013b);  
Moreira 
et al. (2020) 

Fish Fish Cold 
exposure, 
migration, 
reproduction 

↑ Nrf2, SOD, GPx, 
HSPa5, catalase, 
GPx, GR, 
lysozyme, GST, 
glycolytic 
potential, GSH, 
total antioxidant 
capacity, HSP70 

Page et al. 
(2010); Nam 
et al. (2005); 
Miller et al. 
(2009); Iq 
and Shu- 
Chien 
(2011);  
Rossi et al. 
(2015);  
Birnie- 
Gauvin et al. 
(2017);  
Bolliet et al. 
(2017); Lu 
et al. (2019); 
Li et al. 
(2019) 

Choose to migrate 
or not  
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energetically-demanding processes (migration, reproduction), which 
may jeopardize fitness. Naturally fasting-tolerant vertebrates, however, 
are well-equipped to handle oxidative stress associated with these life 
history events and share some similarities (Fig. 3), though some of the 
molecular strategies for coping with these conditions appear to be spe
cies-, tissue-, and life history stage-specific (Table 1). Despite the broad 
range of strategies employed, the redox-sensitive transcription factor 
Nrf2 plays a major role in the maintenance of redox homeostasis during 
fasting across taxa. Additionally, selective maintenance of redox balance 
in specific tissues such as the brain and heart suggests that complete 
prevention of oxidative damage is often prohibitively expensive and that 
animals can maintain fitness by protecting key tissues while allowing 
selective injury in other repairable systems such as lipid stores. 

Disentanglement of the metabolic and molecular components of 
fasting from concurrent life states (e.g. migration, reproduction) re
mains challenging, but expanded sampling regimes, inter-species com
parisons, and a combination of field and laboratory studies when 
possible, will bolster our current understanding of how fasting-tolerant 
species cope with metabolic challenges while preventing oxidative 
damage. Moreover, the study of these physiological responses in natu
rally fasting-adapted species can provide a better understanding of the 
protective effects of fasting in non-adapted species including humans, 
with subsequent implications for the prevention of metabolic and age- 
associated pathologies and possibly lifespan extension. 

In addition to the myriad strategies employed by different taxa for 
coping with prolonged fasting, generalization is further complicated by 
the range of assays employed in the studies reviewed in this manuscript. 
TBARS, a popular colorimetric assay of lipid peroxidation, is not specific 
for lipid peroxidation products (MDA) unless these are detected by mass 
spectroscopy. F2-isoprostane levels are a more accurate measure of lipid 
peroxidation, though true specificity is again only achieved using mass 
spectroscopy (Forman et al., 2015). The determination of protein 
carbonylation is the most extensively used marker for protein oxidation, 
but not all the methods are equal in robustness, accuracy, and reliability 
(Suzuki et al., 2010; Rogowska-Wrzesinska et al., 2014). Though fasting 
regimes differ between natural events in wild animals and interventions 
in humans and laboratory models, the similarities in the redox response 
underscore potentially similar adaptive mechanisms behind the bene
ficial effects of fasting on ameliorating oxidative stress in humans. 
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Pavlovic, S., Saičic, Z., 2015. Biomarkers of oxidative stress and acetylcholinesterase 
activity in the blood of grass snake (Natrix natrix L.) during prehibernation and 
posthibernation periods. Braz. Arch. Biol. Technol. 58, 443–453. 

Giraud-Billoud, M., Rivera-Ingraham, G.A., Moreira, D.C., Burmester, T., Castro- 
Vazquez, A., Carvajalino-Fernández, J.M., Dafre, A., Niu, C., Tremblay, N., Paital, B., 
Rosa, R., Storey, J.M., Vega, I.A., Zhang, W., Yepiz-Plascencia, G., Zenteno-Savin, T., 
Storey, K.B., Hermes-Lima, M., 2019. Twenty years of the “Preparation for Oxidative 

Stress” (POS) theory: ecophysiological advantages and molecular strategies. Comp. 
Biochem. Physiol. A. Mol. Integr. Physiol. 234, 36–49. 

Gomes, E.C., Silva, A.N., de Oliveira, M.R., 2012. Oxidants, antioxidants, and the 
beneficial roles of exercise-induced production of reactive species. Oxidative Med. 
Cell. Longev. 2012, 756132. 
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