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Abstract

This paper introduces the skeletal-based microstructure representation. The skeletal
representation allows for compact storage while capturing the main characteristics of the
microstructure; and the separation of geometry and topology. The skeletal representation
consists of two elements: primitive-based skeleton, representing topology, and a kernel rep-
resenting the shape of the primitives in the skeleton. We supplement the representation with
three operations: skeletonization, primitive identification, and convolution of the skeleton
with a kernel. To demonstrate the robustness of the representation, we perform a quantita-
tive study to show the decrease in the number of parameters needed to represent the several
types of microstructure with respect to the voxel-based representation. We report a low
error of reconstruction of the proposed representation method.

Keywords: Microstructure representation, skeletonization, convolution surfaces,
microstructure informatics.

1. Introduction

The microstructure is a complex hierarchical and spatial internal organization of a ma-
terial system which controls the system’s properties. Microstructure images are collected
through tedious imaging processes [1, 2] or via simulations [3, 4] with the goal to provide
detailed, high-resolution, raw data. The raw data can be stored as structured data (e.g.,
micrograph from SEM [1] and phase field simulations [3]), or unstructured data (e.g., point
cloud data from APT [5] and molecular dynamic simulations [4]). The size of the raw data
depends on the resolution and the size of the sample, with even modest samples having sizes
in the range of 1002 to 1003. In this context, imaging techniques inevitably produce high-
dimensional datasets. This high dimensionality poses the challenge of extracting a small set
of physically meaningful descriptors (to establish process structure property [PSP] maps)
that explain the most of the variability observed in material properties. Moreover, when
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approaching the inverse design of a microstructure with desired properties, the high dimen-
sionality significantly limits the search for optimal design due to the high number of design
variables to be explored. In both cases, the capabilities heavily depend on the microstructure
representation.

Significant foundational work has been done in defining various representations to gain a
fundamental understanding of material behavior and for inverse design. The microstructure
representation methods include voxel-based representations, characterization via physical
descriptors [6] [7], statistical functions [8, 9], spectral density functions (SDF) [10, 11] and
machine learning methods [12, 13]. Machine learning methods, have been adopted only
recently, while the other methods have been advancing over the last decade, for example,
statistical functions that include two-point correlation functions, lineal-path functions, and
cluster correlation functions [14, 15]. More details on various representations can be found
in the review papers [6, 16].

The choice of representation is directly linked to the task at hand. For example, when con-
structing a PSP link is of interest, microstructure characterization using physical descriptors
provides interpretable features. Descriptors include volume fractions of constituents, total
surface area, pore sizes, tortuosity and aspect ratio, among others [7, 17]. Descriptors also
include the information about the geometry of the microstructure with limited topologi-
cal information. Another class of microstructure representation is spectral density function
(SDF) that treats the microstructure as a realization of a random field. The SDF of a mi-
crostructure is defined as the squared magnitude of its Fourier transform and is su�cient
to characterize some microstructures [18]. It can take a simple parametric form and use it
for inverse design through a phase recovery technique [19]. In this sense, SDF provides a
low-dimensional representation for di↵erent microstructure types. This is e�cient in captur-
ing individual features and randomness in the microstructure; however, it cannot explicitly
capture topological features such as type and degree of branching or intersections.

Although various methods of microstructure representation exist, none of these explic-
itly capture or characterize the topology of the microstructure. The need for topological
descriptors is rea�rmed by recent studies on the mechanical properties of nano-porous gold.
Mangipudi et.al. [20] showed that the prefactor in the scaling law of sti↵ness and strength in
nano-porous gold scales linearly with the genus (topological descriptor) of the cellular solid
topology. This is particularly significant because, by considering the topology, a more gen-
eral law that spans across several materials has been proposed. This example demonstrates
a lack of a topology-centric representation which further limits the knowledge discovery and
materials design at the microstructural scale.

In this paper, we introduce a topology-centric alternative for microstructure represen-
tation. The skeletal representation explicitly captures the topological features of the mi-
crostructure. The representation requires significantly fewer variables to preserve the mi-
crographs, while providing basic operations for the microstructure reconstruction as well
as structural feature characterization. The reduction of the variables is favourable for e�-
cient microstructure optimization and inverse design. Microstructure reconstruction, on the
other hand, is critical for synthetic microstructure generation that aids the consideration of
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topology and geometry separately. For example, the proposed representation will allow for
explicit access to the topological features and the domain sizes independently.

We formulate the skeletal representation for microstructural data and describe three oper-
ations associated with the representation: skeletonization, primitive extraction, and convolu-
tion. We demonstrate the capabilities of our approach by performing two-way transformation
of a two-phase microstructure from a voxel-based representation to our representation and
vice versa. We show the performance of the representation for spinodal decomposition struc-
tures generated using the Cahn-Hilliard equation. We quantify the error of reconstruction
for the two-way transformation for several microstructures that vary in terms of topological
features (i.e., droplet-like structures vs. interpenetrated structures) and domain sizes. We
report a low number of primitives required to represent the microstructure topology and a
low error rate in reconstruction. The reported results demonstrate that the representation
not only decreases the size of the feature space, but it is also flexible enough to model shapes
for a wide range of microstructures.

2. Methodology

In this section, we provide the mathematical formalism for the skeletal representation of
the microstructure. We detail three algorithms that we use to convert the array of voxels
into a skeletal-based representation and then revert it back to the voxel-based representation.
Figure 1 depicts the steps for the two-way transformation and the operations associated with
the intermediate steps. The forward transformation involves the skeletonization operation
to identify the skeleton (symmetry axis). In our approach, we represent the skeleton in
two ways: as a set of voxels and as a set of primitives (e.g., line segments, arcs). We use
the terms voxel skeleton and primitive skeleton, respectively, to distinguish the two forms
of skeletons. The inverse transformation convolutes the primitive skeleton with potential
function or kernel function. The convolution operation is applied to every primitive to
produce a microstructure field. One iso-surface is selected from that field to segment the
microstructure into two phases. The parameters of the primitives and the kernel function
are optimized to minimize errors in reconstruction between the input microstructure and the
convolution result.

The input to the workflow is a segmented micrograph obtained from simulations or ex-
periments. For simplicity, we will consider two-phase microstructure, M . The segmented
microstructure is formally defined through a local state that can take values as defined in
Equation 1:

Mi,j =

(
0, if (xi,j, yi,j) 2 phase one

1, if (xi,j, yi,j) 2 phase two
(1)

where Mi,j corresponds to the local state at the location i, j in the input array M . The local
state can take one of two values, {0, 1} to denote phase one or two, respectively. We perform
all the operations on phase one (encoded in black). As mentioned previously, the procedure
is general and can be applied to the second phase, or it can be extended to multi-phase
material systems.
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Figure 1: Two-way transformation between voxel-based microstructure representation and skeletal repre-
sentation. The steps involved in the forward transformation are depicted in the top panel, while the steps
involved in the inverse transformations are depicted in the bottom panel.

2.1. Skeletal representation

The skeletal representation consists of two basic elements: the skeleton, which captures
topological features of the microstructure, and kernels that express the size and shape of the
microstructure components (Figure 1). The skeleton can be represented in several ways. For
example, the skeleton can be stored as an array of voxel positions Sv, which is the direct
output of the classic skeletonization algorithm. The dimensions of this representation is
smaller than the original voxel-based representation by at least one order of magnitude. The
second method of representation is performed by storing the skeleton as a set of basic shapes:
splines, arcs, line-segments, and points. In the simplest case, the voxels in the spatial graph
will be characterized as lines. However, the set of primitives is extendable to arcs, splines,
planes, and curved surfaces without the loss of generality. The decision as to the set of
primitives and their complexity depends on the task at hand. For example, if the goal is to
find the minimal set of basic primitives required to express the skeleton, then the increased
complexity of the allowable primitives should guide the decision.

Figure 2 illustrates the procedure for primitive extraction, and the last panel shows the
combination of arcs A, line-segments L, and points P . The set of A, L, and P are stored
as matrices (refer to Equation 2) with o, n and m elements, respectively. The coordinates
(x1, y1, z1) and (x2, y2, z2) represent the start and end positions of a line-segment or an arc
primitive. The arcs have a radius value (r) along with the start and end positions. The
position of the point primitive is stored as it’s (x, y, z) coordinates.
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Figure 2: Steps involved in extracting primitives from skeletons with the intermediate representations. The
first panel depicts the medial axis or the skeleton Sv with empty black circles, followed by the second panel
with the junction nodes (larger filled circles) and end nodes (smaller filled circles) marked. The third panel
shows the segmentation of branches into smaller segments of 12 pixels. The last panel depicts the skeleton
built with point, line-segment and arc primitives. The dashed red lines depict an example of primitives after
the merging operation (two adjacent arcs are merged and into one arc primitive).
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Once the set of primitives is defined, the second element of the representation consists
of a kernel function used for convolution. Each primitive si in the skeleton S with the
geometry gi(x) is convoluted with a kernel function h(x) to obtain a field fi(x). The local
features are obtained via integration of geometric function with a kernel (see Section 2.3).
The kernel is a continuous, monotonic function that defines the shape of the domains around
the primitive. The width of the domain is passed to the kernel function as a parameter s.
For a line-segment, we added two primitive parameters r1, and r2 to aid in controlling the
width of the domains along the segment. The contributions of convolution integral from all
the primitives are added to form a convolution surface that best defines the microstructure
under investigation (see the last panel in Figure 3).

2.2. Forward transformation

The forward transformation includes the following steps: skeletonization of the phase of
interest to obtain the voxel skeleton, node identification by segmenting the voxel skeleton into
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Figure 3: Elements of skeletal-based representation: (left) primitive-based skeletal representation with set of
points P , line segments L and arcs A and (right) convolution surfaces using a kernel of varying complexity:
with only one control variable s, or two additional radii r1 and r2 for end points (enabling linear change of
thickness along the primitives). The convolution surface is selected after field functions are blended together
using addition, and one iso-surface is selected.

skeletal segments, and skeletal segment classification into a set of basic shapes to obtain the
primitive skeleton. The primitive skeleton is the key element of our skeletal representation.
The panels in Figure 2 show the transition from the voxel skeleton to the primitive skeleton.
We describe the steps involved in the transformation in the following sections.

Step 1: Skeletonization
In the first step, we use the skeletonization algorithm to extract the target phase’s medial
axis. In the classic skeletonization algorithm [21], the medial axis is represented as the subset
of voxels (from input object) having more than one closest point on the object’s boundary.
In this work, the object corresponds to the targeted phase, and the boundary of the object
corresponds to the interface between two phases.

Several approaches for performing skeletonization exist (distance transform [22], Voronoi
based [23], thinning [24, 25]). In this paper, we use the thinning algorithm proposed by
Pudney [25]. The object of interest is the black phase of the input microstructure, and
the boundary consists of the black voxels at the phase interface. First, the distance map
of the object is computed, i.e., for every voxel belonging to the object, the distance to the
boundary is computed. Next, using the distance maps, the boundary is gradually eroded in
the normal direction from the boundary until no further erosion is possible. As an outcome,
the medial axis is identified as a set of voxels. Formally, the medial axis corresponds to the
subset of points from input microstructure Sv = p 2 M , where points p belong to the input
discrete two-phase microstructure M . The first panel of Figure 2 depicts the two-phase
microstructure (white and gray), and the corresponding skeleton determined for the phase is
colored gray. The skeleton or the medial axis is illustrated in black points in the first panel
of Figure 2.

Step 2: Node identification
In this step, we identify the junction and end nodes along with the skeleton. Junction nodes
are the voxels at the intersections in the skeletal branches, and as the name suggests, end
nodes are the end voxels of the skeletal branches. The nodes are identified by traversing
through the skeletal voxels and inspecting their local neighborhoods. For each voxel in Sv,
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we count the skeletal voxels in the Moore neighborhood. In two dimensions, the Moore
neighborhood consists of eight nearest neighbors: first- and second-order neighbors. The
skeletal voxels with more than three skeletal neighbors are marked as potential junction
nodes.

Once all potential junction nodes are identified, we screen them again. When several
potential junction nodes are identified in the immediate neighborhoods, only one node with
the highest number of neighbors is marked as a true junction node. However, if more than two
potential junction nodes have the highest number of potential junction nodes in their Moore
neighborhood, we focus on the von Neumann neighborhood (in two dimensions, the von
Neumann neighborhood consists of the four first-order neighbors). The potential junction
node with the most neighbors in the von Neumann neighborhood is marked as the true
junction node.

The end nodes are identified in a straightforward manner from Sv. The skeletal voxels
with exactly one skeletal neighbor in the Moore neighborhood are the end nodes. The true
junction nodes are illustrated as larger filled-in circles in the second panel of Figure 2; they
are expressed as i, and the end nodes are smaller filled-in circles denoted by e. The branches
of the voxel skeleton Sb separated by junction nodes and/or end nodes are stored separately.

Step 3: Primitive extraction
Given set of branches Sb = {s1, s2, ..., st}, we now identify the primitive (from the set of
allowable primitives). For each branch si, using all skeletal voxels between two intersection
nodes and/or end nodes, one of the primitives is selected based on the minimum least squares
error of fit. The primitives can be as simple as points and line-segments, or they can be
more complex shapes like splines. The shape selection of primitives depends on the goal
of primitive extraction. If the goal is to extract the major building blocks of the skeleton
while decreasing the dimensionality of the representation, then the set of available primitives
should be diverse enough to capture the complex segments accurately. However, in this
work, the goal is to represent the microstructure using two elements, primitives and kernels,
while demonstrating that reconstruction is possible with low error. Hence, a more balanced
approach is implemented.

In this paper, the primitives are assumed to be points, line-segments, and arcs, while
limiting the kernel to one type. Moreover, we first pre-segment voxel-skeleton into short seg-
ments (of length 12 voxels) and then perform segment merging, following the work of Herold
et al. [26]. This extra procedure is to ensure that the number of primitives is reflective of
the local complexity; moreover, the initial pre-segmentation ensures that the reconstruction
operates on fully resolved field from the convolution (see Supplemental Information for more
details).

Before explaining the merging step, we first explain the initial segmentation of the skele-
ton Sb into segments between i and e (intersection and end nodes). We segment voxel
skeleton into primitives satisfying the minimum length requirement of 12 pixels. It should
be noted that it may be impossible to ensure that the skeleton segmentation satisfies the
above requirement of minimal length. For example, this is the case for isolated droplets or
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when longer segments are divided into multiple sub-segments, leaving shorter remainder seg-
ments. In the latter case, the merging operation typically resolves the issue. If the merging
operation is impossible, e.g., for isolated droplets, two or three skeletal voxels are stored as
points. Again, the decision regarding the matching primitives depends on the task at hand.

After initial division of Sv into shorter segments (satisfying the minimal length require-
ment), the classification into primitives is performed. For the classification, the standard
regression approach is used, computing the least squares error to assign the set of available
primitives to the primitive form (more details are included in the SI section). Once initial
classification is completed to form Sp, merging between the nearest primitives is performed.
The two adjacent primitives are combined repeatedly until the error of skeleton reconstruc-
tion is low. In Figure 2, the primitives marked with dashed lines show examples of primitives
to be merged. The merging step is performed to ensure a good balance between complexity
of the primitives and total number of primitives.

2.3. Inverse transformation: convolution of primitive and kernel

The complementary operation to the skeletonization of the object is convolution with
a kernel function followed by iso-surface selection. The convolution operation provides a
simple way to rapidly define a shape along with the skeleton that is intuitive and easy to
model. Convolution surfaces have been used in computer graphics to model flexible, free-
forming objects of various shapes and sizes [27]. Here, we use convolution surfaces for the
purpose of inverse transformation, i.e., to convert skeletal representation back into voxel-
based representation.

Formally, a convolution surface in R3 is defined as the level set of a field function that
results from the integration of a kernel function h along with a skeleton Sp, which consists
of a set of geometric primitives g (i.e., points, line-segments, arcs, etc.). For each primitive,
the integral of itself and a kernel h (Equation 3) is evaluated as:

f(p) = g(p) ⇤ h(p) =
Z

V

g(r)h(p� r) dr (3)

Given the primitives in the skeleton and the associated fields fi, the final microstructure field
F (�!r ) is created by blending these features. By blending, we mean that a new, seamless
field is generated by summing the fields fi for individual primitives:

F (�!r ) =
X

i

fi(
�!r ), � = {�!r |T � F (�!r ) = 0} (4)

Once the microstructure field is constructed, one iso-surface � at a threshold T can be
selected from the field F (�!r ). The iso-surface separates the domain of interest V into the
two phases of the microstructure. For example, the gray phase in Figure 4 is an iso-surface
extracted for one of the phases.

Having defined the basic terms, identifying the convolution surface that defines the in-
terface between two phases involves three steps. In the first step, the convolution operation
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is performed between the basic geometric elements g(p) constituting the skeleton of the
microstructure and the kernel function h. For each basic primitive g(p), one field function
is constructed, fi. In the second step, the superposition principle is applied to aggregate
the field functions for all the geometric elements. The outcome from this step is one field
function F . In the final step, for the constructed field function, one iso-surface is chosen that
segments the domain into two regions corresponding to the two phases in the microstructure.

The geometric function can be as simple as a point or a line, or as complex as a spline
or a surface. The potential function kernel should be continuous, monotonic, and diminish
to a negligible contribution beyond a certain distance from the center. The example shape
is shown in Figure 4 (Cauchy kernel). The most common functions used as the kernel are
Gaussian, Inverse, Polynomial, and Cauchy functions [28].

For the convolution operator to be useful in the microstructure reconstruction, the field
function evaluation should be computationally e�cient. Moreover, a closed-form solution of
the field for a given combination of a kernel and a geometric function should be available.
This requirement limits the set of kernels that can be used in combination with primitives.
The kernels that yield analytical solutions decrease with the increase in complexity of the
primitives. For example, for almost all kernels, closed-form solutions with point primitives
have been derived. However, for complex primitives such as splines, a limited number of
kernels result in a closed-form solution.

In this work, we choose a small set of primitives, i.e., points and line-segments, in com-
bination with the kernel function, referred to as the Cauchy kernel proposed by McCormack
and Sherstyuk [29]. The function is defined in Equation 5:

h(r) =
1

(1 + s2r2)2
, r > 0 (5)

where r is the distance from an arbitrary point in the domain of interest to the primitive,
and s is the parameter that controls the width of the kernel.

The first two panels in Figure 4 illustrate the convolution operation for the point and
line-segment primitives with the Cauchy kernel. Intuitively, as shown in the second panel of
Figure 4, the kernel passes over the entire skeleton like a filter, calculating the convolution
solution in our domain of interest V for every voxel on the skeleton. As a result the field
function f is constructed. From the field function the one iso-contour with the same value
T in the field is selected to recover the phase in the microstructure. The field functions
for each primitive are aggregated to for a microstructure field used to reconstruct the input
microstructure.

The end goal of the inverse transformation is to recover the microstructure. Given the
skeleton represented as a set of primitives, the phase distribution can be reconstructed by
adjusting the kernel parameter s of each primitive. This parameter can be tuned to control
the overall thickness of the shape around given primitive. To provide additional control, for
segment primitive, two radii parameters are introduced: r1 and r2. These radii a↵ect the field
function and enables the linear change of the domain width along the line segment, e↵ectively
changing the shape of iso-surfaces. This is demonstrated in the last panel of Figure 4,
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where the gray surfaces are the reconstructed domains for three line-segment primitives.
These parameters provide an additional degree of freedom that help in reconstructing the
microstructure more e�ciently by allowing for an explicit representation of local changes in
the domains.

An explicit integral equation for varying the radius is provided for a line-segment of
length l is as follows:

p(k) = b+ k(a), 0  k  l (6)

where b is the base vector and a is the normalised axis. The squared distance between an
arbitrary point r and a point on the line-segment is

r2(k) = d2 + k2 � 2kda (7)

where d = ||d|| is the magnitude of a vector from segment base to r : d = r� b 1. The field
function for line-segment is:

Fline(r) =

Z 1

0

(gk + r1)dk

(1 + s2r2(k))2

=

Z 1

0

(g((2s2k � 2s2x)/2s2 + x) + r1)dk

(1 + s2r2(k))2

=

Z 1

0

g/2s2d(1 + s2(d2 + k2 � 2kx))dk

(1 + s2(d2 + k2 � 2kx))2
+

Z 1

0

(gx+ r1)dk

(1 + s2(d2 + k2 � 2kx))2

=
g

2s2(p2 + s2s2)
� g

2s2q2
+ (gx+ r1)(

x

2p2(p2 + s2x2)
+

l � x

2p2q2
+

✓

2sp3
)

(8)

where r1 and r2 are the radius of the start point and end point of a line, respectively. The
line-segment primitive of length l is defined as

g =
(r2 � r1)

l
x = d · a = (r� b) · a

✓ = arctan[
sx

p
] + arctan[

s(l � x)

p
]

(9)

p and q are distance terms defined as

p2 = 1 + s2(d2 � x2)

q2 = 1 + s2(d2 + l2 � 2lx)
(10)

1Equation 5, 6 and 7 are directly adapted from the original paper and an interested reader can refer [27]
for a detailed description
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Figure 4: Inverse transformation of the primitive-based skeleton using convolution surfaces. The convolution
operation for line-segment and point primitives with a kernel function is shown in the left two panels, followed
by iso-surface selection in the center panel. The summation of fields of individual primitives resulting in a
blended surface is shown in the right panel.

2.4. Microstructure reconstruction

The convolution operation is used to reconstruct the input microstructure. The recon-
struction aims to determine the voxel-based representation of the two-phase microstructure
from the skeletal-based representation. Inverse transformation or reconstruction is formal-
ized as an optimization problem such that given the skeleton, the error of reconstruction is
minimized for the kernel parameters: s, r1 and r2, for each primitive in Sb. In this paper, a
defined domain is the size of the micrograph under consideration. We consider microstruc-
ture samples of size (nx ⇥ ny) pixels, which are described in detail in Section 3. The error
of the reconstruction is computed as the pixel-wise di↵erence between the microstructures.
One phase is selected as the target phase for the reconstruction, with the associated skeleton
used to compute the microstructure field. The error of reconstruction is computed as

Er = fn + (w · fp) (11)

where, fn is the fraction of voxels with negative distance between reconstruction and reference
microstructure, and fp is the fraction of voxels with positive distance between reconstruction
and reference microstructure. The parameter w is the weight coe�cient found e↵ective for
faster convergence of the optimization. The value of w for this paper is set to 5.

The reconstruction can be performed for various set of primitives. In this paper, we
perform the reconstruction for the simplest set of primitives that includes line-segments and
points. Each line segment is represented as a pair of two points (x1, y1, z1) and (x2, y2, z2)
with two radii associated with each point (r1, r2). The corresponding design matrix is defined
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and consists of n line-segment primitives that define the skeleton. In some instances, the
reconstruction requires considering points. Similarly, the design matrix for the points is
defined as:

Pi,j =

2
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...

...
xm ym

3

7775

m⇥3

where, (x1, y1) are the coordinates of the point, with m points in the skeleton.
The term reconstruction of microstructures is more commonly used in materials in the

context of three-dimensional reconstructions from two-dimensional micrographs [30, 31]. It is
also used to describe the process of generating a set of statistically equivalent microstructures
with some desired characteristics [6]. In this work, we reconstruct the input microstructure to
discuss the robustness of the representation. The goal is to show that two-way transformation
is possible. This is important as microstructure optimization can be performed using skeletal
representation and then convoluted with the kernel to generate commonly used voxel-based
representation.

3. Results and discussion

In this section, we illustrate the capabilities and e�ciency of the proposed approach by
performing a two-way transformation on a set of microstructures. We demonstrate the com-
pactness of the skeletal representation in terms of the number of variables required to store
the input microstructure. We compute the reconstruction error between the microstructures
of forward and inverse transformation (voxel-based representation of microstructure and con-
volution surface representation of microstructure). We quantify the reduction in the design
space and the reconstruction error for a wide range of microstructures.

3.1. Data Generation

We test our approach on two-phase microstructures of organic thin films. The microstruc-
tures are representative of spinodal decomposition between two polymers [32]. Microstruc-
tures are generated using the numerical model of the Cahn-Hilliard (CH) equation [33, 34]:

@�

@t
= r · (MCHr(

@fFH

@�
� Cn2r2�)) (12)

where �(x, t) is the volume fraction of polymer (linked with the blend ratio between two
polymers) which evolves in time and space, MCH is the mobility, Cn is the Cahn number

12



which characterizes the length scale of the interface between two phases, and fFH is the
Flory-Huggins free energy defined in Equation 13:

fFH(�) = � ln�+ (1� �) ln (1� �) + ��(1� �) (13)

The first term of free energy quantifies the entropic and the second term quantifies the
enthalpic energy of dispersion between two polymers with the interaction parameter �. The
Cahn-Hilliard equation captures a rich and complex collection of interacting phenomena that
direct this morphology evolution - the mixture initially separates into phases very rapidly
(phase-separation), followed by slow and sporadic coarsening events.

We use the above characteristics of CH equation to generate a spectrum of microstruc-
tures by varying two parameters: blend ratio (�) and interaction parameter (�). Some
representative microstructures are included in Figure 5 along with the values of two param-
eters. By varying the blend ratio, we change the total volume fraction of the polymers.
Consequently, the type of microstructure changes from interpenetrated (� = 0.50) to more
droplet like morphology (� = 0.56). By varying � parameter, we change the strength of the
interactions between two polymers and consequently the initial domain size of microstruc-
ture that emerges from rapid initial phase separation. When interactions are strong (high
�), the initial domain size of microstructure that emerges from rapid initial phase separation
is small. When interactions are weaker (low �), the initial domain size of microstructure is
larger at the initial phase separation state. Regardless of � and � values, due to coarsening,
the domain size increases as time evolves.

We select four blend ratios � = {0.50, 0.52, 0.54, 0.56}, � = {2.4, 2.6, 2.8, 3.0} with fixed
Cahn number of Cn = 0.032. For each combination, we generate microstructures as a time
series that we call microstructure trajectory. For each trajectory, five microstructures are
taken for analysis as representative of early to the late stages of microstructure evolution.
Each microstructure is stored as a matrix of dimensions 400 ⇥ 100. The geometry of the
thin film is rectangular with an aspect ratio of four-to-one. The periodic boundary condition
is applied on sides to reflect the thin film geometry, while natural boundary conditions are
applied at top and bottom boundaries. Raw results from simulations are segmented into
two-phase microstructures.

A set of 10 replicas of every microstructure are generated. The replicas di↵er in terms of
random seed value used to initiate the random field of the initial conditions 2. In summary, 16
sampling points are explored with 5 time steps per trajectory, and 10 replicas per each sam-
pling point. Altogether, 800 microstructures are analyzed for the proposed microstructure
representation approach.

3.2. Technical details

The forward transformation requires two steps: identifying the voxel skeleton and the
primitive skeleton. The pixel-based skeletons of the microstructures were extracted using the
Skeletonize3D plugin of FIJI, a JAVA-based image processing tool, while primitive extraction

2The initial field is a random uniform perturbation around �, with zero mean and variance of 0.001.
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Figure 5: Example microstructures generated for testing: (a) microstructure with locally varying domains,
(b) interpenetrated structure, (c) droplet structure, panels (d-f) three microstructures from the same trajec-
tory at the first, second and fourth time index.

and reconstruction was performed using MATLAB. The identification of the voxel skeleton of
each microstructure requires less than 10 seconds on an Alienware PC with 2.20GHz Intel(R)
Core (TM) i7-8750H CPU and 32 GB of memory. Collectively, the forward transformation
of skeletal microstructure representation requires 30 seconds on an average.

The inverse transformation is more computationally demanding. The parameters of ker-
nels in convolution surfaces (refer Section 2.4) were optimized using the Nelder-Mead simplex
algorithm in MATLAB. The evaluation of the inverse transformation for a microstructure
with 60 line segments and seven point primitives takes less than three minutes to execute
on the aforementioned CPU. The evaluation time includes optimization of the convolution
parameters and calculating the final field F of the reconstructed microstructure.

3.3. Skeletonization and primitive extraction

In this section, we summarize the robustness of skeletal-microstructure representation
in terms of reduced dimensionality of the representation space. For the microstructures
under consideration, we compare the number of variables or primitives required to capture
the skeleton of the microstructure by first extracting the medial axis as the voxel skeleton
and then extracting the basic shapes or primitives from the medial axis as the primitive
skeleton. A summary of the number of primitives required to represent the microstructure
skeletons is presented in Table 1. Data in the individual rows of this table correspond to the
microstructure from one trajectory, with the index marking the order in time.

The third column of Table 1 lists the total number of the voxels on the voxel-skeleton
(skeleton). The number of voxels on the skeleton decreases with time (and index) from
1, 006 to 592. This trend is mirroring the dynamics of the coarsening. As domains coarsen,
their complexity decreases. For comparison, the input voxel-based representation requires
400⇥ 100 variables (given the second column of the table). The observed reduction in terms
of variables needed to store the microstructure is two orders of magnitude. This is under
the assumption that microstructure can be reconstructed, with point being the primitive of
choice and one parameters (s) per primitive.

Moving to the next level, where skeleton is reconstructed using set of primitives, Table 1
includes data for two configurations. Configuration 1 allows the skeleton to be reconstructed
using: arcs, line-segments, and points; while configuration 2 allows line-segments and points.
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Regardless of the configurations our results indicate that the skeletal representation requires
40 primitives on average to represent the skeleton. For configuration 1, initially 48 primi-
tives are required (compared with 15 at the later stages of the process). For configuration
2, we report similar number of primitives, here 50 primitives are determined to represent
the skeleton of the same microstructure. The number of points remain the same in both
configurations.

Further, in Figure 6, we compare the number of primitives required to represent skeletons
of the three example microstructures from di↵erent trajectories. For these microstructures,
we additionally compare the error of fit per primitive (Es in voxels) and the average primitive
length (l in voxels). The average primitive length is the average length of all primitives in a
given skeleton of one phase in the microstructure. Comparing configuration 1 and 2, the Es

is lower when both line-segments and arcs are used compared to when only line-segments are
used. However, for line-segments, it is still considerably low, with 0.75 voxels per primitive
and the average primitive length around 22 voxels. The Es is reported to be consistently
low (less than one pixel per primitive) for all the microstructures investigated.

Table 1: The number of primitives required to represent the microstructures from spinodal decomposition
using a combination of arcs, line-segments, and points.

Idx
Input
Space Skeleton

Configuration 1 Configuration 2
Arcs Lines Points Total Lines Points Total

1 40,000 1,006 18 19 11 48 53 11 64
2 40,000 828 13 21 3 37 42 3 45
3 40,000 712 11 16 2 29 33 2 35
4 40,000 608 7 9 0 16 21 0 21
5 40,000 592 5 9 1 15 18 1 19

Figure 7 depicts the trend of the number of primitives required to represent the mi-
crostructure skeleton. The figure consists of nine panels; each panel depicts the trend for
a selected combination of input parameters (� and �). Each panel is labeled with � and �
values at the top. For example, the first panel depicts the results for � = 0.50 and � = 2.4.
Each panel shows the number of primitives required to represent the skeleton as a function
of the time index in the microstructure trajectory (one to five). We include results for two
configurations as discussed in Table 1. The number of primitives when a combination of
arcs, segments, and points are used is plotted in a dashed black line. On the same plot, the
number of primitives is represented for the simpler configuration when only segments and
points are used is plotted as a solid blue line. The representative microstructures for the
cases in question are shown below every panel.

The total number of primitives remains comparable irrespective of the type of microstruc-
ture and configuration. The number decreases with the evolution of the microstructures.
This is because the microstructure becomes less complex at later stages with reduced num-
ber of branches. The number ranges from 50-60 for the initial stages and 10-20 for the later
stages. The number of primitives for both the configurations remains similar with a di↵er-
ence of ⇡ 10 primitives. In some case, the number of primitives is almost identical between
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Figure 6: Primitive-skeleton for the two configurations under consideration. The left column (a, b, and c) in-
cludes the original microstructure, the middle column (d, e, and f) depicts configuration 1 (arcs, line-segments
and points allowed to represent the skeleton), and the third column (g, h, and i) depicts configuration 2
(only line-segments and points allowed to represent the skeleton). For each of the primitive-based skeleton,
the average length of the primitive (l in pixels) and the error of fit (Es in pixels) are given.

the two configurations. For example, for � = 0.56 microstructures (third row in Figure 7)
two curves almost overlap. This can be explained by inspecting the microstructures. For
� values 2.4 and 3.0, most of the microstructure domains are droplets with points selected
as primitives. At � = 2.8, the structure comprises of straight branches, and so the counted
primitives consist mostly of segments.

All together, for the analyzed thin-film microstructures, we report a reduction of two
orders in the parameter space (in relation to the input 400⇥100 pixels). For the above anal-
ysis, it was observed that increasing the complexity in primitive type (configuration 1 vs.
configuration 2) does not lead to a significantly lower number of primitives required to recon-
struct the skeleton. However, the number of primitives depends on the choice of primitives.
We anticipate that adding more complex primitives like splines will reduce the dimensions
significantly. For configuration 1, the error of extracting primitives, Es, is consistently low,
with values remaining below one pixel per primitive for all microstructures. Therefore, for
the reconstruction step, we use configuration 2 (line-segments and points). We use convo-
lution surfaces to convey that the shape and size of the domains can be retained, and the
microstructures can be reconstructed from the skeletal branches to the original structure,
i.e., to demonstrate the two-way transformation.

3.4. Reconstruction

The second step of the two-way transformation involves reconstruction of the input mi-
crostructure from the skeletal-based representation. The aim is to demonstrate that inverse
transformation is possible and that the reconstruction error is low. We seek to reconstruct
two-phase microstructure based on a skeleton represented as a set of primitives (line-segments
and points). The line-segment and point primitives extracted from the pixel-based skeletons
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Figure 7: The total number of primitives used to represent skeletons of di↵erent microstructures. The
number of primitives for configuration 1 (arcs, line-segments, and points) is plotted in black dashed lines,
and configuration 2 (line-segments and points) is plotted in solid blue lines. Each row represents a particular
� value and column �. For example panels (a), (b) and (c) are representative of the behavior of number of
primitives along time for � = 0.50 and panels (a), (d) and (g) for � = 2.4. The example microstructures for
each of the � and � combinations are included below each plot.
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are stored as a matrix of dimensions n⇥8 and m⇥3 as explained in Section 2.4. The shapes
around the primitives are reconstructed with Cauchy kernel and it’s kernel parameter s.
Additionally for segments two radii controlling the width of the domains (r1 and r2) are
included.

Six representative microstructures are shown in Figure 8 (a-f). For each microstruc-
ture, we include two microstructures: the input microstructures (black voxels), and the
reconstructed microstructures (gray voxels). For each reconstructed microstructure, we ad-
ditionally add the outline of the input structures (black curves) for easier visual comparison.
The six microstructures are representative of a wide range of morphology types, ranging
from interpenetrated structures (top left) to droplet structures (bottom right). The first
column of microstructures (a, c, e) shows continuous structures with uniform domains and
smooth branching, whereas the microstructures in second column (b, d, f), especially the
first two microstructures, have locally varying shapes and domain sizes. The reconstructed
microstructures in the first column have smaller reconstruction error than the first two mi-
crostructures in the second column. However, overall, the reconstructions visually match the
original microstructures.

Figure 8: Convolution surfaces (gray) reconstructed from initial microstructures (black). The outline of
microstructures are drawn in black for comparison purposes. The left column ((a), (b) and (c)) includes the
performance of the proposed algorithm for smooth and long microstructures, and the right column ((d), (e)
and (f)) shows the performance for locally varying domains, and droplets. All the structures included are
from the initial stages of microstructure evolution.

To quantify the reconstruction for all considered microstructures, we calculate the error
of reconstruction. The errors in reconstruction for the microstructures at three � and � are
plotted in Figure 9. The error is defined as the pixel-wise di↵erence between the reconstructed
and the original microstructures, reported as the fraction of all pixels in the morphology.
This error is calculated as an average of the 10 replicas that are analyzed. As a reminder,
the replicas correspond to the same process (the same � and �) but are di↵erent realizations
of the same process.

Results in Figure 9 confirm low reconstruction error between 6-11%. Reconstruction
error decreases with microstructures evolving over time (index of time steps) as the structure
becomes less complex. The error rate is around 9% for the initial time steps, and it decreases
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to 6% for the final stages. The values range from 8% to 6% for interpenetrated structures and
from 6.5% to 5% for the droplet-like structure. This is because the skeletons of the droplets
are stored as points, and the convolution surfaces can be built more e�ciently. The error for
interpenetrated structures (� = 0.50, � = 2.4) and droplet-like structures (� = 0.56, � = 3.0)
are very similar, demonstrating the e�cacy of skeleton-based microstructure representation.

This error can be further decreased by using shorter segments in the skeletons. In the
extreme case, the skeleton can be represented as a set of points with the reconstruction
error converging to one percent. However, if the aim is to reduce the dimensionality of the
microstructure, the representation proposed in this paper is more preferred. If only points
are used to represent skeleton, the number of primitives and the corresponding design space
increases. Hence, the set of allowed primitives should be chosen according to the application.
A decision has to be made as to the dimensionality reduction of the number of primitives
vs. the e�cient representation of the shape and domain sizes of the microstructure.

4. Conclusions

In this paper, we introduced the skeletal microstructure representation to aid the charac-
terization, inverse design, and acceleration of quantitative structure-property relationships in
materials systems sensitive to microstructure. In our representation, the microstructures are
mapped to a lower-dimensional representation using skeletonization and primitive extrac-
tion. We reported the reduction in the representation size by three orders of magnitude. We
demonstrated the robustness of the representation with low reconstruction error for both
skeletonization and phase distribution. Although the methodology was demonstrated for
two-dimensional thin-films, it can be e↵ectively generalized for other microstructure types,
including multi-phase systems and three-dimensional anisotropic structures.

Data availability

The datasets generated and analyzed during the current study are available from the
corresponding authors on reasonable request.
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Supplementary Information

4.1. Error of Fit

The Es reported in Figure 6 is the average error of fit over all p primitives extracted from
the skeleton Sp:

Es =
1

p

pX

i=1

ei (14)

where ei is the absolute di↵erence between the skeleton and the primitive (line-segment or
arc) - defined in Equation 15 and 16. For example, in the first microstructure (panel (a) of
Figure 6), the primitive skeleton of configuration 1 (arcs and line-segments) has an error of
Es = 0.54 pixels. This is the average error over 37 primitives (18 arcs and 19 line-segments).

Formally, for each primitive, we calculate the error as follows:

e =
1

n

nX

i=1

| Alxi +Bl � yi | (15)
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e =
1

n

nX

i=1

|
p

(xi + ac)2 + (yi + bc)2 � r | (16)

where n is the total number of pixels with coordinates (xi, yi) in the skeletal branch under
consideration for fitting (with coe�cient of fit Al and Bl and ac, bc, cc for line segment and
arc, respectively). 3

In summary, we compute the error of fit for two candidate primitives, the error is in unit
of voxels. In the paper, we report the error of fit per primitive. This is an average error over
all primitives in a given microstructure.

4.2. Minimum line-segment length for fully resolved field

Figure 10: Field contributions by line-segments of length 6 and 12 pixels and the middle slice of their
resulting convolution surface (left). Fully resolved field of segments longer than 12 pixels vs. under-resolved
field for segments smaller than 12 pixels (right).

The minimum length of 12 pixels is chosen based on the criteria related to field function
F from the convolution operation. For short line-segments, the field is not fully resolved
(the maximum possible value of the function is not reached). Figure 10 depicts the field
contributions from three line segments of length 6, 12 and 20 pixels. The maximum field for
the segment of length 6 (pixels) is ⇡ 3.2 and for segment of length 12 and 20 it is ⇡ 4.

The problem becomes evident when two fields are blended together to form a convolution
surface. The convolution surface is obtained by keeping the values of iso-contour (threshold),
s (kernel parameter) and radii of the segments fixed. This bottom left of Figure 10 illustrates
this. The thickness of the convolution surface formed by the segment of length 6 pixels is
smaller than that of 12 and 20 pixels, despite the thickness parameters being constant for
both cases. This results in an uneven surface. As a consequence, at the reconstruction step

3where primitives are defined as: y = Alx+Bl and x2 + y2 + 2acx+ 2bcy + cc = 0.
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we observe the low convergence and high error of reconstruction. To some extent this issue
can be mitigated by the choice of s parameter for a shorter segment. However, to avoid this
additional layer of complexity, we put the limitation on the segment length.

To find the minimum length of the segment (the minimum length criteria), the maximum
value of the field function is the quantity of interest. The right panel of Figure 10 depicts
the increasing maximum value of the field for increasing segment length with saturation at
⇡ 4 for fully resolved field. The results show that for segments longer than 12 pixels (marked
with black filled point on the curve), the maximum value remains the same (here, ⇡ 4).
Hence, the minimum allowed segment length is set to 12 pixels. And since in this work, we
work with discrete data, we choose to provide the rule of thumb in terms of number of pixels
per segment.
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