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Microorganisms may exhibit rich swimming behaviours in anisotropic fluids, such as
liquid crystals, which have direction-dependent physical and rheological properties. Here
we construct a two-dimensional computation model to study the undulatory swimming
mechanisms of microswimmers in a solution of rigid, rodlike liquid crystal polymers.
We describe the fluid phase using Doi’s Q-tensor model, and treat the swimmer as
a finite-length flexible fibre with imposed propagating travelling waves on the body
curvature. The fluid–structure interactions are resolved via an immersed boundary method.
Compared with the swimming dynamics in Newtonian fluids, we observe non-Newtonian
behaviours that feature both enhanced and retarded swimming motions in lyotropic liquid
crystal polymers. We reveal the propulsion mechanism by analysing the near-body flow
fields and polymeric force distributions, together with asymptotic analysis for an idealized
model of Taylor’s swimming sheet.

Key words: micro-organism dynamics, liquid crystals

1. Introduction

Many organisms live in microfluidic environments, either biological or synthetic, where
the fluid inertia is negligible. In the so-called Stokes (or creeping) flows, Purcell’s
scallop theorem explains that performing time-reversible motions cannot generate
directional swimming or locomotion owing to kinematic reversibility (Purcell 1977).
Instead, microswimmers often adopt special propulsion strategies (i.e. swimming gaits).
Especially for those with slender shapes or having thin appendages (e.g. C. elegans,
E. coli, B. subtilis), it is well-understood that they can perform undulation or flagellar
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beating to generate directional motions by breaking symmetry (Lauga & Powers 2009).
Additionally, extensive research has been conducted to reveal rich dynamics and new
propulsion mechanisms that use the complex fluids’ intrinsic anisotropy arising from
the non-Newtonian physical and rheological properties. For example, while the extra
particle stresses from shear-thinning viscoelastic (e.g. Oldroyd-B) fluids generally impose
additional hindrance effects, it has been found that undulatory swimmers, such as C.
elegans, may leverage both the finite body-length and the polymeric stress relaxation to
achieve a higher swimming speed than that in Newtonian fluids (Teran, Fauci & Shelley
2010; Thomases & Guy 2014; Salazar, Roma & Ceniceros 2016). Furthermore, there
has been a growing interest in exploring non-equilibrium physics of biosynthetic active
materials ‘powered’ by many-body interactions in complex fluids that are capable of
exploiting collective dynamics for useful mechanical work (Ramaswamy 2010; Shelley
2016). Of particular interest is the study of active microparticles (e.g. motile bacteria)
in lyotropic liquid crystals (LCs) wherein the extra stress generation is determined
by the LC’s orientational order, which leads to intriguing swimming behaviours of
microswimmers, as well as far-from-equilibrium physical and topological properties of
the LCs (Zhou et al. 2014; Lavrentovich 2016; Lintuvuori, Würger & Stratford 2017;
Daddi-Moussa-Ider & Menzel 2018; Mandal & Mazza 2019).
So far, there have been several models proposed to study the dynamics of

microswimmers in lyotropic LCs. Zhou et al. (2017) employed a Q-tensor model (here
Q-tensor denotes the second-rank orientational order-parameter tensor) derived from the
generalized Ericksen–Leslie equation (Sonnet, Maffettone & Virga 2004) to solve for the
orientation field of LCs when a rigid, rodlike particle (B. subtilis) moves in a homeotropic
nematic cell where the director is perpendicular to the cell wall. They illustrated how the
induced shear determines the ordering patterns (or birefringent cloud) around the moving
particle. Using an Ericksen–Leslie model described by the nematic director field (Larson
1999) and enforcing the local director orientation to be tangential to the undulatory body
(i.e. tangential anchoring), Krieger, Dias & Powers (2015a); Krieger, Spagnolie & Powers
(2015b) studied the motion of Taylor’s swimming sheet (Taylor 1951), an infinite-length,
zero-thickness sheet with imposed small-amplitude travelling waves, in unconfined LCs.
The asymptotic solutions they derived suggest that both forward and backward motions can
be achieved in different parameter regimes, and the swimmer’s mean speed can be either
faster or slower than that in a Newtonian fluid. Similar bi-directional swimming motions
were reported by the same group when studying the motions of Taylor’s swimming sheet
in LCs confined by two parallel plates under the tangential anchoring condition (Krieger,
Spagnolie & Powers 2019). In addition to asymptotic analysis, they performed nonlinear
simulations using the immersed boundary (IB) method to resolve the fluid–structure
interactions of an infinite-length sheet with prescribed finite-amplitude travelling waves.
Nevertheless, as pointed out by Krieger et al. (2019), the Ericksen–Leslie model cannot be
robustly extended to more general cases where the anchoring direction is misaligned with
the director (e.g. homeotropic anchoring), and may break down owing to generations of
singularities in the director field.
Motivated by the prior studies and to further seek quantitative understanding of

swimming mechanisms in anisotropic fluids, we present a computational framework for
studying the undulatory motion of a finite-length microswimmer in a solution of liquid
crystal polymers (LCPs), a class of rigid, rodlike aromatic polymers that have much
larger sizes and higher aspect ratios than small LC molecules (e.g. para-azoxyanisole).
Compared with flexible polymers or molecule aggregates (e.g. lyotropic chromonic LCs
Zhou et al. 2014; Zhou 2018), LCPs can much more easily re-orient themselves when
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interacting with external fields (e.g. fluid flows, electric fields) to show large birefringence
(Doi & Edwards 1988; Larson 1999). As discussed below, the evolution of their orientation
distributions can be described by a Q-tensor model that is coarse-grained from Doi’s
kinetic model (Doi 1981; Doi & Edwards 1988), a prevalent theoretical model for
simulating the flow and rheology of LCPs. We treat the microswimmer as a finite-length
elastic fibre whose undulatory motion is activated by imposing travelling waves on the
body curvature. An IB method is employed to resolve the fluid–structure interactions for
the swimmer. The nonlinear simulations of finite-amplitude swimming motions reveal
both enhanced and retarded swimming motions in the nematic regime, which correspond
to the scenarios when the swimming direction is parallel and perpendicular to the nematic
alignment directions, respectively. Our numerical results are qualitatively confirmed by the
asymptotic solutions of Taylor’s swimming sheet model, and can be further understood by
revealing the characteristic near-body flow fields and polymer force distributions.
The paper is organized as follows. Section 2 is dedicated to the mathematical

formulation of the problem. We introduce the governing equations for a minimal Q-tensor
model, and construct an IB formulation. In § 3, we systematically explore the parameter
space to study and analyse the finite-amplitude undulatory swimming motions via
nonlinear simulations and analytical asymptotic analysis. Finally, we summarize and draw
conclusions in § 4. The details of the IB numerical scheme and the derivation steps of the
asymptotic solutions of Taylor’s swimming sheet are provided in Appendices A and B,
respectively.

2. Mathematical model

Doi’s kinetic model (Doi & Edwards 1988) adopts a probability distribution function
(p.d.f.) Ψ (x, p, t) to describe the ensemble dynamic of concentrated microrods in terms
of their centre-of-mass position x and orientation p (|p| = 1). When simulating the macro
scale hydrodynamic interactions between rods and ambient flows, it is often preferred
to use coarse-grained partial differential equations that are derived via proper moment
closure owing to their low computation costs by removing p dependency. Consider rodlike
polymers with fore–aft symmetry and uniform length �. In the fluid domain Ωf , a
two-dimensional (2-D) model can be derived for the second-moment tensor D(x, t) =∫
p ppΨ dp (Doi 1981; Doi & Edwards 1988; Feng & Leal 1997) as

∇
D+2E : S = 4ζdr(D · D − D : S) − 4dr

(
D − I

2

)
+ dt�D, (2.1)

where D∇ = ∂D/∂t + u · ∇D − (D · ∇u + ∇uT · D) is the so-called upper-convected
time derivative, E = (∇u + ∇uT)/2 is the symmetric strain-rate tensor and S(x, t) =∫
p ppppΨ dp is the fourth-moment tensor. The first term on the right-hand side represents
the steric alignment effects arising from the Maier–Saupe potential written as

UMS (x, p, t) = −ζpp : D (x, t) , (2.2)

with ζ as the dimensionless strength coefficient (Maier & Saupe 1958). The diffusivity
coefficients dt and dr originate from the translational and rotational Brownian diffusion
motion, respectively. The above equation is a ‘Q-tensor’ model because the trace-free
(normalized) order-parameter tensor, the so-called Q-tensor, is defined by Q(x, t) =
c−1D − I/2, with c(x, t) = 1 as the concentration field (i.e. zeroth-moment of Ψ ) that
remains as a homogeneous constant. In two dimensions, the tensor Q has a maximal
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non-negative eigenvalue ρ satisfying 0 ≤ ρ ≤ 1/2. Assuming that ρ is isolated, then we
call its associated unit eigenvector the director m, and 0 ≤ S = 2ρ ≤ 1 the orientational
order parameter. The incompressible fluid velocity u is incorporated in a mean-field
fashion, and is governed by the forced Stokes equation:

∇ · u = 0, (2.3)

∇p − μf�u = ∇ · σ p + f e, (2.4)

where μf is the fluid viscosity and f e(x, t) represents the force exerted by the elastic
swimmer. The extra stress of the polymer solution is defined as (Doi 1981; Feng & Leal
1997)

σ p (x, t) = 2νkBT
(
D − I

2

)
− 2νkBTζ (D · D − S : D) + νkBTβ0

2dr
(
ν�3

)2E : S, (2.5)

where ν ∼ �−3 is an effective volume fraction, kBT is the thermal energy scale, β0(ν�3)−2

represents a crowdedness factor with β0 being an empirical coefficient. In this study, we
will choose a small empirical crowdedness factor β0(ν�3)−2 ∼ 10−3 − 10−4 (Feng & Leal
1997; Feng, Chaubal & Leal 1998).
Here we have several comments on the above Q-tensor model. First, we consider the

model to be minimal because (2.2) only describes the nematic elasticity arising from
the rods’ orientation distribution but ignores spatial heterogeneity. According to Greco
& Marrucci (1992), the Maier–Saupe potential can be further improved by taking the
distortion elasticity into account by adding a term proportional to pp : �D. However, here
we consider the scenarios in the nematic regime where the microswimmer undulations
only weakly disturb the LCPs, and the concentration field remains uniform across the
domain. For simplicity, we adopt Doi’s original model with the Maier–Saupe potential
in (2.2). This is consistent with the nonlinear simulation results shown below where the
polymer distribution remains spatially homogeneous, with small near-body fluctuations in
the orientational order.
Second, as pointed out by Feng, Sgalari & Leal (2000), adding distortion elasticity

into the above Q-tensor model can mathematically recover the director formulation
of the Ericksen–Leslie model in the limit of weak flow and mild spatial distortion,
which can be described by the so-called Frank elasticity with equal (Frank) constants
(DeGennes & Prost 1993). Nevertheless, the director formulation is more suitable for
modelling small-molecule LCs that have short orientation relaxation time and hence
admit a uniaxial form for the quasi-equilibrium orientational distributions. In comparison,
the LCPs’ orientations are easily distorted into a non-uniaxial configuration, especially
when imposing various flow conditions (e.g. shear and extensional flows). Therefore, the
generalized LC theories, either of Ericksen–Leslie or Doi type, which adopt a tensorial
order parameter are preferred in simulating LCPs (Beris & Edwards 1994; Qian & Sheng
1998; Feng et al. 2000; Sonnet et al. 2004; Klein et al. 2007).
Third, our Q-tensor model is essentially non-polar, which has a two-fold meaning. At

the micro level, the Doi–Onsager kinetic model adopts Jeffrey’s equation to describe the
polymers’ rotational motion driven by the mean-field fluid velocity gradient and the local
alignment torque arising from the Maier–Saupe potential. The resultant rotational flux
term hence takes the following form:

ṗ = (I − pp) · ∇u · p − ∇pUMS (x, p) − dr∇p lnΨ, (2.6)
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Q-tensor model for undulatory swimming in a liquid crystal

where ∇p = (I − pp) · ∂/∂p denotes the gradient operator on the unit sphere of
orientations. One can prove there is no net-torque exerting on the unit volume of the
fluid phase by taking the configurational average of the torque produced by a single test
polymer, i.e.

∫
p ∇pUMSΨ dp = 0 (Feng et al. 2000). At the macro level, the symmetric

extra stress in (2.5) guarantees the conservation of angular momentum in the fluid
phase. Moreover, when interior or exterior boundaries are introduced, only the boundary
conditions (e.g. no-slip condition) for the velocity field need to be implemented. Solving
the coarse-grained evolution equation (2.1) does not require imposing any boundary
conditions on D in the limit dt → 0. Instead, the near-boundary LCPs’ orientational
distribution is determined by the interplay among the resultant fluid shear, mean-field
alignment torque and rotational diffusion as reflected by the right-hand side of (2.6)
microscopically.
In the Lagrangian frame (ΩL) for the undulatory swimmer of length Ls, its kinematics

can be described by the parametric form X (s, t), with s the local arc length s ∈ [0,Ls].
The actual shape X (s, t) is determined by penalizing deviations from actuation imposed
on the body curvature κ0(s, t) as

κ0 (s, t) = −k2A0 sin (ks − ωt) , (2.7)

starting from an initial configuration given by X (s, t = 0) = (s,A0(sin(ks))). Equation
(2.7) describes the rightward-propagating travelling waves with amplitude A0,
wavenumber k and angular frequency ω. Imposing actuation in (2.7) produces elastic
forces F e(X ) along the body, and effectively drive periodic shape changes (or swimming
gaits). Following Peskin (2002), the Lagrangian body force can be derived by performing
the variational derivative upon the elastic energy E, i.e.

F e (X , t) = −δE [X (s, t)]
δX

. (2.8)

The discretized forms for the two components of F e are given in (A2). Here the total elastic
energy E[X ] include the contributions from both stretching (denoted by subscript s) and
bending (denoted by subscript b) deformation (Fauci & Peskin 1988):

E [X (s, t)] = σ 0
s

2

∫
ΩL

(∣∣∣∣∂X∂s
∣∣∣∣− 1

)2

ds + σ 0
b
2

∫
ΩL

(
∂2X
∂s2

· n − κ0

)2

ds, (2.9)

where n denotes the local normal direction. Using the IB method, the Eulerian forcing
term f e can be calculated by

f e (x, t) =
∫

ΩL

F e (s, t) δ (x − X (s, t)) ds, (2.10)

where δ denotes the Dirac delta function that maps between the Eulerian (Ωf ) and
Lagrangian (ΩL) domain. Likewise, the Lagrangian velocity can be interpolated from the
nearby Eulerian grids via

∂X
∂t

= U (s, t) =
∫

ΩE

u (x, t) δ (X (s, t) − x) dx. (2.11)
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Here we perform mapping between the Eulerian (x(x, y)) and the Lagrangian (X (X, Y))
domain via a four-point Dirac delta function that is numerically constructed as

δ(x − X ) = 1
h2

φ

(
x − X
h

)
φ

(
y − Y
h

)
, (2.12)

where h is the (uniform) Eulerian mesh width, and the function φ(r) is constructed as

φ(r) =

⎧⎪⎪⎨
⎪⎪⎩
0, |r| ≥ 2,
1
8

(
5 − 2|r| −

√
−7 + 12|r| − 4r2

)
, 2 ≥ |r| ≥ 1,

1
8

(
3 − 2|r| +

√
1 + 4|r| − 4r2

)
, 1 ≥ |r| ≥ 0.

(2.13)

This choice of the numerical Delta function guarantees the momentum conservation in
both the fluid and the solid phases (Peskin 2002).
For non-dimensionalization, we choose the wavelength λ = 2πk−1 as the length scale,

wave speed ω/k as the velocity scale and 2νkBT as the LCP’s stress scale, which lead to
the dimensionless equations in the fluid phase after proper re-scaling:

∇ · u = 0, (2.14)

∇p − �u = Er∇ · τ p + f e, (2.15)

τ p =
(
D − I

2

)
− ζ (D · D − S : D) + βE : S, (2.16)

∇
D+2E : S = ζ

Pe
(D · D − D : S) − 1

Pe

(
D − I

2

)
+ 1

Pet
�D. (2.17)

Here we define two Péclet numbers, Pe = ω/8πdr and Pet = 2πω/dtk2, which represent
the ratio of the time scales for the rod’s rotation and transport over that of undulation
(i.e. ω−1), respectively. Especially Pe characterizes the time evolution of the orientation
field. In this study, we vary Pe ∼ O(10−1) − O(10) over three orders of magnitude to fully
resolve the non-Newtonian swimming behaviours that are prominent at a finite Pe ∼ O(1).
Meanwhile, Pet ∼ O(10) − O(100) is chosen to be at least one order of magnitude higher
than Pe so that the translational diffusion effect is small or negligible. The coupling
between the LCPs and the viscous fluid is characterized by the Ericksen number Er =
4πνkBT/μfω ∼ O(10−1) − O(10) (Larson 1999; Krieger et al. 2015b). This parameter
choice reveals the strong (weak) flow modification on the polymers’ configuration at
higher (lower) Er values. When Er becomes even higher (e.g. Er = 20), we notice that the
numerical solutions may be difficult to converge. Another dimensionless number in the
fluid phase is an effective crowdedness coefficient β = β0ω/(8πdr(ν�3)

2
) ∼ O(10−2) −

O(10−3). Equations (2.7)–(2.9) and the two mapping functions (2.10) and (2.11) retain
the same mathematical forms, with the two dimensionless stiffness coefficients σs =
σ 0
s 2πk/ω

2, σb = σ 0
b k

3/2πω2. We fix the wavenumber k = 2π, the swimmer length
L = Lsk/2π = 1 (same as the wavelength) and the amplitude A = A0k/2π = 0.05. We
choose a large stretching stiffness σs = O(103) to enforce inextensibility and vary the
bending stiffness σb = O(10−3) − O(10−1) to achieve various different swimming gaits.
We then use a pseudo-spectral method to solve the above coupled equations in a periodic
computation domain. The reader is referred to Appendix A for more details of the
numerical algorithm and parameter choice.
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Figure 1. Equilibrium solution Ψ0 exhibits a bifurcation across the isotropic–nematic phase transition:
(a) χ as a function of ζ , with the bifurcation occurring at ζc = 4; (b) symmetric distribution of Ψ0(φ) at
ζ = 2 and 8.

3. Results and discussion

Without the swimmer, the polymer distribution can be described by the equilibrium
solution of the original Doi’s kinetic model,

Ψ0 = exp [χ cos (2φ)]∫ 2π
0 dφ′ exp [χ cos (2φ′)]

, (3.1)

where the coefficient χ satisfies

χ = ζ

4

∫ 2π
0 dφ′ cos

(
2φ′) exp [χ cos

(
2φ′)]∫ 2π

0 dφ′ exp [χ cos (2φ′)]
. (3.2)

As shown in figure 1(a), χ(ζ ) admits a bifurcation at ζc = 4, and has two solution branches
for the isotropic and nematic states. In figure 1(b), the symmetric form of Ψ0(φ) suggests
that the rod’s primary (or principal) orientation direction is aligned with the x-axis when
φ = 0 and π are in the nematic regime (ζ ≥ ζc), compared with the constant solution
in the isotropic regime (0 ≤ ζ < ζc). At each time step in the simulation, we reconstruct
Ψ0(x, p, t) of form (3.1) locally in the principal coordinates of the D(x, t) field, and then
approximate the fourth moment as

S (x, t) ≈
∫
p
ppppΨ0 (x, p, t) dp, (3.3)

where we follow a quasi-equilibrium ansatz that D and S co-align in principal directions
in the eigenspace (see more details in Chaubal & Leal 1998). This method is also referred
to as the Bingham closure (Bingham 1974; Chaubal & Leal 1998; Feng et al. 1998), which
has proven to be accurate in p.d.f. reconstruction and has been widely used in simulating
LCPs (Feng et al. 1998; Gao & Li 2017; Gao et al. 2017).
In the following, we numerically investigate the undulatory motions of a finite-length

swimmer in LCPs whose equilibrium configurations are described by Ψ0, and focus on the
scenarios when the swimmer moves either parallel with or perpendicular to the alignment
direction (i.e. x-direction) for both the ‘stiff’ (σb = O(10−1)) and ‘soft’ (σb = O(10−3))
cases. In figure 2(a), we show the time sequence of the swimmer’s shape-change during
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U
LC

/
U

N

0 2 4 6 8 10
0.6

0.9

1.2

1.5

1.8

//, stiff
⊥, stiff
//, soft
⊥, soft

ζc = 4

ζ

–0.05

0

0.05 σb = 0.5 (stiff)

0 0.2 0.4 0.6 0.8 1.0
–0.01

0

0.01

σb = 0.005 (soft)

(a) (b)

Figure 2. Both stiff and soft undulatory microswimmers exhibit anisotropic swimming behaviours in lyotropic
LCPs when measuring the mean centre-of-mass speed ULC: (a) time sequence of swimmer shapes for the stiff
(top, σb = 0.5) and the soft (bottom, σb = 0.005) cases during one swimming period; (b) speed ratio ULC/UN
as a function of ζ during the parallel (denoted by ‘//’) and perpendicular (denoted by ‘⊥’) motions when
choosing Pe = 1 and Er = 10.

one swimming period when choosing σb = 0.5 (top) and σb = 0.005 (bottom). The stiff
swimmer exhibits a wavy pattern of an approximately sinusoidal form with an adequate
amplitude A ≈ 0.05; while the soft swimmer can only slightly bend the body and create
much smaller deformations (A < 0.01). When imposing rightward-travelling waves on
the curvature, leftward unidirectional undulatory motions are observed in all simulations.
Hence, we denote the mean centre-of-mass velocity as −ULC êx with êx a unit basis vector
pointing in the positive direction of the x-axis. We measure the velocity magnitude ULC by
performing time averaging over five undulation periods after the swimming speed reaches
quasi-steady states, and then compare it with UN measured in Newtonian fluids. As shown
in figure 2(b), the speed ratio ULC/UN as a function of ζ clearly shows non-Newtonian
behaviours, especially in the nematic regime where similar bifurcations occur, which
correspond the motions that are parallel (denoted by symbol ‘//’) and perpendicular
(denoted by symbol ‘⊥’) to the x-axis. More specifically, we observe enhanced swimming
speeds when the swimmer moves parallel in the nematic regime; while retarded motions
are seen in the isotropic regime, and in the most nematic regime during perpendicular
motions. Additionally, while qualitatively similar behaviours are consistently observed for
the stiff and soft cases in the parameter space, it is seen that the stiff swimmer can generally
achieve faster mean speeds, which exhibit more significant speed gain and loss. Here it is
worthwhile to mention that when the swimming direction is tilted, i.e. with an arbitrary
angle between the nematic alignment direction, we observe that (not reported here) the
swimmer can perform an entire-body rotation before reaching a steady free swimming.
This observation is consistent with the asymptotic solutions of Taylor’s swimming sheet
in a nematic LC derived by Shi & Powers (2017). It can be explained by the fact that
the anisotropic elastic stress will produce a net torque on the plate when there is any
misalignment between the nematic director and the swimming direction.
Figure 3 shows the variations of ULC/UN with respect to Pe at various values of

Er in both isotropic and nematic regimes. Apparently, for all the cases the speed ratio
exhibits stronger non-Newtonian behaviours (ULC/UN /= 1) at larger values of Er when
fixing Pe. For the stiff swimmer shown in panels (a–c), at a given Er, ULC/UN is seen
to be close to 1 in the small Pe regime, which corresponds to a slow undulation (or
equivalently, quick rotational diffusion of LCPs). This is because when Pe → 0, the
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U
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Er = 5
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1.0
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1.4 ζ = 8, //
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0.9

1.0

ζ = 8, ⊥
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/
U

N
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0.9

1.0

ζ = 2

Er = 0.1
Er = 1
Er = 2
Er = 5
Er = 10

soft

Pe

U
LC

/
U

N
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0.4

0.6

0.8

1.0

ζ =  2

Er = 0.1
Er = 1
Er = 2
Er = 5
Er = 10

0 5 10 15 20
0.7

0.8

0.9

1.0

ζ = 8, ⊥

Pe
0 2 4 6 8 10

0.4

0.6

0.8

1.0

ζ = 8, ⊥

0 5 10 15 20
1.0

1.1

ζ = 8, //

Pe
0 2 4 6 8 10

1
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3
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5
6
7
8
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10
ζ = 8, //

(a) (b) (c)

(d) (e) ( f )

(g) (h) (i)

Figure 3. Speed ratioULC/UN as a function of Pe at various values of Er obtained from numerical simulations
for the stiff (a–c) and soft (d– f ) cases, as well as from the asymptotic solutions for Taylor’s swimming sheet
(g–i). The black dashed lines in panels (b,c,h,i) mark the locations corresponding to the maximal or minimal
values of ULC/UN .

rotational diffusion dominates over convection, which not only drives the nematic structure
towards equilibrium states (i.e. the right-hand side of (2.17) approximately to be 0) but
also produces smaller and smaller τ p. At a high Pe, where convection dominates during
fast actuation, the polymer configuration is modulated by flow via constraining stress,
i.e. E : S, owing to the rod’s rigidity, which leads to more complicated behaviours. For
a given Er, in the isotropic regime, ULC/UN monotonically decreases with respect to
Pe. Nevertheless, in the nematic regime, ULC/UN varies non-monotonically, with the
maximum (minimum) occurring at small Pe (∼ O(1)) during the parallel (perpendicular)
swimming motions. Furthermore, in panels (b,c), we mark the extrema locations on
the ULC/UN − Pe curves using black dashed lines. It is seen that for both parallel and
perpendicular cases, the critical values of Pe that correspond to the maximal and minimal
speed ratio become smaller and smaller when increasing Er. In panels (d– f ), we show the
corresponding results for the soft swimmer cases, and similar trends as for the stiff cases
are observed. However, the extrema locations in the nematic regime would be at much
larger values of Pe where the soft swimmer motions become very slow, and hence are not
studied here.
To understand the numerical observations, we build an idealized linear model for

Taylor’s swimming sheet that has an infinite length (Taylor 1951). With the swimmer
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moving at the speed −ULC êx, its vertical displacement can be described as

y(x, t) = ε sin(x − t), ε � 1. (3.4)

Then we simplify the above governing equations by employing a stream function ϕ via

u = ∇ × (
ϕêz

)
(3.5)

with êz as the unit basis vector pointing in the out-of-plane direction, which ensures
the incompressibility condition ∇ · u = 0. By following the solution procedure of Lauga
(2007) and Krieger et al. (2015b, 2019), we impose the no-slip condition on the wavy sheet,
and perform asymptotic analyses by expanding all the variables in terms of ε in both the
isotropic and nematic regimes. Moreover, we neglect the crowdedness effect (i.e. β = 0) in
τ p and the translational diffusion (i.e. Pe−1

t → 0), and adopt different closure methods for
S in the isotropic and nematic regimes to facilitate derivation. After some manipulations
(see more derivation details in the supplemental material), we find directional motions
only occur in the second order, i.e. ULC = U(2)

LCε2, and the speed ratio can be calculated as

ULC

UN
= 1 − 16ErPe3

(4 + ErPe)
[
(4 − ζ )2 + 16Pe2

] , (Isotropic) (3.6)

ULC

UN
= 1 + 4ErPe(ζ − 2)

(ζ − 2)2 + Pe2

(
D(0)
11 − 1

2

)
D(0)
11 , (Nematic) (3.7)

where D(0)
11 = (ζ ±

√
ζ 2 − 2ζ )/2ζ (also see (B41)) is the diagonal component of the

equilibrium solution D(0) = diag(D(0)
11 , 1 − D(0)

11 ), and the plus (minus) sign corresponds
to parallel (perpendicular) swimming motion with respect to the alignment direction.
Unlike the possible bi-directional motions predicted by Krieger et al. (2015b), it is
straightforward to show that ULC/UN > 0 for the cases of isotropic (3.6) and parallel
swimming in the nematic regime (3.7); while for the perpendicular swimming cases, (3.7)
suggests that for a given Pe, ULC/UN < 0 only occurs at very large Er values, which are
far above the practical parameter range. Hence the asymptotic model predicts universal
unidirectional motions that are in the opposite direction of the prescribed travelling
wave, which are also consistent with our numerical results of finite-length swimmers.
Moreover, as shown in figure 3(g–i), the asymptotic solutions predict the qualitatively
similar behaviours of ULC/UN as the numerical results in figure 3(a– f ). However, (3.7)
suggests the maximal and minimal speed ratios all occur at Pe = ζ − 2 for both the parallel
and perpendicular cases and are independent of Er. This analytical prediction is different
from the numerical results that depend on both Pe and Er, which is likely owing to the
finite-length effect of the swimmer (see more discussion below).
In the isotropic regime, the monotonic decay as a function of Pe at a given Er is

reminiscent of the behaviours in viscoelastic (e.g. Oldroyd-B) fluids (Lauga 2007; Shen
& Arratia 2011). This can be witnessed by introducing an effective polymer viscosity μp
(Doi & Edwards 1988; Feng & Leal 1997) as μp/μf = α(S)ErPe, where ErPe defines
the effective polymer contribution to the zero-shear-rate viscosity, and the estimated
coefficient α characterizes the dependence on the order parameter S. When ζ → 0,
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Q-tensor model for undulatory swimming in a liquid crystal

0 0.3 0 0.3 0 0.3 0 0.3

0 0.02 0 0.02 0 0.02 0 0.02

ULC ULC ULC ULC

ULC ULC ULC ULC

ζ = 2 ζ = 8, // ζ = 8, ⊥
(a) (b) (c) (d )

(e) ( f ) (g) (h)

Figure 4. The instantaneous (a–d) and time-averaged (e–h) velocity field around a ‘stiff’ swimmer in the
body-fixed frame when choosing σb = 0.5, Pe = 1 and Er = 10: (a,e) Newtonian; (b, f ) isotropic, ζ = 2; (c,g)
nematic and parallel, ζ = 8; (d,h) nematic and perpendicular, ζ = 8. The vector field and the background
colour correspond to the velocity u and its magnitude |u|.

we estimate S = 0 and α(S) = 1, and hence can rewrite (3.6) as

ULC

UN
=

1 +
(

4μf

4μf + μp

)
Pe2

1 + Pe2
, (ζ → 0) (3.8)

which resembles the asymptotic solution for Taylor’s swimming sheet in viscoelastic fluids
(Lauga 2007). In the nematic regime, from (3.7), apparently the speed gain and loss are
seen to be directly determined by the horizontal (D(0)

11 > 1/2) and vertical (D(0)
11 < 1/2)

alignment directions. Moreover, ULC/UN → 1 is observed in the limit of Pe → ∞, which
suggests diminishing non-Newtonian behaviours for very fast undulations in sharply
aligned LCPs. The reader is referred to Appendix B for more details of the derivation.
Next, we take a closer look at the flow patterns to uncover the nonlinear effect

arising from the finite length of the swimmer. As shown in figure 4(a–d), we compare
the simulation results of the instantaneous flow fields at the end of each period, after
the swimming motions reach quasi-steady states. While the isotropic case in panel (b)
resembles the Newtonian one in panel (a), the parallel (perpendicular) swimming case in
the nematic regime in panel (c) (panel d) has slightly wider (narrower) circulation zones
near the two ends. Indeed, when averaging over three to five periods, we consistently
find the flow patterns shown in figure 4(e–h) have distinctive features. Compared with
the Newtonian case in panel (e), the isotropic flow in panel ( f ) appears to be slightly
weakened. More interestingly, the mean flow field in the nematic regime appears to
be extensile (panel g) and contractile (panel h), which correspond to the parallel and
perpendicular motions, respectively.
Figure 5(a–c) reveal the characteristics of the nematic field. Without imposing particular

anchoring conditions for D along the wavy body, we find the time-averaged (denoted by
‘〈〉’) director distribution 〈m〉 approximately follows the isotropic (panel a) and aligned
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ζ = 2 ζ = 8, // ζ = 8, ⊥

ζ = 2 ζ = 8, // ζ = 8, ⊥

ULC ULC ULC

ULC ULC ULC0 0.1 0.7 0.8 0.7 0.8

0 40 40 4

(a) (b) (c)

(d ) (e) ( f )

Figure 5. The time-averaged director and polymer force fields around a stiff swimmer corresponding to
figure 4( f–h): (a–c) nematic director 〈m〉 superposed on the colourmap of the order parameter S; (d– f ) polymer
force vector 〈 f p〉 superimposed on the force magnitude |〈 f p〉|.

(panels b,c) configurations. However, owing to the finite length of the swimmer, the
resultant structures lack left–right symmetry. The disturbances on the nematic field
are concentrated in the areas around the body’s rear side without propagating further.
High-orientational orders suggests enforcement of local alignment owing to strong steric
interactions characterized by large values of ζ . When comparing the two scenarios in
panels (b) and (c), it appears that parallel motions can impact larger areas. This is because
the vertical oscillations during undulation are a lot faster (∼5–10 times) than the resultant
horizontal migration, and can lead to stronger momentum exchange along the y-direction.
Hence, it is easier for the shear-induced force to re-orient the LCPs perpendicularly, which
leaves large low-order zones during parallel motions.
Further examination of the time-averaged polymer force, 〈 f p〉 = 〈∇ · τ p〉 in figure 5,

reveals more precise propulsion mechanisms. Because the periodic elastic body force has
a zero mean, i.e. 〈 f e〉 = 0 from (2.15), the near-body fluid flows are driven by 〈 f p〉 at a
finite Er. As typically shown in panel (d), isotropic LCPs only permit small 〈 f p〉 without
showing clear correlations with the swimming direction. In comparison, nematic LCPs
lead to much stronger, asymmetrical 〈 f p〉 in panel (e, f ), with the largest values near the
‘tail.’ Additionally, they are clearly seen to serve as the driving forces of the extensile
and contractile flow patterns in figures 4(g) and 4(h), respectively. More intriguingly,
unlike the isotropic cases, the near-body distributions of 〈 f p〉 in the nematic regime highly
correlate with the swimming direction. In figure 5(e), the projected force vectors at y = 0
all approximately point leftwards to ‘push’ the swimmer forward; while in panel ( f ),
the projected force along the x-direction, while weaker, appears to be overall pointing
rightward to ‘pull’ the swimmer backward.
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Q-tensor model for undulatory swimming in a liquid crystal

4. Conclusion

This work has built a Q-tensor model to study the nonlinear dynamics of undulatory
swimming motions in lyotropic LCPs in the limit of vanishing Reynolds numbers.
Combining direct numerical simulations and asymptotic analysis, we have revealed both
enhanced and retarded swimming behaviours for a flexible swimmer moving in rigid,
rodlike polymers. Compared with those top-down macro models of Ericksen–Leslie
or Landau–de Gennes (DeGennes & Prost 1993) for small-molecule LCs, ours is
derived bottom-up, and has more accurate microscopic origins and fewer computation
parameters. Hence it provides a simple and convenient computation framework to model
fluid–structure interactions in lyotropic LCs. Our results suggest that in addition to
adopting wavy body undulations to break symmetry, it is possible for a finite-length
flexible swimmer to make use of the unique near-body fluid dynamics and polymer force
generation to adjust the migration speed. We expect to apply the same methodology
to generally study a microorganism’s motion, both individually and collectively, in
anisotropic complex-fluid environments.

Acknowledgements. Z.L. acknowledges the Fundamental Research Funds for the Central Universities of
China grant no. 2020QNA4046. T.G. acknowledges the National Science Foundation grant no. 1943759.
The anonymous reviewers’ are thanked for their constructive comments that helped improve and clarify this
manuscript.

Declaration of interests. The authors report no conflict of interest.

Author ORCIDs.
Tong Gao https://orcid.org/0000-0001-5049-8538.

Appendix A. Immersed boundary solver

In the flexible fibre, the elastic body force F e(Fx,Fy) is calculated explicitly at each
time step. Following the IB approaches (Fauci & Peskin 1988; Lee & Wolgemuth 2016),
we discretize the variational derivative of the bending energy functional, and derive the
following component form for the ith node at the position X i(Xi, Yi):

Fx,i = σs

�s

[( |X i+1 − X i|
�s

− 1
)(

Xi+1 − Xi

|X i+1 − X i|
)

−
( |X i − X i−1|

�s
− 1

)(
Xi − Xi−1

|X i − X i−1|
)]

− σb

�s3
(
(κ − κ0)i−1 (Yi−1 − Yi−2) − (κ − κ0)i (Yi+1 − Yi−1)

+ (κ − κ0)i+1 (Yi+2 − Yi+1)
)
, (A1)

Fy,i = σs

�s

[( |X i+1 − X i|
�s

− 1
)(

Yi+1 − Yi
|X i+1 − X i|

)
−
( |X i − X i−1|

�s
− 1

)(
Yi − Yi−1

|X i − X i−1|
)]

+ σb

�s3
(
(κ − κ0)i−1 (Xi−1 − Xi−2) − (κ − κ0)i (Xi+1 − Xi−1)

+ (κ − κ0)i+1 (Xi+2 − Xi+1)
)
, (A2)

where the curvature is defined as κi = êz · (X i+1 − X i) × (X i − X i−1)/�s3 and �s =
L/Ns.
In the fluid phase, we first solve the constitutive equations for the velocity u and the

second-moment tensor D. Here we use the method of Vaithianathan & Collins (2003) to
enforce the symmetric positive definiteness ofDwhose diagonal components are bounded,
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i.e. tr(D) = D11 + D22 = 1 and 0 ≤ D11,D22 ≤ 1. We apply the Cholesky decomposition
on D to obtain

D = L · LT =
(

l11 0
l21 l22

)(
l11 l21
0 l22

)
, (A3)

where L is a lower triangular matrix. Then we perform another transformation for the
components of L,

l11 = 1
π
arctan η + 1

2
, l22 = 1

π
arctan γ + 1

2
, l21 = 2

π
arctanχ, (A4a–c)

so that the parameters (η, γ, χ) are now unconstrained. Substituting ((A3) and (A4a–c))
into the evolution equation of D leads to

∂η

∂t
+ ux

∂η

∂x
+ uy

∂η

∂y
= π

(
1 + η2

)⎡⎢⎣ l11
∂ux
∂x

+ l21
∂ux
∂y

− 1
2Pe

(
l11 − 1

2l11

)
+ 1
Pet

1
2l11

�D11 − 1
2l11

K11

⎤
⎥⎦

∂χ

∂t
+ ux

∂χ

∂x
+ uy

∂χ

∂y
= π

2

(
1 + χ2

)
⎡
⎢⎢⎢⎢⎣

l11
∂uy
∂x

+ l222
l11

∂ux
∂y

− l21
∂ux
∂x

− 1
2Pe

(
l21 + l21

2l211

)

− 1
Pet

l21
2l211

�D11 + 1
Pet

1
l11

�D12 + l21
2l211

K11 − 1
l11

K12

⎤
⎥⎥⎥⎥⎦

∂γ

∂t
+ ux

∂γ

∂x
+ uy

∂γ

∂y
= π

(
1 + γ 2

)
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

l22
∂uy
∂y

− l22l21
l11

∂ux
∂y

+ 1
2Pe

(
l221

2l22l211
− l22 + 1

2l22

)

+ 1
Pet

l221
2l22l211

�D11 − 1
Pet

l21
l22l11

�D12 + 1
Pet

1
2l22

�D22

− l221
2l22l211

K11 + l21
l22l11

K12 − 1
2l22

K22

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A5)

In the above a shorthand notationK = 2E : S − (ζ/Pe)(D · D − D : S) is introduced and
computed explicitly.
When D is obtained, we evaluate the polymer stress τ p, and then directly compute the

2-D velocity field u = (ux, uy) in the Fourier space as

ũ = 1
ξ2

(
I − ξ̂ ξ̂

)
· f̃ total, (A6)

where f total = Er∇ · τ p + f e, ξ̂ is the wavevector with |ξ | = ξ (ξ̂ = ξ/ξ ). The equations
in the fluid phase are solved using a pseudo-spectral method, with the time integration
being evaluated using the fourth-order Runge–Kutta method. For all simulations
performed in this study, we choose the computation parameters asΩf = 2 × 2, h = 1/128,
�t = 10−5–10−4, Pe = 0.1–10, Pet = 10–100, Er = 1–10, ζ = 0–10, β = 0.0005–0.005,
Ns = 32, L = 1, A = 0.05, k = 2π, ω = 2π, σb = 0.005–0.5, σs = 3000σb. As shown
in figure 6(a–c) for the time-dependent velocity components, we verified the numerical
results by performing convergence tests for a parallel moving swimmer.
Moreover, as shown in figure 7, we performed another benchmark study for the

undulatory swimming motions in an Oldroyd-B (OB) fluid where the dimensionless
Deborah (De) number, which plays a similar role as Pe in the LCP cases, is defined as the
wave frequency by the OB fluid relaxation time. We measured the mean centre-of-mass
swimming speed UOB of the swimmer that has a long body length L = 4, and compared

921 A25-14

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

53
1

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 M

ic
hi

ga
n 

St
at

e 
U

ni
ve

rs
ity

 L
ib

ra
ri

es
, o

n 
25

 Ju
l 2

02
1 

at
 0

3:
16

:0
1,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.

https://doi.org/10.1017/jfm.2021.531
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


Q-tensor model for undulatory swimming in a liquid crystal

Time

v
el

o
ci

ty
 c

o
m

p
o
n
en

t

2 3 4
–0.6

–0.4

–0.2

0

0.2

0.4

0.6

Ux, Ωf = 2 × 2
Uy, Ωf = 2 × 2

Ux, Ωf = 4 × 4
Uy, Ωf = 4 × 4

Time
2 3 4

–0.6

–0.4

–0.2

0

0.2

0.4

0.6
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Time
2 3 4

–0.6

–0.4

–0.2

0

0.2

0.4

0.6
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Uy, Ns = 128, �t = 2 × 10–5

(a) (b) (c)

Figure 6. Convergence tests of a parallel moving swimmer with the time-dependent centre-of-mass velocity
U(Ux,Uy) by varying: (a) domain size (�t = 6.25 × 10−5, h = 1/128); (b) Eulerian grid width (Ωf = 2 × 2);
and (c) Lagrangian grid spacing (Ωf = 2 × 2, h = 1/128). These parameters are fixed: Pe = 10; Pet = 100;
Er = 1; β = 0.005; ζ = 8; L = 1; A = 0.05; k = 2π; ω = 2π; σb = 0.5; σs = 1500.

Amplitude A

UOB

0.01 0.02 0.03 0.04 0.05 0.060

0.01

0.02

0.03

0.04

0.05

0.06

Lauga  (analytical)

Salazar et al. (numerical)

Present (numerical)

Figure 7. Time-averaged centre-of-mass speed UOB for undulatory swimming motion in an Oldroyd-B fluid.
These parameters are fixed: Ωf = 8 × 8; h = 1/64; Ns = 64; ηp/ηs = 1/2; L = 4, De = 1; �t = 2.5 × 10−4.

the speed ratio with the numerical data of Salazar et al. (2016) and the asymptotic results
for Taylor’s swimming sheet of Lauga (2007),

UOB

UN
=

1 +
(

ηs

ηs + ηp

)
,De2

1 + De2
, (A7)

where ηs and ηp respectively represent the solvent and polymer contribution to the
viscosity. The Newtonian speed UN can be derived as

UN = 1
2

(ω

k

)
(Ak)2 + O (Ak)4 , (A8)

where k = 2π is the wavenumber. We find our results agree well with the previous studies.
In the third test, we examined the impact of varying bending stiffness when choosing

high values of σb. As shown in figure 8 for the time-dependent velocity, only small
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Figure 8. Time-dependent centre-of-mass velocity U(Ux,Uy) for a parallel moving swimmer when choosing
different values of bending stiffness σb. These parameters are fixed: Ωf = 2 × 2; �t = 6.25 × 10−4; h =
1/128; Pe = 10; Pet = 100; Er = 1; β = 0.005; ζ = 8; L = 1; Ns = 32; A = 0.05; k = 2π; ω = 2π; σs =
1500.

differences are seen when σb goes beyond 0.5. In these scenarios, the swimmer can quickly
respond to the imposed target curvature and well follow the travelling-wave actuation.
Hence, in the main text, we choose σb = 0.5 for the cases of a stiff swimmer.

Appendix B. Asymptotic solution of Taylor’s swimming sheet

In the moving frame of the swimmer, we consider the vertical displacement of an
infinite-length wavy sheet with the described travelling-wave motion y(x, t) = A sin(kx −
ωt). When choosing 1/k as the length scale, 1/ω as the time scale and ω/k as the velocity
scale, the dimensionless form can be written as y(x, t) = ε sin(x − t). Here we assume
a small amplitude ε = Ak � 1. Following Lauga (2007), we adopt a streamfunction
ϕ(x, y, t) such that the 2-D velocity components can be computed as

ux = ∂ϕ

∂y
, uy = −∂ϕ

∂x
(B1a,b)

with the incompressibility condition being satisfied. The boundary conditions for ϕ(x, y, t)
arise from conditions at infinity and on the undulatory sheet with a steady speed −ULC êx.
Then the far-field condition at y = ∞ reads

∇ϕ|(x,∞) = ULC êy. (B2)

On the swimming sheet, the no-slip velocity condition is imposed as

∇ϕ|(x,εsin(x−t)) = ε cos(x − t)êx. (B3)

Recalling the forced Stokes equation,

∇p = �u + Er∇ · τ p, (B4)
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Q-tensor model for undulatory swimming in a liquid crystal

the polymer stress, when neglecting β, is written as

τ p =
(
D − I

2

)
− ζ (D · D − D : S) . (B5)

By ignoring the translational diffusion, the D evolution equation is written as

∇
D+2E : S = − 1

Pe

(
D − I

2

)
+ ζ

Pe
(D · D − D : S) . (B6)

When applying the curl on both sides of (B4), we have

∇ × (∇ · τ p
) = 1

Er
∇4ϕ. (B7)

Next, we expand all the variables in terms of ε up to the second order as

ϕ = εϕ(1) + ε2ϕ(2) + O
(
ε3
)

, (B8)

τ = τ (0) + ετ (1) + ε2τ (2) + O(ε3), (B9)

D = D(0) + εD(1) + ε2D(2) + O(ε3), (B10)

ULC = εU(1)
LC + ε2U(2)

LC + O
(
ε3
)

. (B11)

After some manipulations, we can derive the following governing equations.
zeroth-order:

∂D(0)

∂t
+ u(0) · ∇D(0) −

(
D(0) · ∇u(0) + ∇u(0)T · D(0)

)
+ 2E(0) : S(0)

= − 1
Pe

(
D(0) − I

2

)
+ ζ

Pe

(
D(0) · D(0) − D(0) : S(0)

)
, (B12)

τ (0)
p =

(
D(0) − I

2

)
− ζ

(
D(0) · D(0) − D(0) : S(0)

)
. (B13)

First-order:

∂D(1)

∂t
+ u(0) · ∇D(1) + D(1) · ∇D(0)

−
(
D(0) · ∇u(1) + D(1) · ∇u(0) + ∇u(0)T · D(1) + ∇u(1)T · D(0)

)
+2

(
E(0) : S(1) + E(1) : S(0)

)
= − 1

Pe
D(1)

+ ζ

Pe

(
D(0) · D(1) + D(1) · D(0) − D(0) : S(1) − D(1) : S(0)

)
, (B14)

τ (1)
p = D(1) − ζ(D(0) · D(1) + D(1) · D(0) − D(0) : S(1) − D(1) : S(0)). (B15)
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Second-order:

∂D(2)

∂t
+ u(0) · ∇D(2) + u(1) · ∇D(1) + u(2) · ∇D(0)

−
(
D(0) · ∇u(2) + D(1) · ∇u(1) + D(2) · ∇u(0) + ∇u(0)T · D(2) + ∇u(1)T · D(1) + ∇u(2)T · D(0)

)

+ 2
(
E(0) : S(2) + E(1) : S(1) + E(2) : S(0)

)
= − 1

Pe
D(2)

+ ζ

Pe

(
D(0) · D(2) + D(1) · D(1) + D(2) · D(0) − D(0) : S(2) − D(1) : S(1) − D(2) : S(0)

)
, (B16)

τ (2)
p = D(2) − ζ

(
D(0) · D(2) + D(1) · D(1) + D(2) · D(0) − D(0) : S(2) − D(1) : S(1) − D(2) : S(0)

)
.

(B17)

Homogeneous solutions are admitted at the zeroth-order. To solve for the first-order
solutions, we note that the corresponding boundary conditions become

∇ϕ(1)
∣∣∣
(x,∞)

= U(1)
LC êy, (B18)

∇ϕ(1)
∣∣∣
(x,0)

= cos(x − t)êx. (B19)

In the above, the no-slip boundary condition has been projected from the wavy body onto
the x-axis, i.e. at y = 0. Similarly, at the second-order, they can be derived as

∇ϕ(2)
∣∣∣
(x,∞)

= U(2)
LC êy, (B20)

∇ϕ(2)
∣∣∣
(x,0)

= − sin(x − t)∇
(

∂ϕ(1)

∂y

)
|(x,0). (B21)

B.1. Isotropic cases
In the isotropic regime where 0 ≤ ζ < ζc, we close the fourth-moment tensor S by
expanding the p.d.f. near the isotropy as

Ψ = 1
2π

+ 2
π

(
pp − I

2

)
: D, (B22)

which leads to

Sijkl = − 1
24

(
δijδkl + δikδjl + δilδjk

)
+1
6

(
δijDkl + δikDjl + δilDjk + δjkDil + δjlDik + δklDij

)
. (B23)

At the zeroth-order, we obtain u(0) = 0, τ
(0)
p = 0, and D(0) = diag(1/2, 1/2). At the

first-order, we substitute D(0) into (B15) and obtain

τ (1)
p =

(
1 − ζ

4

)
D(1). (B24)
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Q-tensor model for undulatory swimming in a liquid crystal

When substituting (B24) into (B14), we can get(
4

4 − ζ

)
∂τ

(1)
p

∂t
= − 1

Pe
τ (1)
p + 1

2
E(1). (B25)

After taking the divergence and then applying the curl on both sides of (B25), we obtain[
4

Er (4 − ζ )

∂

∂t
+
(

1
ErPe

+ 1
4

)]
∇4ϕ(1) = 0. (B26)

Given the boundary conditions in ((B18)–(B19)), it is straightforward to solve for the
first-order solutions as

ϕ(1)(x, y, t) = (1 + y) e−y sin (x − t) , (B27)

U(1)
LC = 0. (B28)

At the second-order, we first evaluate (B17) to obtain

τ (2)
p =

(
1 − ζ

4

)
D(2) − ζ

(
D(1) · D(1) − D(1) : S(1)

)
. (B29)

Then (B16) can be rewritten as

4
4 − ζ

∂τ
(2)
p

∂t
+ 1

Pe
τ (2)
p − 1

2
E(2) = −2E(1) : S(1) − u(1) · ∇D(1)

−
(
D(1) · ∇u(1) + ∇u(1)T · D(1)

)
− 4ζ

4 − ζ

∂
(
D(1) · D(1) − D(1) : S(1))

∂t
, (B30)

which allows us to derive the governing equation for ϕ(2) as[
4

Er(4 − ζ )

∂

∂t
+
(

1
ErPe

+ 1
4

)]
∇4ϕ(2) = ∇ ×

{
∇ ·

[
− 2E(1) : S(1) − u(1) · ∇D(1)

−
(
D(1) · ∇u(1) + ∇u(1)T · D(1)

)
− 4ζ

4 − ζ

∂
(
D(1) · D(1) − D(1) : S(1))

∂t

]}
(B31)

Finally, to solve for mean speed ULC, we can perform the time averaging (‘〈〉’) as the
following:(

1
ErPe

+ 1
4

)
∇4〈ϕ(2)〉 = 4Pe2

(4 − ζ )2 + 16Pe2

(
8y2 − 24y + 8

)
e−2y (B32)

with boundary conditions in ((B20)–(B21)) now becoming

∂〈ϕ(2)〉
∂y

(∞) = U(2)
LC , (B33)

∂〈ϕ(2)〉
∂y

(0) = 1
2
. (B34)

We can then obtain
d
dy

〈ϕ(2)〉 = a0

(
1
2

− y2
)
e−2y +

(
1
2

− 1
2
a0

)
, (B35)
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where a0 = (ErPe/(4 + ErPe))16Pe2/((4 − ζ )2 + 16Pe2). Eventually we can evaluate the
mean swimming speed at the second-order as

ULC

UN
= U(2)

LC

U(2)
N

= 1 − 16ErPe3

(4 + ErPe)
[
(4 − ζ )2 + 16Pe2

] , (B36)

where UN = U(2)
N ε2 = ε2/2 is the mean swimming speed in a Newtonian fluid. Note that

in Doi’s theory, the polymer contribution to the zero-shear-rate viscosity can be effectively
defined as (Feng & Leal 1997)

μp

μf
= α(S)ErPe, (B37)

where S = √
(D : D − 1/2) is the order parameter, α(S) is a concentration coefficient and

μp represents the polymer contribution to the viscosity. Hence, when ζ = 0, we estimate
S = 0 and α(S) = 1, which leads to

ULC

UN
=

1 +
(

μf

μf + μp/4

)
Pe2

1 + Pe2
. (B38)

B.2. Nearly-aligned cases
In the deep nematic regime, we adopt a classical quadratic closure to approximate S (Doi
& Edwards 1988):

S = DD, (B39)

which corresponds to the strong alignment configuration with large ζ values when ζ > ζc.
At the zeroth-order, we solve for the equilibrium solution D(0) = diag(D(0)

11 , 1 − D(0)
11 ) via

ζ

{
D(0)
11

2 −
[
D(0)
11

2 +
(
1 − D(0)

11

)2]
D(0)
11

}
−
(
D(0)
11 − 1

2

)
= 0, (B40)

which admits the solutions

D(0)
11 = ζ ±

√
ζ 2 − 2ζ
2ζ

. (B41)

The plus (minus) sign in the above equation represents the scenario when the nematic
alignment direction is along the x- (y-) axis. Hence, when fixing the swimmer’s moving
direction to be horizontal (vertical), the above solution corresponds to the parallel
(perpendicular) swimming cases.
At the first-order, it is straightforward to show that

τ (1)
p = (ζ − 2)D(1)

11

(
1 0
0 −1

)
. (B42)

Substituting (B42) into (B14), we have

1
ζ − 2

∂τ
(1)
p,11

∂t
+ 4

(
D(0)
11 − 1

)
D(0)
11 E

(1)
11 + 1

Pe
τ

(1)
p,11 = 0,

1
ζ − 2

∂τ
(1)
p,22

∂t
− 4

(
D(0)
11 − 1

)
D(0)
11 E

(1)
11 + 1

Pe
τ

(1)
p,22 = 0.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(B43)
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Similar to the derivation of (B7), we can obtain[
1

(ζ − 2)Er
∂

∂t
+ 1

ErPe

]
∇4ϕ(1) + 4

ζ

∂4ϕ(1)

∂x2∂y2
= 0. (B44)

To facilitate further analytical manipulations, we consider the strong alignment cases when
ζ is large (ζ � 1), which allows us to neglect the last term in (B44), and obtain the same
first-order solution as (B27).
At the second-order, using the equilibrium solutions of D(0), we show that

τ (2)
p =

[
(ζ − 2)D(2)

11 + ζ(3D(1)
11

2 + D(1)
12

2
)(2D(0)

11 − 1)
]( 1 0

0 −1

)

+2ζD(1)
11 D

(1)
12 (2D(0)

11 − 1)
(

0 1
1 0

)
, (B45)

which leads to(
1

ζ − 2

)
∂

∂t

[
τ

(2)
p,11 − ζ

(
3D(1)

11
2 + D(1)

12
2) (

2D(0)
11 − 1

)]
+ G11 + 1

Pe
τ

(2)
p,11 = 0,

(
1

ζ − 2

)
∂

∂t

[
τ

(2)
p,22 + ζ

(
3D(1)

11
2 + D(1)

12
2) (

2D(0)
11 − 1

)]
+ G22 + 1

Pe
τ

(2)
p,22 = 0,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
(B46)

where

G = u(1) · ∇D(1) −
(
D(0) · ∇u(2) + D(1) · ∇u(1) + ∇u(1)T · D(1) + ∇u(2)T · D(0)

)
+ 2

(
E(1) : S(1) + E(2) : S(0)

)
. (B47)

In the end, we can derive the linear equation for ϕ(2) as

(
1

ζ − 2

)
∂

∂t

⎡
⎢⎣ 1
Er

∇4ϕ(2) + 2
∂2
(
ζ
(
3D(1)

11
2 + D(1)

12
2) (

2D(0)
11 − 1

))
∂x∂y

⎤
⎥⎦+ 1

ErPe
∇4ϕ(2)

+∂2 (G22 − G11)

∂x∂y
=
(

1
ζ − 2

∂

∂t
+ 1

Pe

)(
∂2

∂x2
− ∂2

∂y2

)[
2ζD(1)

11 D
(1)
12

(
2D(0)

11 − 1
)]

(B48)

Similar to the isotropic case, here we perform the time averaging of (B48) as

∇4〈ϕ(2)〉 = 2ErPe(ζ − 2)
Pe2 + (ζ − 2)2

(
2D(0)

11 − 1
) [

4y2 +
(
8D(0)

11 − 12
)
y −

(
8D(0)

11 − 6
)]

e−2y.

(B49)

When applying the boundary conditions ((B20)–(B21)), we obtain

d
dy

〈ϕ(2)〉 = −a1
2

(
y2 + 2D(0)

11 y + D(0)
11

)
e−2y +

(
1
2

+ a1D
(0)
11

2

)
, (B50)
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where a1 = (2(ζ − 2)ErPe/((ζ − 2)2 + Pe2))(2D(0)
11 − 1). So we can eventually solve for

the speed ratio at the second-order as

ULC

UN
= 1 + 4ErPe(ζ − 2)

(ζ − 2)2 + Pe2

(
D(0)
11 − 1

2

)
D(0)
11 . (B51)
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