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In this manuscript, we introduce a method to measure
entanglement of curves in 3-space that extends the
notion of knot and link polynomials to open curves.
We define the bracket polynomial of curves in 3-space
and show that it has real coefficients and is a
continuous function of the curve coordinates. This is
used to define the Jones polynomial in a way that
it is applicable to both open and closed curves in
3-space. For open curves, the Jones polynomial has
real coefficients and it is a continuous function of the
curve coordinates and as the endpoints of the curve
tend to coincide, the Jones polynomial of the open
curve tends to that of the resulting knot. For closed
curves, it is a topological invariant, as the classical
Jones polynomial. We show how these measures attain
a simpler expression for polygonal curves and provide
a finite form for their computation in the case of
polygonal curves of 3 and 4 edges.

1. Introduction

Open curves in space can entangle and even tie
knots, a situation that arises in many physical systems
of filaments, such as polymers, textiles, chemical
compounds [1-6]. In different contexts, entanglement of
filaments affects material properties, function or other
aspects related to fluid mechanics, biology, chemistry or
engineering [2,6,7]. To measure entanglement of open
curves, it is natural to look for measures of complexity
in the study of knots and links [8]. In applied knot
theory, the term ‘chain’ is often used to refer to a single
curve in 3-space (usually a polygonal curve). This helps
communicate the results to an interdisciplinary audience
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where physical filaments are often referred to as ‘chains’ (for example, polymer chains). To avoid
any confusion to readers who are not familiar with the term ‘chain’, we use the term ‘curve(s)’
throughout the manuscript with the appropriate specification (in 3-space, polygonal etc.) when
needed. Even though many strong and refined measures of topological complexity for knots and
links have been created in the last century, such as knot and link polynomials [9-14], the only one
that is sensitive on the configurations of open curves is the Gauss linking integral (introduced in
1877) [15]. In this work, we define knot and link polynomials of open curves in 3-space. To do this,
we combine ideas of the Gauss linking integral and the notion of knotoids (open curve diagrams
[16-19]).

A knot is a simple closed curve in space. Similarly, a link is formed by many simple closed
curves in space that do not intersect each other. Two knots or links are equivalent if one can be
continuously deformed to the other without allowing cutting and pasting. A topological invariant
is a function over the space of knots or links that is invariant under such deformations [9,13,14].
When dealing with open curves, the above notion of topological equivalence is not useful, since
any mathematical open curve can be deformed to another without cutting and pasting. In fact,
one does not need a measure of complexity of open curves that is invariant under deformations,
but rather a measure that varies continuously in the space of configurations. Such a measure
is the Gauss linking integral. For two closed curves, the Gauss linking integral is an integer
topological invariant that measures the algebraic number of times one curve turns around the
other. For two open curves, it is a real number that is a continuous function of its coordinates.
The Gauss linking integral has been very useful in measuring entanglement in physical
systems of open or closed filaments [3,20-24]. However, more refined measures of entanglement
of one, two or more components, are needed. In this direction, several approximation
efforts have appeared, aiming at mapping an open curve to a knot type, or a knotoid
type [6,25,26].

In this manuscript, we introduce a new measure of entanglement of open curves in 3-space
that is a well-defined function of its coordinates in 3-space that does not approximate an open
curve by any particular closed curve or any particular projection of the open curve. Namely, we
define the bracket polynomial of open curves in 3-space, a polynomial with real coefficients which is
a continuous function of the coordinates of the curve. This is used to define the Jones polynomial
of open curves in 3-space. The Jones polynomial of open three-dimensional curves is a continuous
function of the curve coordinates and, as the endpoints of the curve tend to coincide, it tends
to the Jones polynomial of the resulting knot, a topological invariant of the knot. In general,
the Jones polynomial of open curves is independent of the parametrization of the curve, but it
depends on the relative positions of the curve coordinates. We stress that this is the first well-
defined new measure of entanglement of open curves that is a continuous measure of complexity
of open curves since the Gauss linking integral and it is stronger than the Gauss linking
integral.

An important reason why the Gauss linking integral has been very useful in applications
is that a finite form for its computation exists that avoids numerical integration [27]. To this
direction, in this manuscript, we also provide a finite form for the computation of the bracket
and Jones polynomials in the case of a polygonal curve of 3 and 4 edges (open or closed). This
is the base case upon which the general case of more edges will be studied in a sequel to this
paper.

The manuscript is organized as follows: §2 discusses background information on measures of
entanglement, §3 gives the definition and properties of the bracket polynomial of open curves
in 3-space and uses the bracket polynomial of open curves to define the Jones polynomial of
open curves. We stress that, even though in this manuscript we focus on single open curves,
all the definitions and properties of those described in §3 apply to a collection of open curves.
Appendix A provides a finite formula for the computation of the Jones polynomial of a polygonal
curve of 4 edges. A finite formula for the computation of the bracket polynomial of a polygonal
curve of 3 and 4 edges is obtained in the electronic supplementary material.
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2. Measures of complexity of open curves and their projections

In this section, we provide background information that is necessary for the rest of the
manuscript. More precisely, we discuss the Gauss linking integral, a measure of entanglement
of both open and closed curves in 3-space and the bracket and Jones polynomial of knotoids, a
measure of complexity of open knot diagrams (projections of open curves in 3-space).

() The Gauss linking integral
A measure of the degree to which curves interwind is the Gauss linking integral:

Definition 2.1 (Gauss Linking Number). The Gauss Linking Number of two disjoint (closed or
open) oriented curves /1 and I, whose parametrizations are y;(t), y2(s), respectively, is defined as
the following double integral over /1 and /5 [15]:

1 1(1), v2(5), v1(t) — y2(s))
L(l1, )= —
(h. 1) J[O,l] J[O,l] ly1(t) — v2(s)I13

%
where (p1(t), 2(s), y1(t) — y2(s)) is the scalar triple product of y1(t), y2(s) and y1(f) — y2(s).

dtds, 2.1)

For closed curves, the Gauss linking integral is equal to half the algebraic sum of inter-crossings
in the projection of the two curves in any projection direction, it is an integer and a topological
invariant of the link.

For open curves, the Gauss linking integral is equal to the average of half the algebraic sum
of inter-crossings in the projection of the two curves over all possible projection directions. It is a
real number and a continuous function of the curve coordinates.

(i) Finite form of the Gauss linking integral

In [27], a finite form for the Gauss linking integral of two edges was introduced, which gives a
finite form for the Gauss linking integral over two polygonal curves.
Let E;;, R;y denote two polygonal curves of edgese;,i=1,...,n, r]-,j =1,...,m,then

L(En, Ru) =)y L(ei,7)), (2.2)

i=1 j=1

where L(e;, 7j) is the Gauss linking integral of two edges. Let ¢; be the edge that connects
the vertices p;, p;,; and r; be the edge that connects the vertices PPy (see figure 1 for an

illustrative example). In [27], it was shown that L(e;, 7j) = %Area(Qi,j), where Qj; for i < j denotes
the quadrangle defined by the faces of the quadrilateral formed by the vertices p;, p;,1, P}, Pj11-
This area can be computed by adding the dihedral angles of this quadrilateral. The faces of this
quadrangle have normal vectors n;,i =1, ...,4, defined as follows [28]:

" Tij X Tijt1 Fij+1 X Figplj+1 Tit1,j+1 X Titlj Tiy1j X ¥ij

1= M=V, M3=—"—-, MY="—"",

l7ij < rijpall I7ij+1 X Fig1j41ll 7it1,j4+1 X Tiga 71, < rijll
where rjj =p; — PjrTijt1 =P; = Pjy1: Yi+1,j = Pip1 — P} and i1 141 =Py — Pjt1-

The area of the quadrangle Qj; is: Area(Q;;) = arcsin(n - n2) + arcsin(ny - n3) + arcsin(nz - na) +
arcsin(ny - ny).

(b) The bracket polynomial of knotoids

The theory of knotoids was introduced by V.Turaev [19] in 2012 (see also [16]). Knotoids are
open-ended knot diagrams (figure 2). Three Reidemeister moves (figure 3a), are defined on knotoid
diagrams by modifying the diagram within small surrounding discs that do not use the endpoints
(forbidden moves shown in figure 3b). Two knotoid diagrams are said to be equivalent if they
are related to each other by a finite sequence of such moves (and isotopy of $?, R? for knotoid
diagrams in 52, R?, respectively).
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Figure 1. The area of the quadrangle is bounded by the great circles with normal vectors n;, 1, 113, 4, determined by the
faces of the quadrilateral. In fact, the quadrangle is formed by gluing together, with correct orientation the tiles A, B, R, L. The
vectors 11, 11, 3, 14 are perpendicular to the tiles L, A, R and B, respectively, pointing outwards of the tetrahedron for A, Band
inwards for L, R. These tiles define a quadrangle with faces 4, L, B, R in the counterclockwise orientation, with all the normal
vectors pointing outside the quadrangle.

Figure 2. Examples of (polygonal) knotoids (open simple arc diagrams). Note that knotoids refer to projections of open curves,
while knots refer to closed curves in 3-space.

K-
X o5 o).
/\\%\/

Figure 3. (a) The Reidemeister moves for knotoids and (b) forbidden knotoid moves.

The bracket polynomial of knotoids in S? or R? is defined by extending the state expansion of
the bracket polynomial of knots. The following initial conditions and diagrammatic equations are
sufficient for the skein computation of the bracket polynomial of classical knotoids:

OO =400 +4710 (), (KU =(=A2 = A)(K), () =1. 23)

Definition 2.2. A state of a diagram of a knotoid, K, consists in a choice of local state for each
crossing of K.
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Definition 2.3. The bracket polynomial of a knotoid diagram K is defined as

(K) = ZA"(S)d”S”_l, (2.4)
S
where the sum is taken over all states, o (S) is the sum of the labels of the state S, ||S|| is the number
of components of S, and d = (A2 — A72),

Remark 2.4. The classical bracket polynomial of knots is defined using formula (2.4), with
the same Skein relations as in equation (2.3), except the last one, where an arc is replaced by a
circle. The classical bracket polynomial is not a topological invariant for knots (it is not invariant
under the Reidemeister 1 move) and depends on the knot diagram used for its computation.
Similarly, the bracket polynomial of knotoids is not invariant under £2; (the Reidemeister 1 move)
and depends on the knotoid diagram.

(i) The Jones polynomial of knotoids

The Jones polynomial of knotoids is an invariant of knotoids and many component knotoids,
called multiknotoids or linkoids, (equivalent knotoids/linkoids map to the same polynomial) and
can be defined using the normalized bracket polynomial. The normalized bracket polynomial is
defined as follows:

fk= (A7) ® k), 2.5)

where wr(K) is the writhe of the knotoid diagram K.
The normalized bracket polynomial of knotoids in S? generalizes the Jones polynomial of
knotoids with the substitution A =#~1/4,

Remark 2.5. The same definition, where K is a knot diagram, applies to simple closed curves
to give the Jones polynomial of knots and links, a topological invariant of knots and links.

3. The bracket polynomial of a curve in 3-space

Consider an open or closed curve in 3-space. A (regular) projection of a curve (fixed in 3-space)
can give a different knotoid diagram (or knot diagram), depending on the choice of projection
direction. We define the bracket polynomial of a curve in 3-space as the average of the Kauffman
bracket polynomial of a projection of the curve over all possible projection directions. The
definition is made precise as follows:

Definition 3.1. Letdenote a curve in 3-space. Let (I); denote the projection of / on a plane with
normal vector &. The bracket polynomial of [ is defined as

1
0= 17 ], o K@ 85, G8)

where the integral is over all vectors in S? except a set of measure zero (corresponding to irregular
projections, i.e. projections where more than two points coincide).

Properties of the bracket polynomial of curves in 3-space

(i) The bracket polynomial defined in equation (3.1) does not depend on any particular

projection of the curve (open or closed).

(ii) For an open curve this polynomial is not the polynomial of a corresponding/approxi-
mating closed curve, nor that of a corresponding/approximating knotoid.

(iii) For both open and closed curves, the bracket polynomial defined in equation (3.1) has
real coefficients.

(iv) The bracket polynomial defined in equation (3.1) is not a topological invariant, but it
is a continuous function of the curve coordinates for both open and closed curves (see
corollary 3.4).
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In the following, we will show that the bracket polynomial of curves in 3-space attains a
simpler expression for polygonal curves. However, similar arguments can be used to extend this
simpler expression to any curve in 3-space (polygonal or not).

Let EW,, denote the space of configurations of polygonal curves of n edges. Let E; denote a
polygonal curve of n edges in 3-space. Then only a finite number of different knotoid (or knot)
types can occur in any projection of E;,. Let k(1) be the total number of knotoids that can be
realized by a projection of a three-dimensional polygonal curve with 1 edges, we denote K;,i=

. k(n).
Then equation (3.1) is equivalent to the following sum:

Zp(”) (32)

where K((E;)g) denotes the knotoid corresponding to (E;;)¢ and we denote pl(."), the probability
that a projection of E;; gives knotoid Kj, i.e. p(n) P(K(Ep)g = K;).

Let m denote the maximum degree of (K;),i=1,...,k and let L;; denote the space of Laurent
polynomials of degree less than or equal to m. Then (E;) is a function from EW,, to L;,.

Lemma 3.2. The probability pgn) is a continuous function of the coordinates of E;,.

Proof. Note that
(n) _ 2Ap
D= (3.3)
where A = area on the sphere corresponding to vectors & such that: K((Ej,)¢) = K;. For a polygonal
curve, this area will be bounded by a finite number of great circles, each of which is determined
by an edge and a vertex of the polygonal curve, as in [27].

Let € > 0. Let a; be the position of a vertex of Ey,. Let d = miny; di ;, where dy; = dist(a;, ax — a))
(the distance between the vertex a; and the segment connecting ay, a;). Suppose that a; changes
by éa, such that [|8a| <27 de/8(nn — 2). Then, the projection of the edges ¢; | =a; —a; 1 and ¢ =
ajy1 — a; in any projection direction might change and the great circles involving the vertex a;
might change as well. Each of these two edges, ¢j_1,¢j is involved in (1 — 2) pairs of edges with
which they may cross in a projection and each such pair consists of 3 faces containing 4;, one
of which is counted in both the ¢;_; and the ¢; pairs. Thus, a change in 4; can affect 4(n — 2)
planes. Let u be the normal vector to one of these planes, say the one formed by the vertices
a;, a;, a;; 1. The normal vector to the new plane containing a; + da, a;, a;, 1, will change to u + §u.

If that plane was one of the great circles bounding Ao, then Ay may also change to A (and p(n)

to pl. , accordmgly). The change in area |Ag — Aj)| will be bounded above by the area of the lune
defined by the great circles with normal vectors u and u + éu, which is equal to o =26, where 6
is the dihedral angle between the two great circles, which is equal to the angle between u and
u + éu. The maximum value of that angle will occur if 8a is orthogonal to the plane aj,a;, a1,
which means when 8a is parallel to u. Then the angle 6 is that of a right triangle with one edge of
length dj; = dist(aj, ax — aj) and the other of length [|8a]|. Thus tan 6 = ||da/|/dy,. Thus, the change
in the area is

2md
[Ag — | <4(n — 2)2arctan < 18a ”) < 8(n — 2) arctan (ﬁ)
~8(n—2)—¢ o (3.4)
= 8n—2) ¢ '
where we used the small angle approximation. Thus |p1(.") - p:.(”)| <e€. |

Proposition 3.3. The bracket polynomial (E;,)= Zj q]-Af , 15 a continuous function of the curve
coordinates. In other words, it is a continuous function in the space of configurations of Ey,.
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Proof. We consider the standard Euclidean norm over the space of Laurent polynomials of a
fixed degree. Then ||(E;)|| = /Zj q]Z. Since each coefficient gjisa finite sum of probabilities of the

form pl(."), it is a continuous function of the curve coordinates. It follows that (K(E;)) will also be
continuous with the norm mentioned above. [ |

Corollary 3.4. The bracket polynomial of a curve I in space, (l), is a continuous function in the space of
configurations of I.

Proof. By approximating [ by a polygonal curve, I, and taking the limit as # — oo by proposition
3.3, follows that [ is continuous. [ |

(@) The Jones polynomial of open curves in 3-space

The Jones polynomial of an open curve in 3-space is defined using the normalized bracket
polynomial of an open curve. Even though we focus on open curves, the following definition
applies also to closed curves, we therefore define it more generally for any curve in 3-space as
follows:

Definition 3.5. Letdenote a curve in 3-space. Let (I); denote the projection of / on a plane with
normal vector £.
The normalized bracket polynomial of [ is defined as

_ 1 3y=wr((e)
0= g J, o AT 08 45, 5
where the integral is over all vectors in S? except a set of measure zero (corresponding to irregular
projections).

Remark 3.6. The same definition applies to define the bracket and Jones polynomial of many
open and/or closed curves in space by replacing I by a many component open/closed or mixed
collection of open and closed curves. In the case of a collection of closed curves (a traditional
link), the Jones polynomial is a topological invariant. In the case of open curves, it is a continuous
function in the space of configurations. In this manuscript, we focus on one component, but the
same analysis holds for many curves in 3-space.

Properties of the Jones polynomial of curves in 3-space

(i) For closed curves, the Jones polynomial defined in equation (3.5) is a topological invariant
and coincides with the classical Jones polynomial of a knot (see corollary 3.7).
(ii) For open curves, the Jones polynomial has real coefficients and is a continuous function
of the curve coordinates (see corollary 3.8).
(iii) For an open curve the Jones polynomial is not the polynomial of a corresponding/
approximating closed curve, nor that of a corresponding/approximating knotoid.

Corollary 3.7. In the case where | is a closed curve, fj = (—A3)*w’((l)€)((l)§) forall & € s2,

Proof. Let | be a closed curve, and let & € S%. Then its projection g is a knot diagram and
(—A3)~r@e) (1) is a topological invariant that does not depend on the particular diagram of

the knot. Thus f; = (1/4x) fEesz(_AS)fwr((l)s) ((hg)dS = (1/47)4m (—A3)~wr(De) (D). [ ]
For a polygonal curve of n edges, equation (3.5) is equivalent to the following sum:
k m )
fea=>_ 3 P,(-Z)(—A3)_] (Ki ), (3.6)
i=1 j=—m

where we denote pl(r]f) = P(K(En)¢ = K;, wr((En)g) =), k = k(n) and m = m(n, 1).
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Figure 4. Three snapshots of a polygonal curve in 3-space with 3 fixed edges and one deforming edge in 3-space. From ty to t;,
the curve tightens a configuration that gives the knotoid £2.1in most projection directions and could lead to the creation of a
trefoil knot if was able to thread through (more edges are needed for that [29]).

Corollary 3.8. The normalized bracket polynomial of an open curve in 3-space is a continuous function
of the curve coordinates.

Proof. In a similar way as in lemma 3.2, one can show that for a polygonal curve of n edges, pg?
is a continuous function of the curve coordinates for all 7,j, n and use that for the limiting case of
any simple curve [ in 3-space. |

Example. In this example, we compute the Jones polynomial of an open polygonal curve in
3-space. We focus on the case of a curve with 4 edges, but this method applies to curves of
any length. In appendix A, we derive an exact finite formula for equation (3.6) which avoids
integration and is used in this example.

Figure 4 shows three snapshots of a polygonal curve, I, whose last edge deforms with
time as the last vertex position changes according to the parametrization I(t)=((0,1,0),
(0,0,0),(-0.2,0.8,0.8),(0.1,0.8, —0.8), (0.1 4+ 1.2 cos(a + t), 0.5, —0.8 4+ 1.2 sin(a + t))). Therefore, for
each value of the parameter ¢, we obtain a different curve in 3-space which differs from the first
only in the position of its last vertex. The coordinates of the curve in the three snapshots in figure 4
are obtained for fy =0, f; =4000 and f; = 11 300, in units of 277 /100 000, and a = 32 0007t /100 000.

The Kauffman bracket at the start and end time is

(3.7)

(I(tg)) =0.06A% — 0.77A73 — 0.06A™* + 0.07A7° + 0.15
and (I(ty)) =0.71A% — 0.71A* — 0.14A73 + 0.05A7° + 0.14

to be compared with the values of the bracket polynomial of the typical configuration of the
right-handed trefoil knot, Tg and the right-handed k2.1 knotoid, which are equal to

(TR)=A"7 4+ A% — A% and (k2.1) =A% — A~* 41, respectively. (3.8)
The Jones polynomial at each time is
F(I(tg)) = 0.06t — 0.06t>/% 4 0.06>/% + 0.94
(3.9)
and FI(t)) = 0.71 — 0.71¢>/% + 0.71t3/2 4 0.29

to be compared with the Jones polynomial of the right-handed trefoil knot, Tg and the right-
handed k2.1 knotoid, which are equal to

F(TR) =t + 2 — t* and f(k2.1) = t + t3/% — £5/2, respectively. (3.10)

Figure 5 shows the Jones polynomials at different times as the curve attains a more compact
configuration as time increases. For comparison, the Jones polynomial of the trefoil knot (above)
and of the two-dimensional knotoid diagram k2.1 (below) are shown as well. Note that a
polygonal curve needs at least 6 edges to form a trefoil knot [29]. Nevertheless, in figure 51, we
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(@) the Jones polynomial of an open curve in time P
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Figure 5. The Jones polynomial of the polygonal curve in 3-space as it deforms in time to tighten a compact configuration.
(a) The dotted curve shows the Jones polynomial of the trefoil knot (we denote Tz). Even though a polygonal curve with 4 edges
cannot form the trefoil knot [29], we see that the polynomial of the open curve tends to that of the trefoil knot, as this part of the
configuration would be a part of the knotting pathway towards a trefoil knot. (b) The dotted curve shows the Jones polynomial
of the knotoid 2.1 (a two-dimensional diagram). We see that the curve tightens to a configuration that in most projections will
give the knotoid k2.1, which explains why the polynomials tend to that of k2.1. (c) The roots of the Jones polynomial of the open
curve in 3-space as a function of time and the roots of the trefoil polynomial. (Online version in colour.)

see a small but continuous change of the polynomial closer to that of the trefoil knot. Indeed, we
note that the tight configuration that attains the open curve in 3-space would be a necessary part
of the knotting pathway of the open curve to form a trefoil knot. In figure 5b, we also plot the
Jones polynomial of the open curve in 3-space as a function of time and the Jones polynomial of
the knotoid diagram of k2.1. We see that the Jones polynomial of the open curve tends to that of
the two-dimensional knotoid k2.1. Indeed, as the configuration tightens, it almost becomes two-
dimensional, giving in most projections the knotoid k2.1. However, it will never be exactly equal
to that. In figure 5c, we plot the roots of the Jones polynomial in time and those of the trefoil knot.

Remark 3.9. Using the state formula for the bracket polynomial of a knotoid, we obtain the
following state formula for the bracket polynomial of a polygonal curve in 3-space

k m;
(En)=Y_ p 3 AT IS, (3.11)
i-1 =1
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where the first sum is taken over all realizable knotoids of 1 edges and the second sum is taken
over all states, Sj, of the i-th realizable knotoid, a(S]-) is the sum of the labels of the state S i, 151l is
the number of components of Sj, and d = (—A2 — A‘Z).

Similarly, we obtain the following state formula for the normalized bracket polynomial of a
polygonal curve in 3-space

k m
fiey =Y 2P (=A%) TN acglsi-L, (3.12)
S.

i=1 j=1 i

Remark 3.10 (Comparison with previous methods). Due to the urgency of measuring
complexity in physical systems, several approaches have appeared in the last decade that attempt
to use knot and link polynomials [6,16,26,30,31]. The underlying idea in these methods is to
approximate an open curve in 3-space by a knot (dominant knot) or by a knotoid (dominant knotoid)
that best captures its entanglement. Both the dominant knot and the dominant knotoid have been
successful in characterizing proteins [6,26]. Even though these approaches are very helpful, they
can at best approximate an open curve by either one closed curve or by one of its projections,
respectively, and in practice, they might even give different answers for different choice of points
on the sphere. Putting these methods in the framework, we established in this paper, they
consist in computing the knot-type or the knotoid type with highest probability of occurring
in a projection. In this study instead, we use the average of all the bracket polynomials of all
the knotoids that occur. As we discussed in the previous paragraphs, this simple modification
provides for the first time a well-defined measure of entanglement of open curves, other than the
Gauss linking integral (see all the properties mentioned above). To understand the difference
between the information captured by the two methods, we draw a comparison between the
linking number and the Gauss linking integral: the dominant knot/knotoid method would
correspond to the integer linking number that occurs in the most projections of an open curve,
while the definition we give here, would correspond to that of the Gauss linking integral (the
average linking number over all projections).

4. Conclusion

In this work, we defined the Kauffman bracket polynomial and the Jones polynomial in a way that
is applicable to both open and closed curves in 3-space. We showed that for open curves these are
continuous functions in the space of configurations. In doing this, we introduced a new method
of measuring complexity of open curves, that combines the fundamental concepts of the Gauss
linking integral and the theory of knotoids. This approach opens a new direction of research in
applied knot theory where the machinery of knot and link polynomials can be rigorously applied
to open curves for the first time.

Moreover, we showed how these functions of complexity obtain a finite form for polygonal
curves. We derived specific finite formulae for the computation of the Jones polynomial in the
basic case of a polygonal curve of 4 edges. This study lays the foundation for the derivation of
a finite form for a larger number of edges. We stress that the number of edges that are relevant
in applications, such as polymers, may not be equal to the exact number of covalent bonds, but
rather equal to the number of Kuhn segments or equal to the number of entanglement strands in
a primitive path [23,32,33], for which, even less than 10 edges are relevant. Similarly, proteins may
be represented by their sequence of secondary structure elements as building blocks, for which
less than 10 edges may also be relevant [34].

Even for this small number of edges, our numerical results show that the polynomials are
sensitive to the motion of the polygonal curve and indicative of the transition to more compact
conformations. For a larger number of edges these measures will directly reflect the entanglement
of the open curve and how knotting occurs. We stress that these tools can also be applied to
collections of open and closed curves and we expect them to have impactful applications. They
allow to be included in formulations of mechanical models of elastic coils [35,36]. Also, they allow
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to accurately describe knotting pathways in proteins for the first time [37]. As well as in theories
that derive important quantities in polymer physics, such as the entanglement length [4,22,23].
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Appendix A. A finite form for the Jones polynomial of an open polygonal curve
with 4 edges

In this section, we show that an equivalent finite form of the normalized bracket polynomial
(Jones polynomial) exists, reducing the computation of the integral to a computation of a few dot
and cross products between vectors and some arcsin evaluations. Here, we provide a finite form
of the normalized bracket polynomial for a polygonal curve of 4 edges. This could lead to the
creation of its finite form for more edges.

Note that the case of closed curves is reduced to the Jones polynomial of any projection of
the closed curve. Thus, here we focus on the open case where the average over all projections
is needed. In the case of a polygonal curve with 3 edges, we denote E3, the Jones polynomial is
always trivial.

Let E4 be composed by 4 edges, e1,e.63,e4, connecting the vertices (0,1),(1,2),(2,3),(3,4),
respectively.

Proposition A.1. k(4) =2 (There are only two different knotoids that can be realized by a three-
dimensional polygonal curve with 4 edges).

Proof. In a projection of Ey4, crossings may occur only between the projections of the pairs
of edges: e1,e3, e1,e4 and ey, e4. Therefore, we have the following five possible combinations
(figure 6):

case A: one crossing, between the projections of: e1,e3 or e1,e4 or ez, e4

case B: two crossings, between the projections of: e1,e3 and e1, e4 (giving two possible
diagrams, i and 7') or 3, e4 and e1, e4 (giving two possible diagrams, ii and i) or e1, e3 and
ey, e4 (not realizable, see below)

case C: three crossings, between the projections of: e1, e3 and e1, e4 and e, e4.

The case B with e, e3 and ey, e4 crossings is not realizable: The projection of e; defines a line in
the plane that divides it in two regions. Suppose that the projection of e3 intersects e;. Then the
endpoints of e3 lie in opposite regions and are the endpoint and the starting point of e, and ey,
respectively. Thus the starting point of ¢4 is in the opposite region of the one where ¢, lies in and
to intersect e, it must also intersect e.

Figure 6 shows the different cases of diagrams with undefined over or under crossings which
give rise to realizable knotoids. The diagrams of case A and case B (i) and (ii") are all trivial and
case C is realizable only when it is trivial. The diagrams of case B (i) and (ii) are non-trivial (in
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case A case B case C

3
3 3
2 2 2 3
1 1 | 2 .
4 4 4 4
Al A3 .
@)
3./|2 3 3 1
4 4 4
1 2 2
A2 (ii) (i)

Figure 6. Possible diagrams of a projection of a polygonal curve with 4 edges, e;, e,, €3, e,. Each crossing may be over or under,
except for case C, where constraints apply due to the polygonal curve rigidity (see proof of proposition A.1). Only case B (i) and
(ii) can give a non-trivial knotoid when both crossings have the same sign. Therefore, if () is non-trivial, itis of only one type:
k2.1.

S?) only when the crossings between the involved edges have the same sign, i.e. €13 =¢j4 or
€1,4 = €24, resp., in which case, they both represent the knotoid k2.1 [16]. |

The next proposition shows that when the projection of E4 is of type k2.1, it can be only one of
the two possible k2.1 diagrams (case B (i) or (ii)) in any projection direction.

Proposition A.2. Let E4 denote a polygonal curve of 4 edges in 3 space. If there is §1 such that (E4)g, =
case B(i), then there does not exist & € S2, £ &4 such that (Eg)¢ = B(ii) (and vice versa).

Proof. Without loss of generality, suppose that €13 =€1 4 =1 and that there exists &; such that
(E4)g, is of the form (i). Then, (e3 x e4) - e1 > 0. Suppose that there is §; such that (E4)g, is of the
form (ii). Then (e3 X e4) - €1 < 0, contradiction. |

Let E4 denote a polygonal curve of 4 edges. Then, by propositions A.1 and A.2, the only
non-trivial bracket polynomial is k2.1 and the writhe of the diagram is either 2 or —2. Thus the
normalized bracket (Jones) polynomial of E4 has the following form:

FED) =P (—A) D 1) + Z Py 1
j==2

— D (AP 21y + (1 - p)),

where p{3); = P(K(Eq)¢) =k2.1) and pg); = P(K((E)¢) = k0, wr((E)g) = ])
The rest of this section is focused on obtaining finite form for pk21 (which is derived in
theorem A.9).

In the following definition, we gather some of the notation used so far, together with some
new definitions, necessary for the rest of the manuscript.

Definition A.3. Throughout this manuscript, we will denote by Q;; the spherical polygon
which corresponds to projections where the edges ¢;, ¢; cross. ij is the antipodal of Q;; on the
sphere. Q;;x is the spherical polygon which corresponds to projections where the edges ¢;, ¢
and e;, ¢ cross, it is equal ro Q;x = (Q;; N Qix) U (ij N Qik)- Qf‘]k is the antipodal of Q;;x on
the sphere. We denote (wj,...,wy) the spherical polygon formed by the intersection of great
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circles with normal vectors wy, ..., wy in the counterclockwise orientation. A(Q; ), A(Q;,x) and
A(wy, . .., wy) denote the area of Q;;, the area of Q; ;x and the area of (wy, ..., wy), respectively.

Definition A.4. We denote by T;;, the quadrilateral in 3-space that is formed by joining the
vertices of the edge ¢; with the vertices of the edge ¢;. The normal vectors of T;;, denoted nj,
ny, n3, ng, are normal vectors to the great circles that bound Q;; and are determined by the
algorithm described in §2ai when i <j. We define the spherical faces of the quadrangles from
the quadrilateral as follows: at each vertex of the quadrilateral extend each edge by length 1 and
connect those segments that share a common vertex by an arc on the unit sphere (see figure 7 for
an illustrative example). We call the spherical faces at the vertex i and i + 1, (corresponding to the
vectors n1,13), the left and right faces of T;; and the spherical faces at j and j + 1 (corresponding
to n and ny), the top and bottom faces. One pair bounds Q;; and the other bounds QA but the
reflections of these spherical faces through the centre of the sphere create both quadrangles

Definition A.5. We will say that T ; generates the quadrangle that contains the pair of right and
left spherical faces of T;; (the spherical faces at i and i + 1, respectively). We call the antipodal

quadrilateral of T;, we denote TA the quadrilateral which generates Q{‘j. We denote its normal

A A A A
vectors asny, ny, ny,

Remark A.6. We note that in a quadrangle generated by a quadrilateral T;; the vectors either
point inward or outward the quadrangle and their numbering either follows a counterclockwise
or clockwise orientation on Q; ;, depending on the sign of ¢;;. If the normal vectors of Q;; point
inwards (outwards resp.) than those of QA point outwards (inwards resp.) and with the opposite
numbering sequence (clockwise/ counterclockwise).

Lemma A.7. Let Tj; denote the quadrilateral formed by e;, ej with vertices at the points p;, p; 1, pj,
Pjs1- The antipodal of Tij, T{‘j, is the tetrahedral formed by the edge e; and the edge e]A, with vertices
Pis =Pip1 — W — pp) and pyp =piy1 — P — 1))

Proof. Let ny, nz, n3, ny denote the normal vectors to the faces of T;; and let n‘f, né, ng‘, nf

denote the normal vectors of TA Without loss of generality, suppose that n1, 1y, n3, ny all point

inwards Q;j, numbered with the counterclockwise orientation. Then the antipodal, Q has the
same normal vectors but point outwards numbered with the clockwise orientation. The left and
the right faces of Q;; have normal vectors n and n3. Since Qf‘] is a reflection of Q;; through the

centre of the sphere, the normal vectors to ij must be related to the normal vectors of Q;; as

follows: "114 =—ns, n‘24 =—ny, nf,f‘, =-ny, njf = —ny.

We will examine if the normal vectors defined by T;‘} satisfy these relations. Note that by
definition
A ri,jA X Ti,(/+1)A
nl - 5.
lIFija > 7i 1)l

where r;ja =p; — Pf =p;i—Pip1 + W, = P)=P; — Pig1 = —Tiv1j Tigrp =P — P}L}H =Pi—Pin Tt
(pj+1 - Pi) =Pjy1 — Pi= ~Tijt1- Thus, nf = —n3.

Similarly, one can verify that the normal vectors of Ti‘]., n‘f‘, 11‘24, ng", njf satisfy: n’f =-—nsz, n‘zq =
—ny, n‘g\ =—n and nf = —ny. |

The following theorem determines the probability that three edges, two of which are
consecutive, cross in a projection direction.

Theorem A.8. Let e; ¢, e, 1 denote three edges in 3-space. Then the joint probability of crossing
between the projections of e;, ¢j and e;, ejy1, is equal to (1/27)A(Q; jj+1), where Q; ;11 is given in tables 1
and 2.

Proof. Let T;j and Tjj,1 be the two quadrilaterals formed by e;, ¢j and ¢;, ¢;,1, where ¢; connects
vertex i to i+ 1, ej connect vertex j to j+ 1 and vertex j+ 1 to j+ 2. Let n1, np, n3, ny denote
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m

P i1

>0
<0

Citl,irl
Cita,it1

(iv) v) (vi)

Pir1i 3

Djio i
JTest
L2

>0

Cj+1 N

Cira,i >0

(vii) (viii) (ix)
Figure 7. The quadrangle Q;;;.11 = (Q;; N Qjj1) U (ij M Q;j+1) contains the vectors that define projections of ¢;, ¢; and
e, €41 Where the projections of both pairs intersect. This figure shows the procedure for determining ij M Qjj1 in the case
where €;; = €;;11. ij M Qjj+1 is bounded by the great circles defined by the intersection of the faces of the quadrilaterals T,Aj
and T;j44. (i) The quadrilateral T,A/ (ii) the quadrilateral T; 4, (iii) the relative positions of T,A/ and Tjj41. (iv—ix) At the vertices
i,i 41, we can define the left and right spherical faces of OfJ and ;1. To find the left and right faces of OfJ N Qjj1, we
examine the intersection of the spherical faces at i and at i + 1 (see definition A.4). Let P Pisajt be the vectors that
connect vertex j -+ 1and vertexj + 2to/ + 1. In this example, G141 = (p/, TP m)e;; > 0and ¢ 41 = (P/+2,i+1 .
my)e;; < 0and the spherical faces By, R, intersect and they both bound @;. Similarly, in this example, .11, = Py 13> 0
and ¢ = Py 13> 0and only the spherical face ; bounds Qfl M Qij+1. (Online version in colour.)

the normal vectors to the faces of Ti; and uq, up, us, ug denote the normal vectors to the faces
of T; ;1. The normal vectors defined by the quadrilaterals define great circles which intersect to
form the corresponding quadrangles. Each pair of great circles intersects at two antipodal points
on the sphere, but due to the connectivity of the edges, there are also points where more than two
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Table 1. The spherical polygon Q11 in the case where the signs satisfy €;; = €;;41, depending on the conformation. The
spherical polygon Q;;;41 contains the vectors which define planes where the projections of e;, ¢; and e;, ¢4 both cross.
(w4, w, . . ., wy) denotes the spherical polygon bounded by the great circles with normal vectors w;, i =1, . . ., n, in the
counterclockwise orientation (see definition A.3 and proof of theorem A.8).

€jj = €jj+1, W < 0,W0 <0 Oi,j,j+1
................... Gt > 0, Gajr > 0G4y > 0,Gogy >0 g, —wpm)
................... Gt > 0, Grajr > 0,Gay < 0,Gyay <0 gy m, —ap, —a)
___________________ Gt > 0, Gajr > 0,Gay > 0,Goay <0 gy, —wp, —iym)
___________________ Gt > 0 Gajr > 0,Gay <0Gy >0 gy m, —wp,my, )
................... Gt <0Gt <0Gy > 0,Gogy >0 g, —wy, —yymg)
___________________ Gt <0G <0Gy <0,Goay <0 g, —tty, —ty )
___________________ Gt <0Gt <0Gy > 0,Goay <0 g, —tty, —ty, —wyms)
................... Gt <0 Grajr <0Gy <0,Goay >0 g, —tty, a1, —w)
................... G > 0,Grain <0Gy >0,Gigi >0 - (mg,my, —uy, —tpym)
___________________ Gt > 0, Grajr <0Gy <0Goay <0 gy, —uy, —ty, —a)
___________________ Gt > 0 Grajr <0Gy > 0,Goay <0 gy, —uty, —ty, —wyy )
................... Gt > 0, G <0Gy <0,Goay >0 g, m, —uy, —tty, 5, —)
................... G <0 Grain > 0,Gray > 0,Gj >0 (mg, —wym, —tpym)
___________________ Gt <0 Grajr > 0,Gay <0,Goay <0 oy, —wty, g, —ty, )
___________________ Gt <0Gt > 0,Gay > 0,Goay <0 g, —wty,my, —thy, —wyy )

Gt < 0, a1 > 0,Giarj < 0, Gz > 0 (ny — w3, my, —uy, 3, —1n7)

E,‘JZEI',]+1,W>00|'W0>0 0,‘JJ+1

Table 2. The spherical polygon Q; ;.11 in the case where the signs satisfy €;; = —e¢; 11, depending on the conformation (see
caption of table 1for notation).

€j = —€jj+,w <0 Qijj+1 €j = —€jj4,w>0 Qijj+

G2 > 0,Gyjr1 >0 G2 >0, Grajp1 >0 (ny, —1n, ny, —u3)

great circles cross. These great circles correspond to faces of the tetrahedrals that share a common

edge. The great circles with normal vectors ny, ng, uy share the common edge i,i+ 1, ny, 13,11
share 7,j + 1 and ny, n3, u3 share i + 1,j + 1. Due to the connectivity of the edges ¢;, ¢j1, T;; and
Tij+1 share a common face, the one formed by the vertices i,i + 1,7 4+ 1, which implies that the
normal vectors ny and uy are collinear. Thus, the great circles Qi,j and Qi,j+1 or the great circles
ij and Q;j;1 share a common face, which implies that either Q;; N Q; ;.1 =@ or Qf}]. NQij+1=9Y,
depending on the sign of ¢;j and €; ;1.

Suppose €;; =€;;1 (see figure 8 for an illustrative example). Then in order for the projections
ofe;, ¢j,¢j+1 to intersect, ¢; must pierce the triangle defined by ej,ej41- To check this, we examine the
signs of wp = (v3 x (—n1)) - (v3 x n3) and w = (up x (—ny)) - (2 x ng), where v3 =Pijs2 X Pisj42-
If wo > 0, then Q; ;1 =¥. The faces with normal vectors uy, 1z, 14 share a common edge and, if
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J J
¢
. jt2
i+1 i i+1 A i i+1 i
e; v
€1 A j+1
i+1
w<0 we<0
() (i1) (iif)
j jt1A

n4x\,’ \
' \
/’ \

,/ \‘

/’ ny \

i+1< =i i
ny [Yji+1
A
sz Tij Tij+1
(iv) ) (vi) (vii)

Figure 8. (i~iii) A configuration where €;; = €1, w < 0 and wy < 0. (iv) The tetrahedral formed by e;, e;, we denote T;;.
(v) The antipodal of T;;, we denote TA (see definition A.3 and theorem A.7). (vi) The tetrahedral formed by e;, ¢;11. In this
a@se, [jj N T =0 fw=(u; x ( m)) - (uy x ny) > 0, then T‘. N Tij1 = ¥ as well, giving A(Q;jj+1) = 0. (vii)
Ifw < 0,then TA N Tija 7 ¥, giving A(Q;jj41) 7 0 (see proofoftheorem A.8). (Online version in colour.)

(uz x (—n2)) - (u2 x n4) > 0, then both n; and n4 do not intersect T; 1.1, so A(Q;j+1) = 0 (figure 8).
Suppose that wg <0 and w <0. In that case n, = —uy and the face i,i +1,j contains the only
points in the intersection of T;; with T;; 1, thus A(Q;; N Q;;11) = 0. We, therefore, examine the

intersection of TA N T;j1, which determines QA N Qjjt1 (see theorem A.7). Since n’; =1y =1,

and TA is the antlpodal of T;;, the face of TA w1th normal vector n2 and the face of Tjj;1 with
normal vector u4 lie in the same plane but do not intersect (as shown in figure 8). Since w < 0 we
know that A(Qz,],/+1) # 0 and it is formed by uy, ny and, at least some of, the vectors uy, u3, n1, n3.

To find the other faces of Q; ;;,1, we think at the level of right and left spherical faces of the
tetrahedra T{} and Tijy1- These faces share a common vertex, the vertex i and i + 1, respectively.
The spherical face of Tfj (resp. Tjjy1) at i has normal vector "114 (resp. u1) and the spherical face
of Tf]. (resp. Tjj41) at i + 1 has normal vector n’; (resp. uz). We compare the direction of the edges
Piji1:Piji2 at the vertex i with the direction of n‘l“ to determine the position of the spherical face
that they define (the one with normal vector u1) relative to the one with normal vector n‘f Taking
into account that n‘f =—n3 and n‘; = —n1, and whether these vectors point inwards or outwards
Qijj+1, depending on the sign of €;;, we let ¢jy1,11 = (p]_,_1 i1 M€, Cjao,ivl = (p]+2 i1 M),
Ciy1,i = (p] 11, M3)€ij, Cjai = (p] 12, - 13)€ij (see figure 7 for an illustrative example) and we think as
follows: If ¢j11,i11 - ¢j12,i+1 > 0, then only one of the great circles with normal vectors ny, u3 will be
on the boundary of Q; ;11 and if ¢j1,i41 - ¢j12,i41 <0, the spherical faces intersect and both bound
Qijj+1- Namely, if ¢j; 1,11 > 0and ¢jy2 11 > 0, only 71 and not u3 are in the boundary of Q; .1, if
¢j+1,i+1 <0and ¢j10;41 <0, then only u3 and not n; is the boundary of Q;;;y1. If ¢j41,111 > 0 and
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Figure 9. (i) A configuration where €;; = —e¢; ;4. (ii) In this configuration w > 0. (iii) The tetrahedral formed by e;, ¢;, T;;
(iv) The tetrahedral formed by e;, €14, Tij1. (v) In this case, T,’; NTjm=0and T N T # D Mfw=(u; x (—ny)) -
(1 x ny) <0, then two faces of Q;;;1 have normal vectors 1, 1,, otherwise, it is 11,, 114 (see proof of theorem A.8).

Cjy2,i+1 < 0 then both 11, u3 are in the boundary of Q; ;x in the following counterclockwise order
ng, n1, —u3, —up. If ¢jy1 ;41 <0 and ¢j 241 > 0 then both u3, ny are in the boundary of Q;; ;11 in
the following counterclockwise order ny, —us, n1, —u;.

In a similar way, we find which of the spherical edges formed by T, 1, T;} at the vertex i form
the other side of the boundary of Q;;; 1. We note that in this case, if ¢j11,; > 0,¢j12, >0, then
only n3 is in the boundary of Qij+1/ if Ci1,i > 0,¢j10,i <0, n3, 11 both are in the following order
counterclockwise —uy, —uy, 13, 14. If ¢j11; <0,¢j42, > 0, they both are but in the following order
—up,n3, —u1,ng. If ¢j11; <0,¢542,; <0, only uy is in the boundary of Q; ;1 (figure 7).

Suppose that €;; = —¢;;11, then A(Qf]. N Qij+1)=0and A(Q;j +1) = A(Qi; N Qjj+1) # 0 for all
values of w and one face of Q; ;11 has normal vector n; (see figure 9 for an illustrative example).
If w < 0 the other face is up and if w > 0, it is n4. The left and right faces are of both quadrilaterals
share a common edge (the extension of the edgesj 4 1,iand j + 1,i + 1) and thus do not intersect.
So, only one of each will be the boundary of Q; ;1. To determine which, we check if ¢y, =
(pj 12, - M) > 0, then uy is the boundary, otherwise itis n1. If ¢j 1241 = (pj 12 - 13)€ij > 0, then uz
is the boundary, otherwise it is n3. |

Theorem A.9. Let E4 denote a polygonal curve of 4 edges in 3 space. The probability that its projection
on a random projection direction is the non-trivial knotoid k2.1 is equal to

@ _ @ 4)
Pio1 =Proag T Proag (A1)

where k2.1p; and k2.1p;; are the two possible k2.1 diagrams (see case B(i) and case B(ii) in figure 6), p,(:;).l =
P(K((Eq)e) =k2.1), pi3)) = P((Ea)s =k2.15:), iy, = P((Ea)e =k2.1p;) and where

0, ifer 3 #erqorw>0o0rwy>0

1
(4) — Area(vs, —vp, —up) ifcg1 <0,w<0,wp<0
Proay = 27

(A2)
1 .

Z—Area(vg, —vp, 11, —up) ifcy1 >0,w<0,wy<0,
bid

where ca1 = (py 1 -m1)e13, w=(uz x (—n2)) - (uz x na), wo = (v3 x (—n1)) - (v3 x n3) and the vectors
up, 1y, ng, v3, vp and ny are normal to the planes containing the vertices 014,013, 021,243,241 and 023,
respectively. pl(é)'lsﬁ = p;((;)lgﬁ, where p;c(; )hm = P((R(E4))e =k2.1p;) and where R(Ey) is the walk E4 with
reversed orientation.

Proof. Using the notation of proposition A.1, the probability of having a non-trivial knotoid in
a random projection is equal to the probability of case B (i) or (ii) shown in figure 6 with crossings
€1,3 = €14. By proposition A.2 if one of the two is non-zero the other is zero. Thus, it suffices to
find the probability that a projection of a polygonal curve of 4 edges is of the form case B (i) with
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Figure 10. The spherical quadrangles 01‘3, Q14 and Qy4 defined by the faces of the quadrilaterals of the configuration shown in
figure 8(i), with i =1,j 4+ 2. G134 = (3 N Q4 contains the vectors which define projections of ej, e;, e where both pairs
ey, e3 and ey, e4 cross. Q is those vectors which define projections where the projection of the curve gives the knotoid £2.1
(configuration case B(i) from figure 6). Depending on the positions of the great circles, the resulting Q could be that shown
in the margin. (Online version in colour.)

€1,3 = €14, and if that probability is equal to 0, then one needs to compute the probability that it is
of the type case B (ii) with €1 4 = €3 4. To find a closed formula for these cases, it suffices to find a
closed formula for the probability that it is non-trivial case B (i), since the same formula applied
to the polygonal curve with reversed orientation of edges, will give the probability of getting case
B (ii), e14 = €24.

Let €;¢ denote the sign of the crossing between the projections of the edges ¢;, ¢; to the plane
with normal vector §. This variable takes the values ¢; ¢ = ¢;; when the projections of ¢;, ¢; cross
in the plane with normal vector § and ;¢ =0 when the projections of ¢;, ¢; do not cross in that
plane.

The condition for (E4); being case B (i) with €13 = €14is:€13¢ =€14¢ #0, €24¢ =0and (eg)g lies
in the side of (e3)¢ that is inside the k2.1 bounded region. Without loss of generality, let us focus in
the case of €13¢ =¢€14¢ =1. Let us denote these conditions as: (e13¢ =1) N (€146 =1) N (e24¢) =
0N Ce, ey, where Co, ., denotes the condition on (e4)¢ being in the side of (e3)¢ that is inside the
region bounded by the projection of the edges e1, e, e3. Thus

@  AlQizan ((S*\ Q24) N Ceyey)
Proa = o ,

(A3)

where we cancelled a factor 2 in the numerator which arises because antipodal vectors give the
same diagram.
Since €13 =€14, Q134 = Q‘l“3 N Q1,4 (see theorem A.8 fori=1,j=3). The quadrangles Q‘l“3, Q14

and Q4 are generated by the quadrilaterals T’fB, T1,4 and T4 (figure 10). The normal vectors of

T114,3 are n‘f‘ =—n3, n? = —nz,ng\ = —nl,nf = —ny, which define the faces of the quadrilateral in a
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counterclockwise order, all pointing outward Qf3. The normal vectors of Ty 4 are uy, up, us, g,
where ny = —uy, and all point outward Q14 and the normal vectors of T, 4 are vy, v2, v3,v4 in
counterclockwise order, where n3 = v4, u3 = —v1, and they all point inward Q> 4 (figure 10). So, in
total we have nine vectors, which define nine great circles on S2,

Q13,4 was computed in theorem A.8. Q1 3 4 is formed by n4, 12 and some of n3, u3, ny, 1. To find
Q134N (% \ Q2,4) N Ce, ¢;), we think as follows: First, we note that if Q134 # ¥, then Qz4 C Q1 4.
This quadrangle will include great circles defined by the normal vectors v; (that involve the edges
e4, e2). Note that the great circles with normal vectors vy, 74 and n3 intersect (bottom left corner of
Q134, see figure 10) and the great circles with normal vectors vy, uy and u3 also intersect (top right
corner of Q134). Thus, v; intersects the interior of Qj 34. Since vy bounds Q5 4 and points inwards
24, in order to be in S\ 2,4, we need the part of Q1 34 in the hemisphere defined by v; in the
direction —v;. The crossing of 1 and u3 must occur outside of Qj 4 and Q‘f 4 Thus, their crossing
will occur in Qg3 \ Q1,34. Similarly, the crossing of n1,n3 will cross inside Q1,4 \ Q1,34. v3 goes
through both of these crossing points thus v3 intersects the interior of Q13 4. To be in the region
Ce, e; (in order to avoid projections of the form B;), we are interested in the hemisphere defined
by the great circle with normal vector v3 in the direction of v3. Taking all this into account, Q
will be either equal to (v3, —v2, 11, —u2) or to (—vy, —up, v3), depending on whether the crossing
of vy with u occurs inside or outside Q1,34. Thus, we have shown that, if Q #0, then A(Q) =
A(vz, —vo,n1, —up),if c41 = (p4/1 -np)er3 >0, and A(Q) = A(—vp, —up, v3), otherwise.

If Q=4¢, then we check for case B(ii), by repeating the same algorithm for the walk with
reversed orientation. |

Corollary A.10. Let E4 denote a polygonal curve of 4 edges, ey, €3, €3, e4 in 3-space, then the normalized
bracket polynomial of Ey4 is

FE) =p2 (—AP) 22 (k2.1) + (1 - pD,), (Ad)

where pl(é)_l is defined in theorem A.9.
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1 A finite form for the bracket polynomial of a polygonal curve with 4
edges

In this section we show that an equivalent finite form of bracket polynomial exists, reducing the
computation of the integral to a computation of a few dot and cross products between vectors and
some arcsin evaluations. Here we provide a finite form of the bracket polynomial for a polygonal
curve of 4 edges. This could lead to the creation of its finite form for more edges.

1.1 Closed curves

The first non-trivial bracket polynomial of a closed polygonal curve is that of a polygon of 4 edges,
since a polygon of 3 edges is a triangle in 3-space and all projections give a diagram of no crossings
except a set of measure zero which corresponds to irregular projections. Let P4 denote a polygon
of 4 edges, e1, ez, €3, e4 that connect the vertices (0,1),(1,2),(2,3) and (3,0), respectively. Let ¢; ;
denote the sign of the crossing between the projections of the edges e;, e; when they cross. Notice
that ¢; ; is independent of the projection direction and can take the values 1 and -1.

Proposition 1.1. The bracket polynomial of a polygon of 4 edges, e1,es,e3,eq, in 3-space, Py, is
equal to:

(Pa) = 2|L(e1, e3)| (=A%) + 2| L(e2, e4)|(—A*2%) + (1 — ACN(Py)) (1)
where L denotes the Gauss linking integral and ACN denotes the average crossing number.

Proof. In any projection direction there are 3 possible diagrams that may occur as a projection of
P4: a diagram with no crossing, or a crossing between the projections of ej, e3 or a crossing between
the projections of ey, e4. Notice that not both crossings at the same diagram are possible (the line
defined by the projection of e; cuts the plane in two regions. Since the projection of eg intersects the
projection of eq, the projections of the vertices 2 and 3 lie in different regions. Since es joins vertex
1 with 2 and e4 joins vertex 3 with 0, e, e4 lie in different regions, thus they cannot cross.) In the
case where there is no crossing, the bracket polynomial of that projection is equal to 1. When there
is a crossing, the bracket polynomial is equal to —A*3, where the sign of the exponent is determined
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by the sign of the crossing in the projection. Since the probability of es,e4 crossing is equal to
2|L(e2, eq4)| and the probability of ey, es crossing is 2|L(eq, e3)|, then the bracket polynomial is

(Pa) = 2|L(e1, e3)| (=A%) + 2| L(ea, e4)|(—A>2*) + (1 — ACN(Py)) (2)
where we used the fact that ACN(P;) = 2|L(e1,e3)| + 2|L(e2,eq4)|. Notice that, due to the
connectivity of the polygonal curve, €13 = —e€24, thus Eq. 2 could be expressed as

<P4> = 2’L(€1, 63)‘(—A361’3) + 2|L(62, 64)|(—A7361’3) + (1 — ACN(P4))

1.2 Open curves

In the case of a polygonal curve with 3 edges, we denote Fs3, the Kauffman bracket polynomial
is always trivial, but the writhe of a diagram of a projection of E3 can be 0 or £1, depending on
whether e, e3 cross when projected in a direction &.

Proposition 1.2. Let F5 denote a polygonal curve of 3 edges, e1, e, e3 in 3-space, then the bracket
polynomial of E3 is

(E3) = 2|L(e1,e3)[(=A%) + (1 = 2|L(er, e3)])
where €13 s the sign of L(e1,e3)

Proof. Consider a polygonal curve of 3 edges e, ez, €3, (F3). Then in a projection of Es, (Eg)g,
one either sees no crossings, so ((E3) 5> = 1, or there is a crossing between e; and es, in which case
(E)g) = —Ars, thus

3 3 €1
<E3> = p](vo)p + p](go)ﬁlﬁ(_AS) e
= (1 —2|L(e1, e3)]) + 2| L(e1, e3)|(— A%) L

where pig), = P(K((Es)g) = k0, wr((Es)g) = 0) and piy), - = P(K((Es)g) = k0, wr((Ex)g) = €1 3).
O

Let E4 be composed by 4 edges, e1,ea,es,eq, connecting the vertices (0, 1), (1,2),(2,3),(3,4),
respectively.

Let E4 denote a polygonal curve of 4 edges. Then, by Propositions A.1 and A.2 (in main
manuscript), the only non-trivial bracket polynomial is k2.1 and the writhe of the diagram is either
2 or -2. All the possible writhe values in a k0 (trivial knotoid) diagram of E4 can be determined by
inspection of all the possible diagrams of a polygonal curve of 4 edges, given in Proposition A.1.
Let us denote these diagrams as k04, ,k04,,k04,,kOpB,,k0B,,,kOpB,,, kOpB,,,, kOc. Let us denote by
wr the writhe of a diagram. Then one can see that wr(k04,) = £1,wr(k04,) = £1,wr(k04,) =
+1,wr(kOp,) = 0 or = £2, wr(k0p,) = 0 or £2, wr(k0p,;) = 0 or £2, wr(kO0p,,) = 0 or +2,
wr(k0c) = £1. Thus the bracket polynomial of E4 has the following form:

117 i1/
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<E4> ka 1 (k2.1) Z pkO]
j=—2

4 _ 4
= pl(cQ).l(AQ - Ay 1) Z pl(fO)j A3
j=—2

where p,(é)‘l = P(K((E4)g) = k2.1) denotes the geometric probability that a projection of Ej
gives the non-trivial knotoid k2.1 (obtained in Theorem A.2 in main manuscript) and where
pgé) ;= P(K((Eq) E) = kO, wr((Ey4) E) = j) denotes the probability of obtaining a diagram of the
trivial knotoid with writhe j. The rest of this section is focused on obtaining finite forms for these
probabilities.

Theorem 1.1. Let E4 denote a polygonal curve of 4 edges, e1,es, ez, eq in 3-space, then the bracket
polynomial of E4 is

4 4 € 4 —€ 4 —2e
(E) =pig (K2.1) + pig, , (- AD2 4 plg) . (A% o), (—A%) 722
4 6 4
+ pLO)ZEQ (= AP)Peaa 4 pfco),o

where the coefficients are:

4 _ +AQ), if e13=r€14 3)
k2.1 0, otherwise
2|L(e2, ea)| — 5= A(Qu21), €1,3 = €14
pl(i))ez = 2L(ea, ea)| + 2|Llers ea)| = 52 (A(Quz21) + A(Q2) + A(Q1)), if €24 = €14 = —€13
2|L(ez, ea)| + 2|L(e1, €3)] — ( (Qa21) + A(Q1)), if 24 =€13=—€14
(4)

2|L(e1, e3)| + 2|L(e1, ea)| — 5= (A(Q1,3.4) + A(Q2) + A(Q1)), €13 = €14
4 :
p;(go),_QA = 2|L(e1, e3)| — = A(Q1,34), if €24 = €14 = —¢€13 (5)
2|L(er, ea)| — 97 (A(Qu3.4) + A(Q2)), if 24 = €13 = —€14

Dr0,2¢5 4

(4) _ {217r(A(Q2) - A(Q)): if €24 = €14 = —€13

0, otherwise
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Dro,—2e5.4 = ,
e 0, otherwise

W {;AA(Ql) CAQ)), if era=ers = —€2,3
and

4 _ (4) (4) (4) (4) (4)
Pr00 = 1 = Pro—2e04 T Ph0,2e20 T Ph0—ess T Pr0,eos T Phz1,—ens (8)

where €; ; denotes the sign of the linking number between e;,e;, Q1 = Q1,34 \Q24, Q2 = Qs21\Q13
and Q = Q((E4)g: k2.1). P(Q) is derived in Theorem A.2 (in main manuscript) and Q1 is shown
in Table 1. Qa2,1, Q2 are derived with the same formulas for the reversed polygonal curve.

Proof. In the following, for simplicity, we will write P(A;) to express the probability P(K ((Ey4) 5) =

k04, ), etc.

By Proposition A.2 (in main manuscript), k2.1 is a possible knotoid diagram only when € 3 = €1 4,
in which case, it also implies that €2 4 = —¢€1,3. The probability of obtaining £2.1 is found in Theorem
A.2 (in main manuscript).

Thus, we only need to examine the probabilities of obtaining the trivial knotoid with a given
writhe. By inspection of the diagrams shown in Figure 6 (in main manuscript), we first notice the
following:

P(A2)7 if €1,3 = €14 = —€24
pl(c%)),€2,4 = P(A?)) + P(A2) + P(C), if €24 = €14 = —€13 (9)
P(Al) + P(AQ) + P(C), lf 62’4 = 6173 — —61,4

P(A1> + P(A3) + P(C), lf 61,3 = 61’4 — —62’4
p’(:é),—EQA == P(Al), lf 6274 = 61’4 = —6173 (10)
P(A3)7 if €24 = €1,3 = —€14

- P(Bii) + P(Biif), if €24 = €14 = —€13 (11)
k0,2¢2 4 0, otherwise
" _ ) P(Bi) + P(By), if e13=—e14= —€24 (12)
k0,—2¢2 4 0, otherwise
We will compute these probabilities in the three cases: €13 = €14, €13 = —€14 = €24, €13 =

—€1,4 = —€24.
First, we notice that, in all cases, due to the connectivity of the polygonal curve,
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€1,3= €14, w < 0,wp <0 Q134
3,1 > 0, Cq41 > 0,0370 > 0, C4,0 > 0 (
C3,1 > 0, C41 > 0,03,0 <0, 40 < 0 (
31 > 0, C41 > 0,0370 > 0, Ccq0 < 0 (
C3,1 > 0, C41 > 0,0370 <0, C4,0 > 0 (
31 < 0, 41 < 0,6370 > 0, C4,0 > 0 (
c31 < 0, 41 < 0,0370 <0, 40 < 0 (
c3,1 < 0, cq1 < 0,0370 > 0, c40 < 0 (
c31 < 0, C4,1 < 0,0370 < 0, C4,0 > 0 (
c3,1 > 0, cq1 < 0,0370 > 0, C4,0 > 0 (
(
(
(
(
(
(
(

=

Ty, M1, —Uz, —U1)

Ty, M1, —Uz, —U1,13)

Ty, 71, —Uz, 13, —U1)

4, —1U3, —z,713)

4, —U3, —Ua, —11)

4, —U3, —ly, —11,13)

4, —U3, —Uy, T3, —11)
4,101, —U3, —Uz, 13)
4,71, —U3, —Ug, —11)
4,101, —U3, —Uz, —U1,73)
4,701, —U3, —z, 13, —U1)
4, —U3, M1, —Uz,13)

4, —U3, M1, —z, —U)

3,1 > 0, 41 < 0,0370 <0, Ccq0 < 0
c3,1 > 0, c4,1 < 0,0370 > 0, c4,0 < 0
31 > 0, 41 < 0,0370 <0, C4,0 > 0
c3,1 < 0, Cq1 > 0,03,0 > 0, C4,0 > 0
31 < 0, Cq41 > 0,0370 <0, Ccq0 < 0

IEPSTRS TS TS TS TS TIPS TS TS TS TRRST]
NIRRT TS TS TS TS TS TS TR TIPS TS TR TS TS TR 1)

c31 < 0, C41 > 0,c30 >0, c40 < 0 4, —Us3, M1, —, —1, ﬁg) , — g, —o, —U1, ﬁg) uQ
31 < 0,0471 > 0,6370 < 0,6470 >0 n4,—ﬂ3,ﬁ1,—ﬁg,ﬁ3,—ﬂ1) ,—173,—’[72,713,—171) UQ
€1,3 = €14, W > 0orwg>0 Q173,4 1

0
€1,3 = —€14,w <0 Q1,34 Q1
c40 > 0,c41 >0 (g, —t1, —a, —Us3) Q134 \ (U1, V2, U3, Ti2)
€40 <0,c41 <0 (ig, M1, —Usa, 1l3) Q1,34
cg0 < 0,c41 >0 (R, i1, —ta, —U3) Q1,34 \ (U1, V2,71, 72)
c40 > 0,c41 <0 (i, —1y, —Ua, Ti3) Q1,34
€13 = —€14,w >0 Q1,34 Q1
cg0 > 0,c41 >0 (R, —t1, 74, —U3) Q1,34 \ (—U3, My, U3, 7i2)
ca0 < 0,c41 <0,c41, >0 (i, 701, Tig, Ti3) Q1,34 \ (U3, =0, la, 1, Tia)
4,0 < 0,¢41 <0,¢41/ <0 (M, 71, i4, 113) Q1,34 \ (U3, =12, 11,7i4)
C4,0 < 0, C4,1 >0 (ﬁg, ﬁl, ﬁ4, —713) @
ca0>0,c41 <0 (i, —t1, T4, 113) Q1,34

Table 1: The spherical polygons Q134 and Q1 = Q134 \ Q2.4, Tespectively, are computed by using the
above expressions. The expression (Wh,...,W,) denotes the spherical polygon defined by the intersection
of the great circles with normal vectors Wy, ..., W, in the counterclockwise orientation (see Definition A.1
in main manuscript). The expressions depend on the conformation of the curve in 3-space, where c3q1 =
(P31 T1)ey s, Ca1 = (Pa1 - T1)ers, €30 = (P3,0 - 713)€1,3, Ca,0 = (Pa,0 - M3)€1,3, Caryr = (P14 - (—V2))e2 s and
w = (Ug X (—l2)) - (Uz X T4), where fi1, U;, V; are the normal vectors to the quadrilaterals Ty 3,114,154 and
where p; j s the vector that connects vertex i to vertex j in 3-space. The areas of Q2.1 and Q2 are obtained
from the areas Q1,34 and Q1 of the polygonal curve with reversed orientation (see proof of Theorem 1.1).
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QR24NQ13C Q24N Q1a= Qa2 (13)
Q24NQ13C Q1 =Q13NQ14=0Q134

The probabilities can be expressed as:

P(A1) = 2/L(e1,e5)] — 5-A(Qus4)

;A(Q4,2,1)

o
P(A3) = 2|L(e1, e4)| - %A(Qm,l \Q13) — A(Q134)

P(C) = %A(Qz,zx NQ134)

P(Ay) =2|L(e1, e3)| —

P(B) + P(By) = 5-A(@134\ @)
P(Bii) + P(Biil) = %A(Qm; \ Q1,3)

From all these equations, and using the notation Q1 = Q134 \ Q24 and Q2 = Q2.1 \ @13, we
obtain the expressions of the statement of the Theorem.

We proceed with finding finite forms for (134 and @1 from which the finite forms of Q421 and
()2 are also derived.

Finite form of Q1,34

The finite form of @134 is found by Theorem A.1 (in main manuscript) for ¢ = 0,j = 2.
Finite form of Q42.1:

For the finite form of Q421 we think as follows: Let R(F}y) to denote the polygonal curve E4 with
reversed numbering of vertices. Let us denote its edges €/, €5, €5, €. Then Q421 = Q173 4. This can
be obtained from table 1 determined by the algorithm described in Section 2(a)(i) for n;/,u;/ which
are related to the normal vectors of Ey as follows: 71/ = —s, fig! = —U1, fig/ = —Us, Tig! = —U3,
Uy = —ﬁg, Uyl = —ﬁl, Uzl = —’L_l:4, Uyl = —1Us. Accordingly, w!l = ('l_[l X 171) . (’111 X (—173)), wo! =
(Mg X V) - (14 X 13), €173 = €24 and €1,4 = €1 4. Finally, c3,,1, = (p31,1/ - 111/)e1r,3r = (P1,3 - (—V2)e2,45
otherwise ca 1y = (P - Til)ens = (Pra - (—02))€eaa, c3or = (Par0r - M3)ens = (P14 - (—Ta))e2a,
otherwise Cqr.0r = (ﬁ4/,0/'ﬁ3/)51/,3/ = (]70,4 : (_174))62,47 when €11,3r = €141 and Cqr,0r = (ﬁ4/,0/'ﬁ1/)€1/,3/ =

(Po,a - (—12))e€a 4, otherwise ca 1/ = (Par1r - Tisl)€err,3r = (Po,3 - (—Ua))€2,4, when €173 = —€1ras
Finite form of Q1
- Case €14 = €13 = —€24: One can derive from the proof of Theorem A.2 (in main manuscript) the

area of Q134 \ Q24. The area will be Q1 = Q U (7ig, —0U3, —ta, x), where z is equal to —; or 7iz or
i3, —U; or —1, N3, depending on the signs of ¢ 3, o4 (see Table 1).

Next, we consider the case €1 4 = —e€1 3 and refer to Figure 1 as an illustrative example. Since
Uz = —U; and 773 = Uy, these spherical edges (which bound ()2 4) do not cross the interior of Q1,3 4.
In order to find Q1 = Q1,34 \ @24, we examine if and how ¥ and ¥3 intersect the interior of Q13 4.
Figure 1 shows the relative positions of 7, U4, U5 determined by the connectivity of the polygonal
curve and the orientations of ¥1, ¥, are also given by the known orientations of u3 and 3.
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- Case €14 = —€1,3 = €g4: (This is the case where ¢4 1 < 0 in Table 1). This corresponds to the case
where €14, = €153/ for the reversed walk. First of all, in this case, we notice that when ¢4 > 0, then
w! > 0 and, similarly, when w < 0 then wg/ > 0, thus in these cases Q421 = 0, giving Q1 = Q1,3.4.
Thus, the only case that might give Q24 N Q134 # 0 is the case w > 0,cq40 < 0, equivalently,
w > 0,wy < 0, (see Figure 1). In that case the great circle with normal vector ¥ intersects the
interior of Q1,34 (since the face with normal vector ¥ is in-between the faces with normal vectors
fi1,73). To examine the intersection of Q24 N Q1,34, we examine the reversed oriented polygon,
R(E}y) (see previous paragraph). The above conditions correspond to the case where €1,3 = €14/,
w! < 0,wg! < 0, which is the case that can give the non-trivial knotoid. Thus, using Theorem 77,
we derive that for w/ < 0, if c41, > 0, then Q1 = Q134 \ (v3, —v2,n2,n1,1n4) and if ¢gy1, < 0, then
Q1= Q134 \ (v3, —v2,n1,N4).

- Case €14 = —€1,3 = —€z4: (This is the case where ¢4; > 0 in Table 1) As in the previous case, in
order to find Q1 = Q1,34 \ @2,4, we need the area of @ 34 that is determined by the great circles ¥
and 73. To find these intersections, we will examine Q42,1 using the reverse walk with €1,3 = —€1/4s,
and we notice that in all cases, ¢4 = (par,1/ - 7i3/)€1,3 = (Po,3 - (—Vs))e2a = (po,3 - (—73))erz > 0.
Indeed, since 7i3 is the normal vector to the face defined by the vertices 1,2,3, of the tetrhedral 77 4
and points inwards if €1 3 > 0 (in the direction of vertex 3) or outwards otherwise. Thus ¢1,4 > 0 in
all cases. Thus, the intersection will depend on the sign of co,4/ = (paror - 1/)€1,3 = (Po,a - (—V2))e€2.4.
This sign will depend on the sign of c49 = (P40 - 71)e€1,3 and the sign of w, which determines if
lies between 7o, 7i4.

If c40 < 0 then w/ < 0 since we can verify that the face with normal vector @; is between the
faces with normal vectors ¥, 73, and w/ > 0 if c¢49 > 0. If w < 0 then coar = (par0s - T1/)en 3 =
(po,a - (—U2))e2.4 < 0 since U points in the opposite direction of the region that contains the vertex
0 when €24 < 0, and co,4s > 0 if w > 0.

Thus, by using Table 1 for the reversed walk we find that if c4p < 0 and w < 0, then Q1 =
Q134 \ (vi,v2,n1,n2). If c4p < 0 and w > 0, then Q1 = 0. If c4p > 0 and w < 0, then
Ql = Q17374 \ (1)1, V2, V3, ng). If C40 > 0 and w > 0, then Ql = Q17374 \ (1}1,77,4,1)3,712).

Finite form of Qa:

For the finite form of Q2 we think as follows: Let R(F4) to denote the polygonal curve E; with
reversed numbering of vertices as described in the Finite form of Q421. Then Q2 = Q421 \ Q1,3 =
Q3.4 \ Qv o = @}, which is found earlier.

O

Example: (continuation of Example in main manuscript) Figure 2 shows the Kauffman bracket
polynomial of the open 3-dimensional curve in time and that of the standard diagram of the knotoid
k2.1. We see the bracket polynomial of the open curve vary continuously in time, tending to that of
the diagram, due to the tightening of the configuration to become almost planar.
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epsilon,; ;=epsilon, 4
V3 Vz VZ

V53 us
Vs V2
w<0 w<0 w=>=0 w=>0
C4,0<0 c4’0>0 c‘l,O{D C4‘0>0
epsilon, ,=-epsilon, 4
' ' Vs v V3
Vz 2
vy Vi Vy
Us Ny > Ny > Ny _LT ny
Vaf | v | U3 4| Us 3|43
Uz - (S5}
0 b} u, \ u,
<
éN <0 cw<>00 w>0 V2. w>0
4,0 4,0 Cao<0 Ca0>0

Figure 1: Representation of Q1,34 when €13 = €2 4. In this case, one great circle of the boundary of Q13,4
is the one with normal vector fiy (top boundary in the figure). The lower great circle (bottom boundary)
is s or My, depending on whether €1 4 = €24 or not (equivalently, depending on the sign of c1.4). Similar
considerations define the other boundaries, where ca o = (Pao - 71)€1,3, w = (U X (—T2)) - (U2 X Tiq), Hg = Uy
and U = —vh. To determine Q1 = Q134 \ Q2,4, we examine how Uy and Us intersect Q134 (see proof of
Theorem 1.1). The results are shown in Table 1.
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The bracket polynomial of an open curve in time

120000
--- k01
— t=0 ,./,--'//,_.,---'
1000001 —— ¢=2000 177
— t=4000 , |/
soo00| —— t=6000 ¢ |/
—— t=8000 :
A —— t=10000
—
5 000901 — t=11000
v - k21
40000 4
20000 A
o
2 3 6 8 10

Figure 2: The Kauffman bracket polynomial of an open polygonal curve as it moves in time. The inset plot
shows the polynomial for values of the parameter A less than 1.
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