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Abstract
In this paper, we propose an unfitted Nitsche’s method for computing wave modes in topo-
logical materials. The proposed method is based on the Nitsche’s technique to study the
performance-enhanced topological materials which have strongly heterogeneous structures
(e.g., the refractive index is piecewise constant with high contrasts). For periodic bulk mate-
rials, we use Floquet-Bloch theory and solve an eigenvalue problem on a torus with unfitted
meshes. For the materials with a line defect, a sufficiently large domain with zero bound-
ary conditions is used to compute the localized eigenfunctions corresponding to the edge
modes. The interfaces are handled by the Nitsche’s method on an unfitted uniform mesh. We
prove the proposed methods converge optimally. Several numerical examples are presented
to validate the theoretical results and demonstrate the capability of simulating topological
materials.

Keywords Nitsche’s method · Photonic graphene · Topological material · Edge state

1 Introduction

The past decade has witnessed an explosion of research on topological materials. The del-
icate structures of these materials admit novel and subtle propagating wave patterns which
are immune to backscattering from disorder and defects [2,23,31,36,37]. The underlying
mechanism is the existence of so-called “topologically protected edge states”. These wave
modes, which propagate along and decay rapidly transverse to the edge, are robust against
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local defects. Thus they are excellent carriers for transferring energy, information and so
on . Over the past few years, in addition to the electronic system in which the topological
phenomena was firstly studied, such topological phenomena have been experimentally real-
ized in many other physical systems, such as electromagnetic waves in photonic systems and
acoustic waves in phononic systems [1,3,31,32,39,42,43].

There are many physical models which admit topologically protected edge states. This
work is concerned with wave modes in topological photonic materials. The mathematical
problem that we study is the following eigenvalue problem

LWΨ ≡ −∇ · W (x)∇Ψ (x) = EΨ (x), x = (x1, x2) ∈ R
2. (1.1)

This equation can arise in the in-plane propagation of electromagnetic waves in a photonic
crystal whose permittivity is invariant along the longitudinal direction. In this scenario, the
electromagnetic fields (E1, E2, E3, H1, H2, H3) can be divided into two decoupled com-
ponents: transverse electric (TE) mode (E1, E2, H3) and transverse magnetic (TM) mode
(H1, H2, E3). The admissible TE modes in a specific material, characterized by the material
weight function W (x), satisfy the above eigenvalue problem (1.1). Here, Ψ (x) corresponds
to the longitudinal magnetic field H3 and the eigenvalue E equals ω2 with ω being the
frequency of the electromagnetic fields. The other two components of the TE modes are
(E1, E2) = ± i√

E

(−∂x2Ψ , ∂x1Ψ
)
corresponding to frequency ±√

E respectively. We refer
to [21,24] for more details. Though the eigenvalue problem (1.1) can also be obtained in
other physical systems such as acoustic waves, we restrict our physical applications in the
photonic aspect.

To ensure the existence of topological edge states, specific structures are required for
the material weight W (x). Here we focus on the honeycomb-based material weight. The
correspondingmaterial is referred to as “photonic graphene”. Specifically, thematerialweight
is of the form

W (x) = A(x) + δκ(δk2 · x)B(x), (1.2)

where A(x) and B(x) are hexagonally periodic Hermitian matrices, κ(·) ∈ R is a bounded
transition function, δ > 0 is a parameter characterizing the intensity and width of the transi-
tion, and the detailed conditions are given in Sect. 2. From the application point of view, we
need to obtain the bulk property (i.e., δ = 0) and edge state property. Understanding the bulk
property requires that we solve the eigenvalue problem on a torus using the Floquet-Bloch
theory. A topological material can be constructed by gluing two bulks together by the transi-
tion function. Consequently, to investigate the wave modes in topological materials, we have
to solve the eigenvalue problem on a cylinder since the existence of the transition breaks the
periodicity along one direction.

Regarding the analytical understanding of the eigenvalue problem (1.1) with the material
weight (1.2), Lee-Thorp et al. proved that the perfect honeycomb material weight ensures
the existence of Dirac points in the spectrum, which can be used to construct topological
edge states [24]. They also perturbatively constructed the edge states for specific parallel
wavenumbers when δ is small and the material weight W (x) is smooth. Their work greatly
extends our knowledge on the understanding of topological edge states in a photonic system.
However, their results are mostly on the existence aspect and lack the global structure of
the bulk dispersion relation and edge states. All of these important studies rely on numerical
simulations.

Due to the particular structure of the photonic crystals, spectral method and finite element
method are the two most popular methods. The spectral method utilizes the periodicity
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of the coefficients and eigenfunctions. Expanding the coefficients and Bloch modes into
Fourier series and truncating the series into finite terms, the spectral method can achieve an
exponential accuracy for smoothmaterial weightW (x). It is widely used for computingBloch
modes and corresponding energy surfaces [38,41]. However, one of the main shortcomings is
that the final matrix is usually not sparse. If the material weight varies drastically or contain
discontinuities which is the scenario of this paper, this method requires a large number of
Fourier modes to resolve the coefficients. Thus the computation becomes expensive to solve
the numerical algebra associated with a large and dense matrix. Actually, our numerical
examples show that Fourier spectral method can lead to unreliable and even wrong results
when the contrast (jump ratio) of the material weight is very high (see Fig. 6).

A competitive alternative is the finite element method. In fact, finite element methods have
been adopted in the computation of topological edge modes. In our recent work [16], we
proposed a superconvergent post-processing method to compute topological edge modes for
photonic graphene with smooth weight coefficient. The key idea is to recover more accurate
gradients for numerical eigenfunctions and use them to improve the accuracy of approximate
eigenvalues by using the Rayleigh quotient. The superconvergent recovered gradient also
enables us to reconstruct the full electromagnetic fields in real applications. Due to the
high contrast nature of the material coefficient, the proposed method can not be generalized
directly. The main difficulties are caused by the heterogeneous structure. The existence of
the jump in the material weight W implies the non-smoothness of eigenfunctions across the
material interfaces. Although the classical finite element methods will work if the underlying
mesh is fitted to the interface [5,9,13], it is in general time-consuming and nontrivial to
generate a body-fitted mesh. The drawbacks become more serious for the interface with
complicated geometric structure. For the honeycomb structure, the discontinuities in the
material weight function is copied periodically, which makes the generation of body-fitted
meshes become challenging. Furthermore, the unstructured nature of the body-fitted meshes
will introduce additional difficulties to impose the periodic or Bloch periodic boundary
condition. Those difficulties can be alleviated by adopting the unfitted numerical methods
where the underlying meshes are independent of the location of the material interface. To
handle the non-smoothness across the material over the interface, one may need modify the
finite difference stencil [25,27,34,35], finite element basis functions [12,15,19,20,26,28,29],
or the weak formulation [4,8,14,18].

The main purpose of the paper is to propose a new kind of unfitted Nitsche’s method
based on the Floquet-Bloch transformation for computing the dispersion relation and wave
modes in a honeycomb structure with strong heterogeneities. The unfitted Nitsche’s method
was originally proposed in [18] for the elliptic interface problem with real coefficients. The
key idea is to construct the approximation on each fictitious domain induced by the material
interface and couple them together by the Nitsche’s technique [33]. For the development and
application of the unfitted Nitsche’s method, the interesting readers are referred to the recent
review paper [8]. Compared to the existing unfitted Nitsche’s methods [4,8,18], the proposed
unfitted Nitsche’s method uses Floquet-Bloch theory and solves an eigenvalue problem on
a torus. For the C-symmetry breaking case where the eigenvalue problem contains complex
matrix-valued coefficients, we use a sufficiently large domain with zero boundary conditions
to compute the localized eigenfunctions (edge mode).

One of the difficulties in analyzing the stability of the discrete Nitsche’s bilinear form is
that it involves the solution itself in addition to its gradient. To the best of our knowledge, the
existing unfitted Nitsche’s method only focuses on the pure diffusion equation. To establish
the stability, we need the trace theorem on cut elements, i.e. elements cut by the interface. The
existing trace theorem [8,18] for the cut element involves both parts of the cut element. Direct
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application of the theorem is not able to entitle us the full possibility to prove the coercivity of
theNitsche’s bilinear form. Therefore, we build up a new trace inequality which involves only
one part of the cut element. The new trace inequality enables us to establish the stability and
continuity for Nitsche’s bilinear form in term of the energy norm. Using the approximation
theory of the compact operator [6] and the interpolation error estimates, we are able to
show the optimal convergence results for both discrete eigenvalue and eigenfunctions using
the proposed unfitted Nitsche’s method. In particular, the established error estimates are
independent of the location of the interface. Furthermore, we show that there is no pollution
in the numerical spectrum.

The rest of the paper is organized as follows. In Sect. 2, we present the physical background
of photonic graphene and the mathematical setup. In Sect. 3, we focus on the computation of
the dispersion relation and wave modes. We start the section by introducing the formulation
of the unfitted Nitsche’s method on the torus which gives us the unperturbed bulk properties.
The stability and continuity of the unfitted Nitsche’s weak formulation are established. Then,
we extend the unfitted Nitsche’s method to compute wave modes on a cylinder domain
which corresponds to the physical setup of topological materials. In Sect. 4, we prove the
numerically approximated eigenpairs converge optimally to the exact eigenpairs. In Sect. 5,
we present several numerical examples to justify the theoretical results. We make conclusive
remarks in Sect. 6.

2 Physical Problems and Preliminaries

We will focus on the honeycomb-based photonic materials, and present the physical setup
and briefly review the underlying theory.

2.1 Honeycomb StructuredMaterialWeight

We consider the following specific hexagonal lattice

Λ = Zv1 + Zv2 = {m1v1 + m2v2 : m1, m2 ∈ Z} , (2.1)

with the lattice basis vectors

v1 =
⎛

⎝

√
3
2

1
2

⎞

⎠ , v2 =
⎛

⎝

√
3
2

− 1
2

⎞

⎠ .

The fundamental cell is chosen to be the parallelogram:

Ω = {θ1v1 + θ2v2 : 0 ≤ θ j ≤ 1, j = 1, 2}, (2.2)

with |Ω| standing for the area of Ω . The hexagonal lattice and its fundamental cell are
illustrated in Fig. 1a. Note that this parallelogram cell is periodically equivalent to one
hexagon [2].

The dual lattice

Λ∗ = {m1k1 + m2k2 := (m1,m2) ∈ Z
2} = Zk1 ⊕ Zk2, (2.3)
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Fig. 1 Two dimensional hexagonal structure. a Hexagonal lattice with lattice vector v j , j = 1, 2 and the unit
cell Ω with two air holes centered at A and B; b Dual hexagonal lattice with the fundamental dual cell Ω∗

is generated by the dual lattice vectors k1, k2 which satisfy ki · v j = 2πδi j , (i, j = 1, 2).
Specifically, the dual lattice vectors are

k1 = 4
√
3

3

(
1
2√
3
2

)

, k2 = 4
√
3

3

(
1
2

−
√
3
2

)

. (2.4)

Throughout this work, we choose the parallelogram Ω∗:

Ω∗ = {θ1k1 + θ2k2 : −1

2
≤ θ j ≤ 1

2
, j = 1, 2}, (2.5)

as the fundamental dual cell. The dual hexagonal lattice and its fundamental dual cell are
illustrated in Fig. 1b. In the literature, the fundamental dual cell is often chosen to be the
hexagon centered at the origin. This is also referred to as the Brillouin zone of honeycomb
lattices [2,11].

Let A = 1
3 (v1 + v2) ∈ Ω and B = 2

3 (v1 + v2) ∈ Ω; see Fig. 1a. Define the honeycomb
lattice Λh = (A + Λ)

⋃
(B + Λ). Note that Λh has two sites per unit cell.

Let Br (x0)be the ball centered atx0 with the radius r . Throughout thiswork,we require that
r < 1

2 |A−B|which implies that Br (A) and Br (B) are disjoint.Wedivide the fundamental cell
into two parts, Ω1 = Br (A)

⋃
Br (B) and Ω2 = Ω/Ω1. The interface Γ on the fundamental

cell is defined as the intersection of Ω1 and Ω2, i.e. Ð = ∂Ω1 ∩ ∂Ω2. Define the piece-wise
honeycomb function

ε(x) =
⎧
⎨

⎩

εA, if x ∈ Br (A) + Λ,

εB, if x ∈ Br (B) + Λ,

ε0, if x ∈ Ω2 + Λ,

(2.6)

where ε j , j = A,B, 0, are positive constants. ε0 is regarded as the value of the background
and εA, εB are the values against the background. It is obvious that ε(x) is Λ-periodic, i.e.,
ε(x + v) = ε(x) for all v ∈ Λ.

In this work, we use the following material weight as our prototype

W (x) =
(

ε(x) iγ
−iγ ε(x)

)−1

. (2.7)

This material weight corresponds to the magneto-optical material [17]. γ ∈ R is called
Farady-rotation constant satisfying min(ε(x)2 − γ 2) > c0 > 0, which ensures W (x) is

123



24 Page 6 of 28 Journal of Scientific Computing (2021) 88 :24

uniformly elliptic. In real materials, the strength of the Faraday-rotation is much smaller than
the permitivity ε, hence

W (x) ≈ ε(x)−1 I + γ ε−2σ2, (2.8)

where σ2 =
(
0 −i
i 0

)
is a Pauli matrix.

2.2 Eigenvalue Problem on a Torus

Consider thematerialweight of the form (2.7) or (2.8).W (x) isΛ-periodicwhenγ is constant.
We can restrict our analysis on a torus by Floquet-Bloch theory. Before proceeding further,
we introduce the following function space

L2
per (Λ) = {

f (x) ∈ L2
loc

(
R
2,C

) : f (x + v) = f (x),∀v ∈ Λ, x ∈ R
2}

L2
k(Λ) =

{
g(x) : e−ik·xg(x) ∈ L2

per (Λ)
}

.

Note that functions in L2
k(Λ) are quasi-periodic. Namely, if g(x) ∈ L2

k(Λ), then g(x+ v) =
eik·vg(x),∀v ∈ Λ. Similarly, we can also define Hs

per (Λ) and Hk(Λ) in a standard way.

According to Floquet-Bloch theory, the spectrum of LW in L2(R2) can be represented by
the spectrum LW in L2

k(Λ). Namely, we solve the following L2
k(Λ)-eigenvalue problem

LWΦ(x) = EΦ(x), Φ(x) ∈ L2
k(Λ). (2.9)

Due to the periodicity, we can restrict k in the fundamental dual cellΩ∗. For a fixed k ∈ Ω∗,
there exists a sequence of pairs (Em(k),Φm(x;k)) ,m = 1, 2, · · · satisfying the above eigen-
value problem. Here Em(k), m = 1, 2, · · · are called dispersion band functions which have
been ordered as 0 < E1(k) ≤ E2(k) ≤ E3(k) ≤ · · · . The corresponding eigenfunctions
Φm(x;k) are referred to as the Bloch waves. Moreover, the set {Φm(x;k), m ∈ N, k ∈ Ω∗}
forms a “generalized” basis of L2(R2) and the spectrum ofLW in L2(R2), σ(LW ), coincides
with the Bloch spectrum, the union of the images of all the mappings Em(k), i.e.,

σ(LW ) =
∞⋃

m=1

[
inf

k∈Ω∗ Em(k), sup
k∈Ω∗

Em(k)

]
. (2.10)

In general, it is impossible to solve the eigenvalue problem (2.9) analytically. A natural
numerical scheme is the spectral method. Namely, we can expand W (x) and Φ(x) into their
Fourier series. By truncating the series into finite terms, we can easily solve the reduced
eigenvalue problem for a matrix. If W (x) is smooth, Φ(x) is also smooth. We only need a
few terms to approximateW (x) and Φ(x) due to the exponential accuracy. The shortcoming
of thismethod is that the resultingmatrix is not sparse.Whenwe need a large number of terms
to approximate W (x), this method becomes costly and sometimes lead to wrong results. A
typical scenario is that W (x) changes greatly or is even discontinuous and this regime is
exactly what we are going to handle.

If γ = 0, W (x) is a honeycomb structured material defined in [24], i.e., W (x) is
even, real and 2π

3 -rotation invariant. According to [24], there generically exist the so-
called Dirac points—conical singularities in the dispersion band functions Em(k) at K =
1
3 (k1 − k2),K′ = −K for some m. If γ �= 0 but is still a constant, the material weight W (x)
is now complex, local spectral gaps open near the Dirac points due to the complex-conjugate
symmetry breaking.
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2.3 Honeycomb StructuredMaterialWeight with a Line Defect

Dirac points provide a mechanism to generate the so-called topological edge states via
introducing a line defect. Define a transition function (referred to as domain wall func-
tion) κ(ζ ) ∈ L∞(R,R) with κ(±∞) = ±κ∞. Without loss of generality, we require that
κ∞ > 0. A typical example of this transition function is the step function

κ(ζ ) =
⎧
⎨

⎩

−κ∞, ζ < 0,
0, ζ = 0,
+κ∞, ζ > 0.

(2.11)

Its smooth counterpart is κ(ζ ) = κ∞ tanh(ζ ).
A line defect is introduced if we choose the Faraday-rotation γ in (2.7) to be a transition

function along a direction. Namely γ = κ(n · x) where n �= 0 is the normal direction of
the line defect. Obviously, if κ(ζ ) is the step function (2.11), the line n⊥

R is the interface
of two different materials (we also call it an edge). In this work we take Zigzag edge as our
prototype. In this case, n = k2 and the line v1R is the edge. Note thatW (x) is periodic along
v1 direction but loses the periodicity along v2 direction.

Let Σ = R
2/Zv1 be a cylinder. The fundamental domain for Σ is ΩΣ ≡ {τ1v1 + τ2v2 :

0 ≤ τ1 ≤ 1, τ2 ∈ R}. Define the function spaces

L2
per (Σ) = {

f (x) ∈ L2 (ΩΣ,C) : f (x + v1) = f (x)
}

L2
k‖(Σ) =

{
g(x) ∈ L2 (ΩΣ,C) : g(x + v1) = eik‖g(x)

}
.

We solve the eigenvalue problem (1.1) in L2
k‖(Σ). Due to the subtle symmetries of the

setup, there exists point spectrum with the corresponding eigenfunctions referred as to edge
states. Namely, we need to solve the eigenvalue problem

LWΨ (x; k‖) = E(k‖)Ψ (x; k‖), (2.12)

Ψ (x + v1; k‖) = eik‖Ψ (x; k‖), (2.13)

Ψ (x; k‖) → 0 as |x · k2| → ∞.. (2.14)

Theoretically, the theory of bulk-boundary correspondence can specify the number of edge
states, see for instance [11]. But the global structure of the energy curve of edge states can
only be obtained numerically in a generic setup.

3 Unfitted Nitsche’s Method

In this section, we propose the Floquet-Bloch theory based unfitted Nitsche’s methods for
simulating topological materials. We first focus on the computing the bulk dispersion rela-
tions. Then, we extend the method to computing edge modes in topological materials. In
this paper, we use C , with or without a subscript, to denote a generic constant, which can
be different at different occurrences. In addition, it is independent of the mesh size and the
location of the interface.
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3.1 Unfitted Nitsche’s Method for Computing Bulk Dispersion Relation

In this section, we are interested in the efficient numerical solution of the eigenvalue problem
(2.9) on a torus. One of the main numerical difficulties is the existence of the high contrast
in the material weight W (x), which may lower the regularity of eigenfunctions. To model
the discontinuity, we use the interface conditions as [27] and the L2

k(Λ)-eigenvalue problem
(2.9) can be converted into the following interface L2

k(Λ)-eigenvalue problem

LWΦ(x) = EΦ(x), (3.1)

�Ψ � =
�

W
∂Ψ

∂n

�

= 0, on Γ ; (3.2)

where Φ(x) ∈ L2
k(Λ), �v� is the jump in value of a function v crossing the interface Γ , and

n is the unit outer normal vector of Γ .
To deal with quasi-periodicity of functions in L2

k(Λ), we apply the Floquet-Bloch trans-
formΦ(x;k) = eik·xφ(x;k).We transfer the eigenvalue problem (3.1)–(3.2) to the following
interface L2

per (Λ)-eigenvalue problem

LW (k)φ(x) = E(k)φ(x), (3.3)

�φ� = �W (∇ + ik)φ · n� = 0, on Γ ; (3.4)

where φ(x) ∈ L2
per (Λ) and

LW (k) = (∇ + ik) · W (x)(∇ + ik). (3.5)

To address the numerical challenge brought by the interface condition (3.4), the most
straightforward idea is to use finite element methods with body-fitted meshes [5,9] to resolve
the discontinuity. However, this brings two new difficulties: (1) the body-fitted meshes, in
general, are unstructured meshes on which it is difficult to impose the periodic boundary
conditions; (2) it is technically hard to generate body-fitted meshes, in particular for topolog-
ical materials with complicated geometric structures and a huge number of interfaces. In this
paper, we avoid those two difficulties by introducing the unfitted Nitsche’s methods [8,18].

3.1.1 Unfitted Nitsche’s Method on a Torus

This subsection is devoted to the unfitted Nitsche’s method for the interface L2
per (Λ)-

eigenvalue problem (3.3)–(3.4).Toavoid the generation of body-fittedmeshes for complicated
topological structure and simplify the imposing of periodical boundary condition, we parti-
tion the fundamental cell Ω using uniform triangular meshes. The uniform triangulation is
obtained by dividing Ω into N 2 sub-rhombuses with mesh size h = ‖v1‖2

N and then splitting
each sub-rhombs into two isosceles triangles. In addition, we assume that N is sufficiently
large such that the following assumption holds:

Assumption 1 The interface Γ intersects each interface element boundary ∂K exactly twice,
and each open edge at most once.

The elements of Th can be categorized into two different classes: regular elements and
interface elements. An element τ is called an interface element if the interface Γ passes
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(a) (b) (c)

Fig. 2 Illustration of the fictitious domain decomposition of the fundamental cell Ω . a Triangulation Th of
the fundamental cell Ω; b Triangulation T1,h of Ω1,h ; c Triangulation T2,h of Ω2,h

through K . The set of all elements that intersect the interface Γ is denoted by TΓ ,h . Then,
we have

TΓ ,h = {
K ∈ Th : Γ ∩ K �= ∅}

. (3.6)

Denote the union of all such type elements by

ΩΓ ,h =
⋃

K∈TΓ ,h

K , (3.7)

and the set of all elements covering subdomain Ωi by

Ti,h = {
K ∈ Th : Ωi ∩ K �= ∅}

, i = 1, 2. (3.8)

Let

Ωi,h =
⋃

K∈Ti,h
K , ωi,h =

⋃

K∈Ti,h\TΓ ,h

K , i = 1, 2. (3.9)

Figure 2 gives an illustration of Ωi,h and ωi,h . We remark that Ω1,h and Ω2,h overlap on
ΩΓ ,h , which is shown as the blue part in Fig. 2b, c.

One of main ingredients of the unfitted Nitsche’s method is to define the finite element
space as the direct sum of the standard continuous linear finite element space on Ωi,h . For
such a purpose, we let Vi,h be the standard continuous linear finite element space on Ωi,h ,
i.e.

Vi,h = {
v ∈ C0(Ωi,h) : v|K ∈ P1(K ) for any K ∈ Ti,h

}
, i = 1, 2, (3.10)

where Pk(K ) is the space of polynomials with degree less than or equal to k on the element
K . The finite element space for the unfitted Nitsche’s method is defined as Vh = V1,h ⊕V2,h .
In other words,

Vh = {
vh = (v1,h, v2,h) : vi,h ∈ Vi,h, i = 1, 2

}
. (3.11)

To impose the periodic boundary condition, we introduce Vh,per as a subspace of Vh which
is defined as

Vh,per = {
vh ∈ Vh : vh(x + v) = vh(x),∀v ∈ Λ, x ∈ R

2} . (3.12)

Note that a function in Vh (or Vh,per ) is a vector-valued function from R
2 �→ R

2, which has
a zero component in ω1,h

⋃
ω2,h but in general two non-zero components in TΓ ,h . It means

that there are two sets of basis functions for any element K in TΓ ,h : one for V1,h and the
other for V2,h .
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For any interface element K in TΓ ,h , let Ki = K ∩ Ωi be the part of K in Ωi , where |Ki |
is the area of Ki . Similarly, let ΓK = Γ ∩K be the part of Γ in K , where |ΓK | is the measure
of ΓK in R

1. Different from the interface elliptic problem considered for unfitted Nitsche’s
method in [14,18], the material weight coefficient W (x) is complex and matrix-valued. To
increase the robustness of the Nitsche’s method, we introduce twoweights using the maximal
norm of W inspired by [4]

κ1|K = ‖W2‖∞|K1|
‖W2‖∞|K1| + ‖W1‖∞|K2| , κ2|K = ‖W1‖∞|K2|

‖W2‖∞|K1| + ‖W1‖∞|K2| , (3.13)

which satisfies that κ1 + κ2 = 1. In (3.13), ‖Wi‖∞ denotes the maximum of L∞-norm of
each component of Wi in the subdomain Ωi . Then, we define the weighted averaging of a
function vh on the interface Γ as

{{vh}} = κ1v1,h + κ2v2,h . (3.14)

Furthermore, we define the constant λK as

λK = h‖W1‖∞‖W2‖∞|ΓK |
‖W2‖∞|K1| + ‖W1‖∞|K2| . (3.15)

Based on λK , we define element-wise parameter λ as λ|K = λ̂λK for some large enough
positive number λ̂ (called stabilizing parameter). It is easy to see that λK ≤ ‖W‖∞ :=
max(‖W1‖∞, ‖W2‖∞).

The unfitted Nitsche’s method for the interface L2
per (Λ)-eigenvalue problem (3.3)–(3.4)

is to find the the eigenpair (φh, Eh(k)) ∈ Vh,per × R with φh �= 0 such that

ah(φh, qh) = Eh(k)b(φh, qh), ∀qh ∈ Vh,per , (3.16)

where

ah(φh, qh) =
2∑

i=1

∫

Ωi

W (∇ + ik)φh · (∇ + ik)qhdx −
∫

Γ

{{W (∇ + ik) φh · n}}�qh�ds

−
∫

Γ

{{W (∇ + ik) qh · n}}�φh�ds + 1

h

∫

Γ

λ�φh��qh�ds,

(3.17)

and

b(φh, qh) =
∫

Ω

φh · qhdx, (3.18)

where h is the mesh size. The weak formulation (3.16) is called the Nitsche’s weak formu-
lation.

3.1.2 Well-Posedness of the Unfitted Nitsche’s Method on a Torus

In this part, we shall show the unfitted Nistche’s method is well-posed. We start by showing
the following consistency result:

Lemma 1 Let (φ, E) be the eigenpair of the interface L2
per (Λ)-eigenvalue problem (3.3)–

(3.4). Then (φ, E) satisfies

ah(φ, q) = E(k)b(φ, q), ∀q ∈ H1
per , (3.19)
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Proof For any φ, q ∈ H1
per , we notice that �φ� = �q� = 0 and hence ah(·, ·) is reduced

to the standard bilinear formulation. Then (3.19) follows by the Green’s formula on each
subdomain Ωi and the interface condition (3.4). ��

Let us introduce the following interface L2
per (Λ)-source problem

LW (k)u(x) = f (k), (3.20)

�u� = �W (∇ + ik)u · n� = 0, on Γ ; (3.21)

Thanks to the above Lemma, we can easily deduce following corollary which is known as
the Galerkin orthogonality for the source problem:

Corollary 1 Let u be the solution of the interface problem (3.20)–(3.21) and uh be the corre-
sponding finite element approximate by the unfitted Nitsche’s method. Then we have

ah(u − uh, vh) = 0, ∀vh ∈ Vh,per . (3.22)

To analyze the stability of the bilinear form ah(·, ·), we introduce the following mesh-
dependent norm [8,18]

|||φ|||2h = ‖(∇ + ik)φ‖20,Ω1∪Ω2
+

∑

K∈TΓ ,h

h−1‖�φ�‖20,ΓK
. (3.23)

We prepare our proof of the stability of the bilinear form by establishing the following
Lemma, whose proof is given in Appendix A.

Lemma 2 Let φh be a finite element function in Vh. Then the following inequalities hold:

‖φi,h‖20,ΓK
≤ C1

h2|ΓK |
|Ki | ‖∇φi,h‖20,Ki

, (3.24)

‖∇φi,h‖20,ΓK
≤ C2

|ΓK |
|Ki | ‖∇φi,h‖20,Ki

. (3.25)

Remark 1 The inequality of (3.24) is a refinement of the trace inequality on a cut element in
[18]. It is the key to show the stability of the bilinear form.

Based on the above Lemma, we establish the following error estimates for the weighted
averaging.

Lemma 3 Let qh be a finite element function in Vh. Then the following inequalities hold:

‖{{(Wkq) · n}}‖20,ΓK
≤ C3h‖k‖2λK ‖W‖∞‖∇qh‖20,K1∪K2

, (3.26)

‖{{(W∇q) · n}}‖20,ΓK
≤ C4h

−1λK ‖W‖∞‖∇qh‖20,K1∪K2
. (3.27)
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Proof Using (3.13) and (3.15), we can deduce from Lemma 2 that

‖{{Wkq) · n}}‖20,ΓK

= ‖κ1(W1kq1,h) · n + κ2(W2kq2,h) · n)‖20,ΓK

≤ 2κ2
1‖k‖2‖W1‖2∞‖q1,h‖20,ΓK

+ 2κ2
2‖k‖2‖W2‖2∞‖q2,h‖20,ΓK

≤ C1
2κ2

1‖k‖2‖W1‖2∞h2|ΓK |
|K1| ‖∇q1,h‖20,K1

+

C2
2κ2

2‖k‖2‖W2‖2∞h2|ΓK |
|K2| ‖∇q2,h‖20,K2

= 2hC1κ1‖k‖2‖W1‖∞λK ‖∇q1,h‖20,K1

+ 2hC2κ2‖k‖2‖W2‖∞λK ‖∇q2,h‖20,K2

≤ C3h‖k‖2λK ‖W‖∞
(
κ1‖∇q1,h‖20,K1

+ κ2‖∇q2,h‖20,K2

)

≤ C3h‖k‖2λK ‖W‖∞‖∇qh‖20,K1∪K2
;

(3.28)

where we have used the fact κi ≤ 1 in the last inequality. This completes the proof of
inequality (3.26) and the inequality (3.27) can be established by a similar argument. ��

Now, we are ready to show that the bilinear form ah(·, ·) is coercive and continuous with
respect to the above mesh-dependent norm in the following sense:

Theorem 2 Suppose that the stability parameter λ̂ is large enough. Then there exist two
constants C5 and C6 such that

C5|||qh |||2h ≤ ah(qh, qh), ∀qh ∈ Vh,per ; (3.29)

ah(qh, χh) ≤ C6|||qh |||h |||χh |||h, ∀qh, χh ∈ Vh,per . (3.30)

Proof It is noted that (3.30) is a direct consequence of Lemma 3. So we only need to justify
the inequality (3.29). Letting φh = qh in (3.17) and applying the Cauchy–Scharwz inequality
and the Young’s inequality with ε, we have

ah(qh , qh)

=
2∑

i=1

∫

Ωi

W (∇ + ik)qh · (∇ + ik)qhdx

−2Re
∫

Γ
{{W (∇ + ik)qh · n}}�qh�ds + 1

h
‖λ1/2�qh�‖20,Γ

≥ ‖W 1/2(∇ + ik)qh)‖20,Ω1∪Ω2
− 2‖{{W (∇ + ik)qh · n}}‖0,Γ ‖�qh�‖0,Γ + 1

h
‖λ1/2�qh�‖20,Γ

≥ Cu‖(∇ + ik)qh)‖20,Ω1∪Ω2
−

∑

K∈TΓ ,h

h

ελK
‖{{W (∇ + ik)qh · n}}‖20,ΓK

+
∑

K∈TΓ ,h

(λ̂ − ε)λK

h
‖�qh�‖20,ΓK

≥ Cu‖(∇ + ik)qh)‖20,Ω1∪Ω2
−

∑

K∈TΓ ,h

2h

ελK
‖{{(W∇qh) · n}}‖20,ΓK
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−
∑

K∈TΓ ,h

2h

ελK
‖{{(Wkqh) · n}}‖20,ΓK

+
∑

K∈TΓ ,h

(λ̂ − ε)λK

h
‖�qh�‖20,ΓK

.

Then, using Lemma 3, we can deduce that

ah(qh, qh)

≥ Cu‖(∇ + ik)qh)‖20,Ω1∪Ω2
+

∑

K∈TΓ ,h

(λ̂ − ε)λK

h
‖�qh�‖20,ΓK

−
∑

K∈TΓ ,h

2(C3‖k‖2h2 + C4)

ε
‖W‖∞‖∇qh‖20,K1∪K2

≥ Cu‖(∇ + ik)qh)‖20,Ω1∪Ω2
+

∑

K∈TΓ ,h

(λ̂ − ε)λK

h
‖�qh�‖20,Γ

− 2(16C3 + C4)

ε
‖W‖∞‖qh‖21,Ω1∪Ω2

≥ 1

2
Cu‖(∇ + ik)qh)‖20,Ω1∪Ω2

+
∑

K∈TΓ ,h

(λ̂ − ε)λK

h
‖�qh�‖20,Γ

+
(
1

2
Cu − 2CI (16C3 + C4)

ε
‖W‖∞

)
‖(∇ + ik)qh)‖20,Ω1∪Ω2

.

Here,CI is the constant such that ‖qh‖21,Ω1∪Ω2
≤ CI ‖(∇+ ik)qh)‖20,Ω1∪Ω2

for fixed nonzero
k and we have used the fact ‖k‖ ≤ 4 in the first inequality. We conclude our proof of (3.29)
by taking ε = 4CI (16C3+C4)

Cu
‖W‖∞ and choosing the stability parameter λ̂ > ε. ��

Theorem 2 implies that the finite element eigenvalue value problem (3.16) is well-posed.
According to the spectral theory, the discrete eigenvalue of (3.16) can be enumerated as

0 < E1
h(k) ≤ E2

h(k) ≤ · · · Enh
h (k) (3.31)

and the corresponding L2-orthonormal eigenfunctions are φ1
h, φ

2
h , . . . , φ

nh
h . Here, nh is the

dimension of the unfitted Nitsche’s finite element space Vh,per , i.e. nh = dim Vh,per .
The key in the interpolation error estimations of the unfittedNitsche’smethods is to extend

a function in the subdomain Ωi to the whole domain Ω . For any q ∈ H2(Ωi ), the extension
operator of φ from H2(Ωi ) to H2(Ω) is denoted by Xi which satisfies

(Xiq)|Ωi = q (3.32)

and

‖Xiq‖s,Ω ≤ C‖q‖s,Ωi , for s = 0, 1, 2. (3.33)

Let Ii,h be the standard nodal interpolation operator from C(Ω) to Vi,h . Define the interpo-
lation operator for the finite element space Vh as

I ∗
h q = (I ∗

1,hq1, I
∗
2,hq2), (3.34)

where

I ∗
i,hq = Ii,h Xiqi , i = 1, 2. (3.35)
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For the linear interpolation operator, [18] established the following optimal error estimates:

‖q − I ∗
h q‖0,Ω + h|||q − I ∗

h q|||h ≤ Ch2‖q‖2,Ω1∪Ω2 . (3.36)

3.2 Unfitted Nitsche’s Method for Computing EdgeModes

In this subsection, we generalize the unfittedNitsche’smethod introduced in previous subsec-
tion to compute edge modes. Similarly, to model the wave propagation in the heterogeneous
media, we will adopt the jump conditions. Let ΓΣ be the union of interfaces in all cells in
the fundamental domain of the cylinder. Based on this setup, edge states are the eigenpair of
the following interface eigenvalue problem

LWΨ (x; k‖) = E(k‖)Ψ (x; k‖), , (3.37)

Ψ (x + v1; k‖) = eik‖Ψ (x; k‖), (3.38)

Ψ (x; k‖) → 0 as |x · k2| → ∞, (3.39)

�Ψ � = �W∇Ψ · n� = 0, on ΓΣ. (3.40)

on the infinite domain ΩΣ .
For the interface eigenvalue problem (3.37)–(3.40), the numerical challenges not only stem

from the heterogeneity of the media and the quasi-periodicity of the boundary condition but
also stem from the infinity nature of the cylindrical domain. For the second difficulty, thanks
to the localization property of the eigenfunction in the v2 direction, we can truncate the
infinite cylinder into a finite computational domain and replace the localization condition
(3.39) by a homogeneous Dirichlet boundary condition. We remark that this truncation will
introduce some error between the eigenvalue problems defined in the finite domain and
infinite domain. Pseudo edge-states located at the truncated boundaries will appear. How to
analyze the truncation error and avoid the pseudo states are interesting problems which have
been partially discussed recently. We refer interested readers to [30,40] for more details. Our
work mainly focuses on the numerical scheme and associated error analysis of the truncated
problem. In particular, we define the truncated domain ΩΣ,L as

ΩΣ,L ≡ {τ1v1 + τ2v2 : 0 ≤ τ1 ≤ 1,−L ≤ τ2 ≤ L} . (3.41)

To handle the quasi-periodic boundary condition on v1 direction, we apply the Floquet-

Bloch transformation Ψ (x; k‖) = ei
k‖
2π k1·xψ(x; k‖). Then, we reformulate the problem of

finding edge states as computing the eigenpairs of the interface eigenvalue problem

LW (k‖)ψ(x; k‖) = E(k‖)ψ(x; k‖), (3.42)

ψ(x + v1; k‖) = ψ(x; k‖), (3.43)

ψ(τ1v1 ± Lv2; k‖) = 0,∀ 0 ≤ τ1 ≤ 1, (3.44)

�ψ� = �W (∇ + ik)ψ · n� = 0, on ΓΣ. (3.45)

where

LW (k‖) = −(∇ + i
k‖
2π

k1) · W (∇ + i
k‖
2π

k1). (3.46)
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Fig. 3 Plot of the interface ΓΣ,L with v2 being the x-axis and v1 being the y-axis

3.2.1 Unfitted Nitsche’s Method on a Cylinder

To present unfitted Nitsche’s method on the truncated domain ΩΣ,L , we introduce the corre-
sponding Sobolev spaces. Let Wk,p(ΩΣ,L) denote the Sobolev spaces of functions defined
on ΩΣ,L with norm ‖ · ‖k,p and seminorm | · |k,p . To incorporate the boundary conditions,
we define

Wk,p
per (ΩΣ,L) ≡ {ψ : ψ ∈ Wk,p(ΩΣ,L) and ψ(x + v1) = ψ(x)}, (3.47)

and

Wk,p
per ,0(ΩΣ,L) ≡ {ψ : ψ ∈ Wk,p

per and ψ(τ1v1 ± Lv2) = 0 for 0 ≤ τ1 ≤ 1}. (3.48)

When p = 2, it is simply denoted as Hk
per (ΩΣ,L) or Hk

per ,0(ΩΣ,L).
Note the fact that ε(x) is Λ-periodic. Then, the computational domain ΩΣ,L can be split

into two disjoint subdomains Ω1
Σ,L and Ω2

Σ,L , where

Ω i
Σ,L = ΩΣ,L ∩ (Ωi + Λ), (3.49)

for i = 1, 2. The restriction of the interface ΓΣ in ΩΣ,L is denoted by ΓΣ,L , i.e. ΓΣ,L =
Ω1

Σ,L ∩ Ω2
Σ,L . In Fig. 3, we give a plot of the interface ΓΣ,L with L = 10.

Let T̂h denote the uniform triangular partition of the computational domain ΩΣ,L . The
mesh T̂h is generated by firstly dividing ΩΣ,L into 2LN 2 sub-rhombuses with mesh size
h = ‖v1‖

N and splitting each sub-rhombus into two triangles. Similarly, the elements in mesh

T̂h can be classified as regular elements or interface elements. Let T̂i,h be the set all elements
in T̂h covering the subdomain Ω i

Σ,L for i = 1, 2 and T̂Γ ,h be the set of interface elements.

The union of all elements in T̂i,h is denoted by Ω i
Σ,L,h , which is defined as

Ω i
Σ,L,h =

⋃

K∈T̂i,h
K , i = 1, 2. (3.50)

As demonstrated in the previous section, Ω1
Σ,L,h and Ω2

Σ,L,h form an overlapping decom-
position of the computational domain ΩΣ,L .

To introduce the finite element space for the unfitted Nitsche’s method, we begin with
defining the finite element space on each fictitious subdomainΩ i

Σ,L . Let V̂i,h be the standard

continuous finite element space on Ω i
Σ,h which is defined as

V̂i,h =
{
v ∈ C0(Ω i

Σ,h) : v|K ∈ P1(K ) for any K ∈ T̂i,h
}

, i = 1, 2. (3.51)

Then, the unfitted Nitsche’s finite element space V̂h is the direct sum of V̂1,h and V̂2,h ,
i.e. V̂h = V̂1,h ⊕ V̂2,h . To impose the periodic boundary condition in v1 direction and
homogeneousDirichlet boundary condition in v2 direction, we introduce the subspace V̂h,0 =
V̂h ∩ Hk

per ,0(ΩΣ,L).
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Similar to the previous section, we define unfitted Nitsche’s bilinear form âh(·, ·) as

âh(uh, vh) =
2∑

i=1

∫

Ω i
Σ,L

W

(
∇ + i

k‖
2π

k1

)
uh ·

(
∇ + i

k‖
2π

k1

)
vhdx

−
∫

ΓΣ,L

{{
W

(
∇ + i

k‖
2π

k1

)
uh · n

}}
�vh�ds

−
∫

ΓΣ,L

{{

W

(
∇ + i

k‖
2π

k1

)
vh · n

}}

�uh�ds

+ 1

h

∫

ΓΣ,L

λ�uh��vh�ds,

for any functions uh, vh in V̂h . Then, the unfittedNitsche’smethod for the interface eigenvalue
problem is to find the eigenpair (ψh, E(k‖)) such that

âh(ψh, ηh) = Eh(k‖)b̂(ψh, ηh), ∀ηh ∈ V̂h,0; (3.52)

where

b̂(ψh, ηh) =
∫

ΩΓ

ψh · ηhdx. (3.53)

3.2.2 Well-Posedness of Unfitted Nitsche’s Method on a Cylinder

Using the same argument as in previous subsection, we can prove the unfitted Nitsche’s weak
form (3.52) is consistent in the following sense:

Lemma 4 Let (ψ, E(k‖)) be the eigenpair of the interface eigenvalue problem (3.3)–(3.4).
Then (ψ, E(k‖)) ∈ H1

per ,0(ΩΣ,L) × R also satisfies

âh(ψ, η) = E(k‖)b̂(ψ, η), ∀η ∈ H1
per ,0(ΩΣ,L). (3.54)

Let us consider the following truncated interface source problem

LW (k‖)u(x) = f (x), (3.55)

u(x + v1) = u(x), (3.56)

u(τ1v1 ± Lv2) = 0,∀ 0 ≤ τ1 ≤ 1, (3.57)

�u� = �W (∇ + ik)u · n� = 0, on ΓΣ. (3.58)

As a direct consequence of the above Lemma, we have the following Galerkin orthogonality
for the source problem:

Corollary 2 Let u be the solution of the interface problem (3.55)–(3.58) and uh be the corre-
sponding finite element approximation by the unfitted Nitsche’s method. Then we have

âh(u − uh, vh) = 0, ∀vh ∈ V̂h,0. (3.59)

We also introduce the following energy norm

|||ψ |||2h = ‖(∇ + i
k‖
2π

k1)ψ‖2
0,Ω1

Σ,L∩Ω2
Σ,L

+
∑

K∈T̂Γ ,h

h−1‖�ψ�‖20,ΓK
. (3.60)
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In term of the energy norm, we shall show that the unfitted Nitsche’s bilinear form is coercive
and continuous in the following sense

Theorem 3 Suppose the stability parameter λ̂ is large enough. Then there are two constants
C7 and C8 such that

C7|||qh |||2h ≤ âh(qh, qh), ∀qh ∈ V̂h; (3.61)

âh(qh, χh) ≤ C8|||qh |||h |||χh |||h, ∀qh, χh ∈ V̂h,0. (3.62)

Theorem 3 also means the discrete eigenvalue value problem (3.16) is a well-posed prob-
lem. According to the spectral theory, the discrete eigenvalue of (3.16) can be enumerated
as

0 < E1
h(k‖) ≤ E2

h(k‖) ≤ · · · En̂h
h (k‖) (3.63)

and the corresponding L2-orthonormal eigenfunctions are ψ1
h , ψ2

h , . . . , ψ
n̂h
h . Here, n̂h is the

dimension of the unfitted Nitsche’s finite element space V̂h,0.
Likewise, we use X̂i to denote the extension operator for functions definedΩ i

Σ,L toΩΣ,L

which satisfies

(X̂iη)|Ωi = η (3.64)

and

‖X̂iη‖s,Ω ≤ C‖q‖s,Ωi , for s = 0, 1, 2. (3.65)

Let Îi,h be the standard nodal interpolation operator from C(ΩΣ,L) to V̂i,h . Define the
interpolation operator for the finite element space V̂h as

Î ∗
h q = ( Î ∗

1,hq1, Î
∗
2,hq2), (3.66)

where

Î ∗
i,hqi = Îi,h X̂i qi , i = 1, 2. (3.67)

We can also show the following interpolation error estimates:

‖η − Î ∗
h η‖0,ΩΣ,L + h|||η − Î ∗

h η|||h ≤ Ch2‖η‖2,Ω1
Σ,L∪Ω2

Σ,L
. (3.68)

4 Error Analysis

In this section, we present unified error estimation for the proposed unfitted Nitsche’s meth-
ods. Our main analysis tool is the Babuška-Osborn spectral approximation theory [6].

When we consider the eigenvalue problem (3.3)–(3.4), let Ah(·, ·) denote the Nitsche’s
bilinear function ah(·, ·) which is defined on Va := H1

per (Ω) and Bh(·, ·) corresponding the
L2 inner production bh(·, ·) on Vb := L2

per (Ω). Similarly, when we consider the eigenvalue
problem (3.42)–(3.45), let Ah(·, ·) denote denote theNitsche’s bilinear function âh(·, ·)which
is defined on Va := H1

per ,0(ΩΣ,L) and Bh(·, ·) corresponding the L2 inner production b̂h(·, ·)
on Vb := L2

per (ΩΣ,L). The corresponding L2 norm is denoted by ‖ · ‖b. The Nitsche’s finite
element function is denote by Sh which is either Vh,per or V̂h,0.
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For any f ∈ Vb, let T : Vb → Va be the solution operator for the source problem such
that

Ah(T f , g) = ( f , g), ∀g ∈ Va . (4.1)

We rewrite the interface eigenvalue problem (3.3)–(3.4) [or (3.42)–(3.45)] as

Tφ = μφ (4.2)

where μ = E(k)−1 (or μ = E(k‖)−1). For the source problem (4.1), we can show the
following regularity [5,22]

‖T f ‖2,� ≤ C‖ f ‖b, (4.3)

where the notation ‖ · ‖2,� denotes the piecewise H2 norm ‖ · ‖2,Ω1∪Ω2 or ‖ · ‖2,Ω1
Σ,L∪Ω2

Σ,L
.

Similarly, we introduce the solution operator Th for the discrete source problems which
is defined as

ah(Th f , gh) = ( f , gh), ∀gh ∈ Sh . (4.4)

The unfitted Nitsche’s method (3.16) has the following equivalent representation

Thφh = μhφh, (4.5)

whereμh = Eh(k)−1 (orμh = Eh(k‖)−1). Evidently, both T and Th are self-adjoint, elliptic,
and compact linear operators.

From the interpolation error estimate, we can show the following error estimates for
unfitted Nitsche’s method approximating the source problem:

Theorem 4 Let T and Th be the solution operators defined in (4.1) and (4.4), respectively.
Then we have the following error estimates, for any f ∈ L2(Ω) (or L2(ΩΣ,L)),

|||T f − Th f |||h ≤ Ch‖ f ‖b, (4.6)

‖T f − Th f ‖b ≤ Ch2‖ f ‖b. (4.7)

Proof The inequality (4.6) follows directly fromTheorem 2 (or Theorem 3), the interpolation
error estimate (3.36) [or (3.68)], and the regularity (4.3). The inequality (4.7) can be proved
via the Aubin-Nitsche’s tricks, see for example, [18]. ��

From the above theorem, we can deduce the following corollary:

Corollary 3 Let T and Th be the solution operator defined in (4.1) and (4.4), respectively. We
have

||T − Th ||L(Vb) ≤ Ch2. (4.8)

and thus

lim
h→0

||T − Th ||L(Vb) = 0. (4.9)

Let ρ(T ) (or ρ(Th)) denote the resolvent set of operator T (or Th), and σ(T ) (or σ(Th)
denote the spectrum set of operator T (or Th). Using the above approximation property, we
have the following property of no pollution of the spectrum which is a direct application of
Theorem 9.1 in [7]:
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Theorem 5 For any compact set K ⊂ ρ(T ), there is h0 > 0 such that K ⊂ ρ(Th) holds
for all h < h0. If E is a nonzero eigenvalue of T with algebraic multiplicity m, there are m
eigenvalues E1

h, E
1
h, · · · , Em

h of Th such that all eigenvalues E j
h , j = 1, . . . ,m converge to

E as h tends to 0.

For any closed smooth curve C ⊂ ρ(T ) enclosing E ∈ σ(T ) and no other element of
σ(T ), the Reisz spectral projection associated with E is defined as [6]

P = 1

2π i

∫

C
(z − T )−1dz. (4.10)

Let R(P) be the range of the Reisz spectral projection P . When h is sufficiently small,
C ⊂ ρ(Th) encloses exactlym discrete eigenvalues of Th . We define analogously the discrete
spectral projection

Ph = 1

2π i

∫

C
(z − Th)

−1dz. (4.11)

Thanks to the above preparations, we are ready to show our main eigenpair approximation
results.

Theorem 6 Let μh be an eigenvalue of Th such that limh→0 μh = μ. Let gh be a unit
eigenvector of Th corresponding to the eigenvalue μh. Then there exists a unit eigenvector
g ∈ R(P) such that the following estimates hold

‖g − gh‖0,Ω ≤ Ch2‖g‖2,�, (4.12)

|μ − μh | ≤ Ch2‖g‖2,�, (4.13)

|E − Eh | ≤ Ch2‖g‖2,�. (4.14)

Proof In order to justify the estimate (4.12), we apply the Theorem 7.4 in [6] and the operator
approximation result (4.7), and deduce that

‖g − gh‖0,Ω ≤ ‖(T − Th)|R(P)‖b = sup
q∈R(P)
|‖q|‖h=1

‖Tq − Thq‖0,Ω ≤ Ch2‖φ‖2,�,

which completes the proof of (4.12).
Then, we turn to the estimate (4.13). Let v1, …, vm be any basis for R(P). Then, Theorem

7.3 in [6] implies that there exists a constant C such that

|μ − μh | ≤ C
m∑

j,k=1

|((T − Th)v j , vk)| + C‖(T − Th)|R(P)‖20,Ω . (4.15)

To establish upper bound for |μ − μh |, it is sufficient to bound the first term in (4.15).
Using (4.1), (4.4) and the Galerkin orthogonality (3.22) [or (3.59)], we obtain the (4.13) by
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the following calculations

((T − Th)v j , vk) =(v j , (T − Th)vk)

=ah(T v j , T vk − Thvk)

=ah(T v j − Thv j , T vk − Thvk) + ah(Thv j , T vk − Thvk)

=ah(T v j − Thv j , T vk − Thvk) + ah(T vk − Thvk, Thv j )

=ah(T v j − Thv j , T vk − Thvk)

≤C |||T v j − Thv j |||h |||T vk − Thvk |||h
≤Ch2‖v j‖2,�‖vk‖2,�
≤Ch2‖g‖22,�.

(4.16)

The last estimate (4.14) is actually a direct consequence of (4.13) by recalling that μ =
E−1 (or μh = E−1

h ). ��

5 Numerical Examples

In this section,we present a series of benchmark numerical examples to verify and validate our
theoretical results and demonstrate that the proposed unfitted Nitsche’s methods are effective
and efficient numerical methods to compute the dispersion relation and wave modes for
topological materials with very high contrast material weights.

5.1 Numerical Examples for Computing Dispersion Relations

In this subsection, we numerically investigate the performance of the unfitted Nitsche’s
method for computing the dispersion relations of the bulk on a torus, i.e. the material weight
is Λ-periodic. We choose the material weight W in (2.8) with

ε(x) =
{
1 + J , if x ∈ Ω1,

1, if x ∈ Ω2.

The jump ratio of the material coefficient is (1 + J )2. For large J , we have high contrast
material weight. The radius of Br (A) and Br (B) is chosen to be 0.2.

5.1.1 Verification of Accuracy

In this part, we run a series of tests to show the optimal convergence of the numerical
eigenvalue obtained by the unfitted Nitsche’s method. To measure the errors, we introduce
the following relative error of eigenvalues

ei = |Ei,h j (k) − Ei,h j+1(k)|
Ei,h j+1(k)

.

Different values of J and γ are chosen to test our numerical methods. The numerical errors
of the first four eigenvalues are plotted in Figs. 4 and 5, where the numerical eigenvalues
converge at the optimal rate O(h2). This confirms that the error estimate for the unfitted
Nitsche’s method is uniform with respect to the jump ratio (J + 1)2.
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Fig. 4 Numerical errors for eigenvalue approximation: a J = 2 and γ = 0; b J = 2 and γ = 0.1
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Fig. 5 Numerical errors for eigenvalue approximation: a J = 100 and γ = 0; b J = 100 and γ = 0.1

5.1.2 Numerical Investigation of the Dispersion Relations

In this part, we compute the dispersion relations of the bulk and make comparisons with
the Fourier spectral methods [24,38], which expands both the material weight W (x) and
eigenfunctions in terms of Fourier series. For the unfittedNitsche’smethod,weuse themeshes
with mesh size h = 1

64 . For the Fourier spectral method, we use at least 16 Fourier modes
in each direction. The computed eigenvalues using Fourier spectral methods are denoted by
Ẽi (i = 1, 2, 3) in Fig. 7.

As mentioned in Sect. 2.2, there exists a Dirac point nearK = 1
3 (k1 − k2) and K′ = −K

when λ = 0. To observe this mechanism, we plot the eigenvalue Em(k) with k = K + τk1
in term of τ (the x-axis in Figs. 6 and 7), which is termed as eigencurve, for m = 1, 2, 3.
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Fig. 6 Dispersion relations when J = 30: a Unfitted Nitsche’s Method with γ = 0; b Spectral Method with
γ = 0; c Unfitted Nitsche’s Method with γ = 0.1; d Spectral Method with γ = 0.1

We directly consider the casewith a relatively large jump ratiowith J = 30. The numerical
results are displayed in Fig. 6. For the unfitted Nitsche’s method, we observe the existence
of the Dirac point for γ = 0 and the disappearance of the Dirac point when γ = 0.1. This
agrees well with the theoretical results [24]. Unfortunately, the Fourier spectral method fails
to give the correct results. In particular, we can see that a gap between the first eigencurve
and the second eigencurve opens up when γ = 0 and that the eigencurves are not symmetric
which clearly violates the mathematical theory of the spectrum [24]. The performance is not
improved even when we increase the number of Fourier modes in each direction.

For small jump ratio case, the Fourier spectral method seems to give a reliable result. We
will see that our method can do a much better job. To make a quantitative comparison of
those two methods for the small jump ratio case, we graph the results of those two methods
in the same plot when J = 2 in Fig. 7. In the Figure, the numerical results generated by the
unfitted Nitsche’s method are plotted by solid curves and the numerical results generated by
the Fourier spectral method are represented by dashed curves. We can see that the numerical
eigenvalues given by the unfitted Nitsche’s method are lower than the counterpart given by
the Fourier spectral methods. This observation implies that the unfitted Nitsche’s method
is much more accurate than the Fourier spectral method since both methods are Galerkin
methods which give upper bounds of the exact eigenvalues.

In summary, though the Fourier spectral method is widely used in photonic community,
it is not a good numerical method to handle the discontinuous material weight, especially
when the jump ration is large. In contrast, the unfitted Nitsche’s method can give very reliable
results in spite of arbitrary large jump ratio.

5.2 Numerical Examples for Computing EdgeModes

In this subsection, we present numerical examples to show the unfitted Nitsche’s method
proposed in Sect. 4 is an efficient numerical method for computing topologically protected
edge modes with high contrast material weight on a cylinder and supports the theoretical
result for eigenvalue approximation. We consider the material weight given in the form

W (x) = ε(x)−1 + δκ(δk2 · x)ε(x)−2σ2, (5.1)

where

ε(x) =
{
1 + J , if x ∈ Ω1,

1, if x ∈ Ω2.
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Fig. 7 Comparison of the unfitted Nitsche’s method and the Fourier spectral method (solid line: the Unfitted
Nitsche’s method and dashed line: the Fourier spectral method): a J = 2 and γ = 0; b J = 2 and γ = 0.1

In (5.1), δ is a constant. It is chosen such that the coefficient matrix W is positive definite.
The function κ(·) is the transition function (domain wall function) (2.11).

5.2.1 Verification of Accuracy

In this part, we conduct a benchmark numerical study to verify the optimal convergence of
the unfitted Nitsche’s method (3.52). Similarly, the convergence rate is approximated by the
following relative errors

êi = |Ei,h j (k‖) − Ei,h j+1(k‖)|
Ei,h j+1(k‖)

.

In this test, we take k‖ = 0.56π , δ = 0.1 and L = 10. We focus on the computation of the
first six eigenvalues. The numerical results of the convergence test are summarized in Fig. 8
for J = 2 and J = 10. From the data in Fig. 8, it is evident that the numerical eigenvalues
computed by the unfitted Nitsche’s method (3.52) converges at the optimal rate O(h2). This
is consistent with the theoretical result in the Theorem 6.

5.2.2 Computation of the Topological Edge Modes

In this paper, we provide numerical examples to demonstrate that the proposed unfitted
Nitsche’s method is an efficient method to compute the topological edge modes in the het-
erogeneous setting.

Test case 1 First of all, we consider the computation of the topological edge states with
small jump ratio. In this test, we choose J = 2, δ = 0.6 and L = 80. In Fig. 9a, we show
the plot of first 85 eigencurves in term of k‖. In Fig. 9a, we can see that the red eigencurve
is separated from the eigencurves, which indicates edge states. To demonstrate the existence
of edge states, we sketch the modulus of the 79th, 80th, and 81th eigenfunctions at the point
k‖ = 2π

3 in Fig. 10. What stands out in the table is that the 81th eigenfunction is located at
the center of the computational domain but the 79th and 80th are both located the boundary
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Fig. 8 Numerical errors for eigenvalue approximation: a J = 2 and δ = 0.1; b J = 10 and δ = 0.1

X

X

(a) (b)

Fig. 9 Plot of the first 85 eigencurves for with L = 80 where the edge mode is corresponding to the line mark
by ’X’: a Case J = 2 and δ = 0.6; b Case J = 10 and δ = 0.7

Fig. 10 Plot of the module of the eigenfunctions: a The 79th eigenfunction; b The 80th eigenfunction; c The
81th eigenfunction
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Fig. 11 Plot of the module of the eigenfunctions: a The 79th eigenfunction; b The 80th eigenfunction; c The
81th eigenfunction

of the computational domain. It suggests that the 81th eigenfunction is the true edge state of
eigenvalue problem (2.12)–(2.14). The other two are referred as to pseudo edge state which
appear due to fact that the artificial truncation of the computational domain creates two other
edges.

Test case 2. We consider a relative large jump ratio here. In this test, we choose J = 10,
δ = 0.7 and L = 80. The plots of eigencurves are presented in Fig. 9b. Similarly, we list
the plots of the modules of the 79th, 80th, and 81th eigenfunctions at the point k‖ = 2π

3 in
Fig. 11. We observe the same phenomena as in Test case 1. In particular, we can observe the
existence of edge mode.

6 Conclusion

In this paper, we propose new unfitted Nitsche’s methods based on the Floquet-Bloch trans-
form for efficiently simulating photonic graphene with heterogeneous structure. By taking
advantage of the structure of underlying meshes, we establish a sharp trace inequality for cut
elements, which is the key ingredient to show the stability of the Nitsche’s bilinear forms.
The theoretical foundation of the proposed methods builds upon the abstract spectral approx-
imation theory by Babuška and Osborn. The performance of the proposed unfitted methods
is tested with a series of benchmark numerical examples. Numerical comparison with the
Fourier spectral method suggests our method is a better choice for simulating topological
materials with discontinuous material weights. Generalization of the proposed method to
other domains has no numerical difficulties in designing algorithms, but the uniform analysis
for general domains requires techniques beyond the scope of this paper. Thus we shall leave
it as a future work. In future, we also plan to combine the superconvergent tool for unfitted
Nitsche’smethod in [14] to further improve the accuracy and reduce the CPU time.Moreover,
we will apply the results in this work to simulate the evolution of these novel wave modes
[21,44].
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A Proof of the Lemma 2

A.1 A Technical Lemma

Before giving the proof of Lemma 2, we present a lemma that we shall use.

Lemma 5 Let x j = (x j
1 , x j

2 ), j = 1, 2, 3, be the three vertices triangle K and b j (x) be the
standard nodal basis function associated with x j . Then the following relationship holds

|b j (x)| ≤ 2h|∇b j |, ∀x ∈ K , (A.1)

for j = 1, 2, 3.

Proof Without loss of generality, we only prove (A.1) for j = 1. Using the area coordinates
[10], we have

b1(x) = (x2 − x32 )(x
3
1 − x21 ) − (x1 − x21 )(x

3
2 − x22 )

2|K | , (A.2)

and

∇bi =
(

−(x32 − x22 )

2|K | ,
(x31 − x21 )

2|K |

)

. (A.3)

From the above two expressions, we can deduce that

|bi (x)| ≤ h
|x31 − x21 | + |(x32 − x22 )|

2|K | ≤ 2h

√
|x31 − x21 |2 + |(x32 − x22 )|2

2|K | = 2h|∇bi |

where we have used the fact |(x2 − x32 | ≤ h and |x1 − x21 | ≤ h for any point x = (x1, x2) in
the triangle K . ��

A.2 Proof of Lemma 2

It is sufficient to show the lemma for the basis functions b j since φh is a linear combination
of b j . Using Lemma 5, we can deduce that

‖b j‖20,ΓT
≤ |ΓT |‖b j‖20,∞,ΓT

≤ |ΓT |‖b j‖20,∞,Ki
≤ 4h2|ΓT ||∇bi |2 = 4h2|ΓT |

|Ki | ‖∇bi‖20,Ki
;

which completes the proof of (3.24). The inequality (3.25) is implied in the above proof.
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