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Abstract

In this paper, we propose an unfitted Nitsche’s method to compute the band structures of phononic crystal with periodic
nclusions of general geometry. The proposed method does not require the background mesh to fit the interfaces of periodic
nclusions, and thus avoids the expensive cost of generating body-fitted meshes and simplifies the inclusion of interface
onditions in the formulation. The quasi-periodic boundary conditions are handled by the Floquet–Bloch transform, which
onverts the computation of band structures into an eigenvalue problem with periodic boundary conditions. More importantly,
e show the well-posedness of the proposed method using a delicate argument based on the trace inequality, and further
rove the convergence by the Babuška–Osborn theory. We achieve the optimal convergence rate at the presence of the periodic
nclusions of general geometry. We demonstrate the theoretical results by two numerical examples, and show the capability of
he proposed methods for computing the band structures without fitting the interfaces of periodic inclusions.
c 2021 Elsevier B.V. All rights reserved.
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1. Introduction

Phononic crystals are synthetic materials with periodic structure. Similar to photonic crystals, they exhibit band-
ap structures related to topological properties, which prevent elastic waves propagating in certain frequencies.
his leads to a series of important applications such as ultrasound imaging and wireless communications. In

iterature, Economou and Sigalas [1] experimentally observed the band-gap in phononic crystals. Ammari et al. [2]
athematically proved the existence of band-gap in the high-contrast phononic crystal using the asymptotic

xpansion and the generalized Rouché’s theorem. In general, phononic crystals with large band-gap is preferred
due to the wide range of applications. One of the most influential accounts of band-gap optimization comes from
Sigmund and Jensen who were one of the first to use topology optimization approach to design a phononic
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crystal with maximum relative band-gap size [3]. The main idea is to find the optimal arrangement of two different
materials to achieve maximum band-gap. The geometric configuration of the two materials is continually updated
during designing process. The main computational challenge is the numerical solution of heterogeneous eigenvalue
problems with the moving material interface.

Another desire was brought about by the recent increasing interest in wave propagation in topological phononic
aterials. One of the key problems is to understand the band structure of bulk phononic crystals [4]. In generic

ases, it is hard to obtain the explicit form of band structures with complete analytical techniques, and thus numerical
omputation plays an essential role. Early works on numerical approximations can be traced back to [5] where
ushwaha et al. used the plane-wave expansion to compute the band structure. The transfer matrix method was

lso adopted by Sigalas and Soukoulis [6] to simulate the propagation of elastic waves through disordered solid. To
ate, various methods have been developed to compute the band structure of phononic crystals including the multiple
cattering method [7], the finite difference time domain method [8], the meshless method [9], the (multiscale) finite
lement method [10–13], the homogenization method [14–16], and the singular boundary method [17].

Among the aforementioned methods, the numerical difficulties come from two different perspectives: one is the
eterogeneous primitive cell of the phononic crystals and the other is how to efficiently impose the quasi-periodic
oundary condition. Although extensive research has been carried out on the computing bandgap of phononic crystal,
ery few has addressed the complication brought by adjusting material interfaces for instance in the material design.
ntil recently, Wang et al. [18] proposed a Petrov–Galerkin immersed finite element method to compute the band

tructure of the phononic crystal and imposed the quasi-periodic boundary condition directly. However, the rigorous
nalysis of unfitted numerical methods is still lacking in the literature.

In this paper, we propose an unfitted Nitsche’s method to compute the band structures of phononic crystal
ith periodic inclusions of general geometry, and prove the convergence with rigorous mathematical analysis. The
eterogeneous primitive cell of the phononic crystal is described by the interface condition which we can build into
variational framework with the help of the Floquet–Bloch theory. To handle the quasi-periodic boundary condition,

he Floquet–Bloch transform is applied which reformulates the model equation with quasi-periodic boundary
onditions into an equivalent model equation with periodic boundary conditions and Bloch-type interface condition.
hen, the reformulated model equations can be numerically tackled by the unfitted Nitsche’s type method [19–23]
sing uniform meshes. The proposed unfitted finite element method is motivated by our previous work of computing
dge modes in topological materials [24]. The first advantage is that it uses meshes independent of the location of
he material interfaces. It reduces the computational cost of generating body-fitted meshes, especially in designing
hononic crystals. The second advantage is that it is straightforward to impose the periodic boundary conditions
ince only uniform meshes are used. Remark that imposing periodic boundary conditions on general unstructured
eshes is quite technically involved, and interesting readers are referred to [25,26] and the references therein about

he recent development of imposing periodic boundary condition on general unstructured meshes.
As mentioned in our previous work [24], the discrete Nitsche’s bilinear form involves the solution itself in

ddition to its gradient which cause the difficulties in the analysis. In this paper, we establish a solid theoretical
nalysis for the proposed unfitted finite element methods by conquering the above difficulties. Specifically, we
how the discrete equation is well defined by using a delicate trace inequality on the cut element, the Poincaré

inequality between the energy norm of the original model equation and the energy norm of the modified model
equation, and the explicit relation between the strain tensor and stress tensor. By the aid of the Babus̀ka–Osborn
spectral approximation theory [27,28], the proposed unfitted finite element method is proven to have the optimal
approximation property for the eigenvalues and eigenfunctions in the high-contrast heterogeneous primitive cell.

The paper is organized as follows. In Section 2, we introduce the model of plane-wave propagation in the
phononic crystals. In Section 3, we propose the unfitted numerical method to compute the band structure of phononic
crystal based on the Bloch–Floquet theory and prove the proposed method admits a unique solution. In Section 4,
we carry out the optimal error analysis. In Section 5, we present some numerical examples in a realistic setting to
verify and validate our theoretical discoveries. At the end, some conclusion is drawn in Section 6.

2. Model of phononic crystal

In this section, we first present a little digest to the two-dimensional phononic crystal. Then we consider the
model of in-plane wave propagation.
2
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Fig. 1. Bravais lattice Γ . (a) 2D square lattice; (b) the primitive cell; (c) the first Brillouin zone.

2.1. Problem setup

Phononic crystal is designed from periodically arrangement of two different materials to achieve extraordinary
properties like negative refractive index. The body of phononic crystal is a kind of high-contrast materials with
heterogeneous primitive cells.

We will mainly focus phononic crystals with two-dimensional Bravais lattice Λ formed by two primitive vectors
a1 and a2, i.e.

Λ = Za1 + Za2 = {m1a1 + m2a2 : m1, m2 ∈ Z} . (2.1)

An example of square lattice with a1 = (a, 0)T and a2 = (0, a)T is shown in Fig. 1a. The primitive cell (or
fundamental domain) Ω of Bravais lattice Λ is defined as

Ω = {θ1a1 + θ2a2 : 0 ≤ θ1, θ2 ≤ 1} , (2.2)

which is illustrated in Fig. 1b for the square lattice.
Denote the generating basis of the reciprocal lattice (or dual lattice) by ki for i = 1, 2, which satisfy

ki · a j = 2πδi, j , ∀i, j = 1, 2, (2.3)

where δi j is the Kronecker delta. Then, the reciprocal lattice Λ∗ is

Λ∗
= Zk1 + Zk2 = {m1k1 + m2k2 : m1, m2 ∈ Z} . (2.4)

The fundamental domain of the reciprocal lattice is

Ω∗
= {θ1k1 + θ2k2 : 0 ≤ θ1, θ2 ≤ 1} , (2.5)

which is termed as the first Brillouin zone [29]. Again, we illustrate the first Brillouin zone for the square lattice
in Fig. 1c, where the triangle formed by the point O , X , and M is referred as the irreducible Brillouin zone [29].

The primitive cell Ω of the phononic crystal involves hard inclusion of one material Ω− into a background
material Ω+. The background material is referred as the matrix and the inclusion is also referred as fiber. The
matrix Ω+ and the inclusion Ω− are separated by the material interface Γ . In Fig. 1b, we show the fundament cell
with a circular inclusion.

In this paper, we assume that both the inclusions and matrix are homogeneous isotropic elastic solids. We use λ+

(or λ−) denote the first Lamé parameter of matrix (or inclusion) and µ+ (or µ−) denote the second Lamé parameter
of matrix (or inclusion). Similarly, let ρ+ and ρ− denote the mass density of the matrix and inclusion, respectively.
To simplify the notation, we let

λ =

{
λ−, in Ω−,

λ+, in Ω+,
µ =

{
µ−, in Ω−,

µ+, in Ω+,
and ρ =

{
ρ−, in Ω−,

ρ+, in Ω+.
(2.6)
3
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For any vector-valued function v defined on Ω , let JvK be the jump of function v crossing the interface Γ , i.e.

JvK(x) = v|Ω+ (x) − v|Ω− (x) (2.7)

where x ∈ Γ .
Throughout the paper, the standard notations for (complex-valued) Sobolev spaces and their associated norms

are used as in [30–32]. Given a bounded subdomain D ⊂ Ω and any positive integer k, the Sobolev space with
orm ∥·∥k,D and seminorm | · |k,D is denoted by H k(D). When k = 0, H k(D) reduces to the standard L2(D) space.
et (·, ·)D denote the standard inner products of L2(D). When D = Ω , the subscript is omitted. For a bounded

domain D = D+
∪ D− with D+

∩ D−
= ∅, let H k(D+

∪ D−) be the function space consisting of piecewise Sobolev
unctions w such that w|D+ ∈ H k(D+) and w|D− ∈ H k(D−), whose norm is defined as

∥w∥k,D+∪D− =

(
∥w∥

p
k,D+ + ∥w∥

p
k,D−

)1/p
, (2.8)

and seminorm is defined as

|w|k,p,D+∪D− =

(
|w|

p
k,D+ + |w|

p
k,D−

)1/p
. (2.9)

To avoid abuse of notation, the same notation is applied to the vector-valued function w = (w1, w2)T .
For any vectors v and w, let v ⊗w be the tensor product of v and w and let v ⊙w =

1
2 (v ⊗ w + w ⊗ v) be the

ymmetric tensor product. For the quasi-momentum k in the Brillouin zone, define the shift differential operator
k as

∇k = ∇ + ik, (2.10)

here i is the imaginary unit.
In this paper, we use the constant C , with or without a subscript, to denote a generic positive constant which can

e different at different occurrences. In addition, it is independent of mesh size and the location of the interface.
y x ≲ y, we mean that there exists a constant C such that x ≤ Cy.

Before ending this section, we introduce some additional function spaces for Bloch-periodic (or quasi-periodic)
unctions

H k
per (Ω ) =

{
w(x) ∈ H k(Ω ) : w(x ± a j ) = w(x) on ∂Ω and j = 1, 2

}
, (2.11)

H k
k (Ω ) =

{
w(x) : exp(−ik · x)w(x) ∈ H k

per (Ω )
}
. (2.12)

t is worth noting that the Sobolev space H k
per (Ω ) and H k

k (Ω ) are both complex-valued.

.2. In-plane wave propagation

The in-plane wave propagation is modeled by the elastodynamics operator

Lφ = −∇ · σ [φ] = −∇ · Cϵ[φ]. (2.13)

here φ = (φ1, φ2)T is the displacement vector and C is the fourth-order stiffness tensor. In (2.13), ϵ is the strain
ensor which is related to the displacement via

ϵ[φ] = ∇ ⊙ φ, (2.14)

nd σ is the stress tensor. For the homogeneous isotropic material, the stress tensor and strain tensor are related by
he Hook’s law, i.e.

σ [φ] = Cϵ[φ] = 2µϵ[φ] + λtr(ϵ[φ])I2. (2.15)

here tr(A) is the trace of the matrix A and I2 is the 2 × 2 identity matrix.
Let k ∈ Ω∗ be the quasi-momentum. According to the Bloch theory [29], the in-plane wave propagation

n phononic crystal can be reformulated to solve the following quasi-periodic eigenvalue problem [14,16]: find
ω2, φ) ∈ R × H 1

k (Ω ) such that{
Lφ = ω2ρφ, in Ω \ Γ ,

JφK = JC(∇ ⊙ φ)nK = 0, on Γ ,
(2.16)

− +
here n is the unit normal vector of Γ pointing from Ω to Ω .

4
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For any fixed k ∈ Ω∗, the eigenvalue problems (2.16) admits a sequence of eigenvalues 0 ≤ ω2
k,1 ≤ ω2

k,2 ≤
2
k,3 ≤ · · · → ∞ and corresponding eigenfunctions φk,1, φk,2, φk,3, . . . which are orthogonal in a ρ-weighted

L2
k(Ω ), i.e. (ρφk, j , φk,k) = δ jk . As k varies in Ω∗, each eigenvalue ω2

k,n forms a Lipschitz continuous function [33]
eferred to as a dispersion band function. Thus the whole spectrum exhibits a band structure with or without gaps
etween two adjacent bands.

In general, the eigenvalues can not be obtained analytically. Thus the band structures can not be represented
n an explicit way. Only in certain asymptotic regimes, low-lying eigenvalues of (2.16) can be constructed with
elicate asymptotic techniques. For instance, Ammari et al. [2] obtained the asymptotic expansions of the band
unctions in subwavelength limit of high contrast phononic crystals, and further proved the existence of the band
aps in this limit. The band structures in generic setups can only rely on numerical computations. We remark that
2
k,n = 0 if and only if n = 1 and k = 0, see for instance [34] and reference therein. In this case, the corresponding
igenfunction is constant, i.e., φ0,1 = 1. In the rest of this paper, we shall exclude this exceptional case. In addition,
ue to periodicity and symmetry, we only need to consider the case that the quasi-momentum k belongs to the
rreducible Brillouin zone.

. Unfitted Nitsche’s method for computing band structure

In this section, we are going to propose an unfitted numerical method to efficiently compute band structures for
eneric phononic crystals. The numerical challenges brought by the eigenvalue problem (2.16) is twofold: one is
uasi-periodic nature of the Bloch wave and the other one is the inhomogeneity of the material. These challenges
hall be discussed in the following subsections.

.1. Bloch–Floquet theory

To address the first numerical challenge, we apply the Bloch–Floquet transform φ(x) = eik·x u(x). The
uasi-periodic eigenvalue problem can be reformulated as: find (ω2, u) ∈ R × H 1

per (Ω ) such that{
Lku = ω2ρu, in Ω \ Γ ,

JuK = JC(∇k ⊙ u)nK = 0, on Γ ,
(3.1)

here the differential operator Lk is defined as

Lku = ∇k · C(∇k ⊙ u), (3.2)

ith ∇k being the shift differential operator defined in (2.10). We want to remark that

C(∇k ⊙ u) = 2µ∇k ⊙ u + λ(∇k · u)I2 (3.3)

s termed as the modified stress tensor.
For any quasi-momentum k, it is not difficult to see that Lk is a self-adjoint positive definite operator. The

pectrum of the elastodynamics operator L is the union of spectrum of Lk for all k ∈ Ω∗. Notice that the Bloch–
loquet transform φ(x) = eik·x u(x) is an isomorphism from H 1

k (Ω ) to H 1
per (Ω ). Then, we have the following

oincaré inequality:

C0[(C(∇ ⊙ u), ∇ ⊙ u) + (C(k ⊙ u), k ⊙ u)] ≤ (C(∇k ⊙ u), ∇k ⊙ u), (3.4)

here C0 is a positive constant.

.2. Formulation of the unfitted Nitsche’s method

To find the band structure of L, it suffices to solve a series of periodic eigenvalue problem (3.1). The main
umerical barrier is how to efficiently handle the interface condition. We alleviate this barrier by introducing a new
nfitted Nitsche’s method which is seamlessly infusing with the Bloch–Floquet theory.

One merit of unfitted Nitsche’s method is to use meshes independent of the location of the material interface.
ue to the lattice structure of the phononic crystal, uniform meshes are adopted. To show the main idea, we use

he square lattice as the prototype model but the method works for other lattices. We generate a uniform mesh T
h

5
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Fig. 2. Illustration of the overlapping domain decomposition of Ω (a) Unfitted meshes on Ω ; (b) Subdomain Ω−

h ; (c) Subdomain Ω+

h .

on the fundamental domain Ω of the square lattice by partitioning it into N 2 subsquares with mesh size h =
a
N and

then splitting each subsquare into isosceles right triangles, see Fig. 2a.
To handle the non-smoothness of the Bloch wave across the material interface, we decompose the fundamental

domain Ω into two overlapping subdomains Ω+

h and Ω−

h as

Ω+

h = ∪{K ∈ Th : K ∩ Ω+
̸= ∅}, and Ω−

h = ∪{K ∈ Th : K ∩ Ω−
̸= ∅}. (3.5)

e illustrate the decomposition in Fig. 2. It is undeniable that intersection of Ω+

h and Ω−

h is nonempty. In that
ense, Ω±

h are termed as fictitious domains. Similarly, we can define two subtriangulations T +

h and T −

h as

T +

h = {K ∈ Th : K ⊂ Ω+

h }, and T −

h = {K ∈ Th : K ⊂ Ω−

h }. (3.6)

The common subsets of T +

h and T −

h is denoted by TΓ ,h which denotes the set of interface elements.
Based on the overlapping domain decomposition, we can define the finite element space on each of them

independently. To do this, let V s
h (s = ±) be the standard continuous linear finite element space on Ω s

h , i.e.,

V s
h =

{
vh ∈

[
C0(Ω s

h )
]2

: v|K ∈ [P1(K )]2 for any K ∈ T s
h

}
, (3.7)

with Pk(K ) being the space of polynomials of degree k on the element K .
Then the finite element space for the unfitted Nitsche’s method is defined as Vh = V +

h × V −

h , i.e.,

Vh =
{
vh = (v+

h , v−

h ) : vs
h ∈ V s

h , s = ±
}
. (3.8)

o impose the periodic boundary condition, we introduce Vh,per as a subspace of Vh which is defined as

Vh,per =
{
vh ∈ Vh : vh(x ± a j ) = vh(x) on ∂Ω and j = 1, 2

}
. (3.9)

ote that for any interface element K ∈ TΓ ,h , there are two sets of vector-valued basis functions for any element
K -one for V +

h and the other for V −

h .
For any interface element K ∈ TΓ ,h , let K ± denote the part of the triangle inside Ω± and |K ±

| denote the area
of K ±. Similarly, let ΓK = Γ ∩ K be the part of Γ in the element K and let |ΓK | be the length of ΓK . Before
defining the weak formulation, it is necessary to introduce some parameters. For s = ±, let βs

= 2µs
+ λs . Define

two weights as [35]

κ+
=

β−

β+ + β−
, κ−

=
β+

β+ + β−
, (3.10)

hich satisfy κ+
+ κ−

= 1. Based on the two weights, we can define a weighted averaging of the displacement
ector on the interface Γ as

+ + − −

{{u}} = κ u + κ u . (3.11)

6
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Also, we define the parameter for the weak formulation

γ = γ̂
β+β−

β+ + β−
(3.12)

where γ̂ is a sufficiently large constant called the stabilizing parameter.
Define the Nitsche’s sesquilinear form ah(·, ·) : H 1

per (Ω ) × H 1
per (Ω ) → R as

ah(uh, vh) =

∑
s=±

∫
Ωs

C(∇k ⊙ uh) : (∇k ⊙ vh)dx

+

∫
Γ

{{C (∇k ⊙ uh) n}} · JvhKds

+

∫
Γ

JuhK · {{C (∇k ⊙ uh) n}}ds

+
γ

h

∫
Γ

JuhK · JvhKds,

(3.13)

where h is the mesh size, C is the fourth-order stiffness tensor, and A : B is the Frobenius inner product of two
matrices A and B.

Given a quasi-momentum k in the reduced Brillouin zone, the unfitted Nitsche’s method for the eigenvalue
roblem (3.1) is to find the eigenpair (ω2

h, uh) ∈ R × Vh,per such that

ah(uh, vh) = ω2
hb(uh, vh), ∀ vh ∈ Vh,per , (3.14)

where

b(uh, vh) =

∫
Ω

ρuhvhdx. (3.15)

Remark 3.1. Using the definition of the fourth-order stiffness tensor C, we can write the Nitsche’s sesquilinear
form ah(·, ·) into the following equivalent form

ah(uh, vh)

=2µ
∑
s=±

∫
Ωs

(∇k ⊙ uh) : (∇k ⊙ vh)dx + λ
∑
s=±

∫
Ωs

(∇k · uh)(∇k · vh)dx

+

∫
Γ

{{2µ(∇k ⊙ uh)n + λ(∇k · uh)n}} · JvhKds

+

∫
Γ

JuhK · {{2µ(∇k ⊙ vh)n + λ(∇k · vh)n}}ds

+
γ

h

∫
Γ

JuhK · JvhKds.

(3.16)

From this equivalent expression, it is not difficult to see that ah(·, ·) is a symmetric sesquilinear form and the
igenvalues ω2

h are real.

emark 3.2. To make the method be more robust with respect to small element cut, we can adopt the ghost penalty
echnique [36] to add more stabilizing terms in the vicinity of cut element.

emark 3.3. The integral on the interface can be approximated by higher-order quadrature developed in the
iterature such as the method of moment-fitting [37], so that the quadrature approximation will not affect the overall
iscretization error. For the sake of easing presentation, we shall not consider the quadrature error in the overall
stimate.

.3. Well-posedness of unfitted Nitsche’s method

This subsection is devoted to establishing the well-posedness of the proposed unfitted Nitsche’s method (3.14).
e start with showing the following consistency results:
7
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Theorem 3.1. Let (ω2, u) be the eigenpair of the eigenvalue problem (3.1). Then, we have

ah(u, v) = ω2bh(v, u), ∀ v ∈ H 1
per (Ω ). (3.17)

Proof. The exact solution u satisfies JuK = JC (∇k ⊙ u) nK = 0, on Γ . Using this fact and the Green’s formulation,
We can derive the Nitsche’s weak formulation via the same technique as Nitsche’s method for general boundary
conditions as in [38]. □

Let us introduce the following interface boundary value problem in H 1
per (Ω ){

Lkw = f , in Ω \ Γ ,

JwK = JC(∇k ⊙ w)nK = 0, on Γ .
(3.18)

Furthermore, let wh be its finite element solution by the unfitted Nitsche’s finite element method. Taking vh as any
function in the unfitted Nitsche’s finite element space Vh,per in (3.17), it is straightforward to verify that

ah(w − wh, vh) = 0, ∀vh ∈ Vh,per , (3.19)

hich is termed as the Galerkin orthogonality.
We are now in a position to show the stability of the unfitted Nitsche’s method. Before that, we need to introduce

ome norms. For any quasi-momentum k in the reduced Brillouin zone, we introduce the following norm

�vh�2
=

∑
s=±

(C (∇k ⊙ vh) , ∇k ⊙ vh)Ωs

+

∑
K∈TΓ ,h

h∥{{C(∇k ⊙ vh)n}}∥
2
0,ΓK

+

∑
K∈TΓ ,h

γ

h
∥JvhK∥2

0,ΓK
.

(3.20)

To show the well-posedness of the unfitted Nitsche’s method, we need several technical lemmas. We begin with
he trace inequality.

emma 3.2. Let vh be a finite element function in Vper,h and k be a quasi-momentum in the reduced Brillouin
one. Then, the following inequalities hold:

∥{{C(k ⊙ vh)n}}∥
2
0,ΓK

≤ C1h−1
∥C(k ⊙ vh)∥2

0,K +∪K − , (3.21)

∥{{C(∇ ⊙ vh)n}}∥
2
0,ΓK

≤ C2h−1
∥C(∇ ⊙ vh)∥2

0,K +∪K − . (3.22)

roof. The proof of (3.22) is based on the fact that ∇ ⊙ us
h is constant and is similar to that in [20]. To show

3.21), we first let

C(k ⊙ vs
h) =

(
ws

11 ws
12

ws
11 ws

11

)
,

or any s = ±. Then

∥C(k ⊙ vs
h)∥2

0,ΓK
=

2∑
i, j=1

∥ws
i j∥

2
0,ΓK

≤ C3

2∑
i, j=1

h−1
∥ws

i j∥
2
0,K s

=C3h−1
∥C(k ⊙ vh)∥2

0,K s ,

(3.23)

here we have used the following inequality for ws
i j

∥ws
i, j∥

2
0,ΓK

≤ C3h∥ws
i, j∥

2
0,K s (3.24)
or i, j = 1, 2 and s = ±. The proof of the inequality (3.24) is similar to that in [39, Lemma 3.1].

8
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w

L
t

P

T

By the definition of the weighted averaging (3.11) and the fact κ±
≤ 1, we obtain that

∥{{C(∇ ⊙ vh)n}}∥
2
0,ΓK

≤ 2∥C(∇ ⊙ v+

h )∥2
0,ΓK

+ 2∥C(∇ ⊙ v−

h )∥2
0,ΓK

≤ 2C3h−1
(
∥C(∇ ⊙ v+

h )∥2
0,K + + ∥C(∇ ⊙ v−

h )∥2
0,K −

)
= 2C3h−1

∥C(∇ ⊙ vh)∥2
0,K +∪K − ,

hich completes the proof of (3.22) with C2 = 2C3. □

Next, we establish the following relationship between the strain and stress tensor

emma 3.3. Let C be the fourth-order stiffness tensor defined in (2.15) and A be any symmetric second-order
ensor. Then, the following inequality holds

CA : CA ≤ (4µ + 2λ)CA : A. (3.25)

roof. By the definition of fourth-order stiffness tensor (2.15), it follows that

tr(CA) = tr(2µA + λtr(A)I2) = (2µ + 2λ)tr(A). (3.26)

Notice that

CA : A = (2µA + λtr(A)I2) : A = 2µA : A + λtr(A)2
≥ λtr(A)2, (3.27)

where we have used the fact A : A ≥ 0. Using (3.26) and (3.27), we can deduce that

CA : CA = 2µ(CA : A) + λtr(CA)tr(A) ≤ (4µ + 2λ)CA : A. □ (3.28)

With the preparations, we are ready to show our main result.

heorem 3.4. Let k be a quasi-momentum in the reduced Brillouin zone. Suppose the stabilizing parameter γ̂ is
large enough. Then, there exist C4, C5 > 0 such that the following continuity and coercivity results hold

ah(uh, vh) ≤ C4�vh��uh�, (3.29)

ah(uh, uh) ≥ C5�uh�2. (3.30)

Proof. The continuity (3.29) is a direct implication the definition of the sesquilinear form (3.13) and the Cauchy–
Schwarz inequality. It remains to show the coercivity (3.30). Letting vh = uh in (3.13) and applying Young’s
inequality with ϵ imply

ah(uh, uh) =

∑
s=±

∫
Ωs

C(∇k ⊙ uh) : (∇k ⊙ uh)dx +
γ

h

∫
Γ

JuhK · JuhKds

+ 2Re
∫
Γ

{{C (∇k ⊙ uh) n}} · JuhKds

≥

∑
s=±

(C(∇k ⊙ uh), ∇k ⊙ uh)Ωs +
γ − 2ϵ

h
∥JuhK∥2

0,Γ

−
h
ϵ
∥{{C (∇k ⊙ uh) n}}∥

2
0,Γ

=:I1 + I2 − I3.
9
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T

fi

Notice I1 and I2 are already included in the mesh-dependent norm � · �. We only need to estimate I3. Let
µm = max(µ+, µ−) and λm = max(λ+, λ−). Using Lemmas 3.2 and 3.3, we deduce that

I3 =
h
ϵ
∥{{C (∇k ⊙ uh) n}}∥

2
0,Γ

≤
2h
ϵ

∥{{C (∇ ⊙ uh) n}}∥
2
0,Γ +

2h
ϵ

∥{{C (k ⊙ uh) n}}∥
2
0,Γ

≤
2C1

ϵ
∥C(∇ ⊙ uh)∥2

0,Ω+∪Ω− +
2C2

ϵ
∥C(k ⊙ uh)∥2

0,Ω+∪Ω−

≤
2C1(4µm + 2λm)

ϵ

∑
s=±

(C(∇ ⊙ uh), ∇ ⊙ uh)Ωs +

2C2(4µm + 2λm)
ϵ

∑
s=±

(C(k ⊙ uh), k ⊙ uh)Ωs

≤
2C4(4µm + 2λm)

ϵ
I1,

where we have used the Poincaré inequality (3.4) and C4 = max(C0C1, C0C2).
Combining the above two estimates, we have

ah(uh, uh)

≥(1 −
2C4(4µm + 2λm)

ϵ
)
∑
s=±

(C(∇k ⊙ uh), ∇k ⊙ uh)Ωs +
γ − 2ϵ

h
∥JuhK∥2

0,Γ

=(1 −
4C4(4µm + 2λm)

ϵ
)
∑
s=±

(C(∇k ⊙ uh), ∇k ⊙ uh)Ωs +

h
ϵ
∥{{C (∇k ⊙ uh) n}}∥

2
0,Γ +

γ − 2ϵ

h
∥JuhK∥2

0,Γ .

aking ϵ = 8C4(4µm + 2λm) and γ̂ ≥ 4ϵ
β+

+β−

β+β− , we conclude with proof of (3.30) with C5 = min{
1
2 , 1

ϵ
}. □

From Theorem 3.4, we can see the discrete sesquilinear form (3.13) is continuous and coercive with respect
to the mesh-dependent norm (3.20). The Lax–Milgram theorem implies the unfitted Nitsche’s method (3.14) is
well-posed. The spectral theory says the discrete eigenvalue of (3.14) can be listed as

0 < ω2
h,1 ≤ ω2

h,2 ≤ · · · ≤ ω2
h,nh

, (3.31)

and the corresponding L2 eigenfunctions are uh,1, uh,2, . . . , uh,nh where nh is the dimension of the Nitsche’s finite
element space Vh,per .

4. Error estimates

In this section, we shall conduct the error analysis for the proposed unfitted Nitsche’s method (3.14) using the
Babuška–Osborn theory. To this end, we introduce an extension operator X s (s = ±) to extend an H 2 function
defined on a subdomain Ω s to the fundamental cell Ω . For a function v ∈ H 2(Ω s), the extend function X sv is
defined to satisfy

(X sv)|Ωs = v, (4.1)

and

∥X sv∥r,Ω ≤ C∥v∥r,Ωs , r = 0, 1, 2, (4.2)

for s = ±.
For s = ±, let π s

h be the Scott–Zhang interpolation operator [40] on H 1(Ω s
h ). The interpolation operator on the

nite element space Vh,per is defined as
+ + − −
Ihv = (πh X v, πh X v) ∈ Vh . (4.3)

10
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Using the same argument as in [21], we can establish the following approximation property in the mesh-depending
norm (3.20)

�v − Ihv� ≲ h∥v∥2,Ω+∪Ω− . (4.4)

To adopt the Babuška–Osborn theory [27,28] , we define the solution operator T : L2(Ω ) → H 1(Ω+
∪Ω−) as

ah(T f , v) = b( f , v), ∀v ∈ H 1(Ω+
∪ Ω−), (4.5)

or any f ∈ L2(Ω ). The interface eigenvalue problem (3.1) can be reinterpreted as

T u = ζ u, (4.6)

here ζ−1
= ω2. Recall that we have excluded the exceptional case that ω2

= 0.
In a similar way, we can define the discrete solution operator Th : L2(Ω ) → Vh,per as

ah(Th f , vh) = b( f , vh), ∀v ∈ Vh,per , (4.7)

or any f ∈ L2(Ω ). Using the discrete solution operator, the discrete eigenvalue problem (3.14) is equivalent to

Th uh = ζh uh, (4.8)

here ζ−1
h = ω2

h .
From the definition (3.13), the sesquilinear form ah(·, ·) is Hermitian which implies both T and Th are self-adjoint.

t is also noted that T and Th are compact operators from L2(Ω ) to L2(Ω ). For the solution operators T and Th ,
e have the following estimates.

heorem 4.1. Let T be the solution operator defined in (4.5) and Th be the discrete solution operator defined in
4.7). Then, we have

�T f − Th f � ≤ Ch∥ f ∥0,Ω , (4.9)

∥T f − Th f ∥0,Ω ≤ Ch2
∥ f ∥0,Ω . (4.10)

roof. The error estimate (4.9) can be proved by combining orthogonality, continuity, and the coercivity of the
esquilinear form ah(·, ·) and the approximation property of the interpolation operator (4.3). The error estimate
4.10) can be established using the Aubin–Nitsche’s argument [30,31]. □

A direct consequence of Theorem 4.1 is

∥T − Th∥L(L2(Ω)) ≤ Ch2. (4.11)

Denote the resolvent set of the operator T (or Th) by σ (T ) (or σ (Th)) and the spectrum set of the operator T
or Th) by ρ(T ) (or ρ(Th)). Suppose ζ is an eigenvalue of the compact operator T with algebraic multiplicities m.
et C be a circle in the complex plane centered at ζ which is contained in resolvent set of T and encloses no other
pectrum points of T . When h is sufficiently small, C is also contained in the resolvent set of Th . We define the
iesz spectral projection associated with T and C as

E =
1

2π i

∫
C

(z − T )−1dz. (4.12)

and the discrete analogue as

Eh =
1

2π i

∫
C

(z − Th)−1dz. (4.13)

According to [28], E is a projection onto the space of generalized eigenvectors associated with ζ and T .
Applying Babuška–Osborn theory [27,28] we have

Theorem 4.2. Let ζ be an eigenvalue of T with algebraically multiplicity m and C be the circle defined above.
Then, for sufficiently small h, the following statements hold.

1. There are exactly m eigenvalues ζh,1, . . . ζh,m of T enclosed in C. Furthermore, limh→0 ζh, j = ζ , for all

j = 1, . . . , m.

11
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2. Eh is an onto projection to the direct sum of the spaces of eigenvectors corresponding to these eigenvalues
ζh,1, . . . ζh,m of T .

3. There is a constant C independent of h such that

δ̂(R(E), R(Eh)) ≤ C∥(T − Th)|R(Eh )∥, (4.14)

where R(E) (or R(Eh)) is the range of the projection E (or Eh), δ̂(R(E), R(Eh)) stands for the gap between
them, and (T − Th)|R(Eh ) is the restriction of T − Th to R(Eh).

Now, we are in the position to present our main results on the numerical approximation of the eigenvalues and
eigenfunctions:

Theorem 4.3. Let ζh be an eigenvalue of Th satisfying limh→0 ζh = ζ . Let uh be a unit eigenvector of Th

corresponding to the eigenvalue ζh . Then there exists a unit eigenvector u ∈ R(E) such that the following estimates
hold

∥u − uh∥0,Ω ≤ Ch2
∥u∥2,Ω+∪Ω− , (4.15)

|ζ − ζh | ≤ Ch2
∥u∥2,Ω+∪Ω− , (4.16)

|ω2
− ω2

h | ≤ Ch2
∥u∥2,Ω+∪Ω− . (4.17)

Proof. First, we consider the approximation capability in the eigenfunction. To do this, we apply the approximation
theory of abstract compact operator in [28]. Theorem 7.4 in [27] implies that

∥u − uh∥0,Ω ≤ ∥(T − Th)|R(E)∥0,Ω = sup
v∈R(E)
�v�h=1

∥T v − Thv∥0,Ω ≤ Ch2
∥u∥2,Ω+∪Ω− ,

where we have used the approximation property (4.11). This completes the proof of (4.15).
We then turn to the estimate (4.16). Without loss of generality, suppose u1, . . . , um form a basis for R(E). Again,

the Theorem 7.3 in [28] implies that there exists a constant C such that

|ζ − ζh | ≤ C
m∑

j,k=1

|((T − Th)u j , uk)| + C∥(T − Th)|R(E)∥
2
0,Ω . (4.18)

From (4.11), the second term in (4.18) is bounded above by O(h2). We only need to estimate the first term in (4.18).
By (4.5), (4.7) and the Galerkin orthogonality (3.19), we obtain that

((T − Th)u j , uk) =(u j , (T − Th)uk)
=ah(T u j , T uk − Th uk)
=ah(T u j − Th u j , T uk − Th uk) + ah(Th u j , T uk − Th uk)

=ah(T u j − Th u j , T uk − Th uk) + ah(T uk − Th uk, Th u j )
=ah(T u j − Th u j , T uk − Th uk)
≤C�T u j − Th u j��T uk − Th uk�
≤Ch2

∥u j∥2,Ω+∪Ω−∥uk∥2,Ω+∪Ω−

≤Ch2
∥u∥

2
2,Ω+∪Ω− .

(4.19)

Combining the above two estimates gives the optimal approximation property of the eigenvalue (4.16). Apparently,
the last estimate (3.31) follows immediately from (4.16) by noticing that ζ−1

= ω2. □

5. Numerical examples

In this section, we shall use several benchmark numerical examples to validate our theoretical results and to
illustrate the efficiency of the proposed unfitted numerical method in the computation of band structures of phononic
crystals. In the following tests, we shall consider the aurum/epoxy phononic crystal and the aluminium/epoxy
12
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Table 1
Material constants of aurum/aluminium/epoxy.

Parameters Aurum (Ω−) Aluminium (Ω−) Epoxy (Ω+)

Density ρ (kg/m3) 19 500 2730 1180
Lame’s constant λ (N/m2) 4.23 × 1010 4.59 × 1010 4.23 × 109

Shear modulus µ (N/m2) 2.99 × 1010 2.70 × 1010 1.57 × 109

Fig. 3. Convergence rate of phononic crystal with circular inclusion. (a) aurum/epoxy phononic crystal; (b) aluminium/epoxy phononic
rystal.

hononic crystal as in [18]. The aurum (Au) scatters or the aluminium (Al) scatters are embedded in the epoxy
atrix. Their material constants are documented in Table 1. The transverse wave speed cs is defined as

cs
=

√
µs/ρs (5.1)

for s = ±. In all the following tests, the length of unit cell a is taken as 1.
To check the convergence rate for the unfitted Nitsche’s method (3.14), we shall approximate the convergence

ate of the exact error by the rate of the following the relative errors

ei =

⏐⏐⏐ω2
i,h j

− ω2
i,h j+1

⏐⏐⏐
ω2

i,h j

,

here h j is the mesh size of the j th level mesh and ω2
i,h j

is the i th eigenvalue on the j th level mesh.

.1. Square lattice with circular inclusion

In the first numerical example, we consider the square lattice with circular inclusion as shown in Fig. 1. As
entioned at the beginning of this section, the inclusion scatter is either aurum or aluminium and the material

onstants are listed in Table 1. The radius of the circular material interface is 0.25.
Firstly, we test the convergence for unfitted Nitsche’s method (3.14). We take the quasi-momentum k = (π, π).

he convergence history of the relative numerical errors is plotted in Fig. 3. As shown in Fig. 3, it is evident that
he relative errors decay quadratically for both types of phononic crystals. The second-order convergence numerical
esults consist with the theoretical convergence rate predicted by Theorem 4.3. Note the jump ratios of the material
arameters are about 19 for the aurum/epoxy phononic crystal and about 17 for the alumina/epoxy phononic crystal.
espite the high contrast and heterogeneous nature of the materials, the proposed numerical method is theoretically
13
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Fig. 4. Band structure of aurum/epoxy phononic crystal with circular inclusion.

Fig. 5. Band structure of aluminum/epoxy phononic crystal with circular inclusion.

and numerically proven to achieve the optimal convergence rate, which demonstrates its capability in the efficient
computation of band structures.

Now, we turn to the numerical computation of the band structure for the aurum/epoxy phononic crystal. In
the computation, the mesh size is chosen to be 1/64 and the quasi-momentum k is taken on the boundary of the
irreducible Brillouin zone. In Fig. 4, we plot the first ten normalized frequency along the direction O–X–M–O. The
normalized frequency is defined as ωa/(2πc−) where c− is the wave speed of the scatters defined in (5.1). From
the graph, we can see that one small band-gap opens between the second eigencurve and the third eigencurve and
one relatively large band-gap opens between the third eigencurve and the fourth eigencurve.

To compute the band structure of alumina/epoxy phononic crystal, we just replace aurum inclusions by alumina
inclusions with the same size and shape. The first ten normalized eigenvalues are presented in Fig. 5. We see
that the band structures changes dramatically. The original small gap which appears in the band structure of the
aurum/epoxy crystal closes up in the alumina/epoxy crystal. And the bigger gap shrinks to a relatively small size.
14
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Fig. 6. Bravais lattice with flower shape inclusion. (a) 2D square lattice; (b) the unit cell; (c) the first Brillouin zone.

Fig. 7. Convergence rate of aurum/epoxy phononic crystal with flower shape inclusion.

.2. Square lattice with flower shape inclusion

Our second numerical example is to handle aurum/epoxy phononic crystal with periodic flower shape inclusions.
he phononic crystal is illustrated in Fig. 6. The flower material interface curve in polar coordinate is given by

r =
1
2

+
sin(5θ )

7
, (5.2)

which contains both convex and concave parts. We conduct the computation in the fundamental cell Ω with length
= 1, see Fig. 6b.
As before, Fig. 7 shows the convergence curve of the relative error for the first six eigenvalues. What stands

ut in the figure is that the relative error converges optimally at the rate of O(h2) as predicted by Theorem 4.2.
he numerical results demonstrate the flexibility of the proposed method in handling interfaces with complicate
eometries.

The band structure is also computed in this setup. In the test, we take the mesh size h =
1

64 . The first ten
normalized frequency along O–M–X–O is plotted in Fig. 8. Similar to the aurum/epoxy phononic crystal with
circular inclusions, here are two band-gaps: the relatively smaller band-gap is between the second and the third
15
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Fig. 8. Band structure of aurum/epoxy phononic crystal with flower shape inclusion.

eigencurves; the relative larger band-gap is between the third and the fourth eigencurves. An inspection of the data
in Fig. 8 reveals that the band-gap is relatively larger than the circular inclusion case.

6. Conclusions

In this paper, a new finite element method for computing band structures of phononic crystals with general
material interfaces is proposed. To handle the quasi-periodic boundary condition, we transform the equation into
an equivalent interface eigenvalue problem with periodic boundary conditions by applying the Floquet–Bloch
transform. The distinguishing feature of the proposed method is that it does not require the background mesh to fit
the material interface which avoids the heavy burden of generating a body-fitted mesh and simplifies the impose
of periodic boundary condition. Furthermore, the performance of the proposed method is theoretically founded. We
show the well-posedness of the proposed method by using a delicate argument of the trace inequality. With the
aid of the Babuška–Osborn theory, we prove the proposed method achieves the optimal convergence result at the
presence of material interfaces. The theoretical convergence rate is validated by two realistic numerical examples,
one of which involves a material interface with a complicated geometry. Thus our method is capable to compute
band structures of very generic photonic crystals.
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