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Abstract

In this paper, we propose an unfitted Nitsche’s method to compute the band structures of phononic crystal with periodic
inclusions of general geometry. The proposed method does not require the background mesh to fit the interfaces of periodic
inclusions, and thus avoids the expensive cost of generating body-fitted meshes and simplifies the inclusion of interface
conditions in the formulation. The quasi-periodic boundary conditions are handled by the Floquet-Bloch transform, which
converts the computation of band structures into an eigenvalue problem with periodic boundary conditions. More importantly,
we show the well-posedness of the proposed method using a delicate argument based on the trace inequality, and further
prove the convergence by the Babuska—Osborn theory. We achieve the optimal convergence rate at the presence of the periodic
inclusions of general geometry. We demonstrate the theoretical results by two numerical examples, and show the capability of
the proposed methods for computing the band structures without fitting the interfaces of periodic inclusions.
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1. Introduction

Phononic crystals are synthetic materials with periodic structure. Similar to photonic crystals, they exhibit band-
gap structures related to topological properties, which prevent elastic waves propagating in certain frequencies.
This leads to a series of important applications such as ultrasound imaging and wireless communications. In
literature, Economou and Sigalas [1] experimentally observed the band-gap in phononic crystals. Ammari et al. [2]
mathematically proved the existence of band-gap in the high-contrast phononic crystal using the asymptotic
expansion and the generalized Rouché’s theorem. In general, phononic crystals with large band-gap is preferred
due to the wide range of applications. One of the most influential accounts of band-gap optimization comes from
Sigmund and Jensen who were one of the first to use topology optimization approach to design a phononic
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crystal with maximum relative band-gap size [3]. The main idea is to find the optimal arrangement of two different
materials to achieve maximum band-gap. The geometric configuration of the two materials is continually updated
during designing process. The main computational challenge is the numerical solution of heterogeneous eigenvalue
problems with the moving material interface.

Another desire was brought about by the recent increasing interest in wave propagation in topological phononic
materials. One of the key problems is to understand the band structure of bulk phononic crystals [4]. In generic
cases, it is hard to obtain the explicit form of band structures with complete analytical techniques, and thus numerical
computation plays an essential role. Early works on numerical approximations can be traced back to [5] where
Kushwaha et al. used the plane-wave expansion to compute the band structure. The transfer matrix method was
also adopted by Sigalas and Soukoulis [6] to simulate the propagation of elastic waves through disordered solid. To
date, various methods have been developed to compute the band structure of phononic crystals including the multiple
scattering method [7], the finite difference time domain method [8], the meshless method [9], the (multiscale) finite
element method [10-13], the homogenization method [14—16], and the singular boundary method [17].

Among the aforementioned methods, the numerical difficulties come from two different perspectives: one is the
heterogeneous primitive cell of the phononic crystals and the other is how to efficiently impose the quasi-periodic
boundary condition. Although extensive research has been carried out on the computing bandgap of phononic crystal,
very few has addressed the complication brought by adjusting material interfaces for instance in the material design.
Until recently, Wang et al. [18] proposed a Petrov—Galerkin immersed finite element method to compute the band
structure of the phononic crystal and imposed the quasi-periodic boundary condition directly. However, the rigorous
analysis of unfitted numerical methods is still lacking in the literature.

In this paper, we propose an unfitted Nitsche’s method to compute the band structures of phononic crystal
with periodic inclusions of general geometry, and prove the convergence with rigorous mathematical analysis. The
heterogeneous primitive cell of the phononic crystal is described by the interface condition which we can build into
a variational framework with the help of the Floquet-Bloch theory. To handle the quasi-periodic boundary condition,
the Floquet—Bloch transform is applied which reformulates the model equation with quasi-periodic boundary
conditions into an equivalent model equation with periodic boundary conditions and Bloch-type interface condition.
Then, the reformulated model equations can be numerically tackled by the unfitted Nitsche’s type method [19-23]
using uniform meshes. The proposed unfitted finite element method is motivated by our previous work of computing
edge modes in topological materials [24]. The first advantage is that it uses meshes independent of the location of
the material interfaces. It reduces the computational cost of generating body-fitted meshes, especially in designing
phononic crystals. The second advantage is that it is straightforward to impose the periodic boundary conditions
since only uniform meshes are used. Remark that imposing periodic boundary conditions on general unstructured
meshes is quite technically involved, and interesting readers are referred to [25,26] and the references therein about
the recent development of imposing periodic boundary condition on general unstructured meshes.

As mentioned in our previous work [24], the discrete Nitsche’s bilinear form involves the solution itself in
addition to its gradient which cause the difficulties in the analysis. In this paper, we establish a solid theoretical
analysis for the proposed unfitted finite element methods by conquering the above difficulties. Specifically, we
show the discrete equation is well defined by using a delicate trace inequality on the cut element, the Poincaré
inequality between the energy norm of the original model equation and the energy norm of the modified model
equation, and the explicit relation between the strain tensor and stress tensor. By the aid of the Babuska—Osborn
spectral approximation theory [27,28], the proposed unfitted finite element method is proven to have the optimal
approximation property for the eigenvalues and eigenfunctions in the high-contrast heterogeneous primitive cell.

The paper is organized as follows. In Section 2, we introduce the model of plane-wave propagation in the
phononic crystals. In Section 3, we propose the unfitted numerical method to compute the band structure of phononic
crystal based on the Bloch—Floquet theory and prove the proposed method admits a unique solution. In Section 4,
we carry out the optimal error analysis. In Section 5, we present some numerical examples in a realistic setting to
verify and validate our theoretical discoveries. At the end, some conclusion is drawn in Section 6.

2. Model of phononic crystal

In this section, we first present a little digest to the two-dimensional phononic crystal. Then we consider the
model of in-plane wave propagation.
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Fig. 1. Bravais lattice I'. (a) 2D square lattice; (b) the primitive cell; (c) the first Brillouin zone.

2.1. Problem setup

Phononic crystal is designed from periodically arrangement of two different materials to achieve extraordinary
properties like negative refractive index. The body of phononic crystal is a kind of high-contrast materials with
heterogeneous primitive cells.

We will mainly focus phononic crystals with two-dimensional Bravais lattice A formed by two primitive vectors
a; and a,, i.e.

A =7Za, + Zay = {ma; +moa, : my,m, € 7} . 2.1)

An example of square lattice with a; = (a,0)” and a» = (0,a)” is shown in Fig. la. The primitive cell (or
fundamental domain) {2 of Bravais lattice A is defined as

2 ={0a; +6a,:0=<6,0, <1}, (2.2)

which is illustrated in Fig. 1b for the square lattice.
Denote the generating basis of the reciprocal lattice (or dual lattice) by k; for i = 1, 2, which satisfy

ki-a; =2m8;, Vi j=12, 2.3)

ijs
where §;; is the Kronecker delta. Then, the reciprocal lattice A* is

N =7k, + Zky = {(miky +moky : my, my € Z}. 2.4)
The fundamental domain of the reciprocal lattice is

2 ={01k1 + 6k, : 0 <0,,6, <1}, (2.5)

which is termed as the first Brillouin zone [29]. Again, we illustrate the first Brillouin zone for the square lattice
in Fig. 1c, where the triangle formed by the point O, X, and M is referred as the irreducible Brillouin zone [29].

The primitive cell (2 of the phononic crystal involves hard inclusion of one material {2_ into a background
material (2,. The background material is referred as the matrix and the inclusion is also referred as fiber. The
matrix {2, and the inclusion {2_ are separated by the material interface I'. In Fig. 1b, we show the fundament cell
with a circular inclusion.

In this paper, we assume that both the inclusions and matrix are homogeneous isotropic elastic solids. We use A
(or A7) denote the first Lamé parameter of matrix (or inclusion) and u* (or «™) denote the second Lamé parameter
of matrix (or inclusion). Similarly, let o™ and p~ denote the mass density of the matrix and inclusion, respectively.
To simplify the notation, we let

A~, in 27, u-, in 27, p~, in 27,
)\, = = and = 26
{A*, in 271, ’ {,u*, in 27, P {p*, in 27, (26)

3
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For any vector-valued function v defined on 2, let [[v] be the jump of function v crossing the interface I, i.e.
[v](x) = v]g+(x) — v]o-(x) 2.7)

where x € I'.

Throughout the paper, the standard notations for (complex-valued) Sobolev spaces and their associated norms
are used as in [30-32]. Given a bounded subdomain D C {2 and any positive integer k, the Sobolev space with
norm || - |[x,p and seminorm | - |; p is denoted by H*(D). When k = 0, H*(D) reduces to the standard L*(D) space.
Let (-, -)p denote the standard inner products of L*(D). When D = (2, the subscript is omitted. For a bounded
domain D = DYUD~ with DT ND~ = ¢, let H*(D*U D™) be the function space consisting of piecewise Sobolev
functions w such that w|p+ € H*(D') and w|p- € H*(D™), whose norm is defined as

1/p
lwik prup- = (0l e + 1wl 5 ) 28)
and seminorm is defined as
1/p
ey oo~ = (10l e + 1w, ) 2.9)

To avoid abuse of notation, the same notation is applied to the vector-valued function w = (wjy, wy)T.

For any vectors v and w, let v ® w be the tensor product of v and w and let v O w = % (v ® w+ w ® v) be the
symmetric tensor product. For the quasi-momentum k in the Brillouin zone, define the shift differential operator
Vi as

Vi =V +ik, (2.10)

where i is the imaginary unit.

In this paper, we use the constant C, with or without a subscript, to denote a generic positive constant which can
be different at different occurrences. In addition, it is independent of mesh size and the location of the interface.
By x <y, we mean that there exists a constant C such that x < Cy.

Before ending this section, we introduce some additional function spaces for Bloch-periodic (or quasi-periodic)
functions

HY, () ={wx) e H'(2): wx £a;)=wx)on 32 and j = 1,2}, 2.11)

per
Hi{(2) = {w(x) : exp(—ik - x)w(x) € H},. (D)} (2.12)

per
It is worth noting that the Sobolev space HX (£2) and H,’f(()) are both complex-valued.

per

2.2. In-plane wave propagation

The in-plane wave propagation is modeled by the elastodynamics operator
L =-V-a[p]=—-V-Celp]. (2.13)

where ¢ = (¢1, ¢,)7 is the displacement vector and C is the fourth-order stiffness tensor. In (2.13), € is the strain
tensor which is related to the displacement via

el =V 0O, (2.14)

and o is the stress tensor. For the homogeneous isotropic material, the stress tensor and strain tensor are related by
the Hook’s law, i.e.

o[¢] = Ce[@] = 2ue[p] + rtr(e[@p]].. (2.15)
where tr(A) is the trace of the matrix A and I, is the 2 x 2 identity matrix.

Let k € (2* be the quasi-momentum. According to the Bloch theory [29], the in-plane wave propagation
in phononic crystal can be reformulated to solve the following quasi-periodic eigenvalue problem [14,16]: find
(@*, ¢) € R x Hkl(.Q) such that

Lo = o?pd, in 2\,
[¢] = [C(VO$m] =0, onT,

where n is the unit normal vector of I" pointing from 2~ to £27.

(2.16)

4
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For any fixed k € (2%, the eigenvalue problems (2.16) admits a sequence of eigenvalues 0 < w,zc’l < w,zc’z <
co,a3 < .-+ — oo and corresponding eigenfunctions ¢y |, ¢y », @y 3, ... which are orthogonal in a p-weighted
Li((}), i.e. (0@p j, P ) = djk- As k varies in 27, each eigenvalue a),zc_’n forms a Lipschitz continuous function [33]
referred to as a dispersion band function. Thus the whole spectrum exhibits a band structure with or without gaps
between two adjacent bands.

In general, the eigenvalues can not be obtained analytically. Thus the band structures can not be represented
in an explicit way. Only in certain asymptotic regimes, low-lying eigenvalues of (2.16) can be constructed with
delicate asymptotic techniques. For instance, Ammari et al. [2] obtained the asymptotic expansions of the band
functions in subwavelength limit of high contrast phononic crystals, and further proved the existence of the band
gaps in this limit. The band structures in generic setups can only rely on numerical computations. We remark that
a),zm = 0if and only if n = 1 and k = 0, see for instance [34] and reference therein. In this case, the corresponding
eigenfunction is constant, i.e., ¢y ; = 1. In the rest of this paper, we shall exclude this exceptional case. In addition,
due to periodicity and symmetry, we only need to consider the case that the quasi-momentum k belongs to the
irreducible Brillouin zone.

3. Unfitted Nitsche’s method for computing band structure

In this section, we are going to propose an unfitted numerical method to efficiently compute band structures for
generic phononic crystals. The numerical challenges brought by the eigenvalue problem (2.16) is twofold: one is
quasi-periodic nature of the Bloch wave and the other one is the inhomogeneity of the material. These challenges
shall be discussed in the following subsections.

3.1. Bloch—Floquet theory

To address the first numerical challenge, we apply the Bloch-Floquet transform ¢(x) = e*~u(x). The
quasi-periodic eigenvalue problem can be reformulated as: find (w?, u) € R x H Iler((l) such that
Liu = o pu, in 2\ T, 3.1
[u] = [C(Vik ©@u)n] =0, on I, ’
where the differential operator £y is defined as
Liu = Vi - C(Vi O u), (3.2)
with Vi being the shift differential operator defined in (2.10). We want to remark that
CViyOu) =2uVy ©u+ AV -u)l, (3.3)

is termed as the modified stress tensor.

For any quasi-momentum k, it is not difficult to see that £ is a self-adjoint positive definite operator. The
spectrum of the elastodynamics operator £ is the union of spectrum of Ly for all k € 2*. Notice that the Bloch—
Floquet transform ¢(x) = e**u(x) is an isomorphism from H,(£2) to H},.(£2). Then, we have the following
Poincaré inequality:

Col(C(VoOu),Vou)+(CkOu), k ©u)] < (C(Vy ©Ou), Vi O u), (3.4)

where Cj is a positive constant.
3.2. Formulation of the unfitted Nitsche’s method

To find the band structure of L, it suffices to solve a series of periodic eigenvalue problem (3.1). The main
numerical barrier is how to efficiently handle the interface condition. We alleviate this barrier by introducing a new
unfitted Nitsche’s method which is seamlessly infusing with the Bloch—Floquet theory.

One merit of unfitted Nitsche’s method is to use meshes independent of the location of the material interface.
Due to the lattice structure of the phononic crystal, uniform meshes are adopted. To show the main idea, we use
the square lattice as the prototype model but the method works for other lattices. We generate a uniform mesh 7},

5
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(a) (b) (c)

Fig. 2. Tllustration of the overlapping domain decomposition of {2 (a) Unfitted meshes on (2; (b) Subdomain (2,"; (c) Subdomain .Qh+ .

on the fundamental domain {2 of the square lattice by partitioning it into N subsquares with mesh size & = & and
then splitting each subsquare into isosceles right triangles, see Fig. 2a.
To handle the non-smoothness of the Bloch wave across the material interface, we decompose the fundamental

domain {2 into two overlapping subdomains £2;" and 2, as
QF=UKeT,:KNN"#0}, and O =UKeT,:KNQ2 #0}. (3.5)

We illustrate the decomposition in Fig. 2. It is undeniable that intersection of .Q,f and {2, is nonempty. In that
sense, {2 are termed as fictitious domains. Similarly, we can define two subtriangulations 7," and 7, as

Tr={(KeT,:KCc}, and T, ={KeT,:KcC) (3.6)

The common subsets of 77” and 7, is denoted by 7 , which denotes the set of interface elements.
Based on the overlapping domain decomposition, we can define the finite element space on each of them

independently. To do this, let V] (s = %) be the standard continuous linear finite element space on (2, i.e.,
Vi = {vh e [C°@)] : vk € [Py(K)I® for any K € Th} (.7

with P;(K) being the space of polynomials of degree k on the element K.
Then the finite element space for the unfitted Nitsche’s method is defined as V;, = V," x V,~, i.e.,

th{vhz(v,‘f,vh_):vfleV;f,s::I:}. (3.8)
To impose the periodic boundary condition, we introduce V}, ., as a subspace of Vj, which is defined as
Viper = {vn € Vi 1 vp(x £ a;) = v,(x) on 02 and j = 1,2}. (3.9)

Note that for any interface element K € 7T, there are two sets of vector-valued basis functions for any element
K -one for Vh+ and the other for V.

For any interface element K € T, let K* denote the part of the triangle inside 2% and |K*| denote the area
of K*. Similarly, let 'y = I' N K be the part of I’ in the element K and let |I'x| be the length of I'x. Before
defining the weak formulation, it is necessary to introduce some parameters. For s = =, let 8 = 2u* + A°. Define
two weights as [35]

- +
. A AN (3.10)
B+ B B+ B
which satisfy k™ + k= = 1. Based on the two weights, we can define a weighted averaging of the displacement
vector on the interface " as
{uy=«tu"+xu". (3.11)
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Also, we define the parameter for the weak formulation

. BB
=y 3.12
V=Y e B (3.12)
where y is a sufficiently large constant called the stabilizing parameter.
Define the Nitsche’s sesquilinear form ay(-, -) : H[ler(Q) X H[ler(_Q) — R as
an(up, v;) = Z/ CVi Oup) : (Vi © vp)dx
s==+ 2
+ [ 1C e om) - [wlds
r (3.13)

+ /F [us] - (C (Ve © un) m)ds

+ 7 [ - [as,

where & is the mesh size, C is the fourth-order stiffness tensor, and A : B is the Frobenius inner product of two
matrices A and B.

Given a quasi-momentum k in the reduced Brillouin zone, the unfitted Nitsche’s method for the eigenvalue
problem (3.1) is to find the eigenpair (a),%, uy) € R x Vj per such that

an(up, vi) = 0pb(y, vi), VYo € Vi pers (3.14)

where

b(uy, vy) :/ pPULVLAX. (3.15)
o)

Remark 3.1. Using the definition of the fourth-order stiffness tensor C, we can write the Nitsche’s sesquilinear
form ay(-, -) into the following equivalent form

an(uy, vy)

=2uy /m(Vk Oup): (Vi Qudx +1) /QS(Vk “up) (Vi - vp)dx
s==+ s=-+

+ /F{{zﬂ(vk O up)n + A(Vy - up)n}} - [vi]ds (3.16)

+ /F 4] - {20(V% © vnom + A (Vi -vpm)ids

+ %/F[[uh]] . [53]ds.

From this equivalent expression, it is not difficult to see that a;(-,-) is a symmetric sesquilinear form and the

eigenvalues o} are real.

Remark 3.2. To make the method be more robust with respect to small element cut, we can adopt the ghost penalty
technique [36] to add more stabilizing terms in the vicinity of cut element.

Remark 3.3. The integral on the interface can be approximated by higher-order quadrature developed in the
literature such as the method of moment-fitting [37], so that the quadrature approximation will not affect the overall
discretization error. For the sake of easing presentation, we shall not consider the quadrature error in the overall
estimate.

3.3. Well-posedness of unfitted Nitsche’s method

This subsection is devoted to establishing the well-posedness of the proposed unfitted Nitsche’s method (3.14).
We start with showing the following consistency results:

7
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Theorem 3.1. Let (w?, u) be the eigenpair of the eigenvalue problem (3.1). Then, we have

ap(u,v) = o’by(v,u), VoveH), (). (3.17)

Proof. The exact solution u satisfies [u] = [C (Vx ©® u) r] = 0, on I'. Using this fact and the Green’s formulation,
We can derive the Nitsche’s weak formulation via the same technique as Nitsche’s method for general boundary
conditions as in [38]. O

Let us introduce the following interface boundary value problem in H;e,(ﬁ)

‘Ckw:f7 IHQ\F,

[w] = [C(Vk ©w)n] =0, on I. (3.18)

Furthermore, let w;, be its finite element solution by the unfitted Nitsche’s finite element method. Taking v, as any
function in the unfitted Nitsche’s finite element space Vj, ,., in (3.17), it is straightforward to verify that

ap(w — wy, v,) =0, Vv, € Vh,pera 3.19)

which is termed as the Galerkin orthogonality.
We are now in a position to show the stability of the unfitted Nitsche’s method. Before that, we need to introduce
some norms. For any quasi-momentum k in the reduced Brillouin zone, we introduce the following norm

loall> =) (C(Vk @ v), Vi © va) s
s=+
+ D hIHCVe © vy

KeTr

Y
+ 2 Mol -

KGT[‘,;,

(3.20)

To show the well-posedness of the unfitted Nitsche’s method, we need several technical lemmas. We begin with
the trace inequality.

Lemma 3.2. Let vy, be a finite element function in V., and k be a quasi-momentum in the reduced Brillouin
zone. Then, the following inequalities hold:

I{Ctk © vi)n} G p, < Cih™ ' ICK © v)llg g+ k- (3.21)
I(C(Y @ v Q5 1, < C2h7ICY © vl gk - (3.22)

Proof. The proof of (3.22) is based on the fact that V O uj is constant and is similar to that in [20]. To show
(3.21), we first let

Clk O v}) = (“’}' “’“12),

N
Wy Wy

for any s = £. Then

2 2
K 2 s 12 -1 s 2
ICk © v;,)”o,p,( = E ”w;j”(),p,( <G 2 h ||w§j||0,Ks

i, j=1 i,j=1 (3.23)
=C3h™'(|C(k © v)|[§ x5
where we have used the following inequality for wfj
w15 7 < Cshllws 115 ks (3.24)

for i, j = 1,2 and s = %. The proof of the inequality (3.24) is similar to that in [39, Lemma 3.1].
8
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By the definition of the weighted averaging (3.11) and the fact k* < 1, we obtain that
I(CV © v)n Y5, < 21CYV O V)G 1y +21CV © v)IG 1y
=260 (IEV O VDR g + 1CT O oI )
=2C3h™|IC(V © v)llg g+ k-

which completes the proof of (3.22) with C, = 2C5;. O
Next, we establish the following relationship between the strain and stress tensor

Lemma 3.3. Let C be the fourth-order stiffness tensor defined in (2.15) and A be any symmetric second-order
tensor. Then, the following inequality holds

CA:CA < (4u+20MCA : A. (3.25)

Proof. By the definition of fourth-order stiffness tensor (2.15), it follows that

tr(CA) = trCuA + rtr(A)L) = Qu + 2M)tr(A). (3.26)
Notice that

CA:A=QuA+rr(Ah): A =2uA: A+ rtr(A)? > Atr(A), (3.27)
where we have used the fact A : A > 0. Using (3.26) and (3.27), we can deduce that

CA:CA=2u(CA: A)+Artr(CAMtr(A) < (du+20)CA: A. OO (3.28)

With the preparations, we are ready to show our main result.

Theorem 3.4. Let k be a quasi-momentum in the reduced Brillouin zone. Suppose the stabilizing parameter v is
large enough. Then, there exist Cy4, Cs > 0 such that the following continuity and coercivity results hold

an(uy, vi) < Callvgllllugll, (3.29)
an(up, up) > CslluylI*. (3.30)

Proof. The continuity (3.29) is a direct implication the definition of the sesquilinear form (3.13) and the Cauchy-
Schwarz inequality. It remains to show the coercivity (3.30). Letting v, = uy; in (3.13) and applying Young’s
inequality with € imply

ap(up, up) = Zf CVi Oup): (Vi Quy)dx + %/ [un] - [un]ds
= Jos r

+ 2Re/ {C (Vi © uy) n}} - [uz]ds
r

— 2¢

>3 (CVk Oup). Vi Qup) s + L

s=%
h
- —HC Vo wp) n}Ig,
=L +5L -1

I [en] 15,
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Notice I} and I, are already included in the mesh-dependent norm || - [|. We only need to estimate 5. Let
wm = max(u*, w7) and A, = max(A", A7). Using Lemmas 3.2 and 3.3, we deduce that

h
I == I{C (V& © wp) n} 5
2h 2h
=—IHCV @u) n}li5 - + —IHC k O up) m}5, 1

2C1 2C2
= ICV QU oruo- + —I1CK O upllg o1 u0-

€ (C(V Qup),VO uh)m =+

s=%

> (Cle O up). kO up) s

s=%
2C4 (4 + 20
Swll
€

2C2 (4/~'Lm + 2)\111)
€

)

where we have used the Poincaré inequality (3.4) and C4 = max(CyCy, CoC).
Combining the above two estimates, we have

ap(uy, up)

- 2C4 (44t + 20) —2¢
€

) S (COVk @ up), Vi Qup) g + -

s=%

4C4(4/~’Lm + 2)\111)
DY

I [en I3,

=(1 - (C(Vi Qup), Vi Oup) gs +

s=%

2
(C ko3 p+ ==

h
-l I Ten]lIG -

Taking € = 8C4(4ity, + 24,) and p > 46%, we conclude with proof of (3.30) with Cs = min{}, 1}. O

From Theorem 3.4, we can see the discrete sesquilinear form (3.13) is continuous and coercive with respect
to the mesh-dependent norm (3.20). The Lax—Milgram theorem implies the unfitted Nitsche’s method (3.14) is
well-posed. The spectral theory says the discrete eigenvalue of (3.14) can be listed as

2 2 2
O<wj) Swy, < - =) ,, (3.31)

and the corresponding L? eigenfunctions are Up 1, Up2, ..., W, Where ny is the dimension of the Nitsche’s finite
element space V), per.

4. Error estimates

In this section, we shall conduct the error analysis for the proposed unfitted Nitsche’s method (3.14) using the
Babugka—Osborn theory. To this end, we introduce an extension operator X* (s = =) to extend an H? function
defined on a subdomain £2° to the fundamental cell 2. For a function v € H?*(£2°), the extend function X*v is
defined to satisfy

(X*v)| s = v, 4.1)
and

[X*vll.e < Cllvll,os, r=0,1,2, 4.2)
for s = =+.

For s = £, let 7} be the Scott—Zhang interpolation operator [40] on H I(Qfl' ). The interpolation operator on the
finite element space Vj, ., is defined as

Lv = (7, X v, 7, X v) € V). 4.3)
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Using the same argument as in [21], we can establish the following approximation property in the mesh-depending
norm (3.20)

lv — Iyvll S Allvls otue-- 4.4)
To adopt the Babuska—Osborn theory [27,28] , we define the solution operator T : L2(£2) — H' (27U 27) as
an(Tf,v)=0b(f,v), Yve H(RTUN), 4.5)

for any f € L>(f2). The interface eigenvalue problem (3.1) can be reinterpreted as
Tu="Cu, 4.6)

where ¢~! = w?. Recall that we have excluded the exceptional case that w? = 0.
In a similar way, we can define the discrete solution operator 7}, : L) — Vi, per as

ah(Tl’lfv vy) = b(f» vy), Vve Vh,perv 4.7)
for any f € L?({2). Using the discrete solution operator, the discrete eigenvalue problem (3.14) is equivalent to

Thuy, = Cpuy, (4.8)

where ¢, = w?.

From the definition (3.13), the sesquilinear form ay(-, -) is Hermitian which implies both T and 7}, are self-adjoint.
It is also noted that 7 and 7}, are compact operators from L({2) to L?({2). For the solution operators 7 and Tj,,
we have the following estimates.

Theorem 4.1. Let T be the solution operator defined in (4.5) and Ty, be the discrete solution operator defined in
(4.7). Then, we have

WTf =T fll < Chllfllo,e: (4.9)
ITf = Tufllo.e < CR fllo.c- (4.10)

Proof. The error estimate (4.9) can be proved by combining orthogonality, continuity, and the coercivity of the
sesquilinear form a;(-, -) and the approximation property of the interpolation operator (4.3). The error estimate
(4.10) can be established using the Aubin—Nitsche’s argument [30,31]. [

A direct consequence of Theorem 4.1 is
IT = Till ey < CH*. @.11)

Denote the resolvent set of the operator T (or 7j,) by o(T) (or o(7},)) and the spectrum set of the operator T’
(or Ty) by p(T) (or p(Ty)). Suppose ¢ is an eigenvalue of the compact operator T with algebraic multiplicities m.
Let C be a circle in the complex plane centered at { which is contained in resolvent set of 7" and encloses no other
spectrum points of 7. When # is sufficiently small, C is also contained in the resolvent set of 7j,. We define the
Riesz spectral projection associated with 7 and C as

1
E:Z;/&—TYWL 4.12)
c
and the discrete analogue as
=5= /(z — Ty 'dz. (4.13)

According to [28], E is a projection onto the space of generalized eigenvectors associated with ¢ and 7.
Applying Babuska—Osborn theory [27,28] we have

Theorem 4.2. Let ¢ be an eigenvalue of T with algebraically multiplicity m and C be the circle defined above.
Then, for sufficiently small h, the following statements hold.
1. There are exactly m eigenvalues y 1, ... nm of T enclosed in C. Furthermore, lim,_.o08y ; = ¢, for all
j=1,....,m
11



H. Guo, X. Yang and Y. Zhu Computer Methods in Applied Mechanics and Engineering 380 (2021) 113743

2. Ey, is an onto projection to the direct sum of the spaces of eigenvectors corresponding to these eigenvalues

Snts - Snm of T.
3. There is a constant C independent of h such that
8(R(E), R(Ep)) < CI(T — Tl ryll, (4.14)

where R(E) (or R(E})) is the range of the projection E (or E}), S(R(E), R(E})) stands for the gap between
them, and (T — Ty)|rg,) is the restriction of T — T}, to R(E},).

Now, we are in the position to present our main results on the numerical approximation of the eigenvalues and
eigenfunctions:

Theorem 4.3. Let ¢, be an eigenvalue of T, satisfying lim,_o¢, = ¢. Let uy be a unit eigenvector of T
corresponding to the eigenvalue ¢y,. Then there exists a unit eigenvector u € R(E) such that the following estimates
hold

lu — upllo.o < Ch? |l oruo- (4.15)
¢ — &l < Ch*||ully.o+ua-, (4.16)
lw* — wp| < CR?|lulls, o+uo-- 4.17)

Proof. First, we consider the approximation capability in the eigenfunction. To do this, we apply the approximation
theory of abstract compact operator in [28]. Theorem 7.4 in [27] implies that

2
le —unllo,o < T — Ti)lr@E)llo,e = sup [[Tv —Thvllo,o < Chollully o+un-,
VER(E)
oll, =1

where we have used the approximation property (4.11). This completes the proof of (4.15).
We then turn to the estimate (4.16). Without loss of generality, suppose uy, ..., u,, form a basis for R(E). Again,
the Theorem 7.3 in [28] implies that there exists a constant C such that

&=l =C Z (T = Ty, w)l + CIT = Tl ree 5.0 (4.18)
jok=1

From (4.11), the second term in (4.18) is bounded above by O(h?). We only need to estimate the first term in (4.18).
By (4.5), (4.7) and the Galerkin orthogonality (3.19), we obtain that

(T —Tyuj, ui) =, (T — Tp)uy)
=ay(Tuj, Tuy — Thuy)

=ah(Tuj — T;,uj, Tuk — Thuk) + ah(Thuj, Tuk — Thuk)

=ap(Tu; — Thu;, Tuy — Thuy) + ap(Tuy — Thuy, Thuj) @.19)
=ap(Tu; — Thu;, Tuy — Tyhuy)
<ClNTu; — Thu T uy — Thull
<Ch*|lu; 2. 0+vo- lluells o+uo-
<CR )2 i
Combining the above two estimates gives the optimal approximation property of the eigenvalue (4.16). Apparently,
the last estimate (3.31) follows immediately from (4.16) by noticing that {~! = w?. O

5. Numerical examples

In this section, we shall use several benchmark numerical examples to validate our theoretical results and to
illustrate the efficiency of the proposed unfitted numerical method in the computation of band structures of phononic
crystals. In the following tests, we shall consider the aurum/epoxy phononic crystal and the aluminium/epoxy

12
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Table 1

Material constants of aurum/aluminium/epoxy.
Parameters Aurum (£27) Aluminium (27) Epoxy (£21)
Density p (kg/m?) 19500 2730 1180
Lame’s constant A (N/m?)  4.23 x 10'° 4.59 x 100 4.23 x 10°
Shear modulus 4 (N/m?) 2.9 x 100 2.70 x 10'0 1.57 x 10°

Error
Error

1074

10

10727 10726 1072° 10724 107** 10722 107! 1072 107 10727 10726 1072% 10724 1072% 10722 107*! 1072 1071

h h
(a) (b)

Fig. 3. Convergence rate of phononic crystal with circular inclusion. (a) aurum/epoxy phononic crystal; (b) aluminium/epoxy phononic
crystal.

phononic crystal as in [18]. The aurum (Au) scatters or the aluminium (Al) scatters are embedded in the epoxy
matrix. Their material constants are documented in Table 1. The transverse wave speed ¢* is defined as

¢ =u/ps G.D

for s = £. In all the following tests, the length of unit cell a is taken as 1.
To check the convergence rate for the unfitted Nitsche’s method (3.14), we shall approximate the convergence
rate of the exact error by the rate of the following the relative errors

2 2
)wi,hj T Dihjg
e = ——F
2 K
@ihj

where £ is the mesh size of the jth level mesh and 0)12 B is the ith eigenvalue on the jth level mesh.

5.1. Square lattice with circular inclusion

In the first numerical example, we consider the square lattice with circular inclusion as shown in Fig. 1. As
mentioned at the beginning of this section, the inclusion scatter is either aurum or aluminium and the material
constants are listed in Table 1. The radius of the circular material interface is 0.25.

Firstly, we test the convergence for unfitted Nitsche’s method (3.14). We take the quasi-momentum k = (7, ).
The convergence history of the relative numerical errors is plotted in Fig. 3. As shown in Fig. 3, it is evident that
the relative errors decay quadratically for both types of phononic crystals. The second-order convergence numerical
results consist with the theoretical convergence rate predicted by Theorem 4.3. Note the jump ratios of the material
parameters are about 19 for the aurum/epoxy phononic crystal and about 17 for the alumina/epoxy phononic crystal.
Despite the high contrast and heterogeneous nature of the materials, the proposed numerical method is theoretically

13
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Fig. 4. Band structure of aurum/epoxy phononic crystal with circular inclusion.
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Fig. 5. Band structure of aluminum/epoxy phononic crystal with circular inclusion.

and numerically proven to achieve the optimal convergence rate, which demonstrates its capability in the efficient
computation of band structures.

Now, we turn to the numerical computation of the band structure for the aurum/epoxy phononic crystal. In
the computation, the mesh size is chosen to be 1/64 and the quasi-momentum k is taken on the boundary of the
irreducible Brillouin zone. In Fig. 4, we plot the first ten normalized frequency along the direction O—X-M-O. The
normalized frequency is defined as wa/(2mwc™) where ¢~ is the wave speed of the scatters defined in (5.1). From
the graph, we can see that one small band-gap opens between the second eigencurve and the third eigencurve and
one relatively large band-gap opens between the third eigencurve and the fourth eigencurve.

To compute the band structure of alumina/epoxy phononic crystal, we just replace aurum inclusions by alumina
inclusions with the same size and shape. The first ten normalized eigenvalues are presented in Fig. 5. We see
that the band structures changes dramatically. The original small gap which appears in the band structure of the
aurum/epoxy crystal closes up in the alumina/epoxy crystal. And the bigger gap shrinks to a relatively small size.

14
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a 27 /a

(b) (c)

Fig. 6. Bravais lattice with flower shape inclusion. (a) 2D square lattice; (b) the unit cell; (c) the first Brillouin zone.

10—2.7 10—2.6 10—2.5 10—2.4 10—2.3 10—2.2 10—2.1 10—2 10—1.9
h

Fig. 7. Convergence rate of aurum/epoxy phononic crystal with flower shape inclusion.

5.2. Square lattice with flower shape inclusion

Our second numerical example is to handle aurum/epoxy phononic crystal with periodic flower shape inclusions.
The phononic crystal is illustrated in Fig. 6. The flower material interface curve in polar coordinate is given by

1 sin(59)

et T

which contains both convex and concave parts. We conduct the computation in the fundamental cell (2 with length
a =1, see Fig. 6b.

As before, Fig. 7 shows the convergence curve of the relative error for the first six eigenvalues. What stands
out in the figure is that the relative error converges optimally at the rate of O(h?) as predicted by Theorem 4.2.
The numerical results demonstrate the flexibility of the proposed method in handling interfaces with complicate
geometries.

The band structure is also computed in this setup. In the test, we take the mesh size h = é. The first ten
normalized frequency along O-M-X-O is plotted in Fig. 8. Similar to the aurum/epoxy phononic crystal with
circular inclusions, here are two band-gaps: the relatively smaller band-gap is between the second and the third

(5.2)
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Fig. 8. Band structure of aurum/epoxy phononic crystal with flower shape inclusion.

eigencurves; the relative larger band-gap is between the third and the fourth eigencurves. An inspection of the data
in Fig. 8 reveals that the band-gap is relatively larger than the circular inclusion case.

6. Conclusions

In this paper, a new finite element method for computing band structures of phononic crystals with general
material interfaces is proposed. To handle the quasi-periodic boundary condition, we transform the equation into
an equivalent interface eigenvalue problem with periodic boundary conditions by applying the Floquet-Bloch
transform. The distinguishing feature of the proposed method is that it does not require the background mesh to fit
the material interface which avoids the heavy burden of generating a body-fitted mesh and simplifies the impose
of periodic boundary condition. Furthermore, the performance of the proposed method is theoretically founded. We
show the well-posedness of the proposed method by using a delicate argument of the trace inequality. With the
aid of the Babuska—Osborn theory, we prove the proposed method achieves the optimal convergence result at the
presence of material interfaces. The theoretical convergence rate is validated by two realistic numerical examples,
one of which involves a material interface with a complicated geometry. Thus our method is capable to compute
band structures of very generic photonic crystals.
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