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Abstract
Imbalance in the autonomic nervous system can lead to orthostatic intolerance manifested by dizziness, lightheadedness,
and a sudden loss of consciousness (syncope); these are common conditions, but they are challenging to diagnose
correctly. Uncertainties about the triggering mechanisms and the underlying pathophysiology have led to variations in
their classification. This study uses machine learning to categorize patients with orthostatic intolerance. We use random
forest classification trees to identify a small number of markers in blood pressure, and heart rate time-series data
measured during head-up tilt to (a) distinguish patients with a single pathology and (b) examine data from patients with
a mixed pathophysiology. Next, we use Kmeans to cluster the markers representing the time-series data. We apply the
proposed method analyzing clinical data from 186 subjects identified as control or suffering from one of four conditions:
postural orthostatic tachycardia (POTS), cardioinhibition, vasodepression, and mixed cardioinhibition and vasodepression.
Classification results confirm the use of supervised machine learning. We were able to categorize more than 95% of patients
with a single condition and were able to subgroup all patients with mixed cardioinhibitory and vasodepressor syncope.
Clustering results confirm the disease groups and identify two distinct subgroups within the control and mixed groups. The
proposed study demonstrates how to use machine learning to discover structure in blood pressure and heart rate time-series
data. The methodology is used in classification of patients with orthostatic intolerance. Diagnosing orthostatic intolerance is
challenging, and full characterization of the pathophysiological mechanisms remains a topic of ongoing research. This study
provides a step toward leveraging machine learning to assist clinicians and researchers in addressing these challenges.
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1 Introduction

Cerebral hypoperfusion is usually caused by a decrease
in arterial blood pressure (BP) to a level below the
autoregulatory capacity giving rise to symptoms including
dizziness, nausea, blurred vision, and eventually syncope
(or fainting—loss of consciousness from 10 to 20 s with
spontaneous recovery [9]). Arterial BP falls when cardiac
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output and/or systemic vascular resistance are reduced—
usually by a sudden pause in the heart rhythm or loss
of arteriolar tone. Both can cause syncope, but in many
patients, symptoms result from a combination of the two
pathophysiological responses [16, 35]. It is estimated that
25% of the population experience syncope and even more
feel lightheaded or dizzy at some point in their life and these
symptoms account for over 1 million visits to emergency
departments per year in the USA alone [31]. A standard
diagnostic procedure includes the head-up tilt (HUT)
test continuously measuring heart rate (HR) and arterial
BP.

Several studies advocate the HUT test as the diagnostic
method of choice due to its high diagnostic yield [7, 15],
but correct analysis of recorded signals requires expertise
in the field, not always available in emergency clinics.
The HUT test provides information about the integrated
cardiovascular response via measurements of HR and BP.
However, analyses of these signals are often limited to
simple steady-state quantities including mean BP and HR,
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pulse pressure, and the HR change between rest and HUT,
omitting critical information embedded in the signals’
dynamics interaction.

The most prevalent form of orthostatic intolerance is
reflex activation of the autonomic nervous system, sub-
classified phenomenologically based on induced changes
in BP or HR [4, 26, 27, 40]. For patients with orthostatic
intolerance, the HUT test is performed to reproduce
their neurally mediated reflex in a controlled setting.
The HUT test induces pooling of blood below the
diaphragm and a subsequent decrease in venous return.
For healthy controls, homeostasis is re-established by
triggering the baroreflex, which increases HR, cardiac
contractility, and peripheral vascular resistance. Prolonged
time in the upright position (> 40 min) without the ability
to activate the muscle pump will induce reflex syncope
(often referred to as vasovagal syncope). If patients cannot
be diagnosed within the first 20 min of HUT, to distinguish
controls and patients with orthostatic intolerance, additional
stimulation is induced by administering nitroglycerine, a
vasodilator, which in turn increases HR above the regulatory
limit.

Patients are diagnosed with postural orthostatic tachycar-
dia (POTS) if they experience chronic orthostatic intoler-
ance within the first 10 minutes of HUT, resulting in an HR
increase of more than 30 bpm (> 40 bpm in individuals aged
1219 years) with little or no change in BP [39]. Patients
whose BP falls before HR and where HR falls to a ventric-
ular rate of less than 40 bpm for more than 10 s, without
asystole of more than 3 s, are classified as cardioinhibitory
(type 2A) [5], and patients experiencing a rapid fall in BP
with no or minor HR changes are classified as vasodepres-
sive [6, 27]. If both conditions are present, patients are clas-
sified as mixed. For each group, these disease characteristics
are often combined with frequent episodes of lighthead-
edness, palpitations, tremulousness, generalized weakness,
blurred vision, exercise intolerance, or fatigue in the upright
position [10, 39].

Figure 1 shows examples of each subject type: control,
POTS, cardioinhibition, vasodepression, and mixed. The
figure includes two patients experiencing a mixed syncope;
one patient primarily experiencing vasodepression and one
patient primarily experiencing cardioinhibition.

Several pathways could be modulated by these reflex
responses, but little is known about the precise hemody-
namic maladjustments causing these reactions; and hence,
it is challenging to generate targeted treatments. The iden-
tification of precise pathways requires a more detailed
classification of patient groups.

This study demonstrates how machine learning can
be used to assist clinicians in classifying patients with
orthostatic intolerance providing more insight into what
features are the most important for identifying different

disease subgroups. We focus on four types of abnormal
responses, including POTS, cardioinhibition, vasodepres-
sion, and mixed vasodepression and cardioinhibition (in the
remainder of this study, we refer to the latter group as
“mixed”). These groups were chosen since they comprise
most patients referred to the syncope center at Bispebjerg
and Frederiksberg Hospitals, Denmark, from which data
have been made available.

2 Data andmethods

This study analyzes anonymized retrospective data from
186 subjects distributed in five groups: controls and patients
with POTS, cardioinhibition, vasodepression, and mixed
syncope. All subjects were diagnosed using a HUT test,
examining their ability to control BP and HR. Data extracted
from health records were collected between 2004 and
2015 at the syncope clinic at Bispebjerg and Frederiksberg
Hospitals, Denmark. All subjects were referred to the clinic
after experiencing dizziness, lightheadedness, or syncope.
Subjects were diagnosed in the clinic and those who did
not show any symptoms were categorized as controls. For
all subjects, cardiovascular disease was ruled out prior to
testing, and no patients received medication at the time
of the study. The data-handling committee at Bispebjerg
and Frederiksberg Hospitals approved the analysis of the
anonymized retrospective data.

2.1 Head-up tilt test

After arriving at the hospital, all subjects were instrumented
with BP and electrocardiogram (ECG) sensors. BP was
measured using a Finapres device (Finapres Medical
Systems B.V.) in the index finger of the non-dominant hand.
The hand was placed in a sling at the level of the heart. ECG
was recorded using standard precordial leads. Continuous
ECG and BP signals were sampled at a rate of 1000 Hz
and saved digitally using an A/D-converter communicating
with a computer via LabChart 7 (ADInstruments). This
program allows the extraction of HR from the ECG
measurement. After steady signals were detected, following
recommendations by Bartoletti et al. [1], the subjects rested
for 10 min in the supine position before being tilted head-
up to an angle of 60° at a speed of 15°/second measured
by way of an electronic marker. The table remained tilted
up during the initial passive phase of the test. In the case of
a negative passive response, after approximately 20 min in
the upright position, a provocative drug—nitroglycerine—
was administered to induce a neural reflex (an example is
shown in Fig. 1). For POTS patients, their diagnosis was
established within the first 10 min of head-up tilt, and
therefore they were not given nitroglycerine. All patients
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Fig. 1 Example data from the HUT test for six subjects: a healthy con-
trol and patients with POTS, cardioinhibitory syncope, vasodepressive
syncope, and mixed cardioinhibition and vasodepression syncope. For
the latter patient group, we show two examples, a patient primarily
experiencing cardioinhibition and one primarily experiencing vasode-
pression. The red line lines denote the start and end of the tilt from the

supine position, up to 60◦ and back to the supine position. Heart rate
(beats per minute) and BP (mmHg) are displayed as functions of time.
The light blue lines denote time for administration of nitroglycerine, a
vasodilator

and controls were returned to the supine position at the same
tilt speed after a total of 30 min or earlier if they presented
signs of syncope or presyncope.

2.2 Data and clinical classification

For each subject, time-series measurements of HR and BP
are available over the course of the HUT test. Our analysis
is based on data starting 2 min before the tilt-up and lasting
until 2 min after the tilt-down. The duration of the test varies
for each subject, and thus so do the lengths of the time-
series. We denote by pi the number of samples taken for
subject i, i = 1, . . . , 186. The time-series data for the ith

subject are denoted by:

hi = (hi
1, h

i
2, . . . , h

i
pi

),

bi = (bi
1, b

i
2, . . . , b

i
pi

),

where h and b refer to HR and BP, respectively. Each
subject was classified by a clinician as either control
or symptomatic, experiencing POTS, cardioinhibitory syn-
cope, vasodepressive syncope, or mixed syncope (see Fig. 1
and text below). The distributions are reported in Table 1,

and summary statistics for the HR and BPmeasurements are
given in Table 2. This table reports the mean HR and BP ±1
standard deviation calculated at rest (before HUT), during
the first 50% and last 25% of the HUT. Patients not display-
ing a response to the tilt in less than 20 min, nitroglycerine
was administered sublingually at a dose of 0.4 mg; it was
given to 94% of the control subjects and 0%, 64%, 78%,
and 76% of the POTS, cardioinhibitory, vasodepressive, and
mixed patients.

Controls include subjects admitted to the syncope clinic at
Bispebjerg and Frederiksberg Hospitals, Denmark, who had
a typical outcome when testing their autonomic nervous
system.

Table 1 Summary of subject distribution

Class Subjects Age range Age mean/median Female (%)

Control 89 14–92 50/49 67

POTS 13 16–38 24/22 85

Cardioinhibition 28 15–80 33/31 63

Vasodepression 27 67–91 58/63 67

Mixed 29 17–92 50/51 70
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Table 2 Mean values ±1 standard deviation of HR and BP at rest and
during the beginning (phase I) and end (phase II) of the HUT test

Class Rest Tilt phase I Tilt phase II

Mean heart rate (HR)

Control 70±12 78±13 93±17

Cardioinhibition 67±12 78±14 83±21

Vasodepression 70±10 79±13 87±17

POTS 69±15 98±14 105±19

Mean blood pressure (BP)

Control 76±16 89±17 88±18

Cardioinhibition 76± 7 89±10 83±14

Vasodepression 82±17 90±17 81±16

POTS 67±8 74± 7 77± 7

Phase I includes averages over the first 50% of the tilt interval and

Phase II includes averages over last 25% of the tilt interval

POTS patients may experience dizziness and lightheaded-
ness, but typically do not faint [39] (none of the POTS
patients included in this study fainted). These patients may
have a reduced central blood volume causing blood pressure
regulation to be challenged by changes in intrathoracic pres-
sure due to respiration. This causes pathological fluctuations
in blood pressure with phase-shifted heart rate changes
elicited by the baroreceptor control system. POTS patients
typically have excessive vagal withdrawal leading to inap-
propriate increases in heart rate by more than 30 beats per
minute (>40 bpm in individuals aged 12–19 years), which
further reduces cardiac filling due to a shortening of the
diastolic filling time. As a result, the heart rate increases
while blood pressure oscillates [11].

Cardioinhibitory syncope is caused by excessive pooling of
blood in the extremities with few presyncopal conditions,
combined with an extreme slowing of HR (bradycardia) or
temporary cardiac pause (asystole) of at least 5 s [6, 26].
The drop in HR is followed by a rapid fall in BP occurring
within a few missed heartbeats for most patients. The result
is decreased venous return, reducing the filling of the left
heart. The reduced filling of the left heart likely causes
the ventricular walls to touch in systole, eliciting the so-
called Bezold Jarisch reflex [25, 38], stimulating pressure
receptors in the ventricular wall.

Vasodepression syncope is also caused by excessive pool-
ing of blood in the extremities. These patients experience
a withdrawal of sympathetic activity, leading to periph-
eral vasodilatation and a more gradual fall in BP, giving
presyncopal symptoms. For patients with this condition,
the drop in BP is slower, allowing prominent presyncopal
symptoms, including lightheadedness, nausea, dizziness,

and visual blurring. For these patients, the Bezold Jarisch
reflex likely inhibits sympathetic vasoconstriction result-
ing in a significant drop in BP, which may or may not
be followed by a drop in HR, eventually inducing the
syncope.

Mixed syncope patients typically experience both cardioin-
hibition and vasodepression. Figure 1 shows two examples
of patients with mixed symptoms. One patient primarily
exhibits cardioinhibition, and one patient primarily exhibits
vasodepression.

The classification corresponding to the above expert
diagnosis is denoted Y i , i = 1, . . . , 186. For any patient,
Y i takes values in the five classes introduced in the previous
paragraph. The complete data is thus contained in the set

{hi, bi, Y i}186i=1.

The time-series are first subsampled at 20 Hz, down
from 1,000 Hz in the original signal. Second, the signals
are preprocessed using a moving average window with a
width of 1,000 points (or equivalently 50 s). Finally, we
normalized each signal by subtracting its global mean for
each subject. We denote the preprocessed normalized time
series byHi and Bi where

(Hi ,Bi ) ∈ R
Ni × R

Ni

, i = 1, . . . , 186,

with Ni referring to the number of retained sample values
for the ith subject.

2.3 Random forest classifier

We use Random Forests [2, 17] (also called Random Deci-
sion Forests) an ensemble learning method for classifica-
tion. This method constructs a large number of decision
trees operating as an ensemble. Each tree outputs a class
prediction, and the algorithm selects the best solution by
means of voting. We use the implementation encoded in the
R RANDOMFOREST function.

The goal of our classification is twofold: (i) to determine
a subset of the data that can distinguish the patients, and
(ii) to explore the similarity between the mixed syncope
and the other three classes. To achieve our first goal, we
focus on the 157 patients with a single pathology (i.e.,
we do not include patients with mixed cardioinhibition
and vasodepression symptoms) and choose the markers
that maximize the classification rate. Below, we show that
high classification rates can be obtained by restricting these
markers to simple time sampling of both the normalized HR
and BP signals (Hi ,Bi )157i=1.

As illustrated in Fig. 2, for each patient, one marker is
placed 1 min before the head-up tilt and another is placed
1 min after the tilt-down. We parameterize the placement

624



Med Biol Eng Comput (2021) 59:621–632

Fig. 2 Marker parameterization: the red lines represent the onset of
tilt-up and tilt-down. Markers are placed before and after the tilt, and
within the tilt interval (between the red lines). The tilt interval is
split into three subintervals [0, x1T ], [x1T , x2T ], and [x2, T ], where 0

refers to the beginning of the data and T denotes the length of the sig-
nal. Each subinterval contains zi nodes, i = 1, 2, 3. The nodes (sample
times) are marked by red circles. The first and last intervals. The opti-
mal numerical values for these parameters are x1 = 0.4999, x2 =
0.9588, and z1 = 5, z2 = 7, z3 = 3

of the remaining markers by partitioning the “tilt-up to
tilt-down intervals” into three subintervals:

[0, x1Ti], [x1Ti, x2Ti], and [x2Ti, Ti],

where 0 < x1 < x2 < 1 and Ti denotes the elapsed time
between tilts for the ith patient. Next, we place zj markers
uniformly spaced in the j -th subinterval, j = 1, 2, 3. For
each interval, we retain the sampled values which are the
closest in time to

interval 1: T up + � x1
z1−1T , � = 0, . . . , z1 − 1,

interval 2: T up + (x1 + � x2−x1
z2

)T , � = 1, . . . , z2,

interval 3: T up + (x2 + � 1−x2
z3

)T , � = 1, . . . , z3,

with the conventions that if z1 = 0, there is no node in the
first interval and if z1 = 1, the first interval only contains
the node corresponding to the tilt up time, T up.

We seek an optimal sampling strategy whereby, within a
predefined range, the relative size of the intervals defined by
x1 and x2 and the numbers of points z1, z2, and z3 in each
interval are chosen to maximize the classification rate. More
precisely, each choice of ξ = (x1, x2, z1, z2, z3) defines a
subset of the available data Dξ with

Dξ = ∪157
i=1Di

ξ ,

where Di
ξ is the subset of the data for the ith subject

corresponding to ξ . We construct a cost function through
10-fold cross-validation, namely, Dξ partitioned as follows:

Dξ = ∪10
k=1D

σk

ξ with Dσk

ξ = ∪i∈σk
Di

ξ ,

where the σk’s partition {1, . . . , 157}. Algorithm 1 defines
a function F which inputs ξ and returns the successful

classification rate computed through cross validation on the
Random Forest model.

Note that F inherits the Random Forest model’s stochas-
ticity: two calls to F with the same input parameters may
lead to two different outputs. However, the stochastic aspect
is mostly negligible as numerical experiments indicated that
classification rates for the same parameterization have small
variations when the model is run multiple times. We used
10-fold cross-validation, which gave a good approxima-
tion of the classification rate attained, with leave-one-out
cross-validation while allowing for a 20-fold speed-up.

We find the optimal markers by solving the maximization
problem:

argmax
ξ

F (ξ) subject to

⎧
⎪⎪⎨

⎪⎪⎩

0 < x1 < x2 < 1,
zi integer, i = 1, 2, 3,
zi ≥ 0, i = 1, 2, 3,
12 ≤ z1 + z2 + z3 ≤ 16,

(1)

where the last constraint is chosen through trial and error;
the retained choice balances the amount of information and
the associated cost. To maximize F , we first fix z1, z2, z3
and consider the function mapping from (x1, x2) �→
F(x1, x2, z1, z2, z3) as the objective function. We optimized
it using the L-BFGS-B option in the R OPTIMX function.
This is repeated for every possible combination of z1, z2, z3
satisfying the constraints. The initial iterate is taken as
(.5, .75); for all datasets, numerical convergence was
reached in 10 iterations or fewer in all cases. The resulting
optimal parameterization is given is illustrated in Fig. 2 with
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optimal numerical values x1 = 0.4999, x2 = 0.9588, and
z1 = 5, z2 = 7, z3 = 3.

Results showed that we need 17 nodes (including one
pre-tilt and one post-tilt node), i.e., HR and BP data
analysis requires 34 nodes (17 BP and 17 HR markers).
Moreover, we found that most of the critical information is
concentrated immediately before the tilt down. Using the
optimal classification rates corresponding to each choice of
z1, z2, z3, we compared 605 parameterizations with mean
93%, median 94%, min 69%, and max 97%. Since half
of the potential parameterizations give a classification rate
between 94 and 97%, we conclude that the classification
rate is not sensitive to perturbations in the parameterization.

2.4 Clinical metrics

To determine if machine learning improves classification,
we compare results with common clinical metrics used
to discern the patient populations. Several of these rely
on frequency analysis; therefore, we computed all metrics
using data from the first 5 min of the HUT (if available).
Five datasets had less than 3 min of HUT data and were
not analyzed. To quantify heart rate variability (HRV), we
compute the standard deviation of successive differences
of RR intervals (SDSD). This measure is one of the
most widely used metrics of HRV and is closely related
to the standard Poincaré map metrics (SD1 and SD2),
which provide a geometric representation of patient heart
function in clinical settings [3]. To assess beat to beat
baroreflex sensitivity, we use the spontaneous baroreflex
method (SBR) [29]. This technique has been shown to
provide similar insight as pharmacological methods of
baroreflex sensitivity [30]. The above traditional metrics
assume stationarity of the signal. However, tachycardia
and/or syncope in many of the patient’s HUT data suggests
that the signals are highly nonstationary. For this reason,
we also compute metrics using the uniform phase empirical
mode Decomposition [14], which is based on nonstationary
signal processing. With this method, we compute the
amplitude of the 0.1-Hz component of the HR signal, and
the phase difference metric Mh.

3 Results

3.1 Classification

First, we classify the controls and the POTS, cardioin-
hibitory, and vasodepressive patients. Using the opti-
mal sampling strategy from the optimization problem (1)
with leave-one-out cross-validation, we obtain a classi-
fication rate of 96%. This result demonstrates the pre-
dictive power of the markers and the potential value of

machine learning as a complementary tool for syncope
diagnosis.

Next, we train the Random Forest on the 157 (non-
mixed syncope) subjects and predict the classification
of the 29 mixed patients. The Random Forest model
classifies these patients using a majority vote over 500
classification trees. The proportion of votes provides a
measure of confidence the model has in its classification.
Figure 3 shows the subjects plotted using barycentric
coordinates of the proportion of votes. The color legend
identifies the classification from expert clinicians. All
but two controls (98%) were classified correctly. The
two “wrongly” classified controls were both termed
vasodepressive, likely due to experiencing a slow drop in BP
following NG administration; neither patient experienced
syncope before being tilted back down. One POTS patient
was characterized as a control (a success rate of 92%). This
patient experienced an increase in HR of about 20 bpm,
below the threshold for POTS. Closer examination of this
patient reveals that both HR and BP are oscillating, a
characteristic of patients in this group [14]. One patient with
cardioinhibition was characterized as a control (a success
rate of 96%). As expected for patients in this group, HR
fell before BP, but the lag between the drop in HR and
BP was shorter for this patient than that for other patients
in this group. Two patients diagnosed (by the expert) as
vasodepressive were classified as control, with a success
rate of 93%. Both patients experienced a fast drop in BP
following NG administration, similar to the control group,
but fainted—characteristic for patients with vasodepression.
Finally, one patient with mixed response was characterized
as a control (success rate of 97%). Examining this patient’s

Cardioinhibitory
Healthy
Vasodepressor
POTS
Mixed

Fig. 3 Barycentric coordinate representation of the classification of
four classes and mixed patients (denoted by a 	). Misclassified
subjects are denoted by a
. Point tightness indicates howwell-defined
a specific class is
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data reveals that neither HR nor BP drops following the
tilt; therefore, the HUT is inconclusive for this patient. An
important note is that the classification algorithm was able
to sub-classify patients with mixed responses in two groups,
with 11 patients belonging to the vasodepression group and
17 patients belonging to the cardioinhibition group, picking
up differences between patients in this group (illustrated in
Fig. 1).

To further analyze classification, we compare heart
rate and blood pressure using ANOVA between groups
comparing the various parts of the recorded time-series
signal. Results (Table 3) show that this analysis can
only detect statistically significant differences between the
POTS group and other groups. Comparisons of age reveal
a difference in age between POTS and cardioinhibitory
patients and the control, vasodepression, and mixed
patients. We also used a multivariate ANOVA analysis (via
the R function MANOVA) comparing the mean HR and BP
features reported in Table 2. Results (see Table 4) show that
patients in all groups differ from the control group (p <

0.01). This analysis also clearly distinguishes POTS patients
from cardioinhibition and vasodepression (p < 0.01), while
it cannot distinguish cardioinhibition from vasodepression.

Finally, pairwise ANOVA comparisons of standard
markers described in Section 2.4 and reported in Table 5
reveal that some of the metrics can distinguish POTS and
cardioinhibitory from the other patient types, but that none
of the metrics can differentiate control, vasodepression, or
mixed patients or POTS and cardioinhibitory patients.

Table 3 Pairwise ANOVA analysis (p < 0.01) between groups
comparing age, the mean blood pressure (BP), and heart rate (HR) at
rest, during the first 50% (Phase I) and the last 25% (Phase II) of the
tilt

Metric Group I Group II

BP - Phase 0 (Rest) – –
BP - Phase I (first 50% of tilt signal) POTS Control
BP - Phase II (last 25% of tilt signal) – –
HR – Phase 0 – –
HR - Phase I POTS Healthy

Vasodepression
Cardioinhibitory
Mixed

HR - Phase II POTS Cardioinhibitory
Mixed

Age POTS Vasodepression
Mixed
Control

Cardioihibitory Vasodepression
Mixed
Control

Phase I includes averages over the first 50% of the tilt interval and

Phase II includes averages over last 25% of the tilt interval

Table 4 MANOVA analysis comparing all the statistics in Table 2
across groups

Group I Group II

Control Cardioinhibition

Control Vasodepression

Control POTS

Control Mixed

Cardioinhibition POTS

Vasodepressor POTS

The table lists comparisons with p values smaller than the 0.01
threshold

3.2 Clustering

The clustering algorithm, K-means, takes the desired
number of clusters, K , as an input argument. To explore
possible data structures, we repeat the clustering analysis
with various values of K . Clustering results, shown in
Fig. 4, are displayed using Silhouette plots [37]. Silhouette
values greater than 0 indicate that the patient fits best in
its cluster; values less than 0 indicate that it fits better in
another cluster. When clustering with K = 3, left panel of
Fig. 4, we note that the POTS patients are clustered with
the controls. This is likely explained by the observation
that HR and BP changes following the HUT display similar
features (BP and HR do not change significantly, as these
patients did not faint). Clustering of patients with single
pathology disease with K = 4 gives four groups; see the
center panel of Fig. 4. Next, for K = 5, two different
groups of controls emerge (see the right panel of Fig. 4),
while the three single pathology groups (patients with
POTS, cardioinhibition, and vasodepression) form their
own cluster. Finally, taking K < 3 or K > 5 did not
yield any informative cluster structure. We also observed,
in agreement with the classification results (see Fig 3),
that vasodepression is the most challenging pathology to
characterize.

Table 5 Statistically significant comparisons (p < 0.01) from
pairwise ANOVA comparisons among all five groups via the following
methods: standard deviation of successive differences (SDSD),
spontaneous baroreflex sensitivity (SBR), and the nonstationary
metrics Mh and aHR

Metric Group I Group II

SDSD Cardioinhibitory Control, vasodepression, mixed

SBR Cardioinhibitory Control, vasodepression, mixed

Mh POTS Control, vasodepression, mixed

Cardioinhibitory Control, mixed

aHR POTS Control, vasodepression, mixed
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Fig. 4 Silhouette
representations of the clustering
of the population in 3 (left), 4
(center), and 5 (right) clusters

Average Silhouette:

Cardioinhibitory
Healthy
Vasodepressor
POTS

−0.3 0.1 0.5

Silhouette Value

−0.3 0.1 0.5

0.29

−0.3 0.1 0.5

0.390.45

Further investigation reveals that the two “control”
clusters (obtained for K = 5) include patients with different
features. Figure 5 displays the average (over subjects in the
cluster) HR and BP plotted as a function of time. Since the
experiment’s duration differs slightly for each subject, the
horizontal axis in Fig. 5 is a scaled time where the interval
between the start and end of head-up tilt is mapped to the
interval [0,1].

The vertical lines indicate the position of the markers.
We refer to the two clusters as group A and group
B. While HR is similar for the two groups, BP differs
significantly. Controls in group A, represented by the blue
curves, experience a drop in BP following nitroglycerine,
while patients in group B, represented by the green
curves, do not. It should be noted that the two controls
and the two vasodepression patients who have wrongly

classified all express features similar to patients in
group A

For each group, a representative subject is chosen (A and
B). Their HR and BP are displayed in Fig. 6. The differing
trends in BP are observed comparing the left and right
panels of Fig. 6.

3.3 Traditional metrics

To better judge the results discussed above, we test if data
can also be categorized using standard autonomic regulation
measures. The specific focus is on analyzing heart rate
variability (HRV) and baroreflex sensitivity. These methods
can distinguish patients with POTS and cardioinhibition, but
not control subjects, patients with vasodepression, or mixed
pathologies.

Fig. 5 Normalized BP and HR
evolution for the two healthy
clusters from Fig. 4; normalized
signals are obtained by
subtracting the individual global
temporal mean from the original
signal. Left: BP; the healthy
subjects demonstrate two
different behaviors; right: HR;
the healthy subjects display a
similar behavior. Group A and
group B are represented by the
blue curves and green curves,
respectively
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Fig. 6 HR (top) and BP
(bottom) for two representative
patients from control groups A
(left) and B (right)
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4 Discussion

This study uses machine learning to classify and cluster
patients with orthostatic intolerance manifested as POTS,
cardioinhibition, and vasodepression. Data analyzed include
HR and BP measurements from a control group and four
groups of patients, three single pathology groups, and one
mixed group with patients exhibiting cardioinhibition and
vasodepression.

Results of our study show that supervised machine
learning—here in the form of Random Forests—can dif-
ferentiate controls and patients with orthostatic intoler-
ance; more specifically, we show that our method can
classify more than 93% of all single pathology patients.
We also showed that our classification scheme can iden-
tify patients with mixed cardioinhibition/vasodepression
pathology, a feature we could not determine by sim-
ple ANOVA analysis of BP and HR features. Finally, it
should be noted that these results were achieved with-
out adding a marker identifying if patients received
nitroglycerine.

Of the 186 datasets, only seven patients were classified
incorrectly. Of these, we were unable to distinguish
between control and vasodepression for five patients. Both
pathologies cause a drop in BP after the administration
of nitroglycerine. In addition, one patient experiencing
cardioinhibition was characterized as a control. For this
patient, the HUT did look normal, but the diagnosis may
have been based on other tests not analyzed here. One
POTS patient was classified as normal, but closer inspection
revealed that HR only increased by 20 bpm following
HUT, less than the conventional characterization of POTS.
However, this patient did exhibit oscillations in both HR and
BP, which is common in POTS patients [14, 32, 33] and the
patient is therefore likely diagnosed correctly. The machine
learning algorithm used in this study is based on an analysis
of average BP signals sampled at only 17 points during the
tilt protocol and is therefore likely not able to capture this
feature.

Findings reported here advance previous studies [19–
21, 41], differentiating controls and patients with syncope.
Various degrees of success have been reported depending on
the type of markers/features considered, e.g., time-domain
versus frequency domain, the population size (large versus
small), the methods (linear versus non-linear analysis), and
the amount of information taken into account. These studies
were set up (at least in part) to investigate early prediction
of syncope, to determine if it is possible to identify patients
susceptible to syncope before they faint, i.e., as early as
possible during the HUT. However, to our knowledge, no
studies were able to identify markers for this purpose. The
study reported in this article was not conducted with this
question in mind. Nonetheless, our results shed light on this
problem.

Analysis of optimal marker location, discussed in
Section 2.3, reveals (not surprisingly) that markers placed
immediately before the onset of syncope are the most
important, i.e., the data collected just before tilt-down, cor-
responding to interval 3 above, are essential to characterize
the disease type. This observation is confirmed by [21], who
noted that data analysis from the first 15 min following tilt-
up is inadequate for a specific classification of the patient,
as the data “miss” that critical time. The results in [41] are
encouraging, though they use data in the last minute before
syncope in over half of their results.

The focus of this study is on multi-class classification
and clustering of syncope data. We are not aware of similar
published studies that show similar results. A possible
explanation for the dearth of closely related work might be
the difficulty of defining these specific classes, as it requires
close collaboration with clinicians examining data from a
significantly larger cohort of patients.

Unlike other recent analyses of syncope data, such as
[19], we do not retain as features quantities explicitly
dependent upon the time-frequency analysis of the two
signals BP and HR; instead, we sample the signals
at optimized times. We tested and observed that the
inclusion of “variation dependent features” does not lead to
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Fig. 7 Additional types of syncope pathologies are not included in this
project. Left: dysautonomic response. HUT does not lead to a signifi-
cant increase in HR, likely due to reduced vagal response; sympathetic
system regulation may be intact but cannot keep up with the progres-
sive drop in central blood volume due to capillary filtration of fluid
from the intra- to the extravascular compartment. Middle: postural
hypotension. HUT causes an excessive drop in BP with some change

in HR. This could be due to reduced sympathetic vasoconstriction. The
small change in heart rate could be caused by intact vagal stimulation.
Right: orthostatic intolerance. During HUT, reduced central blood vol-
ume causes BP regulation to be challenged by intrathoracic pressure
changes due to respiration. This causes pathological fluctuations in BP
with phase-shifted changes in heart rate elicited by the baroreceptor
control system

higher classification rates, though we expect that properly
chosen quantifiers based on local spectral properties
likely can improve our analysis; this is the topic of
ongoing investigations. The classification results validate
our choice of features and facilitate our understanding
of the mixed syncope patients. While clustering largely
confirms the validity of our initial clinical classification,
it does uncover the existence of two distinct control
groups. The two control groups differentiate patients who
can maintain BP in response to nitroglycerine versus
those who experience a BP drop, though not sufficient
to experience presyncope or syncope; all patients in the
control group were non-symptomatic (they did not faint).
One explanation is that the control subgroup experiences a
BP drop following nitroglycerine administration caused by
their sympathetic system operating near or at its maximum
(before vasodilation induced by nitroglycerine). As a result,
these patients may not be able to maintain a high BP through
vasoconstriction in response to nitroglycerine.

Overall, our analysis of HR and BP time-series gives
a more accurate classification than traditional methods,
including HRV (via the standard deviation of successive
differences of RR intervals), BRS (baroreflex sensitivity),
Mh the phase between heart rate and BP, and aHR the
amplitude of the 0.1-Hz heart rate frequency. These methods
can distinguish patients with POTS and cardioinhibition,
but not control patients, patients with vasodepression, or
mixed pathologies. There are many other useful metrics
that we did not compute, such as those reported in [12,
13]; however, we chose to examine the above metrics due
to their widespread clinical use or their ability to handle
nonstationarity.

This study focuses on analyzing HR and BP time-
series data measured during HUT, but other physiological
signals also impact autonomic function. Examples include

respiration [22, 28, 42], cardiac output [24], age [23],
and gender [18]. Respiration can be measured directly
or determined from the ECG signal by extracting the
height of the RR intervals. This approach was used in
the study by Randall et al. [32], analyzing data from
patients undergoing the Valsalva maneuver. We did not add
respiration in the analysis presented here, since it is not
measured, and we do not want to add a second identifier
extracted from a signal already analyzed. Besides, several
modeling studies (e.g., [43]) have shown that adding cardiac
output improves prediction. The Finapres can approximate
cardiac output, but this estimate is not reliable [34]; and
therefore, it was not saved in the patient records. As a
result, we could not estimate peripheral resistance, as it
relates to BF and BP. Cardiac output can be measured,
e.g., using echocardiography, and future studies should
examine if adding any of these estimates would improve
the classification. While it is not likely that these measures
improve the classification success, they may affect marker
location and help use fewer data to classify the disease
categories.

Tables 2 and 3 show that POTS and cardioinhibition
patients are younger than controls, and patients with
vasodepression, and mixed a pathophysiology, and that age
can be used as a marker to distinguish some pathologies.
However, patients included in this study are not age-
matched, as data represents the cohort of patients referred
to the syncope clinic, and we do not know if the age groups
examined are representative for each pathophysiology.
Therefore, we did not include this marker in our clustering
analysis. Our objective was to include as little data as
possible, and even without accounting for age, our algorithm
was able to classify most patients correctly. Future work
should test if adding age or any of the standard clinical
markers would improve the classification.
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Finally, the data analyzed are skewed as all patient groups
have more female than male participants. This could result
from two factors: (a) that females faint more frequently than
males (as reported by [8, 18, 36]) or (b) that females may be
more likely to seek care when they faint.

In addition to analyzing data from a larger patient
cohort, future work will involve the clustering analysis
of patients with other pathologies including patients with
dysautonomia and postural hypotension (example HR
and BP time-series data from representative patients in
these groups are shown in Fig. 7). Further research is
also necessary to investigate possible pathophysiological
characterizations of the above two control groups and
potentially include frequency information to identify
patients in the POTS group. Moreover, we propose
comparing machine learning methodologies (discussed
here) with direct mathematical modeling accounting for
mechanics in the system. The latter promotes a better
understanding of underlying causes leading to observed
quantities and facilitates testing of different root causes.
Finally, to enable faster diagnoses, we propose to determine
how much data is needed for effective classification.
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