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PROBABILISTIC ERROR ANALYSIS FOR INNER PRODUCTS∗

ILSE C.F. IPSEN† AND HUA ZHOU‡

Abstract. Probabilistic models are proposed for bounding the forward error in the numerically
computed inner product (dot product, scalar product) between of two real n-vectors. We derive
probabilistic perturbation bounds, as well as probabilistic roundoff error bounds for the sequential
accumulation of the inner product. These bounds are non-asymptotic, explicit, and make minimal
assumptions on perturbations and roundoffs.

The perturbations are represented as independent, bounded, zero-mean random variables, and the
probabilistic perturbation bound is based on Azuma’s inequality. The roundoffs are also represented
as bounded, zero-mean random variables. The first probabilistic bound assumes that the roundoffs
are independent, while the second one does not. For the latter, we construct a Martingale that
mirrors the sequential order of computations.

Numerical experiments confirm that our bounds are more informative, often by several orders
of magnitude, than traditional deterministic bounds – even for small vector dimensions n and very
stringent success probabilities. In particular the probabilistic roundoff error bounds are functions
of

√
n rather than n, thus giving a quantitative confirmation of Wilkinson’s intuition. The paper

concludes with a critical assessment of the probabilistic approach.

Key words. Perturbation bounds, roundoff errors, random variables, sums of random variables,
Martingales

AMS subject classification. 65F30, 65G50, 60G42, 60G50

1. Introduction. Probabilistic approaches towards roundoff analysis have been
applied to: matrix inversion by von Neumann & Goldstine [19] and Tienari [18];
matrix addition and multiplication, and Runge Kutta methods by Hull & Swenson
[15]; solution of ordinary differential equations by Henrici [12]; Gaussian elimination
by Barlow & Bareiss [2, 3, 4]; convolution and FFT by Calvetti [7, 8, 9]; solution of
eigenvalue problems by Chatelin & Brunet [5, 6, 10]; LU decomposition and linear
system solution by Babuška & Söderlind [1] and Higham and Mary [14]. Yet, the
futility of probabilistic roundoff error analysis has also been pointed out [15, page 2],
[16, Page 17], since roundoffs apparently do not behave like random variables.

Nevertheless, we present probabilistic perturbation and roundoff error bounds for
the forward error in the numerically computed inner product1,

xTy = x1y1 + · · ·+ xnyn,

between two real n-vectors

x =






x1

...
xn




 ∈ R

n and y =






y1
...
yn




 ∈ R

n.
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1The superscript T denotes the transpose, and for relative bounds we assume xTy 6= 0.
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Contributions. The idea is to represent perturbations and roundoffs as random
variables, express the total forward error as a sum of ”local” forward errors, and then
apply a concentration inequality to the sum. In contrast to some of the previous
work, the roundoffs are not required to obey a particular probability distribution.
We ”motivate” the particular form of each probabilistic bound with a corresponding
deterministic bound, and interpret the various random variables in terms of particular
forward errors.

Our probabilistic approach is most closely related to that of Higham and Mary [14]
who derive backward error bounds. In contrast, our forward error bounds lead to new
condition numbers (Sections 2 and 3.3), and they are tighter because they avoid a
union bound for the probabilities. Our bounds are also simple, intuitive, and easy
to interpret, with a clear relationship between failure probability and relative error.
Compared to [14, Theorem 3.1], our Corollary 4.8 is tighter and does not assume
independence of roundoffs.

Overview. To facilitate the introduction of the probabilistic approach, we start as
simple as possible, with probabilistic perturbation bounds (Section 2). The pertur-
bations are represented as independent, bounded, zero-mean random variables; and
the forward error is bounded by Azuma’s inequaility. This is followed by probabilistic
roundoff error bounds for the sequential accumulation of inner products (Section 3).
The roundoffs are represented as independent, bounded, zero-mean random variables;
and the forward error is, again, bounded by Azuma’s inequaility. However, numerical
experiments (Section 5) illustrate that for non-negative vectors of large dimension,
the probabilistic expression stops being an upper bound. By way of an explanation,
Henrici ends his 1963 paper [12, page 11] with:

The crucial hypothesis for the above statistical theories is the hypoth-
esis of independence of local errors. While this assumption seems to
yield realistic results in many cases, some situations are known, [...],
where local errors definitely cannot be considered to be independent.
To elucidate the conditions under which local errors act like indepen-
dent variables would seem to be a fascinating if difficult problem.

As a consequence, and in contrast to [14], we relinquish the independence as-
sumption and derive a general probabilistic roundoff error bound (Section 4). The
roundoffs are represented as bounded, zero-mean random variables; and the forward
error is bounded by an Azuma-Hoeffding Martingale. In particular, we present a
quantitative confirmation of Wilkinson’s intuition [20, Section 1.33] that the round-
off error in n operations is proportional to

√
n u rather than n u. The paper ends

with a critical analysis of the probabilistic approach, and a long list of future work
(Section 6).

2. Perturbation bounds. To calibrate the roundoff error bounds and set the
stage for the probabilistic approach, we start off with perturbation bounds: first,
deterministic bounds that generalize the traditional bound and motivate the proba-
bilistic bound (Section 2.1), and then the probabilistic bound (Section 2.2).

We use the Hadamard product

x ◦ y ≡
(
x1y1 · · · xnyn

)T

2



to compactly express componentwise relative perturbations as

x̂ =






(1 + δ1)x1

...
(1 + δn)xn




 = x+ δ ◦ x, ŷ =






(1 + θ1) y1
...

(1 + θn) yn




 = y + θ ◦ y,

where |δk|, |θk| ≤ u, 1 ≤ k ≤ n, for some u > 0, and the perturbation vectors are

δ ≡
(
δ1 · · · δn

)T
, θ ≡

(
θ1 · · · θn

)T
.

2.1. Deterministic perturbation bound. We generalize the traditional per-
turbation bound to a whole class of bounds, and single out a specific bound to motivate
the probabilistic bound in Section 2.2.

Theorem 2.1. If 1
p
+ 1

q
= 1, then the relative forward error in the perturbed

inner product is bounded by

∣
∣
∣
∣

x̂T ŷ − xTy

xTy

∣
∣
∣
∣
≤ ‖x ◦ y‖p

|xTy| ‖δ+ θ+ δ ◦ θ‖q.

Proof. From associativity, distributivity and the fact that all quantities are real
follows

x̂T ŷ − xTy = (δ ◦ x)Ty + xT (θ ◦ y) + (δ ◦ x)T (θ ◦ y)

=
n∑

k=1

xkyk (δk + θk + δkθk) = (x ◦ y)T (δ+ θ+ δ ◦ θ) .

The Hölder inequality implies

∣
∣(x ◦ y)T (δ+ θ+ δ ◦ θ)

∣
∣ ≤ ‖x ◦ y‖p ‖δ+ θ+ δ ◦ θ‖q.

Below is a specialization of Theorem 2.1 to popular p-norms.
Corollary 2.2. Theorem 2.1 implies the following bounds.
1. Traditional bound (p = 1)

∣
∣
∣
∣

x̂T ŷ − xTy

xTy

∣
∣
∣
∣
≤ ‖x ◦ y‖1

|xTy| ‖δ+ θ+ δ ◦ θ‖∞ ≤ |x|T |y|
|xTy| u(2 + u).

2. Same amplifier as in Theorem 2.4 (p = 2)

∣
∣
∣
∣

x̂T ŷ − xTy

xTy

∣
∣
∣
∣
≤ ‖x ◦ y‖2

|xTy| ‖δ + θ+ δ ◦ θ‖2 (2.1)

≤
√
n
‖x ◦ y‖2
|xTy| u(2 + u).

3. Smallest amplifier (p = ∞)

∣
∣
∣
∣

x̂T ŷ − xTy

xTy

∣
∣
∣
∣
≤ ‖x ◦ y‖∞

|xTy| ‖δ+ θ+ δ ◦ θ‖1 ≤ n
‖x ◦ y‖∞
|xTy| u(2 + u).
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Proof. The traditional bound follows from

‖x ◦ y‖1 =

n∑

k=1

|xkyk| =
n∑

k=1

|xk| |yk| = |x|T |y|.

The numerical experiments in Section 5.2.1 suggest that the three bounds tend
to differ by at most an order of magnitude or so, with the traditional bound being
the tightest.

2.2. Probabilistic perturbation bound. We derive a probabilistic bound cor-
responding to the deterministic bound (2.1), and then compare the two bounds.

The basis for the probabilistic bounds is a concentration inequality, which bounds
the deviation of a sum from its mean in terms of the deviations of the individual
summands from their means.

Lemma 2.3 (Azuma’s inequality, Theorem 5.3 in [11]). Let Z ≡ Z1 + · · ·+Zn be
a sum of independent random variables Z1, . . . , Zn with

|Zk − E[Zk]| ≤ ck, 1 ≤ k ≤ n.

Then for any 0 < δ < 1, with probability at least 1− δ,

|Z − E[Z]| ≤

√
√
√
√

n∑

k=1

c2k
√

2 ln (2/δ).

Proof. In [11, Theorem 5.3] set

δ ≡ Pr [|Z − E[Z]| ≥ t] ≤ 2 exp

(

− t2

2
∑n

k=1 c
2
k

)

.

and solve for t in terms of δ. If |Z −E[Z]| ≥ t holds with probability at most δ, then
the complementary event |Z − E[Z]| ≤ t holds with probability at least 1− δ.

Thus, if each summand Zk is close to its mean E[Zk], then with high probability,
the sum Z is also close to its mean E[Z].

In the probabilistic perturbation bound below, the perturbations δk and θk are
represented as independent, bounded, zero-mean random variables.

Theorem 2.4. Let the perturbations δk, θk be independent random variables with
E[δk] = E[θk] = 0 and |δk|, |θk| ≤ u, 1 ≤ k ≤ n.

Then for any 0 < δ < 1, with probability at least 1− δ, the relative forward error
in the perturbed inner product is bounded by

∣
∣
∣
∣

x̂T ŷ − xTy

xTy

∣
∣
∣
∣
≤ ‖x ◦ y‖2

|xTy|
√

2 ln (2/δ) u(2 + u)

=

√∑n

k=1 |xkyk|2
|xTy|

√

2 ln (2/δ) u(2 + u).

Proof. Write the total forward error

Z ≡ x̂T ŷ − xTy = Z1 + · · ·+ Zn

4



as a sum of independent random variables, where each summand represents a ”local”
forward error,

Zk ≡ xkyk ((1 + δk)(1 + θk)− 1) = xkyk (δk + θk + δkθk) , 1 ≤ k ≤ n.

From the linearity of the mean and δk, θk being independent random variables with
E[δk] = E[θk] = 0 follows

E[Zk] = xkyk (E[δk] + E[θk] + E[δk]E[θk]) = 0, 1 ≤ k ≤ n.

The boundedness of δk and θk implies that the deviation of Zk from its mean E[Zk] = 0
equals

|Zk − E[Zjk| = |Zk| = |xkyk| |δk + θk + δkθk| ≤ ck ≡ |xkyk| τ, 1 ≤ k ≤ n,

where τ ≡ 2u+ u2 = u(2 + u). Therefore, the conditions of Lemma 2.3 are satisfied,
and we have

n∑

k=1

c2k =

n∑

k=1

|xkyk|2 τ2 = ‖x ◦ y‖22 τ2.

The linearity of the expected value implies

E[x̂T ŷ − xTy] = E[Z] = E[Z1] + · · ·+ E[Zn] = 0.

Apply Lemma 2.3 to conclude that for any 0 < δ < 1, with probability at least 1− δ,
∣
∣x̂T ŷ − xTy

∣
∣ = |Z − E[Z]| ≤ ‖x ◦ y‖2

√

2 ln (2/δ) τ.

At last divide both sides of the inequality by the constant |xTy|.
Remark 2.1 (Comparsion). The probabilistic bound in Theorem 2.4 is by a

factor of
√
n tighter than the deterministic bound (2.1) in Corollary 2.2.

The probabilistic bound in Theorem 2.4 holds with probability at least 1− δ,
∣
∣
∣
∣

x̂T ŷ − xTy

xTy

∣
∣
∣
∣
≤ ‖x ◦ y‖2

|xTy|
√

2 ln (2/δ) u(2 + u),

while the deterministic bound (2.1) equals
∣
∣
∣
∣

x̂T ŷ − xTy

xTy

∣
∣
∣
∣
≤ ‖x ◦ y‖2

|xTy|
√
n u(2 + u).

The two bounds differ in the factors
√

2 ln (2/δ) versus
√
n, which implies:

1. The deterministic bound depends explicitly on the dimension n, while the
probabilistic bound does not.

2. The probabilistic bound is tighter than the deterministic bound for n > 2 ln (2/δ).
Specifically, with a tiny failure probability of δ = 10−16, the probabilistic bound
is tighter for n > 76, and

√

2 ln (2/δ) ≤ 9.
The numerical experiments in Section 5.2.2 illustrate that the probabilistic bound tends
to be at least two orders of magnitude tighter than the deterministic bound.

Example 2.1. We illustrate the behaviour of the amplifier

κ2 ≡ ‖x ◦ y‖2/|xTy|

in the probabilistic bound in Theorem 2.4 with three very special cases.
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1. No cancellation:
If all xkyk have the same sign, then κ2

2 =
∑

n

k=1
|xkyk|

2

(
∑

n

k=1
|xkyk|)

2 ≤ 1, so that

∣
∣
∣
∣

x̂T ŷ − xTy

xTy

∣
∣
∣
∣
≤

√

2 ln (2/δ) u(2 + u).

If also xkyk = w 6= 0 for 1 ≤ k ≤ n, then κ2
2 = nw2

(nw)2 = 1
n
, so that κ2

decreases with increasing dimension n,

∣
∣
∣
∣

x̂T ŷ − xTy

xTy

∣
∣
∣
∣
≤

√

2 ln (2/δ)

n
u(2 + u).

2. Severe cancellation:
If xkyk = (−1)kw for 1 ≤ k ≤ n, w 6= 0, and n is odd, then κ2

2 = nw2

w2 = n,
so that κ2 increases with increasing dimension n,

∣
∣
∣
∣

x̂T ŷ − xTy

xTy

∣
∣
∣
∣
≤

√
n
√

2 ln (2/δ)u(2 + u).

3. Probabilistic roundoff error bound, assuming independence of round-

off. After presenting the model for independent roundoffs (Section 3.1), we derive a
motivating deterministic bound (Section 3.2), followed by the probabilistic bound
(Section 3.3).

3.1. Roundoff error model. We assume that the elements of x and y are
floating point numbers, and can be stored exactly. The inner product is computed
via recursive summation [13, Section 4.1], by accumulating partial sums sequentially
from left to right,

z1 = x1y1, zk+1 =

k+1∑

j=1

xjyj, 1 ≤ k ≤ n− 1.

The roundoff error model in Table 3.1 corresponds to [13, (3.1) and (3.2)].

Table 3.1
Traditional roundoff error model (guard digits, no fused multiply-add)

Floating point arithmetic Exact computation

ẑ1 = x1y1 (1 + θ1) z1 = x1y1
ẑk+1 = (ẑk + xk+1yk+1 (1 + θk+1)) (1 + δk+1) zk+1 = zk + xk+1yk+1

ẑn = fl(xTy) zn = xTy

For 0 < u < 1 and k ≥ 1, we use the abbreviation

γk ≡ (1 + u)k − 1 = ku+O(u2). (3.1)

If ku < 1 then [13, Lemma 3.1]

γk ≤ ku

1− ku
.

6



3.2. A motivating deterministic bound. First we unravel the expressions
for the computed partial sums, and then bound the sums in terms of inputs and the
roundoffs.

Lemma 3.1. The partial sums in Table 3.1 are equal to

ẑ1 = x1y1 (1 + θ1)

ẑk = x1y1 (1 + θ1)
k∏

ℓ=2

(1 + δℓ) +
k∑

j=2

xjyj (1 + θj)
k∏

ℓ=j

(1 + δℓ), 2 ≤ k ≤ n.

If |δk|, |θk| ≤ u, 1 ≤ k ≤ n, then the partial sums are bounded by

|ẑ1| ≤ |x1y1| (1 + u)

|ẑk| ≤ |x1y1| (1 + u)k +

k∑

j=2

|xjyj | (1 + u)k−j+2, 2 ≤ k ≤ n.

Lemma 3.2. The total forward error for the computed inner product ẑn = fl(xTy)
in Table 3.1 is expressed as a sum of ”local forward errors”,

fl(xTy)− xTy = ẑn − zn = Z1 + · · ·+ Zn,

with a local forward error for each summand,

Z1 ≡ x1y1

(

(1 + θ1)

n∏

ℓ=2

(1 + δℓ)− 1

)

Zk ≡ xkyk

(

(1 + θk)

n∏

ℓ=k

(1 + δℓ)− 1

)

, 2 ≤ k ≤ n

If |δk|, |θk| ≤ u, 1 ≤ k ≤ n, and γk as in (3.1), then

|Z1| ≤ c1 ≡ |x1y1| γn
|Zk| ≤ ck ≡ |xkyk| γn−k+2, 2 ≤ k ≤ n.

Proof. This is analogous to [13, Lemma 3.1].
Now we can bound the total forward error.
Theorem 3.3. Let the roundoffs satisfy |δk|, |θk| ≤ u, 1 ≤ k ≤ n, with γk as

in (3.1).
Then the forward error of the computed inner product ẑn = fl(xTy) in Table 3.1

is bounded by

∣
∣fl(xTy)− xTy

∣
∣ = |ẑn − zn| ≤

n∑

k=1

ck = |x1y1| γn +
n∑

k=2

|xkyk| γn−k+2.

Proof. Applying the triangle inequality to the total forward error in Lemma 3.2
gives

|ẑn − zn| ≤
n∑

k=1

|Zk| ≤
n∑

k=1

ck.

7



The first consequence is the traditional forward error bound [13, Section 3.1].
Corollary 3.4 (Traditional bound). Let the roundoffs satisfy |δk|, |θk| ≤ u,

1 ≤ k ≤ n, with γk as in (3.1).
Then the relative forward error of the computed inner product ẑn = fl(xTy) in

Table 3.1 is bounded by

∣
∣
∣
∣

fl(xTy)− xTy

|xTy|

∣
∣
∣
∣
≤ |x|T |y|

|xTy| γn.

Proof. Define the vectors

v ≡
(
|x1y1| · · · |xnyn|

)T
, g ≡

(
γn γn γn−1 · · · γ2

)T
,

and apply the Hölder inequality to

n∑

k=1

ck = vTg ≤ ‖v‖1 ‖g‖∞ =

n∑

k=1

|xkyk| γn = |x|T |y| γn.

The second consequence is the motivation for the probabilistic bound to follow.
Corollary 3.5 (Deterministic version of Theorem 3.6). Let the roundoffs satisfy

|δk|, |θk| ≤ u, 1 ≤ k ≤ n, with γk as in (3.1).
Then the relative forward error of the computed inner product ẑn = fl(xTy) in

Table 3.1 is bounded by

∣
∣
∣
∣

fl(xTy)− xTy

|xTy|

∣
∣
∣
∣
≤

√∑n

k=1 c
2
k

|xTy|
√
n

where c1 ≡ |x1y1| γn, and ck ≡ |xkyk| γn−k+2, 2 ≤ k ≤ n.

Proof. Define the non-negative vector c ≡
(
c1 · · · cn

)T
and use the relation

between vector norms

n∑

k=1

ck = ‖c‖1 ≤ ‖c‖2
√
n =

√
√
√
√

n∑

k=1

c2k
√
n.

3.3. Probabilistic forward error bound. Since the roundoffs are indepen-
dent, bounded zero-mean random variables, we can use Azuma’s inequality in Lemma 2.3.

Theorem 3.6. Let the roundoffs δk, θk be independent random variables with
E[δk] = E[θk] = 0 and |δk|, |θk| ≤ u, 1 ≤ k ≤ n, and let γk as in (3.1).

Then for any 0 < δ < 1, with probability at least 1− δ, the relative forward error
in the computed inner product ẑn = fl(xTy) in Table 3.1 is bounded by

∣
∣
∣
∣

fl(xTy)− xTy

xTy

∣
∣
∣
∣
=

∣
∣
∣
∣

ẑn − zn
zn

∣
∣
∣
∣
≤

√∑n

k=1 c
2
k

|xTy|
√

2 ln (2/δ),

where c1 ≡ |x1y1| γn, and ck ≡ |xkyk| γn−k+2, 2 ≤ k ≤ n.

8



Proof. Since the roundoffs are independent random variables, so is the total
forward error in Lemma 3.2,

Z ≡ Z1 + · · ·+ Zn = fl(xTy) − xTy.

The random variables

Z1 ≡ x1y1

(

(1 + θ1)
n∏

ℓ=2

(1 + δℓ)− 1

)

Zk ≡ xkyk

(

(1 + θk)

n∏

ℓ=k

(1 + δℓ)− 1

)

, 2 ≤ k ≤ n,

represent the local forward errors and have zero mean, E[Zk] = 0. By linearity, the
total forward error has zero mean as well,

E[Z] = E [Z1 + · · ·+ Zn] = E[Z1] + · · ·+ E[Zn] = 0.

The deviations of the local errors from their means are bounded by

|Zk − E[Zk]| = |Zk| ≤ ck, 1 ≤ k ≤ n,

with ck as in Lemma 3.2. Thus we can apply Lemma 2.3 to Z, and then divide both
sides by the constant |xTy|.

Remark 3.1 (Comparison). The probabilistic bound in Theorem 3.6 tends to be
tighter than the corresponding deterministic bound in Corollary 3.5.

The probabilistic bound in Theorem 3.6 holds with probability at least 1− δ,

∣
∣
∣
∣

x̂T ŷ − xTy

xTy

∣
∣
∣
∣
≤

√∑n

k=1 c
2
k

|xTy|
√

2 ln (2/δ),

while the deterministic bound in Corollary 3.5 equals

∣
∣
∣
∣

x̂T ŷ − xTy

xTy

∣
∣
∣
∣
≤

√∑n

k=1 c
2
k

|xTy|
√
n,

where c1 ≡ |x1y1| γn, and ck ≡ |xkyk| γn−k+2, 2 ≤ k ≤ n, with γk as in (3.1).
As in Remark 2.1, the two bounds differ in the factors

√

2 ln (2/δ) versus
√
n,

which implies:
1. The deterministic bound depends explicitly on the dimension n, while the

probabilistic bound does not.
2. The probabilistic bound is tighter than the deterministic bound for n > 2 ln (2/δ).

Specifically, with a tiny failure probability of δ = 10−16, the probabilistic bound
is tighter for n > 76, and

√

2 ln (2/δ) ≤ 9.
The numerical experiments in Section 5.3 illustrate that the probabilistic expression
can be as much as two orders of magnitude tighter then the deterministic bound, but
stops being an upper bound for non-negative vectors of large dimension.

4. General probabilistic roundoff error bound. In contrast to the previous
section, we make no assumptions on the independence of roundoffs. After presenting
the roundoff error model (Section 4.1), we derive a motivating deterministic bound
(Section 4.2), and then present the probabilistic bound (Section 4.3), followed by two
upper bounds that take a simpler form (Section 4.4).
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4.1. Roundoff error model. As in Section 3.1, we assume that the elements of
x and y are floating point numbers, and can be stored exactly. Our model in Table 4.1
differs from the traditional model in Table 3.1 only in the book keeping. It distin-
guishes each step that introduces a roundoff, and explicitly separates additions (+)
from multiplications (∗). There are n multiplications and n− 1 additions, so 2n− 1
distinct roundoffs.

The model in Table 4.1 is designed to do without additional intermediate factors
like xkyk(1 + δ2k−2), and is expressed solely in terms of partial sums. Since we
assume a guard digit model without fused multiply-add, the roundoff for addition can
be recorded in a subsequent step. The very first partial sum incurs no addition, so
we allocate the roundoff to the second partial sum for easier indexing.

Table 4.1
Our roundoff error model (guard digits, no fused multiply-add)

Operation Floating point arithmetic Exact computation

∗ ŝ1 = x1y1 s1 = x1y1
ŝ2 = ŝ1 (1 + δ1) s2 = s1

∗ ŝ2k−1 = ŝ2k−2 + xkyk (1 + δ2k−2) s2k−1 = s2k−2 + xkyk
+ ŝ2k = ŝ2k−1 (1 + δ2k−1) s2k = s2k−1

Output ŝ2n = fl(xTy) s2n = xTy

4.2. A motivating deterministic bound. First we bound the computed par-
tial sums in terms of the inputs, and the unit roundoff u.

Lemma 4.1. Let the roundoffs satisfy |δk| ≤ u, 1 ≤ k ≤ 2n− 1.

Then the partial sums computed in Table 4.1 are bounded by

|ŝ2k−1| ≤ |x1y1| (1 + u)k−1 + |x2y2| (1 + u)k−1 + · · ·+ |xkyk| (1 + u)

= |x1y1| (1 + u)k−1 +
k∑

j=2

|xjyj | (1 + u)k−j+1, 1 ≤ k ≤ n,

and

|ŝ2k| ≤ |x1y1| (1 + u)k + |x2y2| (1 + u)k + · · ·+ |xkyk| (1 + u)2

= |x1y1| (1 + u)k +

k∑

j=2

|xjyj | (1 + u)k−j+2, 1 ≤ k ≤ n.

Proof. The proof is by induction, starting with the basis for k = 1,

|ŝ1| = |x1y1| = |x1y1| (1 + u)0,

|ŝ2| = |ŝ1 (1 + δ1)| ≤ |x1y1| (1 + u).

10



Assuming, as the hypothesis, that the statement of the lemma is correct, the induction
step gives for 1 ≤ k ≤ n− 1,

|ŝ2k+1| = |ŝ2k + xk+1yk+1 (1 + δ2k)| ≤ |ŝ2k|+ |xk+1yk+1| (1 + u)

≤ |x1y1| (1 + u)k +
k∑

j=2

|xjyj| (1 + u)k−j+2 + |xk+1yk+1| (1 + u)

= |x1y1| (1 + u)k +

k∑

j=2

|xjyj| (1 + u)(k+1)−j+1 + |xk+1yk+1| (1 + u)

= |x1y1| (1 + u)k +

k+1∑

j=2

|xjyj | (1 + u)(k+1)−j+1,

and for 1 ≤ k ≤ n− 1,

|ŝ2k+2| = |ŝ2k+1 (1 + δ2k+1)| ≤ |ŝ2k+1| (1 + u)

= |x1y1| (1 + u)k+1 +

k+1∑

j=2

|xjyj | (1 + u)(k+1)−j+2.

The total forward error is

Z2n ≡ ŝ2n − s2n = fl(xTy)− xTy, (4.1)

while the partial sum forward errors are

Zk ≡ ŝk − sk, 1 ≤ k ≤ 2n,

where Z1 = 0. We use these partial sum errors to distinguish the newly arrived
roundoff from the previous roundoffs. Then we establish a recursion for the partial
sum errors Zk, and bound the difference between two successive partial sum errors
Zk and Zk−1 by the ”incremental error” ck u. This incremental error ck u captures
the most recent roundoff introduced when moving from Zk−1 to Zk.

Lemma 4.2. The forward errors for the partial sums in Table 4.1 satisfy the
recursions

Z2k = Z2k−1 + ŝ2k−1 δ2k−1, 1 ≤ k ≤ n,

Z2k−1 = Z2k−2 + xkyk δ2k−2, 2 ≤ k ≤ n.

If |δk| ≤ u, 1 ≤ k ≤ 2n− 1, then

|Z2k − Z2k−1| ≤ c2k−1 u, 1 ≤ k ≤ n,

where

|ŝ2k−1| ≤ c2k−1 ≡ |x1y1| (1 + u)k−1 +

k∑

j=2

|xjyj| (1 + u)k−j+1,

and for 2 ≤ k ≤ n,

|Z2k−1 − Z2k−2| ≤ c2k−2 u, where c2k−2 ≡ |xkyk|.
11



Proof. The proof is by induction, following the recursions in Table 4.1. Since
Z1 = 0, the induction starts one step later than the one in Lemma 4.2, and the
induction basis is

Z2 = ŝ2 − s2 = ŝ1(1 + δ1)− s1 = Z1 + ŝ1 δ1,

Z3 = ŝ3 − s3 = ŝ2 + x2y2 (1 + δ2)− (s2 + x2y2) = Z2 + x2y2 δ2.

Assuming, as the hypothesis, that the statement of the lemma is correct, the induction
step gives for 1 ≤ k ≤ n− 1,

Z2k+2 = ŝ2k+2 − s2k+2 = ŝ2k+1 (1 + δ2k+1)− s2k+1 = Z2k+1 + ŝ2k+1 δ2k+1,

and for 2 ≤ k ≤ n− 1,

Z2k+1 = ŝ2k+1 − s2k+1 = ŝ2k + xk+1yk+1 (1 + δ2k)− (s2k + xk+1yk+1)

= Z2k + xk+1yk+1 δ2k.

Lemma 4.1 and the above recursions imply the bounds

|Z2 − Z1| = |ŝ1 δ1| ≤ |ŝ1| u ≤ c1 u where c1 = |x1y1|,
|Z3 − Z2| = |x2y2 δ2| ≤ |x2y2| u where c2 = |x2y2|.

In general,

|Z2k − Z2k−1| = |ŝ2k−1 δ2k−1| ≤ |ŝ2k−1| u ≤ c2k−1 u, 2 ≤ k ≤ n,

where c2k−1 = |x1y1| (1 + u)k−1 +
∑k

j=2 |xjyj | (1 + u)k−j+1, and

|Z2k+1 − Z2k| = |xk+1yk+1 δ2k| ≤ |xk+1yk+1| u ≤ c2k u, 2 ≤ k ≤ n− 1,

where c2k = |xk+1yk+1|.
Theorem 4.3 (Deterministic version of Theorem 4.6). Let the roundoffs satisfy

|δk| ≤ u, 1 ≤ k ≤ 2n− 1.
Then the relative forward error of the computed inner product ŝ2n = fl(xTy) in

Table 4.1 is bounded by

∣
∣
∣
∣

fl(xTy) − xTy

xTy

∣
∣
∣
∣
=

∣
∣
∣
∣

ŝ2n − s2n
s2n

∣
∣
∣
∣
≤

√
2n− 1

√
∑2n−1

k=1 c2k

|xTy| u,

where

c2k−1 = |x1y1| (1 + u)k−1 +
k∑

j=2

|xjyj |(1 + u)k−j+1, 1 ≤ k ≤ n

c2k−2 = |xkyk|, 2 ≤ k ≤ n.

Proof. Represent the total error (4.1) as a telescoping sum of incremental errors

fl(xTy) − xTy = Z2n = (Z2n − Z2n−1) + (Z2n−1 − Z2n−2) + · · ·+ (Z2 − Z1),

12



where Z1 = 0. With the expressions for ck from Lemma 4.2,

|Z2n| ≤ |Z2n − Z2n−1|
︸ ︷︷ ︸

≤ c2n−1 u

+ |Z2n−1 − Z2n−2|
︸ ︷︷ ︸

≤ c2n−2 u

+ · · ·+ |Z2 − Z1|
︸ ︷︷ ︸

≤ c1 u

≤
2n−1∑

k=1

ck u.

As in the proof of Corollary 3.5, the relation between the vector one- and two-norms
implies

2n−1∑

k=1

ck ≤
√
2n− 1

√
√
√
√

2n−1∑

k=1

c2k.

4.3. Probabilistic forward error bound. We derive a probabilistic bound
based on an Azuma Martingale, which does not require independence of roundoffs,
and then compare the probabilistic and deterministic bounds.

Definition 4.4 (Martingale, Definition 12.1 in [17]). A sequence of random
variables Z1, Z2 . . . is a Martingale with respect to a sequence δ1, δ2, . . . if for k ≥ 1

1. Zk is a function of δ1, . . . , δk−1,
2. E[|Zk|] < ∞,
3. E [Zk+1|δ1, . . . , δk−1] = Zk.

The version of the Martingale below is tailored to our context.
Lemma 4.5 (Azuma-Hoeffding Martingale, Theorem 12.4 in [17]). Let Z1, . . . , Z2n

be a Martingale with

|Zk − Zk−1| ≤ ck−1, 2 ≤ k ≤ 2n.

Then for any 0 < δ < 1 with probability at least 1− δ,

|Z2n − Z1| ≤

√
√
√
√

2n−1∑

k=1

c2k
√

2 ln (2/δ).

Proof. In [17, Theorem 12.4], set

δ ≡ Pr [|Zm − Z0| ≥ t] ≤ 2 exp

(

− t2

2
∑m

k=1 c
2
k

)

.

and m = 2n − 1, and then solve for t in terms of δ. If |Z − E[Z]| ≥ t holds with
probability at most δ, then the complementary event |Z − E[Z]| ≤ t holds with
probability at least 1− δ.

Again, the roundoffs are represented as bounded, zero-mean random variables,
but now they are not required to be independent. The following bound resembles the
one in Theorem 2.1, but contains more summands.

Theorem 4.6. Let the roundoffs δk be random variables with E[δk] = 0 and
|δk| ≤ u, 1 ≤ k ≤ 2n− 1.

Then for any 0 < δ < 1, with probability at least 1− δ, the relative forward error
of the computed inner product ŝ2n = fl(xTy) in Table 4.1 is bounded by

∣
∣
∣
∣

fl(xTy) − xTy

xTy

∣
∣
∣
∣
=

∣
∣
∣
∣

ŝ2n − s2n
s2n

∣
∣
∣
∣
≤

√
∑2n−1

k=1 c2k

|xTy|
√

2 ln (2/δ) u,
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where

c2k−1 = |x1y1| (1 + u)k−1 +

k∑

j=2

|xjyj | (1 + u)k−j+1, 1 ≤ k ≤ n,

c2k−2 = |xkyk|, 2 ≤ k ≤ n.

Proof. Since Z1 = 0, Table 4.1 implies for the total forward error (4.1) that

| fl(xTy)− xTy| = |ŝ2n − s2n| = |Z2n| = |Z2n − Z1|.

To apply Lemma 4.5, we show that the partial sum forward errors Z1, Z2 . . . , Z2n

form a Martingale with respect to the roundoffs δ1, . . . , δ2n−1. To this end, we need
to check the conditions in Definition 4.4 and Lemma 4.5.

1. The recursions in Lemma 4.2 show that Zk is a function of the roundoffs
δ1, . . . , δk−1, 2 ≤ k ≤ 2n.

2. The expectation of |Zk| is finite because |Zk| is a finite sum of bounded
summands, and the roundoffs have zero mean.

3. Lemma 4.2 implies Z2 = Z1 + x1y1 δ1 where Z1 = 0. The linearity of expec-
tation and zero-mean property of the roundoffs implies

E[Z2] = E [Z1 + x1y1 δ1] = Z1 + x1y1 E[δ1] = Z1.

More generally, item 1 implies that Z2k−2 depends on δ1, . . . , δ2k−3, 2 ≤
k ≤ n. Conditioning on all of these roundoffs removes the randomness and
produces a fixed value,

E[Z2k−2 |δ1, . . . , δ2k−3] = Z2k−2, 2 ≤ k ≤ n,

Combine the above with the zero-mean property of the roundoffs

E[δ2k−2 |δ1, . . . , δ2k−3] = E[δ2k−2] = 0

and Lemma 4.2 to conclude

E[Z2k−1 |δ1, . . . , δ2k−3] = E[Z2k−2 + xkyk δ2k−2 |δ1, . . . , δ2k−3]

= Z2k−2 + xkyk E[δ2k−2] = Z2k−2, 2 ≤ k ≤ n.

Now consider the remaining recursions Z2k = Z2k−1+ ŝ2k−1 δ2k−1, 1 ≤ k ≤ n.
Item 1 and Table 4.1 show that Z2k−1 and ŝ2k−1 depend only on the roundoffs
δ1, . . . , δ2k−2. Conditioning Z2k−1 and ŝ2k−1 on all of these roundoffs removes
the randomness and produces fixed values,

E[Z2k−1 |δ1, . . . , δ2k−2] = Z2k−1, 1 ≤ k ≤ n,

E[ŝ2k−1 |δ1, . . . , δ2k−2] = ŝ2k−1, 1 ≤ k ≤ n.

Arguing as above shows

E[Z2k |δ1, . . . , δ2k−2] = E[Z2k−1 + ŝ2k−1δ2k−1 |δ1, . . . , δ2k−2]

= Z2k−1 + ŝ2k−1 E[δ2k−1] = Z2k−1, 1 ≤ k ≤ n.

Thus, Z1, Z2, . . . , Z2n form a Martingale with respect to δ1, . . . , δ2n−1.

14



4. Lemma 4.2 implies

|Z2k − Z2k−1| ≤ c2k−1 u, 1 ≤ k ≤ n,

where

|ŝ2k−1| ≤ c2k−1 ≡ |x1y1| (1 + u)k−1 +
k∑

j=2

|xjyj| (1 + u)k−j+1,

and for 2 ≤ k ≤ n,

|Z2k−1 − Z2k−2| ≤ c2k−2 u, where c2k−2 ≡ |xkyk|.

Thus, the conditions for Lemma 4.2 are satisfied, and we can use it to bound |Z2n−Z1|
with the above ck from Lemma 4.2.

Remark 4.1 (Comparison). The probabilistic bound in Theorem 4.6 tends to be
tighter than the deterministic bound in Theorem 4.3.

The probabilistic bound in Theorem 4.6 holds with probability at least 1− δ,

∣
∣
∣
∣

fl(xTy) − xTy

xTy

∣
∣
∣
∣
=

∣
∣
∣
∣

ŝ2n − s2n
s2n

∣
∣
∣
∣
≤

√
∑2n−1

k=1 c2k

|xTy|
√

2 ln (2/δ) u,

while the deterministic bound in Theorem 4.3 is

∣
∣
∣
∣

fl(xTy) − xTy

xTy

∣
∣
∣
∣
=

∣
∣
∣
∣

ŝ2n − s2n
s2n

∣
∣
∣
∣
≤

√
∑2n−1

k=1 c2k

|xTy|
√
2n− 1 u,

where c2k−1 = |xkyk| and c2k =
∑k

j=1 |xjyj |(1 + u)k−j+1, 1 ≤ k ≤ n.

The two bounds differ in the factors
√

2 ln (2/δ) versus
√
2n− 1, which implies:

1. The deterministic bound increases with the dimension n, while the probabilis-
tic bound does not.

2. The probabilistic bound is tighter for n > ln (2/δ)+ 1
2 . Specifically, with a tiny

failure probability of δ = 10−16, the probabilistic bound is tighter for n ≥ 39,
and

√

2 ln (2/δ) ≤ 9.

4.4. Simpler forward error bounds. We derive two upper bounds for The-
orem 4.3 and 4.6 that have a simpler form, and then conform Wilkinson’s intuition
[20, Section 1.33].

The first bound is more compact than Theorem 4.6, and makes use of abbrevia-
tions for the leading subvectors of |x| ◦ |y|, and vectors containing powers of 1 + u.

Corollary 4.7 (Compact upper bound). Define the k-vectors

(x ◦ y)k ≡








|x1y1|
|x2y2|

...
|xkyk|








, uk ≡








(1 + u)k−1

(1 + u)k−1

...
1 + u








, 2 ≤ k ≤ n.

If 1
p
+ 1

q
= 1, then in Theorems 4.3 and 4.6 we have

2n−1∑

k=1

c2k ≤ ‖x ◦ y‖22 +
n∑

k=2

‖(x ◦ y)k‖2p ‖uk‖2q.
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Proof. Partition

2n−1∑

k=1

c2k =

n∑

k=1

c22k−1 +

n∑

k=2

c22k−2 =

n∑

k=2

c22k−1 + c21 +

n∑

k=2

c22k−2.

From c1 = |x1y1| and c2k−2 = |xkyk|, 2 ≤ k ≤ n, follows

c21 +

n∑

k=2

c22k−2 =

n∑

k=1

|xkyk|2 = ‖x ◦ y‖22.

Thus
∑2n−1

k=1 c2k = ‖x ◦ y‖22 +
∑n

k=2 c
2
2k−1. In the remaining sum, apply Hölder’s

inequality to each summand,

c2k−1 = |x1y1| (1 + u)k−1 +
k∑

j=2

|xjyj | (1 + u)k−j+1

= (x ◦ y)Tk uk ≤ ‖(x ◦ y)k‖p ‖uk‖q, 2 ≤ k ≤ n.

The second bound, below, takes a much simpler form.
Corollary 4.8 (Simplest upper bound for Theorem 4.6). Let the roundoffs δk

be random variables with E[δk] = 0 and |δk| ≤ u, 1 ≤ k ≤ 2n; and let γk as in (3.1).
Then for any 0 < δ < 1, with probability at least 1− δ, the relative forward error

of the computed inner product ŝ2n = fl(xTy) in Table 4.1 is bounded by

∣
∣
∣
∣

fl(xTy)− xTy

xTy

∣
∣
∣
∣
≤ |x|T |y|

|xTy|
√

2 ln (2/δ)

√
u γ2n
2

. (4.2)

Proof. In Corollary 4.7, choose p = 1 and q = ∞, so that

‖(x ◦ y)k‖1‖uk‖∞ ≤ ‖x ◦ y‖1(1 + u)k−1, 2 ≤ k ≤ n.

The relation between vector norms implies ‖x ◦ y‖2 ≤ ‖x ◦ y‖1. Insert the preceding
two inequalities into Corollary 4.7,

2n−1∑

k=1

c2k ≤ ‖x ◦ y‖22 +
n∑

k=2

‖(x ◦ y)k‖21 ‖uk‖2∞ ≤ ‖x ◦ y‖21

(

1 +

n∑

k=2

(1 + u)2(k−1)

)

.

The second factor is a geometric sum,

1 +

n−1∑

k=1

(1 + u)2k =

n−1∑

k=0

(1 + u)2k =
(1 + u)2n − 1

(1 + u)2 − 1
=

γ2n
u2 + 2u

.

Combining the preceding inequalities gives

√
√
√
√

2n−1∑

k=1

c2k ≤ ‖x ◦ y‖1
√

γ2n
u2 + 2u

≤ ‖x ◦ y‖1
√

γ2n u

2
.
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At last substitute this into Theorem 4.6.
Remark 4.2 (Comparison with traditional bound). We quantify and confirm

Wilkinson’s intuition [20, Section 1.33], by illustrating that the probabilistic bounds
in Theorem 4.6, and Corollaries 4.7 and 4.8 are proportional to

√
n u, while the

traditional bound in Corollary 3.4 is proportional to n u.
Let γk = (1+u)k−1, k ≥ 1, be as in (3.1). The probabilistic bound in Corollary 4.8

holds with probability at least 1− δ,

∣
∣
∣
∣

fl(xTy)− xTy

xTy

∣
∣
∣
∣
≤ |x|T |y|

|xTy|
√

2 ln (2/δ)

√
u γ2n
2

,

while the deterministic bound in Corollary 3.4 equals

∣
∣
∣
∣

fl(xTy)− xTy

|xTy|

∣
∣
∣
∣
≤ |x|T |y|

|xTy| γn.

For large n, the bounds behave asymptotically like their first order terms,

γn ≈ n u,

√
u γ2n
2

≈
√
n u.

For small n with 2n u < 1, one can bound [13, Lemma 3.1],

γn ≤ nu

1− nu
,

√
u γ2n
2

≤
√
n u√

1− 2n u

Thus, the probabilistic bound is proportional to
√
n u.

Furthermore, γn >
√

u γ2n/2 for n ≥ 2. With a failure probability of δ = 10−16,
the probabilistic bound is tighter than the deterministic bound for n > 80.

5. Numerical experiments. After describing the setup for the experiments
(Section 5.1), we present experiments for the perturbation bounds (Section 5.2), the
roundoff error bounds assuming independence (Section 5.3), and the general roundoff
error bounds (Section 5.4).

5.1. Experimental Setup. We use a tiny failure probability of δ = 10−16,
which gives a probabilistic factor of

√

2 ln (2/δ) ≤ 8.7.
Two types of vectors x and y of dimension up to n = 108 will be considered:
• The elements of x and y can have different signs. Specifically, xj and yj are
iid2 standard normal random variables with mean 0 and variance 1, and x

and y are generated with the Matlab commands
x = single(rand(n, 1)), y = single(rand(n, 1))

• The elements of x and y all have the same sign. Specifically, xj and yj are
absolute values of iid standard normal random variables, and x and y are
generated with the Matlab commands

x = single(abs(rand(n, 1))), y = single(abs(rand(n, 1)))

The exact inner products xTy are represented by the double precision computa-
tion dot(double(x), double(y)) with unit roundoff 2−53 ≈ 1.11 · 10−16. Bounds
are computed in double precision. Computations were performed in Matlab R2017a,
on a 3.1GHz Intel Core i7 processor.

2independent identically distributed
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5.2. Experiments for the perturbation bounds. We illustrate the pertur-
bation bounds in Section 2. Here the vectors x and y are perturbed, while the
computations are exact.

We select single precision perturbations δj and θj that are uniformly distributed
in [−u, u], where u = 2−24 ≈ 5.96 · 10−8 is the single precision roundoff, and generate
the perturbation vectors δ and θ each with the Matlab command

u * (2 * double(single(rand(n, 1))) - ones(n, 1)).

The inner product of the perturbed vectors x̂T ŷ is represented by the double precision
computation dot(double(xh), double(yh)).

5.2.1. Amplifiers in Corollary 2.2. We compare the amplifiers of u(2+ u) in
the upper bounds of Corollary 2.2, listed again below,

κ1 ≡ ‖x ◦ y‖1
|xTy| =

|x|T |y|
|xTy| =

∑n

j=1 |xjyj |
|xTy| (5.1)

κ2 ≡
√
n
‖x ◦ y‖2
|xTy| =

√
n

√
∑n

j=1 |xjyj|2

|xTy|

κ∞ ≡ n
‖x ◦ y‖∞
|xTy| = n

max1≤j≤n |xjyj |
|xTy| .

Figure 5.1 illustrates that, among the three amplifiers in (5.1), the traditional κ1 tends
to be the lowest. It also illustrates that amplification of roundoff can be orders of
magnitude larger for vector elements with different signs, compared to vectors where
all elements have the same sign.
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Fig. 5.1. Comparison of amplifiers in (5.1): κ1 (blue), κ2 (red), and κ∞ (green) versus vector
dimensions 1 ≤ n ≤ 108 in steps of 106. Vertical axis starts at 1 and ends at 108. Left panel:
Elements can have different signs. Right panel: All elements have the same sign.

5.2.2. Probabilistic perturbation bound in Theorem 2.4 and Remark 2.1.

This experiment follows up on Remark 2.1, where we compare the probabilistic bound
from Theorem 2.4 to the corresponding deterministic bound from Corollary 2.2.

• Deterministic bound

∣
∣
∣
∣

x̂T ŷ − xTy

xTy

∣
∣
∣
∣
≤ ‖x ◦ y‖2

|xTy|
√
n u(2 + u). (5.2)
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• Probabilistic bound holding with probability at least 1− δ,
∣
∣
∣
∣

x̂T ŷ − xTy

xTy

∣
∣
∣
∣
≤ ‖x ◦ y‖2

|xTy|
√

2 ln (2/δ) u(2 + u). (5.3)

Figure 5.2 illustrates that the probabilistic bound (5.3) tends to be at least two orders
orders of magnitude tighter than the deterministic bound (5.2).
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Fig. 5.2. Comparison of probabilistic bound (red 5.3) with deterministic bound (blue 5.2), and
relative error (green) versus vector dimensions 1 ≤ n ≤ 108 in steps of 106. Vertical axis starts at
10−14 and ends at 1. Left panel: Elements can have different signs. Right panel: All elements have
the same sign.

5.3. Experiments for the roundoff error bounds based on independent

roundoff. We illustrate the roundoff error bounds in Section 3.
The inner products fl(xTy) are computed in single precision with unit roundoff,

in a loop that explicitly stores the products xkyk before adding them to the partial
sum, so as to bypass the fused multiply-add.

Specifically, we compare the probabilistic bound in Theorem 3.6 with the corre-
sponding deterministic bound in Corollary 3.5.

• Deterministic bound
∣
∣
∣
∣

fl(xTy)− xTy

|xTy|

∣
∣
∣
∣
≤

√∑n

k=1 c
2
k

|xTy|
√
n (5.4)

• Probabilistic bound holding with probability at least 1− δ,
∣
∣
∣
∣

fl(xTy)− xTy

xTy

∣
∣
∣
∣
≤

√∑n

k=1 c
2
k

|xTy|
√

2 ln (2/δ), (5.5)

where c1 ≡ |x1y1| γn, and ck ≡ |xkyk| γn−k+2, 2 ≤ k ≤ n, and γk = (1 + u)k − 1 as
in (3.1).

Figure 5.3 illustrates that the probabilistic result (5.5) tends to be two orders of
magnitude tighter than the deterministic bound (5.4) for vectors whose elements can
have different signs. However, (5.5) stops being a bound for vectors of large dimension
all of whose elements have the same sign.

Figure 5.4 zooms in on the left panel in Figure 5.3 and illustrates that (5.5)
remains an upper bound for vector dimensions up to about n = 106. The fact that
it ceases to be an upper bound for n > 106 does not appear to be a numerical issue,
as nothing changes when the products |xkyk| are sorted in increasing or in decreasing
order of magnitude.
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Fig. 5.3. Comparison of probabilistic bound (red 5.5) with deterministic bound (blue 5.4), and
relative error (green) versus vector dimensions 1 ≤ n ≤ 108 in steps of 106. Vertical axis starts at
10−8 and ends at 108. Left panel: Elements can have different signs. Right panel: All elements
have the same sign.
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Fig. 5.4. Comparison of probabilistic bound (red 5.5) with deterministic bound (blue 5.4), and
relative error (green) versus vector dimensions when all elements have the same sign. Vertical axis
starts at 10−8 and ends at 1. Left panel: Small dimensions 1 ≤ n ≤ 106 in steps of 104. Right
panel: Large dimensions 106 ≤ n ≤ 108 in steps of 106.

5.4. Experiments for the general roundoff error bounds. We illustrate
the roundoff error bounds in Section 4.

As in the previous section, the inner products fl(xTy) are computed in single
precision with unit roundoff, in a loop that explicitly stores the products xkyk before
adding them to the partial sum, so as to bypass the fused multiply-add.

This experiment follows up on Remark 4.2, where we compare the probabilistic
bound in Corollary 4.8 to the corresponding deterministic bound in Corollary 3.4.

• Traditional bound
∣
∣
∣
∣

fl(xTy)− xTy

xTy

∣
∣
∣
∣
≤ |x|T |y|

|xTy| γn, (5.6)

• Probabilistic bound
∣
∣
∣
∣

fl(xTy)− xTy

xTy

∣
∣
∣
∣
≤ |x|T |y|

|xTy|
√

ln (2/δ)

√
u γ2n
2

, (5.7)

where γk = (1 + u)k − 1 as in (3.1).
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Figure 5.5 illustrates that the probabilistic result (5.7) tends to be at least two
orders of magnitude tighter than the deterministic bound (5.6) for vectors whose
elements can have different signs. However, unfortunately, (5.7) stops being a bound
for vectors of large dimension all of whose elements have the same sign.
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Fig. 5.5. Comparison of probabilistic bound (red 5.7) with deterministic bound (blue 5.6), and
relative error (green) versus vector dimensions 1 ≤ n ≤ 108 in steps of 106. Vertical axis starts at
10−8 and ends at 108. Left panel: Elements can have different signs. Right panel: All elements
have the same sign.

6. Conclusions, and future work. We presented derivations and numerical
experiments for probabilistic perturbation and roundoff error bounds for the sequen-
tially accumulated inner product of two real n-vectors, assuming a guard digit model
and no fused multiply-add. The probabilistic bounds are tighter than the correspond-
ing deterministic bounds, often by several orders of magnitude.

Issues. However, for vectors of dimension n ≥ 107 and a tiny failure probability
of δ = 10−16, the probabilistic results are not entirely satisfactory: On the one hand,
they are still too pessimistic for vectors whose elements have different signs, while on
the other hand they stops being upper bounds for vectors all of whose elements have
the same sign –regardless of whether roundoffs are assumed to be independent or not.
The latter phenomenon does not appear to be a numerical artifact.

A simple fix would be to adjust the failure probability, making it even more
stringent when elements can differ in sign, while relaxing it when all elements have
the same sign. However, this does not get to the heart of the problem. Should the
failure probability be explicitly and systematically tied to the dimension n? This
would be inconsistent with concentration inequalities, which do not explicitly depend
on the number of summands. Alternatively, should one not model roundoffs as zero-
mean random variables, but instead introduce a bias, possibly dimension-dependent,
for vectors with structure, such as those where all elements have the same sign, see
also [14, section 4.2].
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