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Abstract

The so-called regularized Biot–Savart laws (RBSLs) provide an efficient and flexible method for modeling pre-eruptive
magnetic configurations of coronal mass ejections (CMEs) whose characteristics are constrained by observational
images and magnetic field data. This method allows one to calculate the field of magnetic flux ropes (MFRs) with small
circular cross sections and an arbitrary axis shape. The field of the whole configuration is constructed as a superposition
of (1) such a flux-rope field and (2) an ambient potential field derived, for example, from an observed magnetogram.
The RBSL kernels are determined from the requirement that the MFR field for a straight cylinder must be exactly force
free. For a curved MFR, however, the magnetic forces are generally unbalanced over the whole path of the MFR. To
minimize these forces, we apply a modified Gauss–Newton method to find optimal MFR parameters. This is done by
iteratively adjusting the MFR axis path and axial current. We then try to relax the resulting optimized configuration in a
subsequent line-tied zero-beta magnetohydrodynamic simulation toward a force-free equilibrium. By considering two
models of the sigmoidal pre-eruption configuration for the 2009 February 13 CME, we demonstrate how this approach
works and what it is capable of. We show, in particular, that the building blocks of the core magnetic structure described
by these models match morphological features typically observed in such types of configurations. Our method will be
useful for both the modeling of particular eruptive events and theoretical studies of idealized pre-eruptive MFR
configurations.

Unified Astronomy Thesaurus concepts: Solar coronal mass ejections (310); Magnetohydrodynamical simulations
(1966); Magnetohydrodynamics (1964); Solar active region magnetic fields (1975); Solar flares (1496)

1. Introduction

Coronal mass ejections (CMEs) are large eruptions of
magnetized plasma from the Sun into the heliosphere and the
key agent of geomagnetic storms. It is very likely that most CMEs
contain magnetic flux ropes (MFRs; e.g., Chen 2017), at least for
a substantial period of their lives. CMEs always originate in pre-
eruptive configurations (PECs), which are closed magnetic fields
low in the solar corona with a current-carrying core region
embedded in a largely potential field. Observations increasingly
suggest that the core field often comprises, or contains, a nearly
force-free MFR (e.g., Canou et al. 2009; Green & Kliem 2009;
Zhang et al. 2012; Patsourakos et al. 2013; Howard & DeForest
2014; Chintzoglou et al. 2015; Zhao et al. 2016; Wang &
Liu 2019); see also the recent reviews by Liu (2020) and
Patsourakos et al. (2020). This justifies the initialization of
numerical models of CMEs with MFR configurations, both
idealized (e.g., Amari et al. 2000; Fan 2005; Aulanier et al. 2010;
Török et al. 2011) and constructed using observed magnetograms
(e.g., Manchester et al. 2008; Lugaz et al. 2011; Kliem et al. 2013;
Amari et al. 2014; Inoue et al. 2018; Török et al. 2018); see also
the review by Inoue (2016).

CMEs result from the destabilization of the current-carrying
substructures of PECs. The initial phase of CMEs can vary
widely in terms of their acceleration (e.g., Vršnak et al. 2007),
rise direction (e.g., Möstl et al. 2015), or morphology (e.g.,
Török et al. 2010). Furthermore, eruptions can be partial (e.g.,
Gilbert et al. 2001) or even fully confined (e.g., Ji et al. 2003).
Therefore, the accuracy of PEC reconstructions appears to be a
crucial factor for the correct modeling of CMEs. An accurate
reconstruction of PECs for observed cases, however, is
particularly challenging (Patsourakos et al. 2020), because the
constraints required for the reconstruction can be inferred only

indirectly from, e.g., observed filament shapes or the location
of flare arcades or dimmings (e.g., Palmerio et al. 2017).
One way to produce observed equilibrium PECs is by trying

to form MFRs via a slow boundary-driven evolution, which
can be magnetofrictional (e.g., Cheung & DeRosa 2012; Price
et al. 2020) or magnetohydrodynamic (MHD; e.g., Lionello
et al. 2002; Bisi et al. 2010; Zuccarello et al. 2012; Jiang et al.
2016; Hayashi et al. 2018). This requires the design of
photospheric boundary conditions that emulate the physical
processes on the Sun leading to PECs, and at the same time are
consistent with observed magnetograms and morphological
features. This approach is nontrivial, even if one tries to match
only the normal component of the photospheric magnetic field.
It may, therefore, take many trial-and-error attempts to create a
stable PEC that satisfactorily matches the observations—
especially because this method has no simple means to control
the detailed properties and stability of the resulting MFR.
Another way to reconstruct PECs is via nonlinear force-free

field (NLFFF) extrapolations (e.g., Schrijver et al. 2008) by using
vector magnetic data. However, these data are measured at the
photospheric level, where the characteristic gradients of plasma
pressure are not negligible compared to the magnetic forces,
corresponding to a significant deviation of the field from a force-
free state. Therefore, the data must be “preprocessed” to be
compatible with the extrapolation higher up in the chromosphere
and low corona (Wiegelmann et al. 2006). Vector magnetic field
observations also suffer from noise and disambiguation issues,
which make the reconstruction of PECs based on NLFFF
extrapolations a nontrivial problem as well.
An alternative to these boundary-condition-based methods is

the MFR insertion method (van Ballegooijen 2004; Su et al.
2011; Savcheva et al. 2012), which uses observations of
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filaments, loops, etc., to directly constrain the field model. In
this method, PEC equilibria are constructed via a two-step
iterative procedure. First, following the desired MFR shape
inferred from the observations, a field-free cavity is constructed
within the background potential magnetic field. The cavity is
then filled with axial and azimuthal magnetic flux, such that the
corresponding electric current is fully neutralized. Second, the
resulting MFR configuration is subjected to a magnetofrictional
relaxation toward a force-free equilibrium, which may contain
net currents. These two steps are repeated by varying the
inserted magnetic fluxes and/or the cavity shape until a suitable
equilibrium is reached. Note that all configurations obtained
after step one are, by construction, far from an equilibrium
state. Therefore, the relaxation can significantly change the
inserted MFR and its adjacent magnetic structure. This makes
the properties of the modeled PECs difficult to control, and
many iterations of trial and error may be required to reach the
desired result.

Fortunately, this situation can be substantially improved by
using regularized Biot–Savart laws (RBSLs), which we recently
proposed for constructing PECs with embedded MFRs (Titov
et al. 2018). Similarly to the MFR insertion method, our RBSL
method uses observations to constrain the shape of the modeled
MFR. Additionally, however, it employs the ambient potential
field at the apex point of the MFR axis to estimate the axial
current. The estimation is obtained from the condition that the
components of the ambient field and the field generated by the
axial current cancel each other at this point in the plane
perpendicular to the axis. For thin MFRs, the field produced by
the azimuthal current is small at the apex point and, therefore,
ignored. Except for this simplification, the estimation is done in
the same way as for the Titov & Démoulin–modified (TDm)
MFR model described in Titov et al. (2014).

In both approaches, the whole configuration is represented
by a linear superposition of the MFR and ambient potential
fields. However, while the TDm model describes the field for
MFRs of arc shape only, the RBSLs do so for MFRs of
arbitrary shape. Therefore, by using the RBSLs, one can model
a wider class of PECs with a more complex geometry of
embedded MFRs.

For such cases, however, the estimation of the axial current
via the ambient field at the axis apex may not be accurate
enough. This is because, in general, the ambient and MFR
fields vary along the axis path. It is desirable, hence, to adjust
the MFR shape in such a way that the equilibrium condition
holds not only at the apex point but also at all other points
along the axis path.

For this purpose, we propose here an efficient procedure that
extends the equilibrium condition to the whole path of the MFR
and additionally generalizes it in the following two ways. First,
we incorporate the previously ignored influence of the
azimuthal current on the MFR equilibrium. Second, we take
into account the variations of the current density and magnetic
field across the MFR, which were also discarded before. Both
generalizations become important at path segments where the
local curvature radius is comparable to the radius of the MFR.

This procedure allows one to determine the unbalanced
magnetic forces at several cross sections of the MFR, and to
minimize them by optimizing the shape of the axis path and the
axial current of the MFR, using the least-squares method. The
residual magnetic stress in the optimized PEC can then be

relaxed via MHD simulations performed under vanishing
plasma pressure (β= 0) and photospheric line-tying conditions.
Note that the optimization adjusts not just the axis path but

also the connectivity of magnetic field lines to the photospheric
boundary. This can be important when seeking agreement with
observed morphological features of the PEC, primarily because
the initial guess for the MFR axis may not be perfect.
Furthermore, the adjusted magnetic connectivity and mini-
mized magnetic stress control, to a large extent, the subsequent
line-tied MHD relaxation and thus the properties of the
resulting PEC. In this way, the optimization allows one to
reach the desired result with fewer trial-and-error attempts and
less sensitivity to initial choices.
In addition to the optimization procedure, we present an

improved formulation of the RBSLs, which reduces the normal
component of the MFR field at the photosphere (including the
footprint areas) to negligibly small values. This provides a
much closer match of observed magnetograms than our
previous formulation, which is essential for event case studies.
Ultimately, we believe this combination of optimization,
relaxation, and magnetogram matching using RBSLs can
greatly facilitate the rapid construction of realistic, stable, and
highly energized PECs. We expect that our new method will
also be useful for a variety of non-CME applications, such as
the recently developed MHD models of prominence formation
(e.g., Xia et al. 2014a; Fan & Liu 2019).
In Section 2, we fully describe our method, including the

improved RBSLs (Section 2.1) and the basic theory used for the
proposed optimization procedure (Sections 2.2–2.4). We then
illustrate in Section 3 the method by applying it to the modeling
of PECs for the 2009 February 13 CME. Section 4 summarizes
our results, and the appendices provide an auxiliary mathema-
tical framework for calculating magnetic fields and current
densities defined by the RBSLs.

2. Method

2.1. Improved RBSLs

In this work, we model any PEC prior to its relaxation as the
following superposition of three different components of the
magnetic field:

= + +B B B B , 1I Fp ( )

where Bp represents a potential magnetic field corresponding to
a certain distribution of the radial magnetic field, which is
derived, for example, from observations. The other two
components, BI and BF, are, respectively, azimuthal and axial
magnetic fields generated by the axial net current I and axial net
flux F of a thin MFR. These components, in turn, are

=  ´B A , 2I I ( )

=  ´B A , 3F F ( )

where AI and AF are the axial and azimuthal vector potentials,
respectively, defined relative to the axis of MFR. The latter is a
closed curve formed by coronal and subphotospheric paths, 
and *, respectively, and represented by a vector  l( ) that
depends on the arc length l of the curve. For these vector
potentials, we adopt here the RBSLs proposed earlier in Titov
et al. (2018) by assuming that our MFR has a constant cross-
sectional radius a. Then, the axial-vector potential at a given
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ò È
m
p

= ¢
 

A x K r
dl

a

I
,

4
, 4I I

*
( ) ( ) ( )








where º = - r r xl l a( ) ( ( )) , ¢ = d dl is a unit
vector tangential to the axis path. The double brackets
henceforth contain the unit in which the value displayed to
its left is measured. The RBSL kernel of AI is

p=
+

-
- Î

>-

K r
r

r

r
r r

r r

2 arcsin 5 2

3
1 , 0, 1 ,

, 1,

5

I

2
2

1

⎜ ⎟
⎧

⎨
⎩

⎛
⎝

⎞
⎠( )

( ]

( )

whose domain of definition smoothly extends to r= 0 with

p= »
 +

K rlim 16 3 1.698. 6
r

I
0

( ) ( ) ( )/

In the limit of vanishing curvature of the MFR, KI(r) by
construction provides the azimuthal magnetic field given by
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where ρ is the distance measured from the axis of the MFR and
normalized to a. This field corresponds to a parabolic profile of
the axial current density, namely,

r r r
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We assume in this paper that the closure of the coronal current I
flowing along path  is reached via a fictitious subphotospheric
path * that is simply a mirror image of  about the solar
surface (see Section 2.2). This constraint on the shape of
the path allows one to nearly vanish the resulting normal
component of BI at the solar surface.

To cause a similar effect to the BF distribution at the
boundary, we define the azimuthal vector potential as
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This expression implies that the corresponding axial fluxes flow
along  and * in opposite directions. Because * is a mirror
image of  about the solar boundary, these fluxes meet at the
same angles to the boundary and thereby cancel each other out.
Due to this trick, the resulting normal component of BF also
becomes negligible at the solar surface.

The RBSL kernel of AF is
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In the limit of vanishing curvature of the MFR, KF(r) by
construction provides the axial magnetic field and azimuthal
current density given, respectively, by
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It is easy to check that a straight cylindrical MFR defined by
Equations (7), (8), (12), and (13) is indeed force free if the net
axial flux and current are related by

m
sº =


»

F

Ia

3

5 2
0.424, 14( )

where the positive and negative signs correspond to the right-
and left-handed twist (chirality) of the MFR, respectively.
We assume that this relationship also holds true for a curved

MFR described by Equations (4), (5), (9), and (10). In this way,
we manage to keep the resulting configuration as close as
possible to an equilibrium for sufficiently thin MFRs, which
quantitatively means that

ka 1 15( )

along the axis path of curvature κ(l). The appropriate power-
law decay of KI(r) and KF(r) at r> 1 ensures that, externally,
our MFR manifests itself as a current- and flux-carrying thread
described by classical Biot–Savart laws (Jackson 1962).

2.2. Axis Path Model of the MFR

Special scrutiny is required for constructing a discretized
model of the axis path  to make its optimization process
stable. We represent  in terms of a cubic spline that smoothly
join N+ 1 points, ¼ , , N0 , called control nodes. Instead of
l, it is convenient to parameterize  by a continuous parameter
ν whose values coincide with the numbers 0, K, N at the
control nodes. Any other point n( ) of  is determined then by
the vector function
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Its coefficients ci m
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, , j=1,K, N, are uniquely defined by a linear

system of 4N equations. This system consists of the following
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The defined spline nSi
N ( ) describes the contribution of the

ith node to the shape of the axis path under unchanged
positions of the other N nodes (see Figure 1). As Equation (16)
explicitly states, this contribution is linearly proportional to the
vector i representing the ith control node. It is smoothly
distributed over the axis path with a maximum at this node and
decays relatively fast by having smaller and smaller maximums
between other nodes. This representation of the axis path spline
allows one to assess the influence of the position of a single
node on the whole shape of the path.

The arc length l(ν) of  as a function of ν is a solution of the
following ordinary differential equation (ODE):

n
n= 
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d
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is the ν derivative of Equation (16). By integrating
Equation (24) from 0 to N, one obtains the total arc length L
of  . The inverted Equation (24) yields another ODE,

n
n

=


d

dl

1
26

∣ ( )∣
( )

whose solutions define the inverse relationship ν(l) between the
l and ν parameterizations of the curve  .
The described ODEs help us to keep the control nodes i

equidistant along the path at each iteration toward its optimized
shape, which brings some kind of stiffness to the path during its
deformation. Operationally, we first determine L, as described
above, and then integrate Equation (26) from 0 to lj≡ j L/N to
obtain νj= ν(lj), j= 1, K, N− 1. To prevent a deterioration of
the path model due to an excessive separation of the nodes, we
reset N at each iteration by the rounded DN L lmax , max( ),
where D ~l amax is a maximally allowable arc length between
the nodes.
The evaluation of Equation (16) at ν= νj yields equidistant

path pointsj that are used as new control nodes in the same
Equation (16). The newly defined path is slightly different than
the starting one, so their arc lengths between the control nodes
are different as well. Nevertheless, the j nodes at the new
path appear for the used N more equidistant than thei nodes
at the starting path. Repeating such a procedure of resampling
control nodes, one can make them more and more equidistant at
the modeled path n( ). In fact, the application of this
procedure shows that, after each sufficiently small deformation
of the path, one such resampling might be enough to make the
optimization procedure stable (Section 2.4). The axis path
defined by Equation (16) with equidistant control nodes is
henceforth called canonical.
The control nodes, different from the footpoints of the path,

are allowed to be displaced only along the binormal M̂ and
normal N̂ of the Frenet–Serret basis of the path. For our path
model, they are calculated by using Equation (25) and
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By using these expressions evaluated at ν= νj, one can obtain
the normal N̂ j and binormal M̂ j along which the corresponding
control nodes = ¼ - j N, 1, , 1,j are displaced in the
optimization process.
In contrast, the control nodes 0 and N , being the

footpoints of the path, are allowed to be displaced strictly along
the solar surface. This implies that

q q
f f

= =

= =

M M

N N

, ,

, ,

N

N

0 FP1 FP2

0 FP1 FP2

ˆ ˆ ˆ ˆ
ˆ ˆ ˆ ˆ

Figure 1. Basic cubic spline function nSi
N ( ) associated with the ith control

node for N = 8 and i = 0, K, 4.
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where q̂ and f̂ with the corresponding subscripts are the unit
coordinate vectors at the footpoints of the path defined in the
spherical coordinate system (r, θ, f) with the origin at the
center of the Sun. Thus, a small variation of the axis path
described by Equation (16) can be written as

åd n x h= +
=

 M Na S , 32
i

N

i
N

i i i i
0

( )( ˆ ˆ ) ( )

where the node displacements ξi and ηi are normalized to a. We
hold these displacements to be=1 through all iterations of the
optimization process.

The subphotospheric axis path * at each iteration is chosen
to be a copy of  mirrored about the plane that passes through
the footpoints 0 and N and has the normal

=  n , 33ˆ ∣ ∣ ( )

where

= +   2 34N0( ) ( )

is an average of the footpoints. For -  RN 0∣ ∣  , this
plane well approximates a plane touching the solar surface at
the point nR ˆ . The corresponding mirror images of the control
nodes are given by

= - -   n n2 . 35i i i* ˆ · ( ) ˆ ( )

By using the same direction and type of parameterization as for
the path  (Equation (16)), one can determine its corresponding
mirrored points at * from

ån n n= Î
=

 S N, 0, . 36
i N

i
N

i

0

* *( ) ( ) [ ] ( )

This closure of  makes it possible to minimize the normal
component of the magnetic field that the flux-rope currents
produce at the boundary, as discussed in Section 2.1. The
normal component of the resulting field then is almost due to
the potential field Bp (see Equation (1)), or, in other words, it
becomes almost identical to the component derived from
observations. A difference between them is only due to the
curvature of the solar surface, which is relatively small for
typical source regions of CMEs. The configurations of larger
size require a more sophisticated approach, which we will
consider in a further publication.

2.3. Line Density of the Residual Magnetic Force

In order to estimate how far our approximate MFR PEC
deviates from equilibrium, we have to determine the line density
of the residual magnetic forces along the MFR, or, in other words,
the magnetic force fν per unit length of the MFR. Its expression
can rigorously be derived by using the Maxwell stress tensor
integrated over the surface of an elementary wedge of the rope.
The latter is formed by slicing the MFR with two planes that are
perpendicular to the axis and separated from each other along the
axis by a segment of length Δl that is tending to zero. The lateral
surface of the wedge has to fully enclose the part of the MFR
sliced by these planes. The corresponding integral over the
boundary of the wedge divided by Δl provides, after some
lengthy algebra, the required expression of fν. The form of this
expression suggests, however, that fν can be obtained in a much

easier manner by simply integrating the volumetric density of the
Lorentz force j ×B over the volume of the elementary wedge. Let
d2x be a surface element at a point x on one of the wedge planes
containing a cross section Sν of the MFR (see Figure 2). The
wedge width is (1− κY)Δl, where Y is the coordinate value
measured along the normal N̂ from the point of intersection of Sν
with the axis path. Then one obtains from Equation (29) that this
coordinate is = -  xY ( ) · , so that the corresponding
volume element of the wedge is - -  D x xl d1 2[ ( ) · ] .
Thus, the required expression for the line density of the Lorentz
force is

ò ´= - - n
n

 f x j B xd1 , 37
S

2[ ( ) · ] ( ) ( )

where and  are given for our path model by Equations (16)
and (30).
This consideration also allows one to see that the concept of fν

itself physically correct only for the axis points, where κa = 1
holds true, or, in other words, the MFR is locally thin. If κa
becomes larger than 1 at some point (i.e., the MFR is locally
thick), the corresponding center of curvature of the path turns out
to be inside the rope, so that the corresponding cross-sectional
planes start slicing the MFR into two elementary wedges. To
cover, at least formally, such “corner” points, Equation (37)

Figure 2. The coronal axis path  is represented by a vector function n( ),
which is defined in terms of a cubic spline of N + 1 equidistant control nodes
i (white circles) uniformly parameterized by parameter ν from 0 to N. The
gray circles show evaluation nodes at which the line density fν of the magnetic
force is calculated by Equation (38) via the integral of the Lorentz force, taken
with a certain weight, over the corresponding cross sections Sν perpendicular to
the path. The subphotospheric axis path * is a copy of  mirrored about a
plane that locally approximates the spherical solar boundary.
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should be extended via the following modification:

ò ´= - - n
n

 f x j B x1 d , 38
S

2∣ ( ) · ∣ ( ) ( )

where we apply the modulus to the metric factor to handle both
wedges on equal footing, as their contributions to fν are similar.

Although this extension generally covers such “corner”
points, it is desirable to prevent the formation of these points in
the optimization process of the path for other reasons. Note
that, for our RBSL flux rope, the normalized current density is

s
p

= +j j j
I

a
,

4
, 39I F 2

( )







where jI and jF are normalized axial and azimuthal current
densities described by Equations (A3)–(A5) and (A9)–(A10),
respectively. Appendix C demonstrates that, for κa→ 1, a
singularity is developed in jF distribution at the concave side of
the MFR, which signifies the condition of being avoided when
applying the RBSL method.

Such a sensitivity of the method to κa∼ 1 motivated us to
evaluate fν for the purpose of optimization at points different from
the control nodes i because κa tends to have local maxima at
i. For the evaluation of fν, therefore, we choose the points that
are equidistantly separated from the nearest control nodes. To
determine them, we first calculate the corresponding values
νi, i= 1,K, N, by using Equations (24)–(26) and then evaluate
Equation (16) at ν= νi to obtain the required evaluation nodes,
i.e., in a similar way to how the control nodes are obtained before
(see Section 2.2).

Let the potential field Bp and axial current I be measured in
Bu and Iu units, respectively, such that

p m=I aB4 , 40u u ( )

and so

=I C I , 41I u ( )

where the dimensionless coefficient CI is yet to be determined
in further optimization. Then fν can be written as

m
= +n n nf f fC C

B
a, , 42I I

2 u
2

IFp
( )











where nf p
and nf IF

are two separate parts of fν due to j×Bp and
j× (BI+ σBF), respectively. The current density and magnetic
field components are calculated here by using the differential RBSL
formulations described in Appendix B. The latter allows one to
represent our RBSL integrals as solutions of certain ODEs, which
in turn makes it possible to exploit the power of the adaptive step
refinement in the existing ODE solvers.

2.4. Optimization of the MFR Parameters

We constructed several metrics for measuring how far from
equilibrium an MFR configuration is and used them as cost
functions in a minimization procedure to obtain approximate
equilibria. The construction invokes the nonlinear least-squares
method, and the corresponding minimization is performed
iteratively by varying independent MFR parameters, namely
the axial current and the coordinates of the control nodes. More
precisely, we vary the dimensionless parameter CI and the

2(N+ 1)-dimensional vector of the node displacements,

c x x h h= ¼ ¼, , , , , , 43N N0 0
T( ) ( )

where the superscript T denotes matrix transposition. Note that
the axial flux F in our RBSL approach is not an independent
parameter; it scales with the axial current I according to
Equation (14), where the parameter a is estimated from
observations.
The metrics or cost functions are constructed as a mean

square of a 3D vector characteristic wν of magnetic forces
determined at cross sections Sν, which in matrix notations is

å=
n n

n

n n
=

w wW
N

1
. 44T

N

1

( )

We have found that two such characteristics provide the most
interesting results.
The first characteristic is derived from Equation (38) by

dividing it by I. After normalizing it in the same way as
Equation (42), one obtains

p
= +n n nw f fC

B
,

4
, 45I

u
IFp

( )







which is nothing else than a residual magnetic force per unit
current and per unit length of the MFR. Thus, the cost function
based on this characteristic is simply a mean square of the
effective magnetic field with which the currents of the rope
interact.
The second characteristic is derived by dividing Equation (45)

on the normalized self-force nfCI IF
∣ ∣ to give

=
+

n
n n

n

-

w
f f

f

C
. 46

I
1

IF

IF

p

∣ ∣
( )

This dimensionless characteristic is a relative residual force
with respect to the self-force of the MFR so that the
corresponding cost function is a mean square of this relative
force.
Although the absolute minimum W= 0 is the same for both

introduced cost functions, it can ideally be reached only if all
nf∣ ∣, ν= ν1, K, νN vanish during the iterative minimization

process of these functions described below. It turns out,
however, that for the RBSL model of an MFR used, the lower
bound of n nfmax ∣ ∣ generally does not vanish and depends on
the form of the cost function. Therefore, when starting from the
same initial axis path, the minimization of these functions
yields different results. This raises the important question of
how close these results can be made by varying the initial axis
path. We postpone this investigation for the future and consider
below in Section 3 only the results for one possible initial
axis path.
Note that the parameter CI ( -CI

1) enters quadratically into
the first (second) W, which allows one to find immediately
its optimal value for a given axis path. In the first case, we
obtain

å å= -
n n

n

n n
n n

n

n
= =

f f fC , 47I
T 2

N

IF

N

IF

1

p

1

∣ ∣ ( )
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and in the second case

å å= -
n n

n
n

n n n

n
n n
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The optimization of the axis path is a less trivial problem that
generally can be tackled only numerically, because both cost
functions have a very complex nonlinear dependence on the
coordinates of control nodes. Therefore, we will solve this
numerical problem iteratively in small steps. Let us first perturb
wν with small displacements of the nodes (Equation (32)) and
linearize it around an unperturbed path to obtain

c» +n n nw w J , 490 ( )

where wν
0 is the unperturbed characteristic and

c
º

¶
¶

n
nJ
w

50ij

i

j
( ) ( )

is a 3× 2(N+ 1)-dimensional Jacobian matrix determined
numerically in terms of Fréchet derivatives along the basis
vectors M̂ j and N̂ j, j= 0, K, N (Section 2.2). The substitution
of Equation (49) into Equation (44) turns W into a quadratic
form in χ with a symmetric and positive definite matrix n nJ JT ,
so that with the minimization of this form, we arrive at the
classical Gauss–Newton method (Fletcher 2000). This method
alone, however, is not sufficient for our purposes, as it may
generally result in a |χ| that is too large in value and, therefore,
invalidate our linearization approach.

To be self-consistent with this approach, one needs to
minimizeW subject to the constraintc c = const 1T  . This is
reached by extending the cost function as follows:

å c cl= +
n n

n

n n
=

w wW
N

1
, 51T T

N

1

( )

where λ is a Lagrange multiplier, known in the least-squares
method as a damping parameter (Levenberg 1944; Marquardt
1963). Taking the derivative of this extended cost function with
respect to χ and setting the result to zero yields the following
linear system of so-called normal equations:

å åcl+ = -
n n

n

n n
n n

n

n n
= =

J J J wI . 52T T 0
N N

1 1

⎛
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⎠
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In this form, the derived system is applicable to both cases
defined by Equations (45) and (46). However, their Jacobian
matrices are different: in the first case

= +n n nJ J JC , 53I IFp ( )
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c
º

¶

¶
n

n
J

f
, 54ij

i

jp

p( ) ( )

c
º

¶

¶
n

nJ
f

, 55ij

i

jIF
IF( ) ( )

and in the second case

= + -n
n

n n
n

n
n n

-J
f

J J
w

f
f JC

1
. 56I

1
0

T

IF

IF

IF
IF IFp⎜ ⎟

⎛

⎝

⎞

⎠∣ ∣ ∣ ∣
( )

To initialize the optimization procedure, we first reconstruct
an approximate axis path of the MFR by using observational
data and convert it to the canonical form, as described in
Section 2.2. For this canonical path, we compute then the
corresponding wν and Jν. By putting =n nw w0 in Equation (52)
we solve it for χ at several different values of the parameter
λ> 0 until the inequality c= ¼ +max 1i N i1, , 2 1 ∣ ∣( )  is satisfied.
We consider that χ satisfying this inequality is an acceptable
solution, which we use to calculate with Equations (16) and
(32) a new axis path d+  for the next iteration. We iterate
in this manner until W stops decreasing. The canonical path in
this sequence of iterates that corresponds to a minimum of W is
regarded as a sought-for optimal path.
One should not expect a priori the existence of an axis path

that would provide an exact force-free equilibrium. In general,
even after all our efforts to reduce the residual force in the
constructed PEC, its absolute value will always be above zero.
How low the level of this force can be made, with the
magnitude of the axial current bounded from below, depends
on several factors.
To bring the residual force down by remaining within our

approach, one can, in principle, play with the choice of the
radius a (1), the initial axis path (2), the form of the cost
function (3), and the optimized parameter CI (4). In Section 3,
we choose (1) and (2) only once with the help of observational

Figure 3. The axis paths (red lines) and Q-maps for optimized Solutions 1 (a)
and 2 (b) before MHD relaxation. The yellow line shows, for comparison, the
initial axis path, which is the same for both solutions. Only high-Q lines with

Qlog 4.010 (sky blue and crimson for negative and positive polarities,
respectively) are shown on top of the photospheric Br distribution (gray
shaded). Q-maps are depicted also in the central cross section of the optimized
PECs (inverted grayscale palette with fully transparent colors at <Qlog 2.010 ).
The numerical grid is outlined at the boundary. The same color coding is used
for similar maps below.
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image data. We explore, however, what one would obtain by
choosing (3) and (4) in several possible ways.
From the standpoint of the minimization of W only, it would

be self-consistent to use at each iterate the expression for CI

derived from the same W as the normal equations. However, if
one takes into account the subsequent line-tied zero-beta MHD
relaxation of the resulting optimized PEC, this part of the
method has to be modified.

It turns out that, for PECs with an ambient potential field of a
bipolar type, Equation (47) provides somewhat low CI values,
such that the corresponding MFRs are pushed too much toward
the solar surface after relaxation and are, therefore, partially
deprived of their initial coherency. In this respect, the use of
Equation (48) for CI leads to better equilibria, where the MFRs
hover over the surface, or barely touch it, as well-defined
objects. This different behavior can be explained in terms of the
corresponding expressions for CI. Note that each of them is a
sum of different terms nt i over the evaluation nodes, so that
nt CIi is the weight with which the ith node contributes to CI.
The comparison of these weights at different iterations of our
optimization process shows that Equation (47) generally has a
more or less uniform distribution of the weights over the nodes.
In contrast, Equation (48) has generally higher weights at the
central part of the MFR, where the ambient potential field is
stronger. This implies that a larger value of |CI| has to be
obtained in the latter case, exactly as it is the case in our
example study below. Bearing this in mind, we will employ
only Equation (48) from here on, irrespective of which cost
function W is used for optimizing the axis paths.

Furthermore, we would like to note that, in general, the
radius a, the axial current profile, and the corresponding RBSL
kernels can vary along the MFR. The right-hand side of
Equation (14) is then not a constant, but a function of ν. This
provides, in principle, additional degrees of freedom for MFR
variations, which could be used to improve the result of the
optimization. By taking those into account, however, we would
significantly increase the dimensionality of the optimization
problem, making it less tractable. Therefore, we considered
here only the simplest RBSL model for MFRs whose diameter
and axial current profile do not vary along the axis path.

3. Illustration of How the Method Works

Let us now consider how our improved RBSL method works
for relatively simple, yet realistic PECs. As in Titov et al. (2018),
we choose the 2009 February 13 CME event (Patsourakos &
Vourlidas 2009), whose PEC had an often observed sigmoidal
morphology (Miklenic et al. 2011). As in our previous effort, we
do not intend here to perfectly reproduce the observed structure.
Rather, our aim is to explore the new capabilities of our improved
method by applying it to a familiar PEC. By this, we imply the
capabilities that arise from the PEC optimization matching the
radial component of the photospheric magnetic field.
As explained in Section 2.4, the result of the optimization is

not unique and depends on the form of the cost function W
used. Below we apply two cost functions with wν given by
Equations (45) and (46), and call the solutions with the
corresponding optimized axis paths Solutions 1 and 2,
respectively. For both solutions, we use the same initial axis

Figure 4. Solutions 1 and 2 vs. STEREO/EUVI EUV images of the PEC of the 2009 February 13 CME: top view on the field-line structure (first row) and on
isosurfaces of j jmax=0.438 (magenta) and a a = 0.079max (semitransparent cyan; second row). The footpoints of field lines in the core-field region are chosen for
each solution according to the corresponding Q-map of the relaxed configuration (see Sections 3.1 and 3.2), so they are somewhat different. Outside of the core region,
the same field-line footpoints are used for both solutions.
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path (yellow line in Figure 3) and a= 0.01Re, where Re is the
solar radius. The path was approximated by equidistant control
nodes, whose number (nine) was kept unchanged throughout
the optimization iterations for both solutions, as the length of
the iterated paths did not vary much. In each iteration, we kept
the maximal displacement of the control nodes strictly equal to
0.1 a. The small displacements allowed us to prevent a
deterioration of the path approximation and the associated
breakdown of the iterative process (see Sections 2.2 and 2.4,
respectively).

Both minimums of the cost functions W with wν given by
Equations (45) and (46) turn out to be relatively shallow. The
value of W, calculated in both cases for each iterated axis path,
first decreases and then starts to increase with a growing
number of iterations. We considered the iteration at which W
has a minimum value in this sequence as final, and the
corresponding CI and n( ) as optimal. The minimum of
Solution 1 (Solution 2) is reached at the third (fourth) iteration
of the optimization procedure, with the resulting CI;−4.12
(CI;− 3.72) and W reduced by∼25% (∼24%) relative to its
initial value. We found no evidence for the occurrence of
another minimum up to the sixth (eight) iteration.
One reason for the occurrence of shallow minima is the

requirement of a constant MFR cross section in our RBSL
formulation (see Section 2.1). We note that, during the
subsequent MHD relaxation, the cross sections remain roughly
constant in the center of our MFRs (albeit acquiring an oval

shape; see Figures 6–10), while the outer MFR parts expand
strongly, especially for Solution 1 (Figures 4, 7, and 10). Thus,
even after our optimization, the imbalance between magnetic
tension and gradient of magnetic pressure remains large enough
to produce such an expansion, which will last until a balance
between these components of the magnetic force is reached.
In other words, the preset of a constant cross section of the

MFR is generally too restrictive to allow the system to closely
approach a force-free state via the optimization of the axial current
and the axis path. The MFRs with less expandable legs should be
more adaptable to the optimization. Future investigations will
show how typical these MFRs are. Fortunately, the subsequent
line-tied MHD relaxation can bring even the expandable MFRs
close to a force-free state, which significantly extends the
applicability of our method.
To analyze the magnetic structures resulting from our MHD

relaxations, we calculated cross-sectional and boundary maps
of the squashing degree (Titov et al. 2002) or squashing factor
Q (Titov 2007) of elementary magnetic flux tubes, which
characterize the divergence of field lines in these tubes. The Q-
maps helped us to identify the building blocks of those
structures whose boundaries are defined by high-Q surfaces.
The latter are generally separatrix surfaces, quasi-separatrix
layers (QSLs; Priest & Démoulin 1995), or their hybrids. A
detailed analysis of the magnetic structure of our solutions is
presented in Sections 3.1 and 3.2, respectively.
The magnetic fluxes of our optimized PECs are partitioned by

separatrix surfaces that disappear during the MHD relaxation,
thereby yielding their role to newly formed QSLs. The separatrix
surfaces are built of coronal field lines that touch the solar surface
at the PIL segments called bald patches (BPs; Titov et al. 1993).
Such field lines are relatively easy to determine, as we
demonstrate in Section 3.1 for Solution 1. The field-line structure
of the QSLs can be recovered with the same precision by
calculating so-called bracketing field-line pairs (see Titov et al.
2017). While our QSLs possess an intricate internal structure, we
restrict ourselves here, for simplicity, to an analysis of the overall
magnetic structure, i.e., of the magnetic “building blocks” of our
relaxed PECs. To do so, we simply identify all flux systems that
are separated by QSLs and draw the corresponding field lines with
different colors. We also identify all current layers that are present
in the system.
The results of this analysis are summarized in Figure 4,

which compares our two solutions with EUV images of the
observed PEC. One can see that both solutions reproduce the
observed sigmoidal morphology. However, the MFR in
Solution 1 is significantly more inflated, and the MFR in
Solution 2 fits the observations better. Note that, despite this
significant size difference, the optimized axis paths of Solutions
1 and 2 do not differ much from each other (see Figures 3(a)
and (b)), and the difference between the corresponding
optimized axial currents is only∼10%. Thus, it appears that
the result of the MHD relaxation is rather sensitive to the
choice of the cost function in the optimization procedure.
One can see from Figure 4 that the orientation of the

modeled MFRs and observed sigmoids noticeably differs from
each other. We believe that the main reason for this difference
is that the initial MFR footprint locations were not chosen
accurately enough in our model. For the purpose of
comparison, we chose the same locations as in Titov et al.
(2018), where the observed configuration was modeled with
our earlier version of RBSLs. That version did not preserve the

Figure 5. BPSS structure of the optimized PEC for Solution 1, prior to MHD
relaxation: (a) BP–BP separators (red, orange, and magenta); (b) BPSS (yellow
field lines) that envelopes the MFR, BPSS (light-magenta field lines) that
bounds a small arcade below the MFR, and BPSS (green field lines) that fills
the gap between two separators (red and orange thick lines) and belongs to the
MFR boundary; and (c) BPSS (green field lines) that bounds the MFR itself.
Panels on the right zoom into the PEC center to reveal how the field lines are
related to the cross-sectional Qlog10 -map.
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observed magnetogram at the flux-rope footprints, while our
upgraded RBSL model used here practically preserves it.
Therefore, the previous and present MFRs interact with slightly
different ambient potential fields, which likely led to different
orientations of the relaxed flux ropes. In other words, the
footprint locations that worked well for the previous model are
apparently not the best choice for our current model. The
resulting discrepancy could likely be removed by fine-tuning
the footprint locations, but this is beyond the scope of the
present publication and will be left for a future investigation.

It is interesting to note that our previous model (Titov et al.
2018) used a rather different initial axis path, and it did not
invoke an optimization of the MFR parameters or a matching
of the radial field at the footprints of the MFR to the
observations. Also, in contrast to our present solutions, the
axial current I was estimated from the balance of magnetic
forces just at one middle point of the MFR axis path, and the
contribution of the azimuthal current density jF to that balance
was ignored. Nevertheless, that model was also able to
qualitatively reproduce the observed sigmoidal morphology.
This implies a certain robustness of the RBSL method in
reproducing this morphology regardless of whether the
mentioned improvements are used or not.

3.1. Solution 1

The structural skeleton of the optimized PEC is formed by
two bald-patch separatrix surfaces (BPSSs; Titov et al. 1993)
originating at two segments of the polarity inversion line (PIL)
of the photospheric Br distribution. These BPSSs divide the
volume enclosing the MFR into several domains and contain
so-called BP–BP separators (red, orange, and magenta thick
lines in Figure 5), which are the field lines that touch the
photosphere twice at BPs and lie at the intersection of two
BPSSs. The separator colored in red in Figure 5 is located
below the MFR and is very similar to the one described for the
first time by Titov & Démoulin (1999) in a simple analytical
model of a PEC with an arched MFR.
In addition, the structural skeleton of Solution 1 has some

topological features that were not covered by that model. The
most interesting one is the BPSS that envelopes the MFR
boundary and touches it (see Figures 5(b) and 6(c)) along the
other separator (thick magenta line in Figure 5). The appearance
of this feature is likely due to the fact that, by construction, the
superposition of our MFR and ambient potential fields keeps the
photospheric Br distribution unchanged.
All these BPSSs disappear in the course of the subsequent

line-tied MHD relaxation. However, several QSLs, providing a

Figure 6. Maps of the field-line length (first column), force-free parameter α = (B · ∇ × B)/B2 (second column), and Qlog10 (third column) in the central PEC cross
section for Solution 1, before (first row) and after (second row) line-tied β = 0 MHD relaxation of the optimized PEC. The gray-shaded Qlog10 maps are blended with
the corresponding blue-red α maps.
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similar partition of the PEC’s core magnetic field, are formed
during the relaxation. Figure 6 presents maps of the field-line
length l, force-free parameter α, and Qlog10 in the central cross
section of the optimized PEC before (top row) and after
(bottom row) the relaxation. By comparing these maps, one can
see that the current, which is initially distributed over the whole
MFR cross section, transforms into several force-free current
layers, which become aligned with the QSLs. The MFR itself
survives this process as a distinct object, which is delineated in
the cross section by high-Q lines. Its teardrop-like shape first
shrinks a bit and then substantially rises during the relaxation.
Simultaneously, the field lines of the overall MFR increase
their length three to five times and acquire an S-like shape (see
Figure 4).

The cross-sectional Q-map in Figure 6(c) shows that, prior to
relaxation, a small magnetic arcade is present underneath the
MFR. In a three-dimensional view, we can see that this arcade
is adjoined to the MFR along one of the separators (red)
depicted in Figure 5(a). As a result of the MFR’s rise during the
relaxation, the arcade is stretched along the vertical direction,
whereas it also develops strong shear and accumulates a large

electrical current (see Figures 7(f) and 8). The development of
shear is due to a substantial elongation of the field lines in the
core-field region along the horizontal direction (see Figure 7(a)
and (b)). Structural features, such as this vertical current layer
and the adjacent sheared field lines outside it, are generic for
many existing models of PECs (e.g., Kusano et al. 2012; Xia
et al. 2014b).
Our β= 0 MHD relaxation was performed under line-tying

boundary conditions. Nevertheless, the connectivity of magn-
etic field lines to the boundary could change due to the
presence of (small) resistive and numerical diffusion of the
magnetic field. At certain sites of the PECs, however, the
connectivity changes were too large to be caused merely by
slow diffusion, suggesting that magnetic reconnection took
place at those sites. Evidence for that is provided by the above-
mentioned disappearance of the initial BPSSs, which is
certainly not a small change of the connectivity.
In order to identify such connectivity changes, we plotted

field lines in the optimized and relaxed PECs as follows. In
both cases, we used for the field lines the same color scheme
and launch points. For each of the building blocks of the

Figure 7. The elements of the PEC before (left column) and after (right column) line-tied β = 0 MHD relaxation for Solution 1. The field lines shown in panels (a) and
(b) have the same footpoints; the latter are depicted in panels (c) and (d) by small balls, whose conjugate footpoints prior to the relaxation are shown in panel (c) by
small bars of the same color. Panels (e) and (f) show the isosurfaces =j j 0.438max of the current density (magenta) before and after the relaxation, respectively. Panel
(f) also presents an isosurface a a = 0.079max of the force-free parameter (semitransparent cyan) to designate a layer of return current.
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relaxed PEC, whose cross-sections are outlined in Figure 6(f)
by high-Q lines, we chose a different color, with a slightly
darker (lighter) hue for the field lines launched at the positive
(negative) polarity. As launch points we used pairs of conjugate
footpoints of the relaxed PEC. Any such pair, by definition,
gives two identical field lines in the relaxed PEC. However, the
corresponding field lines can differ from each other in the
optimized PEC, because of the nonvanishing resistivity present
in our MHD relaxation. Such nonidentical field-line pairs
designate the footpoints where the magnetic connectivity has
changed during the relaxation.

For example, a comparison of Figures 7(a) and (b) shows
that some of the MFR field lines (green) strongly bulged out of
the core structure during the relaxation, which hints at a large
change in the connectivity at the corresponding footpoints. This
can be checked by comparing the launch and end points of the
paired field lines of the optimized PEC. Depicting the launch
and end points by small balls and bars, respectively, one can
see that the connectivity significantly changed in the MFR and
also in other building blocks of the core field (see Figures 7(c)
and (d)). These changes were apparently caused by magnetic
reconnection that was driven in the forming current layers by
the residual magnetic stress. By reducing this stress, the
reconnection gradually turned into diffusion at the largely
developed current layers, which are shown in Figure 7(f) for
the relaxed PEC.

The set of blue field lines shown in Figure 7(b) is a magnetic
arcade that envelopes the core structure in the center of the
PEC. The core contains the sigmoidal MFR, which has almost
untwisted, but strongly writhed (S-shaped) field lines (green),
and two J-shaped magnetic “loops” (yellow) that bracket the
MFR. In the center of the PEC (the strong-field region), these
loops are nearly horizontal and adjoined to the vertical current
layer mentioned above. The loops are much more extended
than the enveloping arcade, and, at larger distances from the
current layer, wrap around the MFR to add writhe and
sigmoidality to the core structure (see Figures 4, 7(b), and 8).

The vertical current layer underneath the MFR is composed
of three sublayers (see Figure 6(f)). The central sublayer is a
narrow sheared arcade that consists of relatively short field
lines (light magenta in Figure 8), which are aligned with the
PIL. The adjacent two sublayers contain much longer field
lines, which arch above the MFR and the current layer. One set
of footpoints of these field lines resides next to the sheared
arcade, while the other is located far away from the PIL, at the
outskirts of the conjugate polarity. These field lines, colored in
orange in Figure 7(b), have shapes that are similar to the
neighboring yellow ones, but they interlock slightly differently
with the MFR field lines (green).

3.2. Solution 2

We performed an MHD relaxation also for Solution 2, which
has a weaker optimized axial current than Solution 1 (CI is
about 10 % smaller; see above). The relaxation of this case was
accompanied by magnetic reconnection as well, and it resulted
in a similar equilibrium structure.

Figure 9 shows maps of the field-line length, force-free
parameter α, and Qlog10 in the central cross section of the
optimized PEC before and after the relaxation. Just as for Solution
1, the initially diffuse distribution of the current density transforms
into several relatively sharp layers, which are largely aligned with
the QSLs that form during the relaxation. Comparing Figures 6(d)

and 9(d), one can see that the field lines of the relaxed MFR are
much shorter than in Solution 1, yielding a much more compact
core field (Figure 10(b); see also Figure 4). Note that, due to the
weaker current, the MFR center is pushed downwards (rather than
upwards) in this case. This results in the formation of a horizontal
(rather than a vertical) current layer, in which the current flows in
the opposite direction (see Figures 9(f) and 10(a)–(c)). The
formation of this current layer could be prevented by a suitable
increase of |CI| (as in Solution 1). We note that additional
adjustments of the modeled PEC could also be obtained by
modifying, for example, the shape of the initial axis path or the
location of its footpoints.

3.3. Concluding Remarks

It should be emphasized that the magnetic structure of our
specific Solutions 1 and 2 is probably representative for many
sigmoidal PECs on the Sun. For example, the field lines shown
in Figure 10(d) can readily be associated with the “envelope,”
“elbows,” and “arms” typically seen in observations of PECs in
bipolar active regions (Moore et al. 2001). In our solutions, the
electrical current is concentrated in relatively thin current
layers, which are aligned with QSLs and reach the photospheric
boundary along segments of high-Q lines that are located close
to the PIL.
It has yet to be verified how generic such a current structure

is for sigmoidal PECs, but intuitively it seems that the layers
constitute an inevitable interface between flux tubes of different
types of geometry and connectivity, as described above. If this
is indeed the case, then our solutions demonstrate the unique
capability of the improved RBSL method to model these kinds
of equilibria. Given the complex pattern of QSL footprints and
current densities at the boundary and the limitations of other

Figure 8. A close-up view of the relaxed PEC, close to its central cross section.
Field lines outlining the enveloping arcade (blue), the MFR (green), the vertical
current layer (light magenta), and two flux tubes adjacent to the current layer
(yellow thick lines; called “arms” below) are shown.
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methods discussed in Section 1, we do not believe that such
PECs can be reproduced in a simple manner by either of those
methods.

In contrast, these complex structures are easily obtained by
our improved RBSL method from relatively simple input data.
The input includes only the photospheric distribution of the
normal component of the magnetic field, and an approximate
axis path and diameter of the MFR to be modeled. The
optimization adjusts the path and provides an approximate
value of the axial current required for keeping the optimized
MFR in equilibrium. From a topological point of view, this
procedure corrects the (quasi-)separatrix surfaces that partition
the magnetic flux of the PEC. It is important here that this
correction stems from the minimization of unbalanced magn-
etic forces in the PEC, so that the subsequent MHD relaxation
of the resulting imbalance can only minimally affect the
established partition of the magnetic flux. During this step, the
field-line connectivity is largely preserved due to the line-tying
conditions imposed at the photospheric boundary. It changes
only at the current layers that are self-consistently formed near
(quasi-)separatrix surfaces. These connectivity changes are
produced by magnetic reconnection, which is driven by not yet
balanced magnetic forces. As soon as a force balance is reached

in the PEC, the reconnection ceases and only slow magnetic
diffusion commences in the current layers.
In other words, the complex current structure in our solutions

is a result of the self-organization of the configuration during its
MHD relaxation. The role of the boundary during this process
is merely to preserve the bulk of the magnetic connectivity that
was approximated during the previous step. In this respect, our
improved RBSL method is very similar to the MFR insertion
method by van Ballegooijen (2004). However, our method has
the essential advantage that it makes the magnetic connectivity
of the prerelaxed PEC more adequate to the MFR shape
suggested by the observations. This significantly reduces, or
even fully eliminates, the number of subsequent trial-and-error
relaxation attempts. This advantage of our method is achieved
by minimizing the imbalance between magnetic tension and
magnetic-pressure gradients in the MFR prior to the MHD
relaxation.

4. Summary

We have improved our RBSL method (Titov et al. 2018) for
modeling PECs by extending it in two ways. First, we have
modified the method so that it allows one to construct, in a

Figure 9. Maps of the field-line length (first column), α (second column), and Qlog10 (third column) in the central cross section for Solution 2 before (first row) and
after (second row) line-tied β = 0 MHD relaxation of the optimized PEC. The gray-shaded Qlog10 maps are blended with the corresponding blue-red α maps. The
color-bar scales are the same as in Figure 6.
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straightforward manner, an MFR field with a vanishing or
negligibly small normal component at the photospheric
boundary. This modification is particularly valuable at the
locations of the MFR footprints, where the original method
required a more complicated approach for preserving the
photospheric normal component of the background field. The
perturbation of that component by the insertion of the MFR is
now only due to the curvature of the solar surface and,
therefore, negligible if the distance between the footprints of
the MFR is much less than the solar radius.

Second, we have developed an optimization method for
minimizing unbalanced residual magnetic forces prior to the
MHD relaxation of a modeled PEC. This minimization is
obtained by optimizing the shape and axial current of the
corresponding MFR with the Gauss–Newton method of least
squares. To give an idea of how the method performs in
practice, we note that our present implementation (written in
Maple and Fortran) allows one to conduct an optimization for
cases such as those shown in Section 3 on a laptop computer
within less than one hour. The performance can be improved
by fully implementing the optimization method in Fortran.

Our improved RBSL method allows one not only to
minimize residual magnetic forces but also to properly adjust
the magnetic connectivity in PEC configurations. In order to
evaluate the power of these new capabilities, we combined the
method with line-tied β= 0 MHD simulations to construct two
numerically relaxed, approximately force-free PEC solutions
for the 2009 February 13 CME event, which we had used
previously for testing the original model (Titov et al. 2018).
The main outcomes of this evaluation can be summarized as
follows.

The MFR, as the current-carrying entity in our two optimized
PECs has, by construction, a curved cylindrical body whose
diameter is essentially the same over its length. However, during
the relaxation, it acquires the shape of a sigmoid with inflated

elbows. This transformation is accompanied by a change of the
current density distribution, and by the conversion of twist into
writhe and shear. The resulting relaxed PECs have a complex core
magnetic structure, with the MFR nested within a sheared
magnetic arcade. Both the MFR and the arcade are bounded in the
central region of the PECs by curved current layers, where the
newly developed shear is concentrated.
Depending on the strength of the axial current in the

prerelaxed MFR, the core of the final PEC can also contain a
vertical current layer, which is then embedded in the sheared
arcade, underneath the MFR. This vertical current layer itself is
just another, lower-lying sheared arcade whose field lines are
much shorter than the adjacent core-field lines.
It is interesting to note that all these current layers are well

aligned with QSLs that form during the MHD relaxation. The
partition of the core field by the QSLs reveals building blocks
that match the morphological features typically observed in
bipolar pre-eruptive configurations (e.g., Moore et al. 2001)
very well.
We believe that this agreement is not just a coincidence, but

rather a result of the increased accuracy of our improved RBSL
method in constructing approximate magnetic equilibria. This
suggests that the method will not only be beneficial as a tool for
modeling solar eruptions but also for scientific studies that
require a detailed understanding of the magnetic structure
of PECs.
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contract FA9550-15-C-0001. Computational resources were
provided by NSF’s XSEDE and NASA’s NAS facilities.

Figure 10. The magnetic structure of Solution 2. (a) The RBSL MFR whose parameters minimize W with wν and CI defined by Equations (46) and (48), respectively;
(b) the same structure after line-tied zero-beta MHD relaxation; (c) isosurface =j j 0.438max (magenta) of the current density and the isosurface a a = 0.079max
(semitransparent cyan) of the force-free parameter to designate the corresponding layers of direct and return currents; (d) three different types of field lines that form
the resulting structure. Semitransparent isosurfaces of |j| and α (< 0) are colored in magenta and cyan, respectively. Panel (d) also presents a |j| distribution in the
middle cross section of the PEC. The photospheric Br distribution is shown by gray shading from white (Br > 0) to black (Br < 0).
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Appendix A
Integral RBSL Formulations

For efficient and accurate calculation of the line density of the magnetic force defined by Equation (38), it is useful to derive the
RBSLs that explicitly define the magnetic field and current density associated with our MFR. By using Equations (2) and (4), one can
straightforwardly obtain the azimuthal component of this field:
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The other components of the field and current density associated with the axial flux F are derived in a similar way such that
Equations (3) and (9) yield the axial magnetic field
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This kernel diverges as (1− r)−1/2 at r= 1, so it is integrable. Therefore, the integral given by Equation (A9) is defined and, in
principle, can be calculated by using a suitable change of variables in the neighborhood of the singularity. However, before making
such a calculation, the singular points have to be first localized and then bracketed on the path, which generally might be needed to
repeat several times depending on the shape of the path and the point r at which jF is determined. Therefore, the implementation of
this calculation of jF is not a simple task, because it requires the use of a complex logic and exception handling.

For this reason, we implemented a technically simpler method that determines jF by taking numerically the curl of BF with finite
differencing. As the kernels defined by Equations (A7) and (A8) have no singularities, the required values of BF for such differencing
straightforwardly follow from Equation (A6).

Appendix B
Differential RBSL Formulations

We have found that the computation of the vector potentials AI and AF as well as the MFR fields and current densities described in
Appendix A can be made much more efficient if we represent the corresponding RBSL integrals in terms of solutions of certain
ODEs. Indeed, regarding x as a fixed parameter and changing the variable of integration in Equation (4) from arc length l to
parameter ν (see its definition in Section 2.2), we obtain that AI(ν, x) satisfies the following ODE:
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By supplementing also this equation with Equations (16) and (25), thereby defining the axis path, and the initial condition

=A x 00, ,I ( )

we set the initial value problem for this ODE such that its solution evaluated at ν= N, which is AI(N, x), will provide the integral over
the coronal path  in Equation (4). To obtain the remaining integral over the subphotospheric path *, one needs first to change AI for
AI*, n( ) for n*( ), and n( ) for n*( ) in Equation (B1), and then -A xN ,I*( ) will determine the value of this integral. The
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negative sign here takes into account the proper direction of the integration over the path *. The differential formulations for the
RBSLs given by Equations (A1), (A3), (9), (A6), and (A9) are obtained in a similar way to give
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To calculate the correct total RBSL fields associated with the axial flux F, the corresponding values A xN ,F*( ), B xN ,F*( ), and
j xN ,F
* ( ) must be added to rather than subtracted from the respective integrals over the coronal path  , because the integrals over the
subphotospheric path * are already taken with minus due to the assumed mirroring of these quantities (see Equations (9), (A6),
and (A9)).

As mentioned in Section 2.3, by representing our RBSL integrals in terms of solutions of the above ODEs, we gain the advantage
of being able to employ the existing developed machinery for solving ODEs with adaptive step and controlled accuracy of
integration. The use of this machinery significantly facilitates the implementation of our method.

Appendix C
Current Density Due to Axial Magnetic Flux in a Toroidal RBSL MFR

To reveal how jF depends on the curvature of MFRs modeled with RBSLs, let us derive its expression for the particular case of
toroidal MFRs. The axis path in this case is a circle, which is more conveniently parameterized by the arc angle ϑ. By changing ν for
ϑ one can rewrite Equation (B6) as follows:
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Assume that the vector here is defined in the system of coordinates with the origin at the center of symmetry of the torus. Using
then the Frenet–Serret frame T N M, ,( ˆ ˆ ˆ ) at the point ϑ= 0 of the path, we obtain
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where κ is the curvature of the torus axis.
Due to the rotational symmetry of the torus, it is sufficient to derive jF in one cross section of the torus, e.g., in the plane spanned

on the above N̂ and M̂ . Any point x belonging to this plane is
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where aρ is the distance from the axis to this point, and ω is the angle between r̂ and N̂ . Thus, ρ and ω fully define x in the plane
ϑ= 0, so we will use them to determine the corresponding cross-sectional distribution of jF.

Substituting Equations (C2) and (C3) into = - r x a( ) , we obtain
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One immediately deduces from here that r is an even function of ϑ and
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With the help of Equations (C2) and (C4), we can now rewrite Equation (C1) as follows:
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where

w r w wº ´ = - +T N Msin cos C8ˆ ˆ ˆ ˆ ˆ ( )
is a unit vector parallel to the azimuthal component of djF at the point x defined by Equation (C3). The integration of Equation (C7) over ϑ
from−π to π provides, in principle, the desired jF(ρ, ω). Note, however, that the T̂ component of Equation (C7) is an odd function of ϑ,
therefore the corresponding integral vanishes identically. To integrate the remaining components of Equation (C7), it is convenient to change
the variable of integration from ϑ to r with the help of Equation (C6). This change of variables makes, in particular, the passage to the limit
of vanishing κa in jF more transparent. Indeed, taking into account that ºK r 0jF ( ) at r> 1 (see Equation (A10)) and the ŵ and M̂

components of Equation (C7) are even functions of ϑ, we obtain, after some calculations using Equation (C6),
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One can check that in the limit of vanishing curvature, κa→ 0, the obtained component jFω(ρ, ω) turns exactly into jaz(ρ) given by
Equation (13), while jFM(ρ, ω) vanishes identically, as required. Figure 11 displays the distributions of these components along the
normal N̂ at several other values of κa, which here is identical with the inverse aspect ratio of the torus. In these plots, positive and
negative radii ρ simply correspond to the opposite directions of the radii defined by ω= 0 and ω= π, respectively. This signed ρ

coincides also with y/a, where y is the coordinate axis mentioned previously in connection with Equation (37). The plots demonstrate
that both components of jF have asymmetric profiles with larger amplitudes at ρ> 0, i.e., toward the inner side of the torus. The
asymmetry grows with κa and becomes particularly strong starting from κa; 0.7. At κa= 1, it reaches its apogee when both
components become singular at ρ= 1, i.e., at the inner side of the torus (see dashed black curves in Figure 11).
The considered effect is of a local nature because the kernel K rjF ( ) vanishes at r> 1. In addition, toroidal MFRs locally

approximate MFRs with other shapes and circular cross sections. Therefore, the singular behavior of jF found for toroidal MFRs must
also be present in all other MFRs modeled with RBSLs. Thus, when constructing these models, one needs to limit from above

Figure 11. Distributions of the azimuthal ( jFω, Equation (C10)) and binormal ( jFM, Equation (C11)) components of the current density jF along the normal N̂ to the
torus axis at different values of the parameter κa. Both components are normalized to F/(4πμa3).

18

The Astrophysical Journal Supplement Series, 255:9 (19pp), 2021 July Titov et al.



possible variations of κa along the axis path to prevent the
development of such singularities in the modeled MFRs, as
discussed earlier in Section 2.3.

ORCID iDs

V. S. Titov https://orcid.org/0000-0001-7053-4081
C. Downs https://orcid.org/0000-0003-1759-4354
T. Török https://orcid.org/0000-0003-3843-3242
J. A. Linker https://orcid.org/0000-0003-1662-3328
R. M. Caplan https://orcid.org/0000-0002-2633-4290
R. Lionello https://orcid.org/0000-0001-9231-045X

References

Amari, T., Canou, A., & Aly, J.-J. 2014, Natur, 514, 465
Amari, T., Luciani, J. F., Mikic, Z., & Linker, J. 2000, ApJL, 529, L49
Aulanier, G., Torok, T., P., D., & DeLuca, E. E. 2010, ApJ, 708, 314
Bisi, M. M., Breen, A. R., Jackson, B. V., et al. 2010, SoPh, 265, 49
Canou, A., Amari, T., Bommier, V., et al. 2009, ApJL, 693, L27
Chen, J. 2017, PhPl, 24, 090501
Cheung, M. C. M., & DeRosa, M. L. 2012, ApJ, 757, 147
Chintzoglou, G., Patsourakos, S., & Vourlidas, A. 2015, ApJ, 809, 34
Fan, Y. 2005, ApJ, 630, 543
Fan, Y., & Liu, T. 2019, FrASS, 6, 27
Fletcher, R. 2000, Practical Methods of Optimization (2nd edn.; New York:

Wiley), 436
Gilbert, H. R., Holzer, T. E., & Burkepile, J. T. 2001, ApJ, 549, 1221
Green, L. M., & Kliem, B. 2009, ApJL, 700, L83
Hayashi, K., Feng, X., Xiong, M., & Jiang, C. 2018, ApJ, 855, 11
Howard, T. A., & DeForest, C. E. 2014, ApJ, 796, 33
Inoue, S. 2016, PEPS, 3, 19
Inoue, S., Kusano, K., Büchner, J., & Skála, J. 2018, NatCo, 9, 174
Jackson, J. D. 1962, Classical Electrodynamics (New York: Wiley), 808
Ji, H., Wang, H., Schmahl, E. J., Moon, Y. J., & Jiang, Y. 2003, ApJL,

595, L135
Jiang, C., Wu, S. T., Feng, X., & Hu, Q. 2016, NatCo, 7, 11522
Kliem, B., Su, Y. N., van Ballegooijen, A. A., & DeLuca, E. E. 2013, ApJ,

779, 129

Kusano, K., Bamba, Y., Yamamoto, T. T., et al. 2012, ApJ, 760, 31
Levenberg, K. 1944, QApMa, 2, 164
Lionello, R., Mikić, Z., Linker, J. A., & Amari, T. 2002, ApJ, 581, 718
Liu, R. 2020, RAA, 20, 165
Lugaz, N., Downs, C., Shibata, K., et al. 2011, ApJ, 738, 127
Manchester, W. B., IV, Vourlidas, A., Tóth, G., et al. 2008, ApJ, 684, 1448
Marquardt, D. W. 1963, J. Soc. Indust. Appl. Math., 11, 431
Miklenic, C., Veronig, A. M., Temmer, M., Möstl, C., & Biernat, H. K. 2011,

SoPh, 273, 125
Moore, R. L., Sterling, A. C., Hudson, H. S., & Lemen, J. R. 2001, ApJ,

552, 833
Möstl, C., Rollett, T., Frahm, R. A., et al. 2015, NatCo, 6, 7135
Palmerio, E., Kilpua, E. K. J., James, A. W., et al. 2017, SoPh, 292, 39
Patsourakos, S., & Vourlidas, A. 2009, ApJL, 700, L182
Patsourakos, S., Vourlidas, A., & Stenborg, G. 2013, ApJ, 764, 125
Patsourakos, S., Vourlidas, A., Török, T., et al. 2020, SSRv, 216, 131
Price, D. J., Pomoell, J., & Kilpua, E. K. J. 2020, A&A, 644, A28
Priest, E. R., & Démoulin, P. 1995, JGR, 100, 23443
Savcheva, A. S., van Ballegooijen, A. A., & DeLuca, E. E. 2012, ApJ, 744, 78
Schrijver, C. J., DeRosa, M. L., Metcalf, T., et al. 2008, ApJ, 675, 1637
Su, Y., Surges, V., van Ballegooijen, A., DeLuca, E., & Golub, L. 2011, ApJ,

734, 53
Titov, V. S. 2007, ApJ, 660, 863
Titov, V. S., & Démoulin, P. 1999, A&A, 351, 707
Titov, V. S., Downs, C., Mikić, Z., et al. 2018, ApJL, 852, L21
Titov, V. S., Hornig, G., & Démoulin, P. 2002, JGRA, 107, 1164
Titov, V. S., Mikić, Z., Török, T., Linker, J. A., & Panasenco, O. 2017, ApJ,

845, 141
Titov, V. S., Priest, E. R., & Démoulin, P. 1993, A&A, 276, 564
Titov, V. S., Török, T., Mikić, Z., & Linker, J. A. 2014, ApJ, 790, 163
Török, T., Berger, M. A., & Kliem, B. 2010, A&A, 516, A49
Török, T., Downs, C., Linker, J. A., et al. 2018, ApJ, 856, 75
Török, T., Panasenco, O., Titov, V. S., et al. 2011, ApJL, 739, L63
van Ballegooijen, A. A. 2004, ApJ, 612, 519
Vršnak, B., Maričić, D., Stanger, A. L., et al. 2007, SoPh, 241, 85
Wang, H., & Liu, C. 2019, FrASS, 6, 18
Wiegelmann, T., Inhester, B., & Sakurai, T. 2006, SoPh, 233, 215
Xia, C., Keppens, R., Antolin, P., & Porth, O. 2014a, ApJL, 792, L38
Xia, C., Keppens, R., & Guo, Y. 2014b, ApJ, 780, 130
Zhang, J., Cheng, X., & Ding, M.-D. 2012, NatCo, 3, 747
Zhao, J., Gilchrist, S. A., Aulanier, G., et al. 2016, ApJ, 823, 62
Zuccarello, F. P., Meliani, Z., & Poedts, S. 2012, ApJ, 758, 117

19

The Astrophysical Journal Supplement Series, 255:9 (19pp), 2021 July Titov et al.

https://orcid.org/0000-0001-7053-4081
https://orcid.org/0000-0001-7053-4081
https://orcid.org/0000-0001-7053-4081
https://orcid.org/0000-0001-7053-4081
https://orcid.org/0000-0001-7053-4081
https://orcid.org/0000-0001-7053-4081
https://orcid.org/0000-0001-7053-4081
https://orcid.org/0000-0001-7053-4081
https://orcid.org/0000-0003-1759-4354
https://orcid.org/0000-0003-1759-4354
https://orcid.org/0000-0003-1759-4354
https://orcid.org/0000-0003-1759-4354
https://orcid.org/0000-0003-1759-4354
https://orcid.org/0000-0003-1759-4354
https://orcid.org/0000-0003-1759-4354
https://orcid.org/0000-0003-1759-4354
https://orcid.org/0000-0003-3843-3242
https://orcid.org/0000-0003-3843-3242
https://orcid.org/0000-0003-3843-3242
https://orcid.org/0000-0003-3843-3242
https://orcid.org/0000-0003-3843-3242
https://orcid.org/0000-0003-3843-3242
https://orcid.org/0000-0003-3843-3242
https://orcid.org/0000-0003-3843-3242
https://orcid.org/0000-0003-1662-3328
https://orcid.org/0000-0003-1662-3328
https://orcid.org/0000-0003-1662-3328
https://orcid.org/0000-0003-1662-3328
https://orcid.org/0000-0003-1662-3328
https://orcid.org/0000-0003-1662-3328
https://orcid.org/0000-0003-1662-3328
https://orcid.org/0000-0003-1662-3328
https://orcid.org/0000-0002-2633-4290
https://orcid.org/0000-0002-2633-4290
https://orcid.org/0000-0002-2633-4290
https://orcid.org/0000-0002-2633-4290
https://orcid.org/0000-0002-2633-4290
https://orcid.org/0000-0002-2633-4290
https://orcid.org/0000-0002-2633-4290
https://orcid.org/0000-0002-2633-4290
https://orcid.org/0000-0001-9231-045X
https://orcid.org/0000-0001-9231-045X
https://orcid.org/0000-0001-9231-045X
https://orcid.org/0000-0001-9231-045X
https://orcid.org/0000-0001-9231-045X
https://orcid.org/0000-0001-9231-045X
https://orcid.org/0000-0001-9231-045X
https://orcid.org/0000-0001-9231-045X
https://doi.org/10.1038/nature13815
https://ui.adsabs.harvard.edu/abs/2014Natur.514..465A/abstract
https://doi.org/10.1086/312444
https://ui.adsabs.harvard.edu/abs/2000ApJ...529L..49A/abstract
https://doi.org/10.1088/0004-637X/708/1/314
https://ui.adsabs.harvard.edu/abs/2010ApJ...708..314A/abstract
https://doi.org/10.1007/s11207-010-9602-8
https://ui.adsabs.harvard.edu/abs/2010SoPh..265...49B/abstract
https://doi.org/10.1088/0004-637X/693/1/L27
https://ui.adsabs.harvard.edu/abs/2009ApJ...693L..27C/abstract
https://doi.org/10.1063/1.4993929
https://ui.adsabs.harvard.edu/abs/2017PhPl...24i0501C/abstract
https://doi.org/10.1088/0004-637X/757/2/147
https://ui.adsabs.harvard.edu/abs/2012ApJ...757..147C/abstract
https://doi.org/10.1088/0004-637X/809/1/34
https://ui.adsabs.harvard.edu/abs/2015ApJ...809...34C/abstract
https://doi.org/10.1086/431733
https://ui.adsabs.harvard.edu/abs/2005ApJ...630..543F/abstract
https://doi.org/10.3389/fspas.2019.00027
https://ui.adsabs.harvard.edu/abs/2019FrASS...6...27F/abstract
https://doi.org/10.1086/319444
https://ui.adsabs.harvard.edu/abs/2001ApJ...549.1221G/abstract
https://doi.org/10.1088/0004-637X/700/2/L83
https://ui.adsabs.harvard.edu/abs/2009ApJ...700L..83G/abstract
https://doi.org/10.3847/1538-4357/aaacd8
https://ui.adsabs.harvard.edu/abs/2018ApJ...855...11H/abstract
https://doi.org/10.1088/0004-637X/796/1/33
https://ui.adsabs.harvard.edu/abs/2014ApJ...796...33H/abstract
https://doi.org/10.1186/s40645-016-0084-7
https://ui.adsabs.harvard.edu/abs/2016PEPS....3...19I/abstract
https://doi.org/10.1038/s41467-017-02616-8
https://ui.adsabs.harvard.edu/abs/2018NatCo...9..174I/abstract
https://ui.adsabs.harvard.edu/abs/1962clel.book.....J/abstract
https://doi.org/10.1086/378178
https://ui.adsabs.harvard.edu/abs/2003ApJ...595L.135J/abstract
https://ui.adsabs.harvard.edu/abs/2003ApJ...595L.135J/abstract
https://doi.org/10.1038/ncomms11522
https://ui.adsabs.harvard.edu/abs/2016NatCo...711522J/abstract
https://doi.org/10.1088/0004-637X/779/2/129
https://ui.adsabs.harvard.edu/abs/2013ApJ...779..129K/abstract
https://ui.adsabs.harvard.edu/abs/2013ApJ...779..129K/abstract
https://doi.org/10.1088/0004-637X/760/1/31
https://ui.adsabs.harvard.edu/abs/2012ApJ...760...31K/abstract
https://doi.org/10.1090/qam/10666
https://doi.org/10.1086/344222
https://ui.adsabs.harvard.edu/abs/2002ApJ...581..718L/abstract
https://doi.org/10.1088/1674-4527/20/10/165
https://ui.adsabs.harvard.edu/abs/2020RAA....20..165L/abstract
https://doi.org/10.1088/0004-637X/738/2/127
https://ui.adsabs.harvard.edu/abs/2011ApJ...738..127L/abstract
https://doi.org/10.1086/590231
https://ui.adsabs.harvard.edu/abs/2008ApJ...684.1448M/abstract
https://doi.org/10.1137/0111030
https://doi.org/10.1007/s11207-011-9852-0
https://ui.adsabs.harvard.edu/abs/2011SoPh..273..125M/abstract
https://doi.org/10.1086/320559
https://ui.adsabs.harvard.edu/abs/2001ApJ...552..833M/abstract
https://ui.adsabs.harvard.edu/abs/2001ApJ...552..833M/abstract
https://doi.org/10.1038/ncomms8135
https://ui.adsabs.harvard.edu/abs/2015NatCo...6.7135M/abstract
https://doi.org/10.1007/s11207-017-1063-x
https://ui.adsabs.harvard.edu/abs/2017SoPh..292...39P/abstract
https://doi.org/10.1088/0004-637X/700/2/L182
https://ui.adsabs.harvard.edu/abs/2009ApJ...700L.182P/abstract
https://doi.org/10.1088/0004-637X/764/2/125
https://ui.adsabs.harvard.edu/abs/2013ApJ...764..125P/abstract
https://doi.org/10.1007/s11214-020-00757-9
https://ui.adsabs.harvard.edu/abs/2020SSRv..216..131P/abstract
https://doi.org/10.1051/0004-6361/202038925
https://ui.adsabs.harvard.edu/abs/2020A&A...644A..28P/abstract
https://doi.org/10.1029/95JA02740
https://ui.adsabs.harvard.edu/abs/1995JGR...10023443P/abstract
https://doi.org/10.1088/0004-637X/744/1/78
https://ui.adsabs.harvard.edu/abs/2012ApJ...744...78S/abstract
https://doi.org/10.1086/527413
https://ui.adsabs.harvard.edu/abs/2008ApJ...675.1637S/abstract
https://doi.org/10.1088/0004-637X/734/1/53
https://ui.adsabs.harvard.edu/abs/2011ApJ...734...53S/abstract
https://ui.adsabs.harvard.edu/abs/2011ApJ...734...53S/abstract
https://doi.org/10.1086/512671
https://ui.adsabs.harvard.edu/abs/2007ApJ...660..863T/abstract
https://ui.adsabs.harvard.edu/abs/1999A&A...351..707T/abstract
https://doi.org/10.3847/2041-8213/aaa3da
https://ui.adsabs.harvard.edu/abs/2018ApJ...852L..21T/abstract
https://doi.org/10.1029/2001JA000278
https://ui.adsabs.harvard.edu/abs/2002JGRA..107.1164T/abstract
https://doi.org/10.3847/1538-4357/aa81ce
https://ui.adsabs.harvard.edu/abs/2017ApJ...845..141T/abstract
https://ui.adsabs.harvard.edu/abs/2017ApJ...845..141T/abstract
https://ui.adsabs.harvard.edu/abs/1993A&A...276..564T/abstract
https://doi.org/10.1088/0004-637X/790/2/163
https://ui.adsabs.harvard.edu/abs/2014ApJ...790..163T/abstract
https://doi.org/10.1051/0004-6361/200913578
https://ui.adsabs.harvard.edu/abs/2010A&A...516A..49T/abstract
https://doi.org/10.3847/1538-4357/aab36d
https://ui.adsabs.harvard.edu/abs/2018ApJ...856...75T/abstract
https://doi.org/10.1088/2041-8205/739/2/L63
https://ui.adsabs.harvard.edu/abs/2011ApJ...739L..63T/abstract
https://doi.org/10.1086/422512
https://ui.adsabs.harvard.edu/abs/2004ApJ...612..519V/abstract
https://doi.org/10.1007/s11207-006-0290-3
https://ui.adsabs.harvard.edu/abs/2007SoPh..241...85V/abstract
https://doi.org/10.3389/fspas.2019.00018
https://ui.adsabs.harvard.edu/abs/2019FrASS...6...18W/abstract
https://doi.org/10.1007/s11207-006-2092-z
https://ui.adsabs.harvard.edu/abs/2006SoPh..233..215W/abstract
https://doi.org/10.1088/2041-8205/792/2/L38
https://ui.adsabs.harvard.edu/abs/2014ApJ...792L..38X/abstract
https://doi.org/10.1088/0004-637X/780/2/130
https://ui.adsabs.harvard.edu/abs/2014ApJ...780..130X/abstract
https://doi.org/10.1038/ncomms1753
https://ui.adsabs.harvard.edu/abs/2012NatCo...3..747Z/abstract
https://doi.org/10.3847/0004-637X/823/1/62
https://ui.adsabs.harvard.edu/abs/2016ApJ...823...62Z/abstract
https://doi.org/10.1088/0004-637X/758/2/117
https://ui.adsabs.harvard.edu/abs/2012ApJ...758..117Z/abstract

	1. Introduction
	2. Method
	2.1. Improved RBSLs
	2.2. Axis Path Model of the MFR
	2.3. Line Density of the Residual Magnetic Force
	2.4. Optimization of the MFR Parameters

	3. Illustration of How the Method Works
	3.1. Solution 1
	3.2. Solution 2
	3.3. Concluding Remarks

	4. Summary
	Appendix AIntegral RBSL Formulations
	Appendix BDifferential RBSL Formulations
	Appendix CCurrent Density Due to Axial Magnetic Flux in a Toroidal RBSL MFR
	References



