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Abstract

Cutting edge deep learning techniques allow for image segmentation with great speed and accuracy.
However, application to problems in materials science is often difficult since these complex models may
have difficultly learning meaningful image features which would enable extension to new datasets. In
situ electron microscopy provides a clear platform for utilizing automated image analysis. In this work
we consider the case of studying coarsening dynamics in supported nanoparticles, which is important
for understanding e.g. the degradation of industrial catalysts. By systematically studying dataset
preparation, neural network architecture, and accuracy evaluation we describe important
considerations in applying deep learning to physical applications, where generalizable and convincing
models are required. With a focus on unique challenges which arise in high-resolution images, we
propose methods for optimizing performance of image segmentation using convolutional neural
networks, critically examining the application of complex deep learning models in favor of motivating

intentional process design.
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Introduction

In situ and operando experimental techniques, where dynamic process can be observed with high
temporal and spatial resolution, have allowed scientists to observe chemical reactions, interfacial
phenomena, and mass transport processes to give not only a better understanding of the physics of
materials phenomena, but also a view into how materials react under the conditions in which they are
designed to perform®?. As the use of in situ techniques continues to expand, and technology to enable
these experiments continues to develop, we are faced with the fact that more data can be produced
than can be feasibly analyzed by traditional methods®*. This is particularly true for in situ electron
microscopy experiments, where high resolution images are captured at very high frame rates. In
practice, hundreds of images can be captured per second. However many experimental analyses
consider less than one frame per second, or even one frame for every several minutes®. Methods for
fast and efficient processing of high-resolution imaging data will allow for not only full utilization of
existing and developing technologies, but also for producing results with more statistical insight based

on the sheer volume of data being analyzed.

Simultaneously, the field of computer vision provides well understood tools for image processing, edge
detection, and blob localization which are helpful for moving from raw image data to quantifiable
material properties. These techniques are easy to apply in many common computer programming
languages and libraries. However more recent research highlights the processing speed and accuracy of
results obtained through the use of machine learning®’. Previously, a combination of traditional image
processing and advanced statistical analysis has be shown to successfully segment medical images®”.
Deep learning - generally using multi-layer neural network models - expands on other machine learning
techniques by using complex connections between learned parameters, and the addition of non-linear
activation functions, to achieve the ability to approximate nearly any type of function'®. With regards to

image segmentation and classification, the use of Convolutional Neural Networks (CNNs), in which high-
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dimensional learned kernels are applied across grouped image pixels, is widespread. CNNs provide the
benefit that their learned features are translationally equivariant, meaning that image features can be
recognized regardless of their position in the image. This makes such models useful for processing
images with multiple similar features, and robust against variation in position or imaging conditions®?.
Additionally, the feature richness of high-dimensional convolutional filters and the large number of
connections between hidden layers in a neural network allows for the learning of features which,
conventionally, are too complex to represent, and which make intuitive interpretation difficult. Much of
the literature studying CNNs focuses on high-accuracy segmentation/classification of large, complex,
multi-class image datasets or upon improving data quality through super-resolution inference, rather
than quantitative analysis of high-resolution images*?*. While additional memory requirements alone
make processing of high-resolution images difficult, the scale of features and possible level of precision
also changes as a function of image resolution. Most importantly, for the simple case of particle edge
detection, the boundary between classes in a high-resolution image may spread across several pixels,
making segmentation difficult even by hand. Generally, literature studies of CNNs for image
classification are used for many-class classification with coarse — if any — object localization, while in the
field of electron microscopy fewer individual object classes exist in a single image yet precise positioning

is required.

Though, it seems, the tools for rapid segmentation of high-resolution imaging data exist, several points
of concern regarding the use of deep learning must be acknowledged. First, while the ease of
implementation using common programming tools enables extension of methods to new applications by
non-experts, the complexity and still-developing fundamental understanding of deep learning can lead

to misinterpretation of results and poor reproducibility'***. Moreover, models can be prone to

" While conventionally used to specify atomic resolution imaging, in this work we use the term high-resolution to
refer to the pixel resolution of the microscope camera.
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overfitting - memorizing the data rather than learning important features from limited training examples
- which can go unnoticed without careful error analysis®™*®. Overfitting occurs when a model has
enough parameters that an unrealistically complex function can be fit to match every point in a data set.
Thus, a model which accurately labels data by overfitting will likely fail when shown new data since its
complex function does not describe the true variation in the data. Therefore, an overfitted model isn’t
useful for future work. Finally, the high dimensionality of data at intermediate layers of a neural
network combined with the compound connections between hidden layers makes representation, and
therefore understanding, of learned features impossible without including more assumptions into the
analysis. These challenges — specifically representation and visualization of CNN models — are areas of

active research’/8,

We focus on semantic segmentation of Environmental Transmission Electron Microscopy (ETEM) images

1922 Ensembles of supported nanoparticles are important for industrial

of supported gold nanoparticles
catalysis, deriving their exceptional catalytic activity from surface energy resulting from the high amount
of under-coordinated surface atoms relative to the particle’s bulk volume. On a thermodynamic basis,
the high surface energy which allows for effective catalysis also provides a driving force for nanoparticle
sintering through a variety of mechanisms®*?4. Theory exists to describe the mean-field process of
Ostwald Ripening and basics of nanoparticle coalescence, yet local effects and inter-particle interactions
cause deviations from our theoretical understanding. Obtaining precise sizes and locations of
nanoparticles as a function of space and time is imperative to describing nanostructural evolution and
developing a physical understanding of the processes leading to catalyst degradation by particle growth.
Thus, our high-contrast images of supported gold nanoparticles provide a simple, yet important, case

study for developing efficient methods of image segmentation so that individual particle-scale changes

can be studied.
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Building on previous work on image segmentation, automated analysis, and merging deep learning
within the field of materials science, we study a variety of CNN architectures to define the most
important aspects for the practical application of deep learning to our task. We discuss how image
resolution affects segmentation accuracy, and the role of regularization and preprocessing in controlling
model variance. Further, we investigate how image features are learned, so that model architectures
can be better designed depending on the task at hand. By using a simpler approach to semantic
segmentation, in contrast to poorly understood and highly complex techniques, we intend to show that

conventional tools can be utilized to construct models which are both accurate and extensible.

Results and Discussion

High Resolution Image Segmentation

Particularly in the field of medical imaging, studies regarding similar image segmentation tasks have
been published®>?. In these cases, an encoder-decoder, or ‘hourglass’, -type CNN architecture was
found to be well suited to segmentation tasks where spatial positions of features are key. With this
approach, successively deeper convolutional/max-pooling layer pairs (added to decrease spatial
resolution while simultaneously increasing feature richness) are combined with up-sampling
convolutional layers that aim to re-scale the image back to a higher resolution while decreasing the

212728 " In many cases, however, these tasks are used to identify

feature dimension of the image source
whether a specific feature or object is present or absent, not to measure the size of such features with
any level of precision. Correspondingly, our tests show that this network structure successfully

identifies nanoparticle pixels in our images with 512x512 resolution, yet consistently misses the centers

of the largest particles (Supplemental Figure 1).
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To improve segmentation performance, we moved to a more complex architecture inspired by the
UNet?. This model, rather than increasing kernel size with the goal of expanding the receptive field,
uses skip-connections to tie activations in the encoding stage to feature maps in the decoding stage in
order to improve feature localization. Skip connections work by concatenating encoded and decoded
images of the same resolution followed by a single convolutional layer and activation function to relate
unique aspects of both images (see visual representation in Supplemental Figure 2). This improves upon
the similar hourglass architecture by maintaining local environments from the original image to map
features to the output. Results using the UNet-type architecture on our image set show that the model
is able to consistently recognize both large and small particles, and that it is robust against varied
imaging conditions and datasets (Figure 1 and Supplemental Figure 1 show results on images from

experiments not represented in the training set).

Using our earlier approach, we trained the same UNet on higher resolution images (1024x1024 pixels),
however, as seen in Figure 2, this network was not able to accurately label pixels at nanoparticle edges,
showing instead a blur of uncertainty at the edges. Moreover, we noticed that training the same model
on the same data more than once would produce different results: while in some cases training
produced image segmentation with wide edge variation, other training instances gave segmentation
results with nearly perfectly identified particles, with little to no variation at particle edges. These
results likely signal overfitting of the dataset, with the model ‘memorizing’ the noise rather than actual
features, as raw activation maps (Figure 3) show that in fact no features of particles are learned by the
model and instead only noise patterns in the background areas are recognized. This model, therefore,
produces a very accurate particle measurement on the training dataset, but would not generalize to
data from other experiments or with particles of different sizes (i.e., the same dataset with a different
magnification). This is further highlighted by the instability of the model with respect to the length of

training time.
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Rather than solely increasing the width and depth of the model to improve performance and stability
(we used a 4-step UNet-type architecture for 1024x1024 images, as depicted in Supplemental Figure 2),
the greatest improvement in model performance comes about through understanding where the model
fails when increasing image resolution. 15 unique UNet models were tested with architectural
modifications inspired by the errors observed in our tests. These modifications, and the motivation for
each, are described in Table 1. The effect of learning rate on model performance was also investigated
empirically in order to determine how to best sample the loss landscape, but in this regard, we found

that a learning rate of 0.0001 is practical and effective for all deep models on our dataset.

Results from all fifteen models are shown in Supplemental Figure 3. Our initial gauge of performance is
qualitatively based on the ability to detect particles of varying size, sensitivity to noise and illumination
variation in the raw image, and the sharpness of the activation cutoff at particle edges. Based on these
criteria, best performance is seen in models with batch normalization only and batch normalization
combined with extra convolutional layers (Figure 4, Norm and TwoConv_Norm, respectively). From this,
it appears that Batch Normalization is the most important factor for learning particle features from
1024x1024 images. Visual inspection of Figure 4 also shows that, in general, blurred images detect
edges further towards the interior of the nanoparticle, and models with an additional convolutional
layer (and no blurring) are virtually indistinguishable from those with a single up-sampling convolution.
More importantly, only models without blur are able to consistently and accurately label small, low-

contrast particles.

Aside from applying batch normalization, we find that the only way to achieve significant segmentation
improvement on high resolution images is to increase the size of the convolutional kernel, here from 3x3
pixels to 7x7 (Supplemental Figure 4). However, this greatly increases the number of trainable

parameters and training time for the model.
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To briefly summarize the practical implications of our findings, continual Batch Normalization through
successive convolutional layers has a significant positive effect on the performance. For our dataset,
increasing network depth does not appear to increase the performance of the CNN. A slow learning rate
produces the best results and most stable models, while preprocessing training images with Gaussian

blur seems to increase the risk of overfitting.

Evaluating Detection Accuracy

Variation in the color scale at particle edges, as seen Figure 2, led us to believe that our particle
measurement would vary greatly as a function of the chosen softmax-activation threshold. Intensity line
profiles, as shown in Figure 5, are helpful in illustrating this edge variation for two models compared to
the intensity of the raw image. These plots check how two different models perform in comparison with
the edge contrast in the raw image. As the intensity approaches 1, both models show a slope towards
the particle center showing the extent of uncertainty in classification at the particle-support interface.
Figure 6 collects F1 accuracy scores, the harmonic mean of model precision and recall, for the batch-
normalized CNN as a function of threshold value, and the amount of Gaussian blur applied compared to
a set of 50 validation-set labels. Here, high precision means that the model produces few false positives
(pixels labeled as particle which actually correspond to background), while recall measures the
proportion of particle pixels which were successfully identified by the model (see individual plots in
Supplemental Figure S4). Based on these results, we could expect that the normalized models with no
applied blur and blur (o = 1) are stable with respect to precision and recall at a particle activation
threshold values below 0.7. The model trained on blurred images with o = 2, shows similar performance
over a smaller range of stable thresholds. For our case of binary classification of an unbalanced dataset,
where recognizing particles pixels is more important than recognizing background, recall is likely the
most important measure for determining a threshold for use in practice. While we see convergence

with maximum precision for the model without blur around a threshold of 0.7, we realize that our
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empirically selected value of 0.4 gives better recall with essentially the same precision as compared to

thresholding at 0.7.

Learning Features with a Simpler Model

Training stability and model overfitting pose large risk for image segmentation CNNs that are to be used
and continually developed on varied datasets. While performance often increases with the addition of
tunable model parameters, achieving training convergence and interpretation of the model’s output
become increasingly difficult. With this in mind, we developed a significantly pared down CNN, with a
single convolutional layer consisting of a single learnable filter followed by softmax activation on our
training data which produced the segmentation shown in Figure 6,b. The benefit of such an architecture
is that, since the dimensionality of the kernel is the same as that of the image, we can easily visualize the
learned weights (Figure 6,a). Previous work has confirms that edges and other spatially-evident image
features are generally learned in the early convolutional layers of a CNN3C. Repeating the same method
with another kernel size, this time 7x7-pixels rather than the initial 9x9, produces a similar filter,
showing that the results are not an artifact of the feature scale. Such a single-layer model with logistic
activation can be compared, in practice, to a sparse convolutional autoencoder, or even the application

of a linear support-vector machine (SVM) for logistic regression®..

While this model is useful for illustrating the power of simpler machine learning methods, minimal
changes are needed to extend this idea to a model that provides usable, practical segmentation. Using
one convolutional layer, now with 32 filters, followed by a second, 1x1 convolutional layer to combine
the features into a segmented image, we test a shallow but wide CNN architecture. Again, aside from
the convolutional layer used to combine the extracted features, filters from this shallow network can be
visualized to see what features are being learned from the data. The F1 score of this simpler model

(Figure 7a, blue line) is comparable to the performance of the most accurate deep network described
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above (batch normalization with no applied blur —red line). These results illustrate that a model with
significantly fewer parameters and quicker training time can still produce a usable segmentation.
Indeed, as shown in Figure 7b, the edges detected by the simpler CNN are in many cases closer to the
actual particle edge than those of the deep model; In this light, the decrease F1 score in Figure 7a is
likely due to the high rate of false positives in the simple model. In practice any false positive clusters
are significantly smaller than true nanoparticles, so filtering by size to further increase accuracy is
possible. Our results suggest that shallow, wide CNNs have enough expressive power to segment high

resolution image data®?.

Discussion

High Resolution Image Segmentation

Our initial experiments revealed the importance of a segmentation model developing an understanding
of a pixel’s broader environment, rather than simply identifying features based on intensity or distance
to an edge. The fact that the simple, hourglass-style CNNs cannot identify the interior of particle as
such, can be attributed to an inability of the CNN to learn similar features with different size-scales; we
suspect that, in an edge-detecting model, the lack of variation in the interior of a particle appears similar
to the in the background leading to improper classification. This clearly indicates the importance of
semantic understanding, in which the local environment is considered in detail. Indeed, increasing the
receptive field (kernel size) of the network to incorporate more local information improves detection
accuracy, yet this approach drastically increases the number of learnable parameters in the CNN and the
training time required for convergence. This is reinforced in seeing the improved performance of the

UNet compared to the hour-glass CNN. Max-pooling after each convolutional layer effectively increases

10
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the receptive field of the next convolutional layer; concatenating encoding and decoding activations

serves as a comparison of the same features over a variety of length scales.

While segmentation of 512x512-pixel images is possible and seemingly accurate, higher measurement
precision can be achieved by utilizing higher resolution cameras available on most modern electron
microscopes. For an image with a fixed side length, increasing pixel resolution decreases the relative
size of each pixel. Decreasing the pixel size increases the possible measurement precision, and
therefore, high-resolution images are needed to provide both accurate, and consistent particle
measurements. Along these lines, the error introduced by mislabeling a single pixel decreases as pixel
density (image resolution) increases. It’s important to note that though the accuracy of manual particle
measurements from images with different resolutions likely changes very little (assuming accuracy is
mainly dependent on the care taken by the person making measurements), changes in resolution,
particularly around particle edges, can greatly influence automated labeling performance since edge
contrast decreases as interfaces are spread across multiple pixels. Thus, a unique challenge for high-
resolution image segmentation is developing a model which is able to recognize interface pixels, which
appear fundamentally different from the interior of a nanoparticle, as contributing to the particle and
not the background. To account for increased complexity of the features in higher-resolution images,
our network architecture expanded with the idea that a larger number of parameters would increase
the expressive power of the model. In fact, this deeper and wider model (seen in Figure 2) showed little
increase in performance compared to the one for low resolution images. A more effective approach
would match the strengths of the segmentation models to the features of the data. For our case of

relatively simple images, increasing the complexity of the model alone does not achieve this goal.

Our findings show that regularization, in this case by Batch Normalization, is vital to accurate labeling of
an image. When training from scratch, i.e. without pretrained weights, it has been shown that the loss

function is smoother and model convergence is better when using Batch Normalization, which may have
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a significant effect on higher resolution images due to the combinations of strong noise and lack of
visually discriminative features on the scale of the receptive field®®. Properly pairing regularization, in
attempt to maintain the distribution of intensity values in the image, with an activation function suited
to allowing such a distribution is essential. As such, the dying ReLU problem, where CNN outputs with a
negative value are pushed to zero, removing a significant portion of the actual distribution of the data,
causes loss of information and difficult convergence®®**. Our use of ReLU activation functions essentially
produces output values in the range [0,°), which presents a risk of activation divergence, and can be
mitigated by normalization in successive convolutional layers before the final softmax activation. Leaky
ReLU allows activations on the range (-o,o°), and the small activation for negative pixel values
combined with batch normalization works to avoid increasing variance with the number of convolutional
layers. In practice, we find that using Leak ReLU activation solves the problem seen in Figure XXX,

where no activation is seen for the particle class.

These results suggest that, for a common segmentation task, regularization is more effective than the
depth or complexity of a CNN. This is easily justified, considering that the proper classification of
boundary pixels, spread across several pixels in high-resolution images, requires the sematic information
stored in the total local intensity distribution which is lost as the variance of the intensity histogram

increases.

As shown in Figure XXX, the choice of an activation threshold for identifying nanoparticles can greatly
influence the labelling error. The steep slope of the softmax activation function used in the final CNN
layer works to force activation values towards 0 or 1 —in an ideal case the number of pixels with
activation values between these values would be minimal. Our experience shows that the Otsu
threshold, which separates the intensity histogram such that the intra-class variance is minimized, is a
practical choice for segmenting our data®®. This makes sense, since, qualitatively, CNN output shows a

large peak close to 0 activation representing the background with nearly all pixels with higher activation

12
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values corresponding to particles. However, it can be shown mathematically that the calculated Otsu
threshold may mislabel the class with a wider intensity distribution®®. Therefore, thresholding datasets
with a lower signal-to-noise ratio would likely be more difficult. In these cases, it is imperative that a
large dataset — which is representative of the data in question -- is used for training, as choosing low

threshold values, even when they produce usable results, makes it difficult to recognize overfitting.

An effective machine learning model requires a balance between the number of learnable parameters,
the complexity of a model, and the amount of training data available in order to prevent over-fitting and

ensure deep-learning efficiency3%*’

. In an efficient model, a vast majority of the weights are used, and
vital to the output. In practice though, deep networks generally have some amount of redundant or
trivial weights3®. In addition to efficiency, several issues have come to light regarding the use of deep
learning for physical tasks which require an interpretable and explainable model as this often leads to

better reproducibility and results which generalize well*®3’

. Even for computer vision tasks, where
feature recognition doesn’t necessarily give physical insight, an interpretable model is valuable so that
sources of error can be understood when applied to datasets consisting of thousands of images, each of
which cannot feasibly be checked for accuracy. Our main goal in employing a single layer neural
network was to provide a method for visualizing learned kernels which show the most important
features of an image for binary classification. The visualization of our trained kernel (Figure XXX) can be
interpreted in two ways. First, we can conceive that the algorithm is learning vertical and horizontal
lines (dark lines), potentially similar to basic Gabor filters for edge detection — though it is missing the
characteristic oscillatory component - combined with some amount of radially-symmetric blur (light
gray). Alternatively, we can envision that the horizontal/vertical lines could be an artifact of the electron
camera or data augmentation method meaning that the learned filter represents an intensity spread

similar to a Laplacian of Gaussian (LoG) filter which is used to detect blobs by highlighting image

intensity contours. As a simple test of our supposition, Supplemental Figure S5 shows that a sum of a
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horizonal Gabor filter, vertical Gabor filter, and Gaussian filter qualitatively produces a pattern similar to

our learned kernel.

As mentioned, increasing the width of a shallow network (in this case from 1 to 32 filters) is enough to
make a simple model more usable. Though 32 filters (visualized in Supplemental Figure 6) may be too
many filters to easily compare for visually extracting useful information, it is possible to see a general
trend: filters are learning faint curved edges. Moreover, taking the mean of all 32 filters (Supplemental
Figure 7) shows a similar pattern as Figure 8,a with slight rotation. Further analysis of the set of 32
filters would require regularization of the entire set of weights to allow for more direct comparison,
however it is possible to imagine a case where, with a properly tuned receptive field in the convolutional
layer, more subtle image features than hard lines could be revealed through visualizing a learned kernel.
Based on these results we expect that designing a shallower neural network which retains the local
semantics learned in an encoder-decoder or UNet architecture would make a generalizable model for

particle segmentation more realistic.

Conclusions

We have systematically tested several design aspects of CNNs with the goal of evaluating deep learning
as tool for segmentation high-resolution ETEM images. With proper dataset preparation and continual
regularization, standard CNN architectures can easily be adapted to our application. While overfitting,
class imbalance, and data availability are overarching challenges for the use of machine learning in
materials science, we find that knowledge of data features and hypothesis-focused model design can
still produce accurate and precise results. Moreover, we demonstrate that meaningful features can be
learned in a single convolutional layer, allowing us to move closer to a balance between state-of-the-art

deep learning methods and physically interpretable results. We evaluate the accuracy of several deep
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and shallow CNN models and find evidence that, for a relatively simple segmentation task, important
image features are learned in the initial convolutional layers. While we apply common accuracy
measures to evaluate our models, we note that other specially designed metrics may help to define
exactly where mistakes are made, and thereby which features a model is unable to represent. Whether
or not these simplified models reach the accuracy required for quantification of segmented images, a
learned indication of important low-level image features can help guide the design of an efficient,

parallelizable pipeline for conventional image processing.

We present a method for simultaneously segmenting images and visualizing the features most
important for a low-level description of the system. While we don’t derive any physical insight from the
learned features of our images, this approach could potentially be extended, for example, to a multi-
class classification task where learned kernels could elucidate subtle pixel-scale differences between
feature classes. For our needs, the interpretability of this basic model helps us to design a segmentation
process where measurement accuracy is limited by the resolution of our instrumentation, not by our
ability to identify and localize features. Simple segmentation tasks may not fully utilize a deep CNN’s
ability to recognize very rich, inconspicuous features, but the breadth of literature and open-source
tools from the Computer Science community are available for use in other fields and must be applied in
order to determine their limitations. In this regard, we hope to provide a clear description of how
architectural features can be tweaked for best performance for the specific challenge of segmenting

high-resolution ETEM images.

In all, while computer science research trends towards complicated, yet highly accurate deep learning
models, we suggest a data-driven approach, in which deep learning is used to motivate and enhance the
application of more straightforward data processing techniques, as a means for producing results which
can be clearly interpreted, easily quantified, and reproducible on generalized datasets. In practice, the

wide availability of technical literature, programming tools, and step-by-step tutorials simultaneously

15



349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

makes machine learning accessible to a wide audience, while obscuring the fact that application to
specific datasets requires an understanding of unique, meaningful data features, and of how models can
be harnessed to give usable and meaningful analyses. While common in the field of computer vision, in
practice many of the techniques we discuss are added to a machine learning model as a black box, with
little understanding of their direct effects on model performance. Framing deep-learning challenges in
the light of real physical systems, we propose means both for thoughtful model design, and for an
application of machine learning where the learned features can be visualized and understood by the

user. In this way, analysis of data from high-throughput in situ experiments can become feasible.

Methods

Sample Preparation

An approximately 1nm Au film was deposited by electron beam assisted deposition in Kurt J. Lesker PVD
75 vacuum deposition system to form nanoparticles with an approximate diameter of 5 nm. The film
was directly deposited onto DENSsolutions Wildfire series chips with SiN support suitable for in-situ TEM

heating experiments.

TEM Imaging

Samples were imaged in an FEI Titan 80-300 S/TEM environmental TEM (ETEM) operated at 300kV. Film
evolution was studied in vacuum (TEM column base pressure 2x107 Torr) at 950°C. High frame rate
image capture utilized a Gatan K2-IS direct electron detector camera at 400 frames per second. Selected
images (Figures 2 and S3) were acquired on a JEOL F200 S/TEM operated at 200kV, with images

collected on a Gatan OneView camera.
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Automated Training Set Generation

Raw ETEM images are processed using a series of Gaussian filters, Sobel filters, morphological opening
and closing, and thresholding algorithms to produce pseudo-labelled training images (see provided code
for reproducing specifics). All operations are features of the SciKit Image python package®. As a note,
we specify that our dataset is pseudo-labelled, because we take automatically labeled images as ground
truth, while traditionally labeled data is produced manually by experts in the field. Parameters for each
of these processing steps, such as the width of the Gaussian filter, are chosen empirically, and the same
parameters are applied to all images in the dataset. Depending on the resolution of the image, and the
amount of contrast between the nanoparticles and background in the dataset (which determines the
number of required processing steps), automated image processing takes between 10 and 30 seconds
per image. Segmentation by this method is faster than manual labeling for particle measurement and
localization, which would take hours per image. Training set accuracy is evaluated by overlaying labels
on raw images and visually inspecting the difference, as there is no way to quantitatively check the

ground truth. Examples of processing steps and training data are shown in Supplemental Figure S8.

A set of training data was made up of 2400 full ETEM images (1792x1920 pixels), collected during a
single experiment, downsized via interpolation to a resolution of 512x512-pixels. Additionally, a second
training set with 1024x1024-pixel resolution, made by cropping appropriately sized sections from a full
1792x1920 image, was created to study the impact of increasing pixel resolution on image segmentation
performance. In practice, it is important to consider artifacts introduced by resizing images; stretching
or compressing images through interpolation/extrapolation may change local signal patterns. Cropping
sections of images maintains the scale of features in as-collected images, meaning that a model could
potentially be trained on many small images (requiring less GPU memory), and then directly evaluated

on full images since convolution neural networks do not require specific input/output sizes once training
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is complete. Augmentation of the dataset was carried out using affine transformations and image

rotation, as successive images captured in a short time are not entirely unique/independent.

Programming and Training Machine Learning Models

All programming was done in Python, with machine learning aspects using the PyTorch framework?.
The final dataset consisted of 2400 1024x1024-pixel images, which was randomly split into training
(70%, or 1680 images) and validation (30%, or 720 images) sets. In order to avoid inherent bias due to
strong correlation between training and test sets in randomly split consecutive images, a third validation
set, collected at a different time but under the same conditions, should be included; we neglect to use

this extra dataset, as we only work to show trends in performance as a function of CNN architecture.

In many cases a balanced dataset, where sample sizes of positive and negative examples are roughly
equivalent, is required to avoid systematic error and bias while training a CNN. In the images considered
here, particle pixels correspond to about 15% of any given image. Though this is quite unbalanced, we
find that the general sparsity of features, and the fact that clear edges are the most important factor in

identification of nanoparticles in these images, reduce the negative impact of any imbalance.

All CNNs used rectified linear unit (ReLU) activation after each convolutional layer (except where noted
later), the Adam optimizer, and Cross Entropy Loss functions**#2, Since Cross Entropy Loss in PyTorch
includes a final softmax activation, a softmax layer was applied to model outputs for inference. All
models were trained for 25 epochs on our System76 Thelio Major workstation using four Nvidia GeForce
RTX 2080Ti GPUs, with each model taking 1-2 hours to train. We note that longer training periods may
be required; we used this time frame to make experimentation with network architecture, data pre-
processing, and hyper-parameter tuning more feasible in-house. We gauge that models were stable in
this training time by tracking loss as a function of epoch number and seeing general convergence.. The
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binary segmentation map which classifies individual pixels as particle or background was obtained by

thresholding predicted softmax output for each pixel.

To obtain quantitative data on the particles themselves, both the training set and CNN segmentation
output were processed by a connected components algorithm to produce a labeled image which groups
pixels into particle regions from which properties such as size and position can be extracted. This

labeling, performed on a binary image, generally takes only one second or less per image

Our base UNet-type architecture for segmenting 512x512 images consisted of three convolutional layers
with Max Pooling or Up-sampling (where applicable) on both downscaling and upscaling sides***3. The
base model for 1024x1024 images adds an additional level of convolutional layers to each side of the
model. Adding convolutional layers, as described later to increase segmentation accuracy, refers to
adding a successive convolutional layer after each down-/up-sampling level of a UNet-type architecture.

Supplemental Figure S2 shows a representation of the CNN architecture used here.

Code Availability

Python code for training image generation, UNet training, and evaluation of results are available at

https://github.com/jhorwath/CNN_for_TEM_Segmentation.

Data Availability

Contact the corresponding author with requests to view raw data. Sample image sets and all python

code used are publicly available in the GitHub repository for this project (link provided above).
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Figure Legends

Figure 1: UNet architecture improves particle segmentation compared to encoder-decoder architecture.

Segmentation results for UNet-type architecture on 512x512 resolution images. a.) shows raw output

20



459  from the model overlaid on the raw image; notice the sharp activation curoff at the particle edges. b.)
460  Threshold applied to image to show final segmentation result. Yello arrow indicate small particles that

461  were successfully recognized. Scale bar represents 50 nm.

462  Figure 2: Application of the UNet architecture in high-resolution images yields uncertainty at particle
463  edges. Using the same UNet architecture but increasing image resolution makes it more difficult for the

464  model to localize edge features. Scale bar represents 50 nm.

465  Figure 3: An overfitting network learns no features of nanoparticles, but recognizes background noise. a.)
466  shows the CNN output for a given image. b.) and c.) show the raw activation values for layers detecting
467  background and particles, respectively. The softmax function combines these activation maps to

468  produce a.). The scale bar in a represents 50 nm and applies for all 3 images.

469  Figure 4: Otsu Threshold contours of six CNN models overlaid on a section of a test image. The model
470  with batch normalization only consistently provides the most accurate segmentation. Each colored
471  contour refers to a different model output: red -TwoConv_Blurl, blue — TwoConvNorm_Blurl, green —

472 Norm_Blurl, purple - TwoConv, orange — TwoConv_Norm, yellow — Norm.

473  Figure 5: Visualizing intensity profiles for specific particles shows segmentation differences between
474  models. Intensity profiles for selected particles in a training image. Line scans show the intensity
475  variation for each particle in the raw image (solid), network with batch normalization (dotted), and

476 network with batch normalization and extra convolutional layers (dashed).

477  Figure 6: A one-layer CNN producesa viable segmentation, and the learned kernel is interpretable as an
478  image. The kernel (a.) learned by a single-layer CNN, and the segmentation it produces (b., after softmax

479 activation).
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Figure 7: An expansion of the simplified CNN produces a segmentation with comparable accuracy to the

output of a deep CNN. a.) Mean F1 score for UNet (only modified by adding batch normalization) and

simple one-layer CNN architectures as a function of Softmax threshold cutoff. Red and Blue curves and

image contours represent results from the UNet and simplified architecture, respectively. Error bands in

a.) represent the range within a standard deviation of the mean F1 across the validation set. b.) Visual

Comparison of nanoparticle detection, using the Otsu Threshold, for the simplified model (blue) and the

best performing model (red).

References

1.

Zheng, H., Meng, Y. S. & Zhu, Y. Frontiers of in situ electron microscopy . MRS Bull. 40, 12-18

(2015).

Tao, F. & Salmeron, M. In Situ Studies of Chemistry and Structure of Materials in Reactive

Environments. Science (80-. ). 331, 171-174 (2011).

Taheri, M. L. et al. Current status and future directions for in situ transmission electron

microscopy. Ultramicroscopy 170, 86—95 (2016).

Hill, J. et al. Materials science with large-scale data and informatics: Unlocking new opportunities.

MRS Bull. 41, 399-409 (2016).

Simonsen, S. B. et al. Direct Observations of Oxygen-induced Platinum Nanoparticle Ripening

Studied by In Situ TEM. J. Am. Chem. Soc. 132, 7968-7975 (2010).

Badea, M. S., Felea, I. I, Florea, L. M. & Vertan, C. The use of deep learning in image

segmentation, classification and detection. 1-5 (2016).

22



501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

10.

11.

12.

13.

14.

15.

16.

17.

Chen, X. W. & Lin, X. Big data deep learning: Challenges and perspectives. IEEE Access 2, 514-525

(2014).

Dheeba, J. & Tamil Selvi, S. Classification of malignant and benign microcalcification using SVM
classifier. 2011 Int. Conf. Emerg. Trends Electr. Comput. Technol. ICETECT 2011 686—690 (2011).

doi:10.1109/ICETECT.2011.5760205

Bengio, Y., Lee, D.-H., Bornschein, J., Mesnard, T. & Lin, Z. Towards Biologically Plausible Deep

Learning. (2015).

Goodfellow, I., Bengio, Y. & Courville, A. Deep Learning. (MIT Press, 2016).

Moen, E. et al. Deep learning for cellular image analysis. Nat. Methods (2019).

doi:10.1038/s41592-019-0403-1

Yang, W., Zhang, X., Tian, Y., Wang, W. & Xue, J.-H. Deep Learning for Single Image Super-

Resolution: A Brief Review. 1-17 (2018).

Zhang, C., Bengio, S., Hardt, M., Recht, B. & Vinyals, O. Understanding Deep Learning Requires

Rethinking Generalization. (2017).

Wang, Z. Deep learning for Image segmentation-a short survey. (2019).

Dietterich, T. Overftting and Undercomputing in Machine Learning. ACM Comput. Surv. 27, 326—

327 (1995).

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, |. & Salakhutdinov, R. Dropout: A Simple Way

to Prevent Neural Networks from Overfitting. J. Mach. Learn. Res. 15, 1929-1958 (2014).

Selvaraju, R. R. et al. Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based

Localization. Proc. IEEE Int. Conf. Comput. Vis. 2017-Octob, 618-626 (2017).

23



522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

18.

19.

20.

21.

22.

23.

24,

25.

26.

27.

Umehara, M. et al. Analyzing machine learning models to accelerate generation of fundamental

materials insights. npj Comput. Mater. 5, (2019).

Madsen, J. et al. A deep learning approach to identify local structures in atomic-resolution

transmission electron microscopy images. 1800037, 1-12 (2018).

Schneider, N. M., Park, J. H., Norton, M. M., Ross, F. M. & Bau, H. H. Automated analysis of

evolving interfaces during in situ electron microscopy. Adv. Struct. Chem. Imaging 2, (2017).

Ziatdinov, M. et al. Deep Learning of Atomically Resolved Scanning Transmission Electron
Microscopy Images: Chemical Identification and Tracking Local Transformations. ACS Nano 11,

12742-12752 (2017).

Zakharov, D. N. et al. Towards Real Time Quantitative Analysis of Supported Nanoparticle

Ensemble Evolution Investigated by Environmental TEM. Microsc. Microanal. 24, 540-541 (2018).

Hansen, T. W., Delariva, A. T., Challa, S. R. & Datye, A. K. Sintering of catalytic nanoparticles:

Particle migration or ostwald ripening? Acc. Chem. Res. 46, 1720-1730 (2013).

Ostwald, W. Uber die vermeintliche Isomerie des roten und gelben Quecksilberoxyds und die

Oberflachenspannung fester Korper. Zeritschrift fur Phys. Chemie 34, 495 (1900).

Shen, D., Wu, G. & Suk, H.-I. Deep Learning in Medical Image Analysis. Annu. Rev. Biomed. Eng.

19, 221-248 (2017).

Wilson, R. S. et al. Automated single particle detection and tracking for large microscopy

datasets. R. Soc. Open Sci. 3, (2016).

Badrinarayanan, V., Kendall, A. & Cipolla, R. SegNet: A Deep Convolutional Encoder-Decoder

Architecture for Image Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39, 2481-2495

24



543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

28.

29.

30.

31.

32.

33.

34,

35.

36.

37.

(2017).

Long, J., Shelhamer, E. & Darrell, T. Fully Convolutional Networks for Semantic Segmentation.

IEEE Conf. Comput. Vis. Pattern Recognit. 3431-3440 (2015).

Ronneberger, O., Fischer, P. & Brox, T. U-net: Convolutional networks for biomedical image
segmentation. Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes

Bioinformatics) 9351, 234—-241 (2015).

Yosinski, J., Clune, J., Bengio, Y. & Lipson, H. How transferable are features in deep neural

networks? 1-9 (2014).

Baudat, G. & Anouar, F. Kernel-based methods and function approximation. 1244-1249 (2002).

doi:10.1109/ijcnn.2001.939539

Lu, Z. The Expressive Power of Neural Networks : A View from the Width. in 31st Conference on

Neural Information Processing Systems 1-21 (2017).

Santurkar, S., Tsipras, D., llyas, A. & Madry, A. How Does Batch Normalization Help Optimization?

Adv. Neural Inf. Process. Syst. 31 (2018).

Maas, A. L., Hannun, A. Y. & Ng, A. Y. Rectifier nonlinearities improve neural network acoustic

models. Icm/’13 28, 6 (2013).

Otsu, N. A Threshold Selection Method from Gray-Level Histograms. IEEE Trans. Syst. Man.

Cybern. SMC-9, 62-66 (1979).

Xu, X., Xu, S., Jin, L. & Song, E. Characteristic analysis of Otsu threshold and its applications.

Pattern Recognit. Lett. 32, 956-961 (2011).

Kabkab, M., Hand, E. & Chellappa, R. On the Size of Convolutional Neural Networks and

25



564

565

566

567

568

569

570

571

572

573

574

575

576

577

38.

39.

40.

41.

42.

43,

Generalization Performance. in 2016 23rd International Conference on Pattern Recognition (ICPR)

3572-3577 (IEEE, 2016). d0i:10.1109/ICPR.2016.7900188

Han, S., Pool, J., Tran, J. & Dally, W. J. Learning both Weights and Connections for Efficient Neural

Networks. 1-9 (2015).

van der Walt, S. et al. scikit-image: image processing in Python. PeerJ 2, e453 (2014).

Paszke, A. et al. Automatic differentiation in PyTorch. NIPS 2017 (2017).

doi:10.1145/24680.24681

Kingma, D. P. & Ba, J. Adam: A Method for Stochastic Optimization. in ICLR 2015 1-15 (2015).

Hinton, G. E. Rectified Linear Units Improve Restricted Boltzmann Machines. in 27th International

Conference on Machine Learning (2010).

Scherer, D., Miiller, A. & Behnke, S. Evaluation of pooling operations in convolutional
architectures for object recognition. in 20th International Conference on Artificial Neural

Networks (2010). doi:10.1007/978-3-642-15825-4_10

26



Figures



Figure 1



;5!@) .m .mn
L 1

Figure 2



Background Activation Particle Activation

Figure 3






Figure 5

Position

0.0

Position

{ s
£ 2
(%]
2l 3
2 a
s
29
= N ———— ——————
1 : :
1 E H
1 o H
o e « o < N Q o = o o < o
— — o o o o o — — o o o o
Ajisuaqu| Ajsuaqu|
i
oo
‘-)-
1
t
]
=]
ol
o
E.
g T | s
2 :
B R : g
! :
! g
o < o © < A Q o S @ O < N Q
— — o o o o o — — o o o o o
Ajisuaiu| Ajsuaqu|



Figure 6



1.0

0.8

F1 Score

©
I

0.2

0.0

Figure 7

o
o

0.2

0.4 0.6

Threshold Value

0.8

1.0




Supplementary Figures

Supplementary Figure 1: Images showing the errors in identification for large particles in a 512x512
resolution image. While most particles are correctly labeled, the interior of the largest are missed. a.) shows

the CNN output overlaid on the raw image, while b.) shows the raw image for reference. The scale barin b.)
represents 10 nm.
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$

Skip-connection Batch Norm + RelLU + Convolution

Supplementary Figure 2: Schematic representation of the UNet-type architecture used on 1024x1024
images. The red arrow and following blue box are only used in models with a second convolutional
laver, as described in the text.
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Supplemental Figure 3: Comparison of CNN outputs with varied parameters

Supplementary Figure 4: Image segmentation after increasing the size of the
convolutional kernel from 3x3 pixels to 7x7. Scale bar represents 50 nm.
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Supplemental Figure 5: Accuracy metrics for UNet-type and simple one-layer CNN architectures with
added batch normalization presented as a function of the amount of blur applied to training data
and chosen segmentation threshold. a.) shows precision values for four different architectures,
while b.) shows recall score. Note that, in both a.) and b.(, the red no-blur and blur blur-1 curves
almost completely overlap
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Supplemental Figure 6: Visual interpretation of the learned kernel. Schematic example showing
that the sum of a horizontal Gabor filter, a vertical Gabor filter, and Gaussian blur produces a
kernel similar to that learned by our simple one-layer CNN.



Supplemental Figure 7: Visualization of all learned filters in the CNN consisting of one layer
with 32 filters.

Supplemental Figure 8: Mean of all 32 convolutional kernels shown
in Supplemental Figure 7.



Supplemental Figure 9: The process of creating a labeled image from a raw image. a.) Example of a raw image. b.)
Application of a gaussian filter for smoothing. c.) Morphological reconstruction by erosion. d.) Morphological
reconstruction by dilation to extract background features. e.) Image d.) subtracted from image c.). f.) Otsu Threshold

is applied to d.), and labels (blue/red colorscale) is overlaid on original image to verify accuracy. The scale barin a.)
represents 50 nm.

Supplementary Figure 10: Application of a trained UNet to data from a different distribution is not accurate. a) Raw
image which represents the average of 40 consecutive frames. Though averaging images smooths the background
making particle boundaries more clear to the human eye, the poor segmentation in the bottom right corner of b)
shows that a neural network trained on noisy data is not effective on cleaner data. Scale bar represents 50 nm.



