
1 
 

Understanding Important Features of Deep Learning Models for Segmentation of High-resolution 1 

Transmission Electron Microscopy Images 2 

James P. Horwath1, Dmitri N. Zakharov2, Rémi Mégret3, Eric A. Stach1 3 

1. Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia PA 4 

2. Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton NY 5 

3. Department of Computer Science, University of Puerto Rico, Río Piedras, San Juan PR 6 

Abstract 7 

Cutting edge deep learning techniques allow for image segmentation with great speed and accuracy. 8 

However, application to problems in materials science is often difficult since these complex models may 9 

have difficultly learning meaningful image features which would enable extension to new datasets.  In 10 

situ electron microscopy provides a clear platform for utilizing automated image analysis. In this work 11 

we consider the case of studying coarsening dynamics in supported nanoparticles, which is important 12 

for understanding e.g. the degradation of industrial catalysts.  By systematically studying dataset 13 

preparation, neural network architecture, and accuracy evaluation we describe important 14 

considerations in applying deep learning to physical applications, where generalizable and convincing 15 

models are required.  With a focus on unique challenges which arise in high-resolution images, we 16 

propose methods for optimizing performance of image segmentation using convolutional neural 17 

networks, critically examining the application of complex deep learning models in favor of motivating 18 

intentional process design. 19 

 20 

 21 

 22 
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Introduction 23 

In situ  and operando experimental techniques, where dynamic process can be observed with high 24 

temporal and spatial resolution, have allowed scientists to observe chemical reactions, interfacial 25 

phenomena, and mass transport processes to give not only a better understanding of the physics of 26 

materials phenomena, but also a view into how materials react under the conditions in which they are 27 

designed to perform1,2.  As the use of in situ techniques continues to expand, and technology to enable 28 

these experiments continues to develop, we are faced with the fact that more data can be produced 29 

than can be feasibly analyzed by traditional methods3,4.  This is particularly true for in situ electron 30 

microscopy experiments, where high resolution images are captured at very high frame rates.  In 31 

practice, hundreds of images can be captured per second. However many experimental analyses 32 

consider less than one frame per second, or even one frame for every several minutes5.  Methods for 33 

fast and efficient processing of high-resolution imaging data will allow for not only full utilization of 34 

existing and developing technologies, but also for producing results with more statistical insight based 35 

on the sheer volume of data being analyzed. 36 

Simultaneously, the field of computer vision provides well understood tools for image processing, edge 37 

detection, and blob localization which are helpful for moving from raw image data to quantifiable 38 

material properties.  These techniques are easy to apply in many common computer programming 39 

languages and libraries. However more recent research highlights the processing speed and accuracy of 40 

results obtained through the use of machine learning6,7.   Previously, a combination of traditional image 41 

processing and advanced statistical analysis has be shown to successfully segment medical images8,9.  42 

Deep learning - generally using multi-layer neural network models - expands on other machine learning 43 

techniques by using complex connections between learned parameters, and the addition of non-linear 44 

activation functions, to achieve the ability to approximate nearly any type of function10.  With regards to 45 

image segmentation and classification, the use of Convolutional Neural Networks (CNNs), in which high-46 
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dimensional learned kernels are applied across grouped image pixels, is widespread.  CNNs provide the 47 

benefit that their learned features are translationally equivariant, meaning that image features can be 48 

recognized regardless of their position in the image.  This makes such models useful for processing 49 

images with multiple similar features, and robust against variation in position or imaging conditions11.  50 

Additionally, the feature richness of high-dimensional convolutional filters and the large number of 51 

connections between hidden layers in a neural network allows for the learning of features which, 52 

conventionally, are too complex to represent, and which make intuitive interpretation difficult.  Much of 53 

the literature studying CNNs focuses on high-accuracy segmentation/classification of large, complex, 54 

multi-class image datasets or upon improving data quality through super-resolution inference, rather 55 

than quantitative analysis of high-resolution images12,*1.  While additional memory requirements alone 56 

make processing of high-resolution images difficult, the scale of features and possible level of precision 57 

also changes as a function of image resolution.  Most importantly, for the simple case of particle edge 58 

detection, the boundary between classes in a high-resolution image may spread across several pixels, 59 

making segmentation difficult even by hand.  Generally, literature studies of CNNs for image 60 

classification are used for many-class classification with coarse – if any – object localization, while in the 61 

field of electron microscopy fewer individual object classes exist in a single image yet precise positioning 62 

is required.  63 

Though, it seems, the tools for rapid segmentation of high-resolution imaging data exist, several points 64 

of concern regarding the use of deep learning must be acknowledged.  First, while the ease of 65 

implementation using common programming tools enables extension of methods to new applications by 66 

non-experts, the complexity and still-developing fundamental understanding of deep learning can lead 67 

to misinterpretation of results and poor reproducibility13,14.  Moreover, models can be prone to 68 

 
* While conventionally used to specify atomic resolution imaging, in this work we use the term high-resolution to 
refer to the pixel resolution of the microscope camera. 
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overfitting - memorizing the data rather than learning important features from limited training examples 69 

- which can go unnoticed without careful error analysis15,16.  Overfitting occurs when a model has 70 

enough parameters that an unrealistically complex function can be fit to match every point in a data set.  71 

Thus, a model which accurately labels data by overfitting will likely fail when shown new data since its 72 

complex function does not describe the true variation in the data. Therefore, an overfitted model isn’t 73 

useful for future work.  Finally, the high dimensionality of data at intermediate layers of a neural 74 

network combined with the compound connections between hidden layers makes representation, and 75 

therefore understanding, of learned features impossible without including more assumptions into the 76 

analysis.  These challenges – specifically representation and visualization of CNN models – are areas of 77 

active research17,18. 78 

We focus on semantic segmentation of Environmental Transmission Electron Microscopy (ETEM) images 79 

of supported gold nanoparticles19–22.  Ensembles of supported nanoparticles are important for industrial 80 

catalysis, deriving their exceptional catalytic activity from surface energy resulting from the high amount 81 

of under-coordinated surface atoms relative to the particle’s bulk volume.  On a thermodynamic basis, 82 

the high surface energy which allows for effective catalysis also provides a driving force for nanoparticle 83 

sintering through a variety of mechanisms23,24.  Theory exists to describe the mean-field process of 84 

Ostwald Ripening and basics of nanoparticle coalescence, yet local effects and inter-particle interactions 85 

cause deviations from our theoretical understanding.  Obtaining precise sizes and locations of 86 

nanoparticles as a function of space and time is imperative to describing nanostructural evolution and 87 

developing a physical understanding of the processes leading to catalyst degradation by particle growth.  88 

Thus, our high-contrast images of supported gold nanoparticles provide a simple, yet important, case 89 

study for developing efficient methods of image segmentation so that individual particle-scale changes 90 

can be studied. 91 
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Building on previous work on image segmentation, automated analysis, and merging deep learning 92 

within the field of materials science, we study a variety of CNN architectures to define the most 93 

important aspects for the practical application of deep learning to our task.  We discuss how image 94 

resolution affects segmentation accuracy, and the role of regularization and preprocessing in controlling 95 

model variance.  Further, we investigate how image features are learned, so that model architectures 96 

can be better designed depending on the task at hand. By using a simpler approach to semantic 97 

segmentation, in contrast to poorly understood and highly complex techniques, we intend to show that 98 

conventional tools can be utilized to construct models which are both accurate and extensible. 99 

 100 

Results and Discussion 101 

High Resolution Image Segmentation 102 

Particularly in the field of medical imaging, studies regarding similar image segmentation tasks have 103 

been published25,26.  In these cases, an encoder-decoder, or ‘hourglass’, -type CNN architecture was 104 

found to be well suited to segmentation tasks where spatial positions of features are key.  With this 105 

approach, successively deeper convolutional/max-pooling layer pairs (added to decrease spatial 106 

resolution while simultaneously increasing feature richness) are combined with up-sampling 107 

convolutional layers that aim to re-scale the image back to a higher resolution while decreasing the 108 

feature dimension of the image source21,27,28.  In many cases, however, these tasks are used to identify 109 

whether a specific feature or object is present or absent, not to measure the size of such features with 110 

any level of precision.  Correspondingly, our tests show that this network structure successfully 111 

identifies nanoparticle pixels in our images with 512x512 resolution, yet consistently misses the centers 112 

of the largest particles (Supplemental Figure 1).   113 
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To improve segmentation performance,  we moved to a more complex architecture inspired by the 114 

UNet29.  This model, rather than increasing kernel size with the goal of expanding the receptive field, 115 

uses skip-connections to tie activations in the encoding stage to feature maps in the decoding stage in 116 

order to improve feature localization. Skip connections work by concatenating encoded and decoded 117 

images of the same resolution followed by a single convolutional layer and activation function to relate 118 

unique aspects of both images (see visual representation in Supplemental Figure 2).  This improves upon 119 

the similar hourglass architecture by maintaining local environments from the original image to map 120 

features to the output.  Results using the UNet-type architecture on our image set show that the model 121 

is able to consistently recognize both large and small particles, and that it is robust against varied 122 

imaging conditions and datasets (Figure 1 and Supplemental Figure 1 show results on images from 123 

experiments not represented in the training set).   124 

Using our earlier approach, we trained the same UNet on higher resolution images (1024x1024 pixels), 125 

however, as seen in Figure 2, this network was not able to accurately label pixels at nanoparticle edges, 126 

showing instead a blur of uncertainty at the edges.  Moreover, we noticed that training the same model 127 

on the same data more than once would produce different results: while in some cases training 128 

produced image segmentation with wide edge variation, other training instances gave segmentation 129 

results with nearly perfectly identified particles, with little to no variation at particle edges.  These 130 

results likely signal overfitting of the dataset, with the model ‘memorizing’ the noise rather than actual 131 

features, as raw activation maps (Figure 3) show that in fact no features of particles are learned by the 132 

model and instead only noise patterns in the background areas are recognized.  This model, therefore, 133 

produces a very accurate particle measurement on the training dataset, but would not generalize to 134 

data from other experiments or with particles of different sizes (i.e., the same dataset with a different 135 

magnification).  This is further highlighted by the instability of the model with respect to the length of 136 

training time.   137 
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Rather than solely increasing the width and depth of the model to improve performance and stability 138 

(we used a 4-step UNet-type architecture for 1024x1024 images, as depicted in Supplemental Figure 2), 139 

the greatest improvement in model performance comes about through understanding where the model 140 

fails when increasing image resolution.   15 unique UNet models were tested with architectural 141 

modifications inspired by the errors observed in our tests.  These modifications, and the motivation for 142 

each, are described in Table 1.  The effect of learning rate on model performance was also investigated 143 

empirically in order to determine how to best sample the loss landscape, but in this regard, we found 144 

that a learning rate of 0.0001 is practical and effective for all deep models on our dataset. 145 

Results from all fifteen models are shown in Supplemental Figure 3.  Our initial gauge of performance is 146 

qualitatively based on the ability to detect particles of varying size, sensitivity to noise and illumination 147 

variation in the raw image, and the sharpness of the activation cutoff at particle edges.  Based on these 148 

criteria, best performance is seen in models with batch normalization only and batch normalization 149 

combined with extra convolutional layers (Figure 4, Norm and TwoConv_Norm, respectively).  From this, 150 

it appears that Batch Normalization is the most important factor for learning particle features from 151 

1024x1024 images.  Visual inspection of Figure 4 also shows that, in general, blurred images detect 152 

edges further towards the interior of the nanoparticle, and models with an additional convolutional 153 

layer (and no blurring) are virtually indistinguishable from those with a single up-sampling convolution.  154 

More importantly, only models without blur are able to consistently and accurately label small, low-155 

contrast particles. 156 

Aside from applying batch normalization, we find that the only way to achieve significant segmentation 157 

improvement on high resolution images is to increase the size of the convolutional kernel, here from 3x3 158 

pixels to 7x7 (Supplemental Figure 4).  However, this greatly increases the number of trainable 159 

parameters and training time for the model. 160 
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To briefly summarize the practical implications of our findings, continual Batch Normalization through 161 

successive convolutional layers has a significant positive effect on the performance.  For our dataset, 162 

increasing network depth does not appear to increase the performance of the CNN.  A slow learning rate 163 

produces the best results and most stable models, while preprocessing training images with Gaussian 164 

blur seems to increase the risk of overfitting.   165 

Evaluating Detection Accuracy 166 

Variation in the color scale at particle edges, as seen Figure 2, led us to believe that our particle 167 

measurement would vary greatly as a function of the chosen softmax-activation threshold.  Intensity line 168 

profiles, as shown in Figure 5, are helpful in illustrating this edge variation for two models compared to 169 

the intensity of the raw image.  These plots check how two different models perform in comparison with 170 

the edge contrast in the raw image.  As the intensity approaches 1, both models show a slope towards 171 

the particle center showing the extent of uncertainty in classification at the particle-support interface.  172 

Figure 6 collects F1 accuracy scores, the harmonic mean of model precision and recall, for the batch-173 

normalized CNN as a function of threshold value, and the amount of Gaussian blur applied compared to 174 

a set of 50 validation-set labels.  Here, high precision means that the model produces few false positives 175 

(pixels labeled as particle which actually correspond to background), while recall measures the 176 

proportion of particle pixels which were successfully identified by the model (see individual plots in 177 

Supplemental Figure S4).  Based on these results, we could expect that the normalized models with no 178 

applied blur and blur (σ = 1) are stable with respect to precision and recall at a particle activation 179 

threshold values below 0.7.  The model trained on blurred images with σ = 2, shows similar performance 180 

over a smaller range of stable thresholds.  For our case of binary classification of an unbalanced dataset, 181 

where recognizing particles pixels is more important than recognizing background, recall is likely the 182 

most important measure for determining a threshold for use in practice.  While we see convergence 183 

with maximum precision for the model without blur around a threshold of 0.7, we realize that our 184 



9 
 

empirically selected value of 0.4 gives better recall with essentially the same precision as compared to 185 

thresholding at 0.7.   186 

Learning Features with a Simpler Model 187 

 Training stability and model overfitting pose large risk for image segmentation CNNs that are to be used 188 

and continually developed on varied datasets.  While performance often increases with the addition of 189 

tunable model parameters, achieving training convergence and interpretation of the model’s output 190 

become increasingly difficult.  With this in mind, we developed a significantly pared down CNN, with a 191 

single convolutional layer consisting of a single learnable filter followed by softmax activation on our 192 

training data which produced the segmentation shown in Figure 6,b.  The benefit of such an architecture 193 

is that, since the dimensionality of the kernel is the same as that of the image, we can easily visualize the 194 

learned weights (Figure 6,a).    Previous work has confirms that edges and other spatially-evident image 195 

features are generally learned in the early convolutional layers of a CNN30.   Repeating the same method 196 

with another kernel size, this time 7x7-pixels rather than the initial 9x9, produces a similar filter, 197 

showing that the results are not an artifact of the feature scale.  Such a single-layer model with logistic 198 

activation can be compared, in practice, to a sparse convolutional autoencoder, or even the application 199 

of a linear support-vector machine (SVM) for logistic regression31. 200 

While this model is useful for illustrating the power of simpler machine learning methods, minimal 201 

changes are needed to extend this idea to a model that provides usable, practical segmentation.  Using 202 

one convolutional layer, now with 32 filters, followed by a second, 1x1 convolutional layer to combine 203 

the features into a segmented image, we test a shallow but wide CNN architecture.  Again, aside from 204 

the convolutional layer used to combine the extracted features, filters from this shallow network can be 205 

visualized to see what features are being learned from the data.  The F1 score of this simpler model 206 

(Figure 7a, blue line) is comparable to the performance of the most accurate deep network described 207 
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above (batch normalization with no applied blur – red line).  These results illustrate that a model with 208 

significantly fewer parameters and quicker training time can still produce a usable segmentation.  209 

Indeed, as shown in Figure 7b, the edges detected by the simpler CNN are in many cases closer to the 210 

actual particle edge than those of the deep model; In this light, the decrease F1 score in Figure 7a is 211 

likely due to the high rate of false positives in the simple model.  In practice any false positive clusters 212 

are significantly smaller than true nanoparticles, so filtering by size to further increase accuracy is 213 

possible.   Our results suggest that shallow, wide CNNs have enough expressive power to segment high 214 

resolution image data32.   215 

 216 

Discussion 217 

High Resolution Image Segmentation 218 

Our initial experiments revealed the importance of a segmentation model developing an understanding 219 

of a pixel’s broader environment, rather than simply identifying features based on intensity or distance 220 

to an edge.  The fact that the simple, hourglass-style CNNs cannot identify the interior of particle as 221 

such, can be attributed to an inability of the CNN to learn similar features with different size-scales; we 222 

suspect that, in an edge-detecting model, the lack of variation in the interior of a particle appears similar 223 

to the in the background leading to improper classification.  This clearly indicates the importance of 224 

semantic understanding, in which the local environment is considered in detail.  Indeed, increasing the 225 

receptive field (kernel size) of the network to incorporate more local information improves detection 226 

accuracy, yet this approach drastically increases the number of learnable parameters in the CNN and the 227 

training time required for convergence. This is reinforced in seeing the improved performance of the 228 

UNet compared to the hour-glass CNN.  Max-pooling after each convolutional layer effectively increases 229 
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the receptive field of the next convolutional layer; concatenating encoding and decoding activations 230 

serves as a comparison of the same features over a variety of length scales. 231 

While segmentation of 512x512-pixel images is possible and seemingly accurate, higher measurement 232 

precision can be achieved by utilizing higher resolution cameras available on most modern electron 233 

microscopes.  For an image with a fixed side length, increasing pixel resolution decreases the relative 234 

size of each pixel.  Decreasing the pixel size increases the possible measurement precision, and 235 

therefore, high-resolution images are needed to provide both accurate, and consistent particle 236 

measurements. Along these lines, the error introduced by mislabeling a single pixel decreases as pixel 237 

density (image resolution) increases.   It’s important to note that though the accuracy of manual particle 238 

measurements from images with different resolutions likely changes very little (assuming accuracy is 239 

mainly dependent on the care taken by the person making measurements), changes in resolution, 240 

particularly around particle edges, can greatly influence automated labeling performance since edge 241 

contrast decreases as interfaces are spread across multiple pixels.  Thus, a unique challenge for high-242 

resolution image segmentation is developing a model which is able to recognize interface pixels, which 243 

appear fundamentally different from the interior of a nanoparticle, as contributing to the particle and 244 

not the background.  To account for increased complexity of the features in higher-resolution images, 245 

our network architecture expanded with the idea that a larger number of parameters would increase 246 

the expressive power of the model.  In fact, this deeper and wider model (seen in Figure 2) showed little 247 

increase in performance compared to the one for low resolution images.  A more effective approach 248 

would match the strengths of the segmentation models to the features of the data.  For our case of 249 

relatively simple images, increasing the complexity of the model alone does not achieve this goal.  250 

Our findings show that regularization, in this case by Batch Normalization, is vital to accurate labeling of 251 

an image.  When training from scratch, i.e. without pretrained weights, it has been shown that the loss 252 

function is smoother and model convergence is better when using Batch Normalization, which may have 253 
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a significant effect on higher resolution images due to the combinations of strong noise and lack of 254 

visually discriminative features on the scale of the receptive field33.    Properly pairing regularization, in 255 

attempt to maintain the distribution of intensity values in the image, with an activation function suited 256 

to allowing such a distribution is essential.   As such, the dying ReLU problem, where CNN outputs with a 257 

negative value are pushed to zero, removing a significant portion of the actual distribution of the data, 258 

causes loss of information and difficult convergence10,34.  Our use of ReLU activation functions essentially 259 

produces output values in the range [0,∞), which presents a risk of activation divergence, and can be 260 

mitigated by normalization in successive convolutional layers before the final softmax activation.  Leaky 261 

ReLU allows activations on the range (-∞,∞), and the small activation for negative pixel values 262 

combined with batch normalization works to avoid increasing variance with the number of convolutional 263 

layers.  In practice, we find that using Leak ReLU activation solves the problem seen in Figure XXX, 264 

where no activation is seen for the particle class. 265 

These results suggest that, for a common segmentation task, regularization is more effective than the 266 

depth or complexity of a CNN.  This is easily justified, considering that the proper classification of 267 

boundary pixels, spread across several pixels in high-resolution images, requires the sematic information 268 

stored in the total local intensity distribution which is lost as the variance of the intensity histogram 269 

increases. 270 

As shown in Figure XXX, the choice of an activation threshold for identifying nanoparticles can greatly 271 

influence the labelling error.  The steep slope of the softmax activation function used in the final CNN 272 

layer works to force activation values towards 0 or 1 – in an ideal case the number of pixels with 273 

activation values between these values would be minimal.  Our experience shows that the Otsu 274 

threshold, which separates the intensity histogram such that the intra-class variance is minimized, is a 275 

practical choice for segmenting our data35.  This makes sense, since, qualitatively, CNN output shows a 276 

large peak close to 0 activation representing the background with nearly all pixels with higher activation 277 
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values corresponding to particles.  However, it can be shown mathematically that the calculated Otsu 278 

threshold may mislabel the class with a wider intensity distribution36.  Therefore, thresholding datasets 279 

with a lower signal-to-noise ratio would likely be more difficult.  In these cases, it is imperative that a 280 

large dataset – which is representative of the data in question -- is used for training, as choosing low 281 

threshold values, even when they produce usable results, makes it difficult to recognize overfitting. 282 

An effective machine learning model requires a balance between the number of learnable parameters, 283 

the complexity of a model, and the amount of training data available in order to prevent over-fitting and 284 

ensure deep-learning efficiency32,37.  In an efficient model, a vast majority of the weights are used, and 285 

vital to the output.  In practice though, deep networks generally have some amount of redundant or 286 

trivial weights38.  In addition to efficiency, several issues have come to light regarding the use of deep 287 

learning for physical tasks which require an interpretable and explainable model as this often leads to 288 

better reproducibility and results which generalize well18,37.  Even for computer vision tasks, where 289 

feature recognition doesn’t necessarily give physical insight, an interpretable model is valuable so that 290 

sources of error can be understood when applied to datasets consisting of thousands of images, each of 291 

which cannot feasibly be checked for accuracy.  Our main goal in employing a single layer neural 292 

network was to provide a method for visualizing learned kernels which show the most important 293 

features of an image for binary classification.  The visualization of our trained kernel (Figure XXX) can be 294 

interpreted in two ways.  First, we can conceive that the algorithm is learning vertical and horizontal 295 

lines (dark lines), potentially similar to basic Gabor filters for edge detection – though it is missing the 296 

characteristic oscillatory component - combined with some amount of radially-symmetric blur (light 297 

gray). Alternatively, we can envision that the horizontal/vertical lines could be an artifact of the electron 298 

camera or data augmentation method meaning that the learned filter represents an intensity spread 299 

similar to a Laplacian of Gaussian (LoG) filter which is used to detect blobs by highlighting image 300 

intensity contours.  As a simple test of our supposition, Supplemental Figure S5 shows that a sum of a 301 
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horizonal Gabor filter, vertical Gabor filter, and Gaussian filter qualitatively produces a pattern similar to 302 

our learned kernel. 303 

As mentioned, increasing the width of a shallow network (in this case from 1 to 32 filters) is enough to 304 

make a simple model more usable.  Though 32 filters (visualized in Supplemental Figure 6) may be too 305 

many filters to easily compare for visually extracting useful information, it is possible to see a general 306 

trend: filters are learning faint curved edges.    Moreover, taking the mean of all 32 filters (Supplemental 307 

Figure 7) shows a similar pattern as Figure 8,a with slight rotation.  Further analysis of the set of 32 308 

filters would require regularization of the entire set of weights to allow for more direct comparison, 309 

however it is possible to imagine a case where, with a properly tuned receptive field in the convolutional 310 

layer, more subtle image features than hard lines could be revealed through visualizing a learned kernel. 311 

Based on these results we expect that designing a shallower neural network which retains the local 312 

semantics learned in an encoder-decoder or UNet architecture would make a generalizable model for 313 

particle segmentation more realistic.   314 

 315 

Conclusions 316 

We have systematically tested several design aspects of CNNs with the goal of evaluating deep learning 317 

as tool for segmentation high-resolution ETEM images.  With proper dataset preparation and continual 318 

regularization, standard CNN architectures can easily be adapted to our application.  While overfitting, 319 

class imbalance, and data availability are overarching challenges for the use of machine learning in 320 

materials science, we find that knowledge of data features and hypothesis-focused model design can 321 

still produce accurate and precise results.  Moreover, we demonstrate that meaningful features can be 322 

learned in a single convolutional layer, allowing us to move closer to a balance between state-of-the-art 323 

deep learning methods and physically interpretable results.  We evaluate the accuracy of several deep 324 
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and shallow CNN models and find evidence that, for a relatively simple segmentation task, important 325 

image features are learned in the initial convolutional layers.  While we apply common accuracy 326 

measures to evaluate our models, we note that other specially designed metrics may help to define 327 

exactly where mistakes are made, and thereby which features a model is unable to represent.  Whether 328 

or not these simplified models reach the accuracy required for quantification of segmented images, a 329 

learned indication of important low-level image features can help guide the design of an efficient, 330 

parallelizable pipeline for conventional image processing. 331 

We present a method for simultaneously segmenting images and visualizing the features most 332 

important for a low-level description of the system.  While we don’t derive any physical insight from the 333 

learned features of our images, this approach could potentially be extended, for example, to a multi-334 

class classification task where learned kernels could elucidate subtle pixel-scale differences between 335 

feature classes.  For our needs, the interpretability of this basic model helps us to design a segmentation 336 

process where measurement accuracy is limited by the resolution of our instrumentation, not by our 337 

ability to identify and localize features.  Simple segmentation tasks may not fully utilize a deep CNN’s 338 

ability to recognize very rich, inconspicuous features, but the breadth of literature and open-source 339 

tools from the Computer Science community are available for use in other fields and must be applied in 340 

order to determine their limitations.  In this regard, we hope to provide a clear description of how 341 

architectural features can be tweaked for best performance for the specific challenge of segmenting 342 

high-resolution ETEM images. 343 

In all, while computer science research trends towards complicated, yet highly accurate deep learning 344 

models, we suggest a data-driven approach, in which deep learning is used to motivate and enhance the 345 

application of more straightforward data processing techniques, as a means for producing results which 346 

can be clearly interpreted, easily quantified, and reproducible on generalized datasets.  In practice, the 347 

wide availability of technical literature, programming tools, and step-by-step tutorials simultaneously 348 
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makes machine learning accessible to a wide audience, while obscuring the fact that application to 349 

specific datasets requires an understanding of unique, meaningful data features, and of how models can 350 

be harnessed to give usable and meaningful analyses.  While common in the field of computer vision, in 351 

practice many of the techniques we discuss are added to a machine learning model as a black box, with 352 

little understanding of their direct effects on model performance.  Framing deep-learning challenges in 353 

the light of real physical systems, we propose means both for thoughtful model design, and for an 354 

application of machine learning where the learned features can be visualized and understood by the 355 

user.  In this way, analysis of data from high-throughput in situ experiments can become feasible. 356 

Methods 357 

Sample Preparation 358 

An approximately 1nm Au film was deposited by electron beam assisted deposition in Kurt J. Lesker PVD 359 

75 vacuum deposition system to form nanoparticles with an approximate diameter of 5 nm. The film 360 

was directly deposited onto DENSsolutions Wildfire series chips with SiN support suitable for in-situ TEM 361 

heating experiments.  362 

 363 

TEM Imaging 364 

Samples were imaged in an FEI Titan 80-300 S/TEM environmental TEM (ETEM) operated at 300kV. Film 365 

evolution was studied in vacuum (TEM column base pressure 2x10-7 Torr) at 950°C. High frame rate 366 

image capture utilized a Gatan K2-IS direct electron detector camera at 400 frames per second. Selected 367 

images (Figures 2 and S3) were acquired on a JEOL F200 S/TEM operated at 200kV, with images 368 

collected on a Gatan OneView camera. 369 

 370 
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Automated Training Set Generation 371 

Raw ETEM images are processed using a series of Gaussian filters, Sobel filters, morphological opening 372 

and closing, and thresholding algorithms to produce pseudo-labelled training images (see provided code 373 

for reproducing specifics).  All operations are features of the SciKit Image python package39.  As a note, 374 

we specify that our dataset is pseudo-labelled, because we take automatically labeled images as ground 375 

truth, while traditionally labeled data is produced manually by experts in the field.  Parameters for each 376 

of these processing steps, such as the width of the Gaussian filter, are chosen empirically, and the same 377 

parameters are applied to all images in the dataset.  Depending on the resolution of the image, and the 378 

amount of contrast between the nanoparticles and background in the dataset (which determines the 379 

number of required processing steps), automated image processing takes between 10 and 30 seconds 380 

per image. Segmentation by this method is faster than manual labeling for particle measurement and 381 

localization, which would take hours  per image.  Training set accuracy is evaluated by overlaying labels 382 

on raw images and visually inspecting the difference, as there is no way to quantitatively check the 383 

ground truth.  Examples of processing steps and training data are shown in Supplemental Figure S8.   384 

 A set of training data was made up of 2400 full ETEM images (1792x1920 pixels), collected during a 385 

single experiment, downsized via interpolation to a resolution of 512x512-pixels.  Additionally, a second 386 

training set with 1024x1024-pixel resolution, made by cropping appropriately sized sections from a full 387 

1792x1920 image, was created to study the impact of increasing pixel resolution on image segmentation 388 

performance.  In practice, it is important to consider artifacts introduced by resizing images; stretching 389 

or compressing images through interpolation/extrapolation may change local signal patterns.  Cropping 390 

sections of images maintains the scale of features in as-collected images, meaning that a model could 391 

potentially be trained on many small images (requiring less GPU memory), and then directly evaluated 392 

on full images since convolution neural networks do not require specific input/output sizes once training 393 
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is complete.  Augmentation of the dataset was carried out using affine transformations and image 394 

rotation, as successive images captured in a short time are not entirely unique/independent. 395 

 396 

Programming and Training Machine Learning Models 397 

All programming was done in Python, with machine learning aspects using the PyTorch framework40.  398 

The final dataset consisted of 2400 1024x1024-pixel images, which was randomly split into training 399 

(70%, or 1680 images) and validation (30%, or 720 images) sets.  In order to avoid inherent bias due to 400 

strong correlation between training and test sets in randomly split consecutive images, a third validation 401 

set, collected at a different time but under the same conditions, should be included; we neglect to use 402 

this extra dataset, as we only work to show trends in performance as a function of CNN architecture.   403 

In many cases a balanced dataset, where sample sizes of positive and negative examples are roughly 404 

equivalent, is required to avoid systematic error and bias while training a CNN.  In the images considered 405 

here, particle pixels correspond to about 15% of any given image.  Though this is quite unbalanced, we 406 

find that the general sparsity of features, and the fact that clear edges are the most important factor in 407 

identification of nanoparticles in these images, reduce the negative impact of any imbalance.   408 

All CNNs used rectified linear unit (ReLU) activation after each convolutional layer (except where noted 409 

later), the Adam optimizer, and Cross Entropy Loss functions41,42. Since Cross Entropy Loss in PyTorch 410 

includes a final softmax activation, a softmax layer was applied to model outputs for inference.  All 411 

models were trained for 25 epochs on our System76 Thelio Major workstation using four Nvidia GeForce 412 

RTX 2080Ti GPUs, with each model taking 1-2 hours to train.  We note that longer training periods may 413 

be required; we used this time frame to make experimentation with network architecture, data pre-414 

processing, and hyper-parameter tuning more feasible in-house. We gauge that models were stable in 415 

this training time by tracking loss as a function of epoch number and seeing general convergence.. The 416 
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binary segmentation map which classifies individual pixels as particle or background was obtained by 417 

thresholding predicted softmax output for each pixel. 418 

To obtain quantitative data on the particles themselves, both the training set and CNN segmentation 419 

output were processed by a connected components algorithm to produce a labeled image which groups 420 

pixels into particle regions from which properties such as size and position can be extracted.  This 421 

labeling, performed on a binary image, generally takes only one second or less per image 422 

Our base UNet-type architecture for segmenting 512x512 images consisted of three convolutional layers 423 

with Max Pooling or Up-sampling (where applicable) on both downscaling and upscaling sides29,43. The 424 

base model for 1024x1024 images adds an additional level of convolutional layers to each side of the 425 

model.  Adding convolutional layers, as described later to increase segmentation accuracy, refers to 426 

adding a successive convolutional layer after each down-/up-sampling level of a UNet-type architecture.  427 

Supplemental Figure S2 shows a representation of the CNN architecture used here. 428 

 429 

Code Availability 430 

Python code for training image generation, UNet training, and evaluation of results are available at 431 

https://github.com/jhorwath/CNN_for_TEM_Segmentation.  432 

 433 

Data Availability 434 

Contact the corresponding author with requests to view raw data.  Sample image sets and all python 435 

code used are publicly available in the GitHub repository for this project (link provided above). 436 

 437 
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Figure Legends 456 

Figure 1: UNet architecture improves particle segmentation compared to encoder-decoder architecture. 457 

Segmentation results for UNet-type architecture on 512x512 resolution images. a.) shows raw output 458 
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from the model overlaid on the raw image; notice the sharp activation curoff at the particle edges.  b.) 459 

Threshold applied to image to show final segmentation result.  Yello arrow indicate small particles that 460 

were successfully recognized.  Scale bar represents 50 nm. 461 

Figure 2: Application of the UNet architecture in high-resolution images yields uncertainty at particle 462 

edges. Using the same UNet architecture but increasing image resolution makes it more difficult for the 463 

model to localize edge features.  Scale bar represents 50 nm. 464 

Figure 3: An overfitting network learns no features of nanoparticles, but recognizes background noise. a.) 465 

shows the CNN output for a given image.  b.) and c.) show the raw activation values for layers detecting 466 

background and particles, respectively.  The softmax function combines these activation maps to 467 

produce a.).  The scale bar in a represents 50 nm and applies for all 3 images. 468 

Figure 4: Otsu Threshold contours of six CNN models overlaid on a section of a test image. The model 469 

with batch normalization only consistently provides the most accurate segmentation.  Each colored 470 

contour refers to a different model output: red -TwoConv_Blur1, blue – TwoConvNorm_Blur1, green – 471 

Norm_Blur1, purple - TwoConv, orange – TwoConv_Norm, yellow – Norm. 472 

Figure 5: Visualizing intensity profiles for specific particles shows segmentation differences between 473 

models. Intensity profiles for selected particles in a training image.  Line scans show the intensity 474 

variation for each particle in the raw image (solid), network with batch normalization (dotted), and 475 

network with batch normalization and extra convolutional layers (dashed). 476 

Figure 6: A one-layer CNN producesa viable segmentation, and the learned kernel is interpretable as an 477 

image. The kernel (a.) learned by a single-layer CNN, and the segmentation it produces (b., after softmax 478 

activation). 479 
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Figure 7: An expansion of the simplified CNN produces a segmentation with comparable accuracy to the 480 

output of a deep CNN. a.) Mean F1 score for UNet (only modified by adding batch normalization) and 481 

simple one-layer CNN architectures as a function of Softmax threshold cutoff.  Red and Blue curves and 482 

image contours represent results from the UNet and simplified architecture, respectively.  Error bands in 483 

a.) represent the range within a standard deviation of the mean F1 across the validation set. b.) Visual 484 

Comparison of nanoparticle detection, using the Otsu Threshold, for the simplified model (blue) and the 485 

best performing model (red). 486 
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Supplementary Figures 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Supplementary Figure 1: Images showing the errors in identification for large particles in a 512x512 
resolution image. While most particles are correctly labeled, the interior of the largest are missed.  a.) shows 
the CNN output overlaid on the raw image, while b.) shows the raw image for reference. The scale bar in b.) 
represents 10 nm. 

  

Supplementary Figure 2:  Schematic representation of the UNet-type architecture used on 1024x1024 
images.  The red arrow and following blue box are only used in models with a second convolutional 
layer, as described in the text. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Supplemental Figure 3: Comparison of CNN outputs with varied parameters 

Supplementary Figure 4: Image segmentation after increasing the size of the 
convolutional kernel from 3x3 pixels to 7x7. Scale bar represents 50 nm. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Supplemental Figure 5: Accuracy metrics for UNet-type and simple one-layer CNN architectures with 
added batch normalization presented as a function of the amount of blur applied to training data 
and chosen segmentation threshold.  a.) shows precision values for four different architectures, 
while b.) shows recall score. Note that, in both a.) and b.(, the red no-blur and blur blur-1 curves 
almost completely overlap 

  

Supplemental Figure 6:  Visual interpretation of the learned kernel.  Schematic example showing 
that the sum of a horizontal Gabor filter, a vertical Gabor filter, and Gaussian blur produces a 
kernel similar to that learned by our simple one-layer CNN. 
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Supplemental Figure 7: Visualization of all learned filters in the CNN consisting of one layer 
with 32 filters. 

Supplemental Figure 8: Mean of all 32 convolutional kernels shown 
in Supplemental Figure 7. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Supplemental Figure 9:  The process of creating a labeled image from a raw image. a.) Example of a raw image. b.) 
Application of a gaussian filter for smoothing. c.) Morphological reconstruction by erosion. d.) Morphological 
reconstruction by dilation to extract background features. e.) Image d.) subtracted from image c.). f.) Otsu Threshold 
is applied to d.), and labels (blue/red colorscale) is overlaid on original image to verify accuracy.  The scale bar in a.) 
represents 50 nm. 

 

   

  

Supplementary Figure 10: Application of a trained UNet to data from a different distribution is not accurate.  a) Raw 
image which represents the average of 40 consecutive frames.  Though averaging images smooths the background 
making particle boundaries more clear to the human eye, the poor segmentation in the bottom right corner of b) 
shows that a neural network trained on noisy data is not effective on cleaner data. Scale bar represents 50 nm. 

  


