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Abstract. Within the framework of the superadditive duality theory of
integer programming, we study two types of dual-feasible functions of a
single real variable [Alves, C. et al.: Dual-Feasible Functions for Integer
Programming and Combinatorial Optimization: Basics, Extensions and
Applications. Springer (2016)]. We introduce software that automates
testing piecewise linear functions for maximality and extremality, en-
abling a computer-based search. We build a connection to cut-generating
functions in the Gomory—Johnson and related models, complete the char-
acterization of maximal functions, and prove analogues of the Gomory—
Johnson 2-slope theorem and the Basu—Hildebrand-Molinaro approxi-
mation theorem.
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1 Introduction

The duality theory of integer linear optimization is a multifaceted research topic
that connects to cutting plane theory and the theory of value functions of para-
metric optimization problems. The central objects on the dual side of this theory
are superadditive functionals.
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Dual-feasible functions. In the present paper, we make no attempt of describ-
ing this duality theory in its full generality. Rather, we focus on two simple and
fundamental settings in which superadditive functionals of a single real variable
appear. These settings, following the recent monograph [1], can be defined as
follows. Classical dual-feasible functions (¢cDFFs) are functions ¢: D — D such

that
Z%‘Sl = Z¢($i)§1 (1)
il iel
holds for any family {z;};er C D indexed by a finite index set I, where D = [0, 1].
In [1, Chapters 2 and 3], these functions are studied alongside with general dual-
feasible functions (¢DFFs), which satisfy the same property (1) for the extended
domain D = R. (There is an equivalent definition of these functions in terms
of valid inequalities for infinite-dimensional integer programming models, which
we suppress until subsection 5.2.)

Dual-feasible functions provide strong dual bounds in a branch-and-bound
algorithm and strong valid inequalities in a cutting-plane procedure. They have
been applied to this effect in particular for combinatorial optimization problems
that benefit from a column-generation approach, such as bin-packing or cutting-
stock problems [28,30]. We refer to [1, section 2.5] for further pointers to the
literature.

For each of the two settings, classical and general, there is a hierarchy of DFFs
regarding their strength. The maximal DFF's are those that are pointwise non-
dominated. As we will see later, they are the ones that have a characterization
involving superadditivity. Among the maximal DFFs, a DFF is said to be extreme
if it can not be written as a convex combination of two other maximal DFFs.
(This is an analogue of the notion of facet-defining inequalities.)

Cut-generating functions. These features of the theory are remarkably sim-
ilar to the ones in the study of the valid inequalities for the Gomory—-Johnson
infinite group problem [14,15], and the broader context of cut-generating func-
tions [12,31]. Our paper is an attempt to determine the precise relation between
DFFs and cut-generating functions, and to transfer recent advances in the study
of the latter to the DFF setting, in the hope that they will prove useful there.

In particular, we note that cut-generating functions are closely tied to the
setting of tableau cuts in a simplex-based cutting plane procedure. They play an
essential role in generating valid inequalities which cut off the current fractional
basic solution. In this way, they explain and generalize the Gomory fractional
cut and Gomory mixed-integer cut, the workhorses of state-of-art integer pro-
gramming solvers. The cut-generating functions in the Gomory—Johnson model
[14,15] are related to Gomory’s corner relaxation [13], which is obtained by re-
laxing the non-negativity of all basic variables in the tableau. Thus, basic integer
variables are allowed to take any value in Z in the relaxations. (Cut-generating
functions for stronger relaxations have been studied too: In the model of Yildiz
and Cornuéjols [31], basic variables are constrained to some set S C R with
suitable properties. We will come back to this model later.)



The close relation of cut-generating functions to a particular algorithmic
framework possibly limits their applicability. Our paper can be seen as a pre-
liminary study toward a larger goal: We would like to make the powerful results
for cut-generating functions — and the rich toolsets that were used to obtain
them — available for spaces of functions that arise from the study of broader
algorithmic frameworks. This includes algorithms for large-scale problems based
on decomposition techniques. The context in which the study of DFFs arose,
combinatorial problems with Dantzig—Wolfe decomposition, is one such setting.

Contributions and structure of the paper. After a brief review of key
results for DFFs in section 2, we begin the paper in section 3 by transferring
and extending recent algorithmic techniques [5,20,32,16,17] developed by Basu,
Hildebrand, Hong, Koppe, and Zhou for cut-generating functions in the single-
row Gomory-Johnson model [6,7] to DFFs. The algorithms are implemented in
the current version of the software [27]. We focus on ¢cDFFs. Like the majority
of the development in [1, Chapter 2], we consider piecewise linear functions that
are allowed to be discontinuous at the breakpoints. Similar to [23], we provide an
electronic compendium of the known extreme DFF's from [1]. The extremality of
the functions from this library is proved in [1] by studying analytical properties
of extreme DFFs. We complement this by our algorithmic techniques, leading to
automatic maximality and extremality tests for cDFFs. They are based on the
methods of polyhedral complexes and functional equations from [5,20] and the
inverse semigroup techniques from [16,17]. On the basis of the automatic max-
imality and extremality test, we use a computer-based search technique based
on polyhedral computation and filtering to find new extreme DFFs. Our search
reveals that the classic dual-feasible functions are much richer than what is rep-
resented by the families of functions described in the literature. We hope that
our software facilitates experimentation and further study.

Then, in section 4, we turn to the study of gDFFs. Here we transfer techniques
used by Yildiz and Cornuéjols for the study of their previously mentioned model
of cut-generating functions, which generalizes the Gomory—Johnson framework.
Their results extended the characterization of minimal Gomory—Johnson cut-
generating functions in terms of the so-called generalized symmetry condition.
Inspired by the characterization of minimal Yildiz—Cornuéjols cut-generating
functions and using similar techniques, we give a full characterization of maximal
gDFFs, closing a gap in [1].

In section 5, we investigate the relation between classical and gDFF's and cut-
generating functions. First, in subsection 5.1, we introduce a conversion from
Gomory—Johnson functions to DFFs, which under some conditions generates
maximal or extreme cDFFs and gDFFs. The Gomory—Johnson model is well-
studied and the literature provides a large library of known functions. From our
conversion, we obtain 2-slope extreme DFFs and maximal DFF's with arbitrary
number of slopes. This work is also a possible starting point for constructing
new parametric families of DFFs with special properties.



Then, in subsection 5.2, we focus on gDFF's, which allow us to build a more
precise connection. GDFFs turn out to have a very close relation to a model
studied by Jeroslow [21], Blair [10] and Bachem et al. [3], which we refer to by
Y_; and a certain relaxation of this model, which we denote by Y<;. Both Y—;
and Y<; can be studied in the Yildiz—Cornuéjols model [31] with various sets S.
GDFF's generate valid inequalities for the Yildiz—Cornuéjols model with S =
(=00, 0], and cut-generating functions generate valid inequalities for the Jeroslow
model where S = {0}. These two families of functions are then connected by an
operation known as “tilting.”

Perhaps the most famous result of Gomory and Johnson’s masterpiece [14,15]
is the 2-slope theorem, showing that every continuous piecewise linear minimal
valid function that has only two different slope values is an extreme function.
In section 6, we show a similar result for gDFFs: Any 2-slope maximal gDFF,
for which one slope value is 0, is extreme. In contrast, we show that for cDFFs,
there cannot exist a 2-slope theorem. We have a counterexample, a maximal
cDFF with 2 slopes and 3 “connected covered components” (a concept from the
algorithmic extremality test) that is not extreme.

Finally, in section 7, we turn to the approximation theory of gDFFs. Basu
et al. [9] proved that the 2-slope extreme Gomory—Johnson cut-generating func-
tions are dense in the set of continuous minimal functions. We prove a similar
approximation theorem, which indicates that almost all continuous maximal
gDFFs can be approximated by extreme (2-slope) gDFFs as close as we desire.
Unlike the 2-slope fill-in procedure that Basu et al. [9] used, we always use 0
as one slope value in our fill-in procedure, which is necessary since the 2-slope
theorem of gDFFs requires 0 to be one slope value. It remains an open question
whether maximal cDFFs can also be approximated in the same way by extreme
functions.

2 Key results from the DFF literature

Definition 2.1 A function ¢: [0,1] — [0,1] is called a (valid) classical dual-
feasible function (¢cDFF), if for any finite list of real numbers z; € [0,1], i € I,
it holds that ), 2y <1 =3, ;d(x;) < 1. A function ¢: R — R is called a
(valid) general dual-feasible function (gDFF), if for any finite list of real numbers
i €R, i €1, it holds that ) ,c;x; < 1=, ¢(x;) < 1.

Definition 2.2 A ¢DFF/gDFF is maximal if it is not (pointwise) dominated
by a distinct cDFF/gDFF. A ¢DFF/qDFF is extreme if it cannot be written as
a convex combination of other two different cDFFs/qDFFs.

In the monograph [1], the authors explored maximality of both ¢cDFFs and
gDFFs.

Theorem 2.3 (Characterization of maximal cDFFs, [1, Theorem 2.1]).
A function ¢: [0,1] — [0,1] is a mazimal cDFF if and only if ¢(0) = 0, ¢
is superadditive and ¢ is symmetric in the sense ¢(x) + ¢(1 — ) = 1 for all
z € 10,1].



Theorem 2.4 (Conditions for maximality of gDFFs, [1, Theorem 3.1]).
Let ¢: R — R be a given function. If ¢ satisfies the following conditions, then ¢ is
a mazimal gDFF: (i) ¢(0) = 0. (i) ¢ is symmetric in the sense ¢p(x)+¢p(1—x) =
1 for all x € R. (i) ¢ is superadditive. (iv) There exists an € > 0 such that
é(x) > 0 for all z € (0,¢).

If ¢ is a mazimal gDFF, then ¢ satisfies conditions (4), (iit) and (iv).

Remark 2.5 The function ¢(x) = cx for 0 < ¢ < 1 is a mazimal gDFF but it
does not satisfy condition (it).

Remark 2.6 Note that conditions (i), (iii) and (iv) guarantee that any mazimal
gDFF is nondecreasing and consequently nonnegative on R .

Different approaches to construct non-trivial cDFF's from “simple” functions
are explained in [1], including convex combination and function composition.

Proposition 2.7 ([1, Section 2.3.1]) If ¢1 and ¢o are two maximal ¢cDFFs,
then agr + (1 — a)ds is also a maximal cDFF, for 0 < a < 1.

Proposition 2.8 ([1, Proposition 2.3]) If ¢, and ¢ are two mazimal cDFFs,
then the composed function ¢1(pa(x)) is also a maximal cDFF.

Maximal gDFFs can also be obtained by extending maximal cDFF's to the
domain R. Theorem 2.9 uses quasiperiodic extensions and Theorem 2.10 uses
affine functions when z is not in [0, 1]. Throughout the paper, we use {a} to
represent the fractional part of a.

Theorem 2.9 ([1, Proposition 3.10]). Let ¢ be a mazimal cDFF, then there

exists by > 1 such that for all b > by the following function gZ;(;r) is a maximal
gDFF.

day=47""

: bx |z +o({z}) ifr<1
1—¢(1—2x) ife>1"

Theorem 2.10 ([1, Proposition 3.12]). Let ¢ be a maximal cDFF, then there
exists b > 1 such that the following function ¢(zx) is a mazimal gDFF.

be+1—b ifx<0
p(x) = bz if x> 1
o(x) o<z <1

Proposition 2.11 shows that every maximal gDFF is the sum of a linear func-
tion and a bounded function. Proposition 2.12 explains the behavior of nonlinear
maximal gDFF's at given points.

Proposition 2.11 ([1, Proposition 3.4]) If ¢: R — R is a mazimal gDFF
and t = Sup{@ : 2 > 0}, then we have lim,_,o0 2% = t < —¢(—1), and for

x

any © € R, it holds that: tx — max{0,t — 1} < ¢(x) < tz.




Proposition 2.12 ([1, Proposition 3.5]) If ¢: R — R is a mazimal gDFF
and not of the kind ¢(z) = cx for 0 < c <1, then ¢(1) =1 and ¢(3) = 3.

The following proposition utilizes the fact that maximal gDFFs are super-
additive and nondecreasing, which can be used to generate valid inequalities for
general linear integer optimization problems.

Proposition 2.13 ([1, Proposition 5.1]) If ¢ is a mazimal gDFF and L =
{z e Zy - Y70 ayay < biyio=1,2,...,m}, then for any i, 37_ d(aij)z; <
@(b;) is a valid inequality for L.

3 Automatic tests and search for classical DFF's

In this section, we restrict ourselves to piecewise linear cDFFs. We introduce the
automatic maximality and extremality tests of given piecewise linear functions,
and a computer-based search method which is used to find new extreme func-
tions. Our methods are released as part of the software [27], which is written in
Python, using the framework of SageMath [29], a comprehensive Python-based
open source computer algebra system. In this paper, a function name shown in
typewriter font refers to the cutgeneratingfunctionology.dff module of our
SageMath program [27].

3.1 Definition of piecewise linear functions and polyhedral
complexes underlying the algorithmic maximality test of
classical DFFs

We begin with a definition of piecewise linear functions ¢: [0, 1] — [0, 1] that are
allowed to be discontinuous, similar to [5, section 2.1] and [20,6]. Let 0 = ag <
a1 < -+ < ap—1 < ap = 1. Denote by B = {ag,a1,...,a,-1,a,} the set of all
possible breakpoints. The 0-dimensional faces are defined to be the singletons,
{a;}, a; € B, and the 1-dimensional faces are the closed intervals, [a;,a;11],
i =0,...,n— 1. Together they form P = Ppg, a finite polyhedral complex. We
call a function ¢: [0,1] — R piecewise linear over Pp if for each face I € Pp,
there is an affine linear function ¢;: R — R, ¢r(x) = c¢rx + by such that ¢(z) =
¢1(x) for all z € relint(I). Under this definition, piecewise linear functions can
be discontinuous. Let I = [a;, a;11]. The function ¢ can be determined on the
open intervals int() = (a;,a;11) by linear interpolation of the limits ¢(a;) =
limg sa;,0>a; (b(.?;‘) = ¢I(ai) and ¢(a;+1) = limwﬁai+1,$<ai+1 ¢($> = ¢I(ai+1)~ We
say the function ¢ is continuous piecewise linear over Py if it is affine over each
of the cells of Pp (thus automatically imposing continuity).

Unlike Gomory—Johnson cut-generating functions, which may be discontinu-
ous at 0 on both sides, a classical maximal DFF is always continuous at 0 from
the right and at 1 from the left.

Lemma 3.1 Any piecewise linear mazximal cDFF is continuous at 0 from the
right and continuous at 1 from the left.



Proof. Consider ¢ to be a piecewise linear maximal ¢cDFF, and ¢(z) = sz + b
on the first open interval (ag,a;). Note that the maximality of ¢ implies that
¢(0) = 0. Choose x = y = %", and based on superadditivity, we have

o(x)+d(y) <Pz +y) =sz+b+sy+b<s@+y)+b=b<0.

Since b is also the right limit at 0, so b is nonnegative. Therefore, b = 0, which
implies ¢ is continuous at 0 from the right. By the symmetry condition, ¢ is
continuous at 1 from the left. ad

Similar to [5,6,7,8,16], we introduce the function V¢: RxR — R, Vo(x,y) =
d(x + y) — ¢(x) — ¢(y). The function V¢ measures the slack in the superad-
ditivity condition. Observe that the piecewise linearity of ¢ induces piecewise
linearity of V¢. In order to express the domains of linearity of Vo(z,y), and
thus domains of additivity and strict superadditivity, we introduce the two-
dimensional polyhedral complex AP = APp. The faces F of the complex
are defined as follows. Let I, J, K € Pp, so each of I,J K is either a break-
point of ¢ or a closed interval delimited by two consecutive breakpoints. Then
F=FI,JK)={(z,y) eRxR:zel,yeJ x+ye K}. The projections
P1,02,p3: R X R — R are defined as p;(z,y) = z, p2(z,y) =y, ps(z,y) =+ y.
Let F' € AP and let (u,v) € F. We define

Voér(u,v) = lim Vo(z,y),
()= (u,v)
(z,y)€E€relint(F)
which allows us to conveniently express limits to boundary points of F', in par-
ticular to vertices of F, along paths within relint(F). It is clear that Vér(u,v)
is affine over F', and Vo (u,v) = Vor(u,v) for all (u,v) € relint(F). We will use
vert(F') to denote the set of vertices of the face F.

Let ¢ be a piecewise linear maximal DFF. We now define the additive faces
of the two-dimensional polyhedral complex AP of ¢. When ¢ is continuous, we
say that a face F' € AP is additive if V¢ = 0 over all F. Notice that V¢ is affine
over F, the condition is equivalent to V¢(u,v) = 0 for any (u,v) € vert(F).
When ¢ is discontinuous, following [19], we say that a face F' € AP is additive
if F' is contained in a face F’ € AP such that Vop (z,y) = 0 for any (x,y) € F.
Since V¢ is affine in the relative interiors of each face of AP, the last condition
is equivalent to Vg (u,v) = 0 for any (u,v) € vert(F).

3.2 Maximality test

We introduce an efficient method to check the maximality of a given piecewise
linear function. The code maximality_test(¢) implements a fully automatic
test whether a given function ¢ is maximal, by using the information that is
described in AP.

Based on Theorem 2.3, we need to first check that the range of the function
stays in [0, 1] and ¢(0) = 0. Since we assume the function is piecewise linear with
finitely many breakpoints, only function values and left and right limits at the
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Fig. 1: Maximal cDFF ¢, (a3 C) = 0 ) for 0 = 5.

breakpoints need to be checked. Similarly, the symmetry condition only needs to
be checked on all breakpoints including the left and right limits at each break-
point. In regards to the superadditivity, it suffices to check V¢(u,v) > 0 for any
(u,v) € vert(F), including the limit values V¢ér(u,v) when ¢ is discontinuous.

As for the diagrams of AP, we start with a triangle complex [ = J = K =
[0,1], and then refine I, J, K based on the set of breakpoints, namely B. In
practice, the code plot_2d_diagram_dff (¢) will show vertices where superad-
ditivity or symmetry condition is violated (marked red). It also paints additive
faces green, including 1-dimensional and 0-dimensional additive faces, which are
additive edges and vertices not contained in any higher dimensional additive
faces.

Figure 1 is an example of the AP of a maximal cDFF. We also plot the
function on the upper and left borders. There is no vertex where superadditivity
or symmetry condition is violated, so the function is maximal.

3.3 Extremality test

Our automatic extremality test, extremality_test_dff, builds upon the tech-
niques of the grid-free extremality test for the Gomory—Johnson setting, which
is described in [32, Chapter 4] and [20,18,16] and the forthcoming paper [17],
and implemented in [27].



In this subsection, we provide the technical results that allow us to adapt
these techniques to cDFFs. First there is a simple necessary condition for piece-
wise linear extreme cDFFs.

Lemma 3.2 Let ¢ be a piecewise linear extreme cDFF. If ¢ is strictly increas-
ing, then ¢(x) = x. In other words, there is no strictly increasing piecewise linear
extreme cDFF except for ¢(x) = x.

Proof. We know ¢ is continuous at 0 from the right. Suppose ¢(z) = sz, © €
[0,a;1) and s > 0, since ¢ is not strictly increasing if s = 0. We claim that s is the
smallest slope value of ¢. Suppose otherwise ¢(z) = s’z +t, © € [r,r + €] with
s’ < s and € < a7. In order to satisfy the superadditivity, we have ¢(r + €) >
¢(€) + ¢(r), which can be reduced to s’ > s. The contradiction indicates that
s is the smallest slope value. We have s < 1 since ¢(1) = 1. Similarly if s = 1,

then ¢(x) = =.
Next, we can assume 0 < s < 1. Define a function:
T) — sx
lw) = AP

It is not hard to show ¢1(z) =0 for « € [0,a1), and ¢1(1) = 1. The function ¢,
is superadditive because it is obtained by subtracting a linear function from a
superadditive function. These two together guarantee that ¢; stays in the range
[0,1]. The function ¢; satisfies the symmetry condition due to the following
equation:

o) + ¢(1 — 2) — sz — s(1 — )

1—s

o1(z) + o1l —2) = =1.

Therefore, ¢ is also a maximal ¢cDFF. Moreover, ¢(z) = sz + (1 — s)d1(x)
implies ¢ is not extreme, since it can be expressed as a convex combination of
two different maximal cDFF's: x and ¢;. a

Next we give the definition of effective perturbation functions.

Definition 3.3 Let ¢ be a mazimal cDFF. Then a function ¢: [0,1] — R is
called_an effective perturbation function of ¢, if there exists € > 0, such that
¢+ €p and ¢ — e¢ are both maximal cDFFs.

From the definition above, the zero function is always an effective pertur-
bation function, and we call it the trivial effective perturbation function. There
exists a nontrivial effective perturbation function of ¢ if and only if ¢ is not
extreme.

Effective perturbations of a DFF ¢ have a close relation to the functions ¢
in regards to continuity and additivity.

Lemma 3.4 Let ¢ be a piecewise linear maximal cDFF. If ¢ is continuous on
a proper interval I C [0,1], then for any perturbation function gz~5, we have that
é 18 Lipschitz continuous on the interval I. Furthermore, qNS is continuous at all
points at which ¢ is continuous.



Proof. We know ¢ is continuous at 0 from the right. Let ¢ be an effective per-
turbation function. Since ¢ is piecewise linear, there exists a nonnegative s,
such that ¢(z) = sz on the first interval [0,a1). Let I = J = K = [0,a4],
and let F' = F(I,J,K). Then forany x € I,y € J, 2 +y € K, Vor(z,y) =
s(x+y)— sz —sy = 0. Thus, F is a two-dimensional additive face of AP. From
the Interval Lemma, we know that there exists 5, such that é( ) = Sx, when
x € [0,a;). Since qb is an effective perturbation function, there exists € > 0, such
that ¢* = ¢ + e and ¢~ = ¢ — e are both maximal cDFFs. We know that ¢+
and ¢~ have slope st = s+ €5 > 0 and s~ = s — €5 > 0 respectively.

Let I C [0,1] be a proper interval where ¢ is continuous. Since ¢ is piecewise
linear, there exists a positive constant C' such that |¢(z) — ¢(y)| < Clx — yl,
for any x,y € I. We can simply choose C' to be the largest absolute value of
the slopes of ¢. Assume z > y and z — y < aj, from the superadditivity of
¢T and ¢, ¢T(x) = ¢T(y) + ¢T(x —y) = ¢T(y) + sT(z — y) and ¢~ (z) >
¢~ (y) + ¢ (x —y) = ¢~ (y) + s (x —y). It follows that —(C+s)(x—y) <
€(d(x) — 3(y)) < (C + s7)(@ — y). Therefore, |¢(x) — ()| < Clz — y|, where

= %maX(C +57,C + sT). Hence, ¢ is Lipschitz continuous on the interval I.
O

We remark that, in contrast to the Gomory—Johnson setting, Lemma 3.4
holds without further hypotheses, and so the subtle issues regarding two-sided
discontinuous functions explored in [26] do not arise for our cDFFs.

For the following lemma, recall from subsection 3.1 the notation V(;;F(LE, Y)
to denote the limit within the face F' of the two-dimensional complex.

Lemma 3.5 Let ¢ be a piecewise linear mazximal cDFF. For any effective pertur-
bation function QS, we have that ¢ satisfies additivity where ¢ satisfies additivity.
This also holds true in the limit: If F € AP, (v,y) € F, and Vor(z,y) = 0,
then Vor(z,y) = 0.

Proof. Since ¢ is an effective perturbation function, there exists ¢ > 0, such that
¢t = ¢+ ed and ¢~ = ¢ — e are both maximal cDFFs. If ¢ satisfies additivity

t (x,y), we have ¢(x) + ¢(y) = ¢(x + y). Applying superadditivity of ¢* and
¢~ at (z,y), we get ¢(z) + ¢(y) = d(x + y). Likewise, if the limit Vg (z,y) is
zero, then the superadditivity of ¢+ and ¢~ implies that the limit Vg (z,y)
exists and is zero. a

From the continuity (Lemma 3.4) and additivity (Lemma 3.5), our algorithm
deduces further properties of every effective perturbation function ¢. One tool is
the famous Gomory—Johnson Interval Lemma; we include a version of it below.

Lemma 3.6 (Interval Lemma) [6, Lemma 4.1] Let a1 < az and by < bs.
Consider the intervals A = [a1,a2], B = [b1,bs], and A+ B = [a1 + b1, az + ba].
Let f:A— R, g:B— R, and h: A+ B — R be bounded functions on A, B
and A + B, respectively. If f(a) + g(b) = h(a+b) for alla € A and b € B, then
f, g, and h are affine functions with identical slopes in the intervals A, B, and
A + B, respectively.
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Using this lemma and additional techniques from [32, Chapter 4], [18,16], our
algorithm constructs a list of pairwise disjoint connected covered components
Ci,...,Ck, each of which is a finite union of open intervals with the following
property. If 7 is any effective perturbation function and C; is one of the connected
covered components, then the restrictions of 7 to the intervals of C; are affine
functions with identical slopes. Like in the Gomory—Johnson case, we can prove
the finiteness of this construction when the breakpoints of ¢ are rational.

If there is some uncovered interval, i.e., an open interval of [0,1] \ |, Ci,
then a nontrivial “equivariant” perturbation is guaranteed to exist, and hence
extremality_test_dff returns False. (Our algorithm can actually construct
such a perturbation using the method of inverse semigroups of restricted trans-
lations and reflections from [32, Chapter 4], [18,16]; we suppress all details.)

On the other hand, if the domain [0, 1] is covered by the closures of Cy, . .., C,
then any effective perturbation function is guaranteed to be piecewise linear. The
existence of a nontrivial effective perturbation function depends on whether a
finite dimensional linear system has a nontrivial solution.

We start with the continuous case. Suppose ¢ is a continuous piecewise linear
maximal cDFF, thus any effective perturbation function ¢ must be continuous.
If the domain [0, 1] is covered by the closures of C,...,Cy, then ¢ has the
same slope value on each C; and we denote the slope value by s;. Note that the
effective perturbation function QNS is uniquely determined by the set of slope values
{s1,...,sk}. Specifically, there exists a vector-valued linear function g: [0, 1] —
R* so that ¢(z) = g(z) - (s1,-- -, k). The ith coordinate of g(z) represents the
total length of the connected component C; contained in the interval [0, z], i.e.
g(z) = (IC1 N[0, 2]],...,|Ck N[0, z]]).

In the general case where ¢ may be discontinuous, the effective perturbation
function qg may also be discontinuous. If q~5 may be discontinuous at x, then there
exist jumps h~ = ¢(z) — ¢(z~) and h™ = ¢(z7) — ¢(x), where h™, h' repre-
sent the left and right discontinuity at z respectively. Note that A=, h™ could
also be 0 representing (left/right) continuity at point z. It is not hard to see
there are only finitely many points where discontinuity may occur, since discon-
tinuity can only occur at the endpoints of connected components Ci,...,Ck.
The effective perturbation function ¢ is uniquely determined by the set of slope
values {s1,...,s;} and potential jumps {hy,...,h,}. The general form of an
effective perturbation function gz~5 can then be expressed using a vector-valued
linear function g: [0,1] — R**™ slope variables and jump variables so that

d(x) = g(x) - (51558 h1y ..y hm). (2)

The last m coordinates of g(z) are binaries indicating whether those potential
jumps are contained in the interval [0, z]. Observe that the function g is deter-
mined only by the original function ¢. ~

The next step is to find all constraints that ¢(z) needs to satisfy and solve a
linear system of (s1,..., Sk, h1,...,hy). If there is only the trivial solution, then
extremality_test_dff returns True. If one nontrivial function ¢(z) is found,
then extremality_test_dff returns False. We use the following proposition.
Recall from subsection 3.1 the notation ¢(a~) to represent the left limit to a.
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Proposition 3.7 Let ¢ be a piecewise linear mazimal cDFF. Assume ¢(aj ) =0
where a1 is the breakpoint of ¢ next to 0, and assume ¢ has no uncovered interval.
Let B = BUY, 9C; be the union of breakpoints of ¢ and endpoints of the intervals
of covered components, and P be the new complez based on B. The functions
gf;: [0,1] = R defined by (2), using the slope variables and jump variables given
by all covered components of ¢, are piecewise linear over P. Construct a linear

system of equations for ¢:

Vor(z,y) =0 for all F € AP, (z,y) € vert(F) (3a)
such that Vop(z,y) =0,

¢(1) = ¢(ay) = 0. (3b)

If there is only the trivial solution qg(z) =0, then ¢ is extreme. If there is some
nontrivial solution ¢, then there exists € > 0 such that ¢ + ¢ and ¢ — €¢ are
both maximal; thus ¢ is a nontrivial effective perturbation and ¢ is not extreme.

Proof. Note that if ¢ is an effective perturbation function, then it must satisfy
the linear system (3) because of Lemma 3.5. By assumption, [0,1] is covered by
the closures of C, ..., Cy, where each C; is a connected covered component. We
know that ¢ is affine linear on each C; with the same slope. Observe that if the
linear system has only the trivial solution, then the only effective perturbation
function is the zero function, thus ¢ is extreme.

Suppose there is a nonzero solution qg to the linear system (3); it is by def-
inition a piecewise linear function on [0, 1] with possible discontinuities at the
breakpoints. Let

6 =min{ Vor(z,y) :Fe AP, (z,y) € vert(F), Vor(z,y) >0},
o =max{|Vop(z,y)|: F € AP, (z,y) € vert(F), Vop(z,y) > 0}.

Note the minimum and maximum are over a finite set. Choose € = ﬁ > 0;

then we claim that ¢ + 6¢~) and ¢ — 6(5 are both superadditive. Let F' € AP and
(z,y) € vert(F). We compute V(¢ + €p)r(v,y) = Vor(z,y) + eVor(r,y). If
Vor(z,y) =0, then by (3), also Vop(z,y) = 0. Otherwise Vo (z,y) > 0, and
then Vor(z,y) +6V~q3F(a?, y) > 6 —eo > 0. Thus, ¢ + e¢ are both superadditive.

Consider ¢ and ¢ on the interval [0, a;). The function ¢ is the zero function
on [0,a;) since ¢(0) = ¢(0") = ¢(a7) = 0. Note that (0,a;) belongs to some
covered component, i.e., (0,a;) C C; for some i. Then (;Nb is also a linear function
on (0,a1). Due to ¢(0) = $(01) = ¢(ay) = 0, we know that ¢ is also the zero
function on [0,a;). Then ¢ + e¢ and ¢ — e¢ are both nonnegative on [0,a1), so
they are monotone increasing on [0, 1] by superadditivity. Since (¢ & €¢)(1) =
¢(1) £ ep(1) = 1 and the functions are monotone increasing, ¢ & e¢ both stay in
the range of [0, 1].

The symmetry condition of ¢ + 6(]3 and ¢ — egz~5 is implied by the symmetry
condition of ¢. Indeed, for every face F = F(I,.J,K) € AP such that K = {1}
and every vertex (x,1—x) € vert(F), we have Vor(z,1—2) = 0. Then from the
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linear system (3), we also have Vérp(z,1—z) = 0, and thus V(¢+ed) p(z,1—z) =
Vor(z,1—x)+eVop(z,1 —1x)=0.

Therefore, both ¢+ €¢ and ¢ — e are maximal cDFF's, thus ¢ is not extreme.

O

3.4 Computer-based search

In this subsection, we discuss how computer-based search can help in finding ex-
treme cDFFs. Most known ¢cDFF's in the monograph [1] have a similar structure:
continuous cDFFs are 2-slope functions, and discontinuous cDFF's have slope 0
in every affine linear piece.

We transfer a computer-based search technique from [25] for Gomory—Johnson
functions to ¢cDFFs. Our goal is to find piecewise linear extreme cDFF's with ra-
tional breakpoints, which have fixed common denominator ¢ € N. The strategy is
to discretize the interval [0, 1] and consider discrete functions on B, := %Zﬂ [0,1],
or, equivalently, vectors in R9t! whose components are the function values on
the grid B,. In this space, we define a polytope by inequalities from the charac-
terization of maximality. Extreme points of the polytope can be found by vertex
enumeration tools. Recent advances in polyhedral computation (Normaliz, ver-
sion 3.2.0; see [11]) allow us to reach ¢ = 31 in under a minute of CPU time. Can-
didates for extreme cDFFs ¢ are obtained by interpolating values on %Z N[0, 1]
from each extreme point (discrete function). Then we use our extremality test
to filter out the non-extreme functions.

Based on a detailed computational study regarding the performance of ver-
tex enumeration codes in [25], we consider two libraries, the Parma Polyhedra
Library (PPL) and Normaliz. Both are convenient to use within the software
SageMath [29].

We now introduce some notation, which will allow us to make precise state-

ments that also include the discontinuous case.
Definition 3.8 We use B, to denote the set {0, %, %, o %1, 1}. Denote @ (q)
to be the set of all mazximal continuous piecewise linear cDFFs with breakpoints
in By, and ®p(q) to be the set of all mazimal possibly discontinuous piecewise
linear cDFF's with breakpoints in By.

Theorem 3.9. Both ¢¢(q) and ®p(q) are linearly isomorphic to finite dimen-
sional convez polytopes Pp(q) C R and &, (q) C R3T7L, respectively, if q is
fized.

Proof. Continuous case. Note that any maximal cDFF ¢ € ®¢(q) is uniquely
determined by the values at the breakpoints. So we just need to consider discrete
functions on B, that are the restrictions ¢|p, of ¢ to B,. Since ¢ is maximal,
#|B, should also satisfy superadditivity and the symmetry condition.

For each possible breakpoint é, we introduce a variable v; to be the value

¢(§). Considering inequalities from superadditivity, the symmetry condition and
0<wv; <1, vy =0, we get a polytope in ¢ + 1 dimensional space, because there
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are only finitely many inequalities and each variable is bounded. We denote this
polytope by @ (q).

It is not hard to prove the convex combination of two maximal continuous
piecewise linear cDFFs with breakpoints in By is also in $¢(g).

We can get ¢ back by interpolating ¢|p,. Therefore $¢(q) is linearly isomor-
phic to @.(g), a finite dimensional convex polytope.

Discontinuous case. Consider the linear map from @p(q) to R3?~! given by
6 (60), 6(27), 6(1) (), ooy 6(15E7), 6(45), 0(152 1), 6(1)),

where ¢(a™) and ¢(a™) again represent the left and right limits to a respectively.
Denote the image by @',(¢). This map is invertible by interpolating linearly
between the given limit values of ¢ near the breakpoints. Moreover, we know from
the maximality test (subsection 3.2) that it suffices to test the limits Vor(x,y)
to the vertices of the complex AP within faces F' 3 (z,y) of AP. Each vertex
(z,y) is contained in at most 12 faces F. Each of the limits can be expressed
as a linear combination of values and limits of ¢ at the breakpoints, such as
6(a%) +6(y~) — 6z +1)7), 9(a~) +6(y) — 9((w +y)~), ete. Therefore, @'(q)
is a polytope. a

A function ¢ that we obtain from the interpolation of the discrete function
values of a vertex of &/, (¢), or the interpolation of the function values and limits
of a vertex of &,(¢), is only a candidate of extreme functions. We need to use
the extremality test described in subsection 3.3 to pick those actual extreme
cDFFs. The following theorem provides an easier verification for extremality: if
¢ has no uncovered interval, then we can claim we find an extreme cDFF.

Theorem 3.10. Let ¢ be a function from interpolating values of some extreme
point of the polytope P (q) or P, (q). Then ¢ is extreme if and only if there is
no uncovered interval.

Proof. Here we only give the proof for continuous case, and the proof for dis-
continuous case is similar.

Suppose ¢ is obtained by in interpolating the discrete function ¢|p,, which
is an extreme point of the polytope @ (q), and gB is an effective perturbation
function.

If there is an uncovered interval, by subsection 3.3, there exists an effective
“equivariant” perturbation function, and the function is not extreme.

If there is no uncovered interval for ¢, then the interval [0,1] is covered by
the closures of Cy,...,C), where each C; is a connected covered component.
Since every breakpoint of ¢ is in the form of é, the endpoints of C; are also in
the form of é. We know ¢ and ¢ are affine linear on each C; with the same slope

by the Interval Lemma, and continuity of ¢ implies continuity of é. Therefore,
we know ¢ is also a continuous function with breakpoints in B,, which means

14



o+ e(é and ¢ + ¢ both have the same property. The maximality of ¢ + eq} and
¢ + €¢ implies their restrictions to B, are also in the polytope @}, (q), and

(¢ +€d)|B, + (6 — €d)l,
5 .

dlB, =

Since ¢|p, is an extreme point of the polytoltie P (q), then ¢|p, = (¢ +

ei))|3q = (¢ — e$)|3q, which implies ¢ = ¢ + e¢p = ¢ — ep. Therefore, ¢ is
extreme. O

Table 1 shows the results and the computation time for computing all ver-
tices of @} (q) for different values of g. We then use Theorem 3.10 to filter out
those non-extreme functions which have uncovered intervals. As we can see in
the table, the actual extreme cDFFs are much fewer than the vertices of the
polytope @/ (¢). PPL is faster when ¢ is small and Normaliz performs well when
q is relatively large. We can observe that the time cost increases dramatically as
q gets large. Similar to [25], we can apply the preprocessing program “redund”
provided by Irslib (version 5.08), which removes redundant inequalities using
Linear Programming. However, in contrast to the computation in [25], remov-
ing redundancy from the system does not improve the efficiency. Instead, for
relatively large ¢, the time cost after preprocessing is a little more than that of
before preprocessing for both PPL and Normaliz.

For example, for ¢ = 31, among 91761 functions interpolated from extreme
points, there are 1208 extreme cDFF's, most of which do not belong to known
families.

4 Characterization of maximal general DFF's

Alves et al. [1] provided several sufficient conditions and necessary conditions of
maximal gDFFs in Theorem 2.4, but they do not match precisely. Inspired by
the characterization of minimal cut-generating functions in the Yildiz—Cornuéjols
model [31], we complete the characterization of maximal gDFFs.

Proposition 4.1 A function ¢: R — R is a mazximal gDFF if and only if the
following conditions hold:

(i) ¢(0) = 0.
(ii) ¢ is superadditive.
(iii) ¢(x) >0 for all z € Ry.
(iv) ¢(x) =infr{3(1— (1 —ka)) : k € Zyy} for all z € R.

Proof. Suppose ¢ is a maximal gDFF, then conditions (i), (¢¢), (¢9¢) hold by
Theorem 2.4, which also implies that ¢ is monotone increasing. For any = € R
and k € Zy, kz+(1—kz) = 1 = ké(z)+d(1—kz) < 1. So ¢(x) < L(1—p(1—kz))
for any positive integer k, then ¢(z) < infr {1 (1 — ¢(1 — kz)) : k € Z, }.

If there exists zo such that ¢(z¢) < infr{7(1 — ¢(1 — kxo)): k € Z4}, then
define a function ¢; which takes value infy{ (1 — ¢(1 — kxo)): k € Zy} at zg
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Table 1: Search for extreme cDFFs and efficiency of
vertex enumeration codes (continuous case)

Polytope ®c(q) Running times (s)

q dim inequalities vertices extreme DFF PPL Normaliz

original minimized

2 0 4 3 1 1 0.00006 0.002
3 1 5 5 2 1 0.00009 0.006
5 2 9 7 3 2 0.00014 0.007
7 3 15 10 5 3 0.0002  0.007
9 4 23 14 9 3 0.0004 0.008
11 5 33 18 14 7 0.0006 0.010
13 6 45 23 25 8 0.001 0.012
15 7 59 29 66 14 0.003  0.018
17 8 75 35 94 22 0.005  0.025
19 9 93 42 221 32 0.010  0.042
21 10 113 50 677 55 0.036  0.105
23 11 135 58 1360 105 0.110  0.226
25 12 159 67 3898 189 0.526  0.725
27 13 185 7T 12279 291 5.1 2.991
29 14 213 87 28877 626 41 9.285
31 15 243 98 91761 1208 595 35.461
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and ¢(z) if © # x9. We claim that ¢, is a gDFF which dominates ¢. Given
a function y: R — Z,, with finite support satisfying > _pzy(r) < 1. We
have 3 g ¢1(2) y(x) = ¢1(20) y(20) + >_, 20, H(@) y(2). If y(z0) = 0, then it
is clear that ) _p¢1(z)y(z) < 1. Let y(zo) € Zy, then ¢1(xg) < @(1 -
¢(1 — y(xo) x0)) by definition of ¢1, then ¢1(xo)y(wo) + ¢(1 — y(zo) wo) < 1.
Since ¢ is superadditive and monotone increasing, we get > . ¢(z)y(z) <
(D ptay TY(@)) < &(1 — y(20) o). From the two inequalities we conclude that
¢1 is a gDFF and dominates ¢, which contradicts the maximality of ¢. So the
condition (iv) holds.

Suppose there is a function ¢: R — R satisfying all four conditions. Choose
x =1and k = 1, we can get ¢(1) < 1 from (iv). Together with conditions
(1), (i4), (i11), it guarantees that ¢ is a gDFF by the definition of gDFFs. Assume
that there is a gDFF ¢ dominating ¢ and there exists xo such that ¢1(zg) >
¢(xo) = infr{$(1— (1 —kmzo)): k € Z4 }. So there exists some k € Z, such that

¢1(wo) > %(1 — (1 — ko))
& ko1(zo) + (1 — kag) > 1
= ko1 (xo) + ¢1(1 — kxo) > 1.

The last step contradicts the fact that ¢, is a gDFF. Therefore, ¢ is maximal.
O

Parallel to the restricted minimal and strongly minimal functions in the
Yildiz—Cornuéjols model [31], “restricted maximal” and “strongly maximal”
gDFF's are defined by strengthening the notion of maximality.

Definition 4.2 We say that a ¢DFF ¢ is implied via scaling by a gDFF ¢1, if
Bopr > ¢ for some 0 < B < 1. We call a gDFF ¢: R — R restricted maximal
if ¢ is not implied via scaling by a distinct gDFF ¢1. We say that a gDFF ¢
is implied by a gDFF ¢1, if ¢(x) < Boi(x) + ax for some 0 < o, 8 < 1 and
a+p < 1. We call a gDFF ¢: R — R strongly maximal if ¢ is not implied by
a distinct gDFF ¢,.

Note that restricted maximal gDFFs are maximal and strongly maximal
gDFF's are restricted maximal. Based on the definition of strong maximality,
¢(x) = z is implied by the zero function, so ¢ is not strongly maximal, though it
is extreme. We include the characterizations of restricted maximal and strongly
maximal gDFFs here, which only involve the standard symmetry condition in-
stead of the generalized symmetry condition.

Theorem 4.3. A function ¢: R — R is a restricted maximal gDFF if and only
if the following conditions hold:

(1) ¢(0) = 0.
(ii) ¢ is superadditive.
(i11) ¢(x) > 0 for all z € R,.
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(iv) ¢(x) + ¢(1 —x) =1 for all z € R.

Proof. 1t is easy to show that ¢ is valid and restricted maximal if ¢ satisfies
conditions (i — iv). Suppose ¢ is a restricted maximal gDFF, then we only need
to prove condition (iv), since restricted maximality implies maximality.

Suppose there exists some z such that ¢(x) + ¢(1 — z) < 1. By the charac-
terization of maximality, ¢(z) = inf{+(1 — ¢(1 — ka)): k € Z }.

Case 1: Suppose there exists some k € N such that ¢(z) = 1 (1 — ¢(1 — kz)).
By superadditivity k¢(z) =1—9(1—kz)=1—¢(1—2z—(k—1)z) > 1—¢(1—
)+ ¢((k—1)z) > 1—¢(1 —z)+ (k—1) ¢(z), which implies ¢(z) +¢(1 —z) > 1,
in contradiction to the assumption above.

Case 2: Suppose otherwise ¢(z) < (1 — ¢(1 — kx)) for any positive integer
k. Therefore, for any € > 0, there exists a corresponding k. € N, such that

(1= 01— ko) < 0(0) + e

¢(z) <

Then ¢(kex) < 1— (1 — kex) < kep(x) + kee, or equivalently w < P(x) +e€

Since ¢ is superadditive, ¢(z) < M Let € go to 0 in the inequality ¢(x) <

plker) ¢(x) + €, and we have hmeﬁo (k dlbe) ¢(x). It is easy to see that

ke

hmeﬁo ke = +00.

Next, we will show that ¢(kx) = ké(z) for any positive integer k. Suppose k

is the smallest integer such that @ = ¢(x) + 6 for some § > 0. Then for any

i > k, there exist \;,; € Z4, such that ¢ = Aik 4+ 7, 0 <r; <k. Then

oiz) = p(Nikz + rix) > Nig(kx) + ¢(rix)
> Nikd(z) + NkS + rip(x) = ig(x) + (i — ;)0

Therefore ‘p(ix) > ¢(x)40— "6 for any i > k. Since r; is bounded, @ > o(z)+
¢ for any i > > 2k, which contradlcts lim¢_,o (k ) — = ¢(x). We have ¢(kz) = k¢(x)
for any positive integer k. From Proposition 2 12 we know ¢(1) = 1, and we have

ko(x) = ¢p(kx) = (k —1)o(1) + ¢(1 — k(1 — ))

o1 o) < L1200 fkk(lfz))

=1—9¢(z) < i%f 1-90 _kk(l —2)) =¢(1 — x).

The above inequality contradicts our original assumption.
In both cases, we have a contradiction if ¢(x) + ¢(1 — ) < 1. Therefore,
#(z) + ¢(1 — x) = 1, which completes the proof. O

Theorem 4.4. A function ¢: R — R is a strongly maximal gDFF if and only
¢( ) _ —0.

if ¢ is a restricted mazimal gDFF and lim,
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Proof. Suppose ¢ is strongly maximal, we only need to show lim,_ g+ @ =
0 since strong maximality implies restricted maximality. We first show that

#( o(e)

liminf,_ o+ Te) = 0. It is clear that liminf._,o+ == > 0 since ¢ is restricted

maximal. Assume liminf,_ g+ d’(:) = s > 0, then there exist § > 0 and s’ < s

(small enough) such that ¢(z) > s’z for x € [0, §]. Define a new function ¢y (x) =

d’(f):s,s/m, and ¢ is implied by ¢;. Note that ¢, is a restricted maximal gDFF.

The strong maximality of ¢ implies ¢1(x) = ¢(x) = x. Therefore, ¢p(z) = z is
2l — .

not strongly maximal. This contradiction implies that liminf,_, g+
O]

Next we show that lim._,o+ == = 0. Suppose on the contrary there ex-

ists some positive s such that limsup,_ g+ ¢(;) = 35 > 0. There exist two

positive and decreasing sequences ()% ; and (y,)>2, approaching 0, such

that ¢(z,) > 2sz, and ¢(yn) < sy,. Fix y; and choose 0 < =z, < y; and

k € Z, such that y; > kx, > %-. Since ¢ is superadditive and nondecreasing,

d(y1) > o(kxy,) > kd(xy,) > 2ksx, > syp, which contradicts the choice of y;.

e) _ #le) _
€

- 0, and lim,_,o+ @ =0 for

Then we have limsup,_,y+ liminf, o+
a strongly maximal gDFF ¢.

On the other hand, we assume ¢ is restricted maximal and lim,_ ¢+ @ =0.
Suppose ¢ is implied by a gDFF ¢ meaning ¢(z) < B¢1(x) + ax and 8, >
0,8+a <1.Let z =1, then 1 < B¢1(1) + a < S+ a < 1. We know that
8 =1— a. Note that 8¢1(z) + ax is also a gDFF (a convex combination of two
gDFFs ¢; and x), then ¢(z) = (1 — o)p1(z) + ax due to the maximality of ¢.
Divide by x from the above equation and take the liminf as x — 0T, we can
conclude a = 0. So ¢ is strongly maximal. O

Remark 4.5 Let ¢ be a maximal gDFF that is not linear. By Proposition 2.12
we know that ¢(1) = 1. If ¢ is implied via scaling by a gDFF ¢y, or equivalently
Bpr > ¢ for some 0 < B < 1, then Bop1(1) > ¢(1) = 1. Since B < 1 and
$1(1) < 1, we have B = 1 and ¢ is dominated by ¢1. The maximality of ¢
mmplies ¢ = ¢1, so ¢ is restricted maximal. Therefore, we have a simpler version
of the characterization of mazximal gDFFs.

Theorem 4.6. A function ¢: R — R is a mazimal gDFF if and only if ¢(z) =
sx for some 0 < s < 1 or ¢ is a restricted maximal gDFF, i.e., ¢ satisfies the
following conditions:

(1) ¢(0) = 0.
(i) ¢ is superadditive.
(iii) ¢(x) >0 for all z € Ry.
() ¢(x)+ p(l —z) =1 or ¢(z) = sz, 0 < s < 1.

We use Zorn’s lemma to show that maximal, restricted maximal and strongly
maximal gDFFs exist, and they are potentially stronger than just valid gDFFs.
The proof is analogous to the proof of [31, Theorem 1, Proposition 6, Theorem 9.

Theorem 4.7. (i) Every gDFF is dominated by a maximal gDFF.
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(i) Every gDFF is implied via scaling by a restricted maximal gDFF.
(i4i) Every gDFF is implied by a strongly maximal gDFF.

Proof. Part (i). If the gDFF ¢ is already maximal, then it is dominated by
itself. We assume ¢ is not maximal. Define a set A = { valid gDFF b q@(m) >
@(x) for z € R }. We consider (4, <) as a partially ordered set, where the partial
order ¢ < ¢9 is imposed by the pointwise inequality ¢ (z) < ¢o(z) for all 2 € R.
Consider a chain C' and a function ¢c(z) = supy e ¢'(z). We claim ¢¢ is an
upper bound of the chain C and it is contained in A.

First we prove ¢¢ is a well-defined function. For any fixed g € R, based
on the definition of gDFF, we know that for any ¢’ € C it holds that ¢'(rg) +
d(—ro) < ¢'(ro)+¢' (—rp) < 0. Note that ¢(—rp) is a fixed constant and it forces
that supy e ¢'(ro) < 0o. So we know that ¢c(z) = supy o ¢'(x) < oo for any
rz eR.

Next, we prove ¢¢ is a valid gDFF and dominates ¢. It is clear that ¢c > ¢,
so we only need to show ¢¢ is a valid gDFF. Suppose on the contrary ¢¢ is
not valid, then there exist (z;)/™; such that Y . 2; <1 and >.", ¢c(x;) =
1 4 € for some € > 0. Since there are only finite number of x;, we can choose
a function ¢’ € C such that ¢c(z;) < ¢'(x;) + 5 for i = 1,2,...,m. Then
L+e=>0" do(x:) < D (d'(x:) + <) < 1+ e The last step is due to the
fact that ¢’ is a valid gDFF. From the contradiction we know that ¢¢ is a valid
gDFF.

We have shown that every chain in the set A has a upper bound in A. By
Zorn’s lemma, we know there is a maximal element in the set A, which is the
desired maximal gDFF.

Part (ii). By (i) we only need to show every maximal gDFF ¢ is implied via
scaling by a restricted maximal gDFF. Based on Theorem 4.6, ¢ is either re-
stricted maximal or a linear function. If ¢ is restricted maximal, then it is im-
plied via scaling by itself. If ¢ is a linear function, then it is implied via scaling
by ¢'(z) = z.

Part (i4i). Suppose ¢ is a linear function, and ¢(z) = spx where 0 < sg < 1.
Observe that ¢ is implied by any strongly maximal gDFF ¢, since we have
s0x < 0 X ¢1(x) + sox.

Now we assume that ¢ is nonlinear. By (i4) we only need to show every
restricted maximal gDFF ¢ is implied by a strongly maximal gDFF. If ¢ is
already strongly maximal, then it is implied by itself. Suppose ¢ is not strongly
maximal.

First we claim that lim,_,o+ @ exists. The proof of the claim follows the
proof of Theorem 4.4 so we omit it here. Since ¢ is not strongly maximal,
lim,_,o+ 2< > 0 by Theorem 4.4. If lim,_,o+ 2< = 1, then ¢ is the linear

€ €

functions ¢(x) = x. We can assume that 1 > lim._g+ @ = s > 0. Define
a new function ¢4 (x) = ‘151185"” and we want to show ¢ is a strongly maximal

gDFF. Note that ¢1(0) = 0, ¢ is superadditive, ¢1(x) + ¢1(1 —x) = 1 and
lim, o+ ¢17(6) = 0. We only need to prove ¢;(z) is nonnegative if = is nonnega-
tive and near 0. Suppose on the contrary there exist ro > 0 and € > 0 such that
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¢(ro) = sro—e. There also exists a positive and decreasing sequence ()52 ; ap-

proaching 0 and satisfying elen) 5 g ﬁ Choose x,, small enough and k € Z

Tn
such that ro > kx, > ro — 5. Since ¢ is superadditive and nondecreasing, we

have

kex,,

srg — e = @(ro) > p(kxy) > kd(xy) > kszy, — 5

> 8rg— - — = = 8Ty — €.

€
2

N

To

The above contradiction implies that ¢(x) > sz for positive 2 near 0. Therefore
¢1 is strongly maximal and ¢ is implied by ¢;. O

5 Relation to cut-generating functions

5.1 Relation to Gomory—Johnson functions

In this section, we relate both ¢cDFFs and gDFFs to the Gomory—Johnson cut-
generating functions. In fact, new DFFs, especially extreme ones, can be discov-
ered by converting Gomory—Johnson functions to DFFs. We first introduce the
Gomory—Johnson cut-generating functions; details can be found in [6,7]. Con-
sider the single-row Gomory—Johnson model, which takes the following form:

x4+ ry(r)=b, b¢Zb>0, (4)
reR

x€Z,y:R—Z,, and y has finite support.

Let 7: R — R be a nonnegative function. Then by definition 7 is a valid Gomory—
Johnson function if ) _p 7(r)y(r) > 1 holds for any feasible solution (z,y).
Minimal (pointwise non-dominating) functions are characterized by subadditiv-
ity and several other properties.

As maximal ¢cDFFs and gDFFs are superadditive and minimal Gomory—
Johnson functions are subadditive, underlying the conversion is that subtracting
subadditive functions from linear functions gives superadditive functions; but
the details are more complicated.

Theorem 5.1. Let m be a minimal piecewise linear Gomory—Johnson function
corresponding to a row of the form (4) with the right hand side b. Assume 7
is continuous at O from the right. Then there exists § > 0, such that for all
0 < A <4, the function ¢y: R — R, defined by ¢)(x) = W, is a maximal
gDFF and its restriction ¢x|(o,1) is a mazimal cDFF. These functions have the
following properties.

(i) © has k different slopes if and only if ¢ has k different slopes. If b > 1,
then 7 has k different slopes if and only if x|jo1] has k different slopes.

(ii) The gDFF ¢y is extreme if w is also continuous with only 2 slope values
where its positive slope s satisfies sb > 1 and X\ = % The cDFF ¢ylj,1) is
extreme if m and A satisfy the previous conditions and b > 3.
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Proof. First we prove ¢, is a maximal gDFF if X is small enough. As a minimal
valid Gomory—Johnson function, 7 is Z-periodic, w(0) = 0, 7 is subadditive and
m(x) + (b —x) = 1 for all z € R [6]. Note that ¢, is defined on R, since 7
is Z-periodic and defined on R. It is not hard to check ¢,(0) = 0. Since ¢,
is obtained by subtracting a subadditive function from a linear function, it is
superadditive.

The symmetry condition of ¢y is due to the following equation:

oa(@) + oa(1 — ) = br _b iﬂ;bx) b(1 —2) _bi”;b(l — 1))

_ b= A(r(bz) + w(b(1 — 2)))
b— A

=1.

The last step is from the symmetry condition of 7 and m(b) = 1. Since 7 is
piecewise linear and continuous at 0 from the right. Let s be the largest slope of
7, then the largest slope of w(bx) is bs. Choose § = %7 then if A < 4, the slope of
bz is always no smaller than the slope of A (bx). There exists an € > 0 such that
éxa(z) > 0 for all x € (0,€). Therefore, ¢y is a maximal gDFF by Theorem 2.4
and @z |jo,1) is a maximal cDFF by Theorem 2.3.

Part (i). Suppose m has slope s on the interval (a;,a;+1), then by calculation
oa(z) = %ﬂ)\(m) has slope s’ = w on the interval (4, “#4). So if 7 has
slope s1, s2 on interval (a;,a;4+1) and (aj,a;+1) respectively, and ¢ has slope
s, s5 on interval (%, “4) and (92, %4 ) respectively, then s; = sy if and only
if s} = s5. From the above fact we can conclude 7 has k different slopes if and
only if ¢ has k different slopes.

Since 7 is Z-periodic, ¢ is quasiperiodic with period %. If b > 1, the interval
[0,1] contains a whole period, which has pieces with all different slope values.

So 7 has k different slopes if and only if ¢x|j,1] has k different slopes.

Part (i1). If sb > 1 and A = %, then it is not hard to show ¢, is also continuous
piecewise linear with only 2-slope values, and ¢x(z) = 0 for = € [0, ], i,e., one
slope value is 0. From the above results, we know ¢, is a maximal gDFFs.

We use the idea of the extremality test in subsection 3.3. Since 7 is extreme
from the Gomory—Johnson 2-Slope Theorem [14], all intervals are covered and
there are 2 covered components. Suppose (z, y, z+y) is an additive vertex, which
means 7(z) + 7(y) = m(z + y). From arithmetic computation, (£, %, %) is an
additive vertex, i.e., ox(%) + oa(%) = ¢>\(L}ty). So the additive faces for ¢y are
just a scaling of those for 7. In regards to ¢y, all intervals are covered and there
are only 2 covered components, and ¢(1) = 1 and ¢x(z) = 0 for = € [0, {]
guarantee that the interval [0, 1] contains the 2 covered components.

Assume ¢ = ¢1J2r¢2, where ¢ and ¢, are maximal gDFFs. By Theorem 2.4
and definition, ¢1(x) = ¢2(x) = 0 for x € [0, 7] and ¢1(1) = ¢2(1) = 1. The
functions ¢1 and ¢, satisfy the additivity where ¢, satisfies the additivity, oth-
erwise one of ¢; and ¢- violates the superadditivity. So the additive faces of ¢y
are still additive faces of ¢; and ¢5. By the Interval Lemma [6] and values at

point § and 1, we can show ¢; and ¢ both have 2 covered components and
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these covered components are the same as those of ¢y. Thus ¢, and ¢- are both
continuous 2-slope functions and one slope value is 0, due to nondecreasing con-
dition. Suppose the 2 covered components within [0, 1] are C; and Cs, where C
and Cy are disjoint unions of closed intervals. We assume ¢; and ¢ have slope 0
on C7 and slope s; and sg on Cj respectively. The condition ¢1(1) = ¢2(1) =1
implies that 0 x |C1|+s1 X |Co| =1 and 0 X |Cy| + s2 x |C3| = 1, where |C;| and
|C2| denote the measure of Cy and Cs. So we have s; = s5. All these properties
guarantee that ¢; and ¢o are equal to each other, therefore ¢, is extreme.

We assume b > 3. If all intervals are covered for the restriction ¢z 1,
then we can use the same arguments to show ¢,|(o,1) is extreme. So we only
need to show all intervals are covered by additive faces in the triangular region:
R={(z,y): =,y,x+y € [0,1]}. Maximality of ¢x|[,1], especially the symmetry
condition, implies that if (z,y, x+y) is an additive vertex, sois (1—x—y, y, 1—x).
The fact implies that the covered components are symmetric about x = %, ie.,
x is covered < 1 — x is covered and they are in the same covered components.
From the scaling of additive faces of 7, the additive faces of ¢x|[o,1) contained

1], and the additive faces of @x|[o 1

in the square [0, 1]? cover the interval [0,

contained in the square [}, 2] x [0, §] cover the interval [, 2]. Similarly, we can
use additive faces contained in [2] = [1/1] such whole squares to cover the

interval [0, %} The condition b > 3 guarantees that those (%1 whole squares are
contained in the region R. Together with the symmetry of covered components,
we can conclude all intervals are covered, thus ¢x|j,q] is extreme.

This concludes the proof of the theorem. a

Remark 5.2 (1) A construction of k-slope extreme Gomory—Johnson functions
has been found for any arbitrary k € N [4]. Therefore, there exist maximal gDFFs
and cDFFs with an arbitrary number of slopes.

(2) The restriction ¢x|jo,1) i not always extreme as a cDFF even if ¢y is
extreme as a gDFF. See an example in Remark 6.5.

(3) Note that ¢y is quasiperiodic since 7 is Z-periodic. However, not all
maximal gDFFs are quasiperiodic (See Theorem 2.10). Therefore, the conversion
18 mot surjective.

5.2 Relation to Yildiz and Cornuéjols cut-generating functions

In this subsection, we focus on gDFFs since they have the extended domain R.
We define an infinite dimensional space Y called “the space of nonbasic vari-
ables” as Y = {y : y: R — Z, and y has finite support}, and we refer to the
zero function as the origin of Y. In this section, we study valid inequalities of
certain subsets of the space Y and connect gDFFs to a particular family of
cut-generating functions.

In the paper of Yildiz and Cornuéjols [31], the authors considered the follow-
ing generalization of the Gomory—Johnson model:

x:erZTy(r), (5)

reR
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x e S, y:R—Z,, and y has finite support,

where S can be any nonempty subset of R. A function 7: R — R is called a valid
cut-generating function if the inequality > . 7(r) y(r) > 1 holds for all feasible
solutions (z,y) to (5). In order to ensure that such cut-generating functions exist,
they only consider the case f ¢ S. Otherwise, if f € S, then (z,y) = (f,0) is
a feasible solution and there is no function @ which can make the inequality
> rer T(7) y(r) > 1 valid. Note that y € Y for any feasible solution (z,y) to (5),
and all valid inequalities in the form of ) | _p m(r) y(r) > 1 to (5) are inequalities
which separate the origin of Y.

We consider two different but related models in the form of (5). Let f =
—1, S = {0}, and the feasible region Y_; = {y : > zry(r) =1, y: R —
Z4 and y has finite support}. Let f = —1, S = (—o0, 0], and the feasible region
Yar ={y: >, crry(r) <1, y: R = Z, and y has finite support}. It is imme-
diate to check that the latter model is the relaxation of the former. Therefore
Y_; C Y<; and any valid inequality for Y<; is also valid for Y—;.

Jeroslow [21], Blair [10] and Bachem et al. [3] studied minimal valid inequali-
ties of theset Y=y = {y : >, cg7y(r) = b, y: R — Z, and y has finite support}.
Note that Y_; is the set of feasible solutions to (5) for S = {0}, f = —b. The
notion “minimality” they used is in fact the restricted minimality in the Yildiz—
Cornuéjols model. In this section, we use the terminology introduced by Yildiz
and Cornuéjols. Jeroslow [21] showed that finite-valued subadditive (restricted
minimal) functions are sufficient to generate all necessary valid inequalities of
Y_,, for bounded mixed integer programs. Kiling-Karzan and Yang [22] discussed
whether finite-valued functions are sufficient to generate all necessary inequal-
ities for the convex hull description of disjunctive sets. Interested readers are
referred to [22] for more details on the sufficiency question. Blair [10] extended
Jeroslow’s result to rational mixed integer programs. Bachem et al. [3] charac-
terized restricted minimal cut-generating functions under some continuity as-
sumptions, and showed that restricted minimal functions satisfy the symmetry
condition.

Yildiz—Cornuéjols cut-generating functions provide valid inequalities which
separate the origin, but clearly there exist other types of valid inequalities. If we
let f € S, then there does not exist a valid inequality separating the origin, but
we can still consider those which do not separate the origin.

In terms of the relaxation Y<;, gDFFs can generate the valid inequalities in
the form of ) _p ¢(r) y(r) < 1, and such inequalities do not separate the origin.
Note that there is no valid inequality separating the origin since 0 € Y<;. The
gDFF's can also be viewed as valid functions in the following pure integer linear
programming model:

123 ry(n), (6)

reR
y: R — Z,, and y has finite support.

Notice that ¢ is a valid gDFF if the inequality > _p ¢(r)y(r) < 1 holds for
all feasible solutions y to (6).
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Cut-generating functions provide valid inequalities which separate the origin
for Y_;, but such inequalities are not valid for Y<;. In terms of inequalities that
do mnot separate the origin, any inequality in the form of > _p o(r)y(r) < 1
generated by some gDFF ¢ is valid for Y<; and hence valid for Y-, since the
model of Y<; is the relaxation of that of Y_;. Clearly, there also exist valid
inequalities which do not separate the origin for Y—; but are not valid for Y<;.

Yildiz and Cornuéjols [31] introduced the notions of minimal, restricted
minimal and strongly minimal cut-generating functions. We consider the cut-
generating functions to the model (5) when f = —1, .S = {0}, and we restate the
definitions of minimality of such cut-generating functions. A valid cut-generating
function = is called minimal if it does not dominate another valid cut-generating
function 7’. A cut-generating function 7’ implies a cut-generating function 7 via
scaling if there exists 5 > 1 such that = > g7’. A valid cut-generating function
m is restricted minimal if there is no other cut-generating function 7’ implying
7 via scaling. A cut-generating function 7’ implies a cut-generating function
if there exist «, 3, and 8 > 0, 4+ 8 > 1 such that 7(z) > B7'(x) + az. A valid
cut-generating function 7 is strongly minimal if there is no other cut-generating
function 7’ implying 7. Yildiz and Cornuéjols also characterized minimal and
restricted minimal functions without additional assumptions. As for the strong
minimality and extremality, they mainly focused on the case where f € conv(S5)
and conv(S) is full-dimensional. We instead discuss the strong minimality and
extremality when f = —1, S = {0} in Remark 5.6.

We show that gDFFs are closely related to cut-generating functions for Y_;.
The main idea is that valid inequalities generated by cut-generating functions for
Y_, can be lifted to valid inequalities generated by gDFFs for the relaxation Y<;.
The procedure involves adding a multiple of the defining equality > _p 7y(r) =
1 to a valid inequality, which is called “tilting” by Ardoz et al. [2].

We include the characterizations of minimal and restricted minimal cut-
generating functions for Y—; below. Bachem et al. had the same characterization
[3, Theorem] as Theorem 5.4 under continuity assumptions at the origin.

Theorem 5.3 ([31, Theorem 2]). A function 7: R — R is a minimal cut-
generating function for Y—1 if and only if w(0) = 0, 7 is subadditive, and w(x) =
supp{3(1 — (1 — kx)) : k € N}.

Theorem 5.4 ([31, Proposition 5]). A function m: R — R is a restricted
minimal cut-generating function for Y=y if and only if 7 is minimal and w(1) = 1.

The following theorem describes the conversion between gDFFs and cut-
generating functions for Y—;. Unlike Gomory—Johnson cut-generating functions,
Yildiz—Cornuéjols cut-generating functions can be converted to gDFFs and the
other way around.

Theorem 5.5. Given a wvalid/mazimal/restricted mazimal gDFF ¢, then for
every 0 < A < 1, the following function is a valid/minimal/restricted minimal
cut-generating function for Y_q:

= (1)) ()
Aok,

7T)\($) =
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Given a valid/minimal/restricted minimal cut-generating function m for Y_q,
which is Lipschitz continuous at x = 0, then there exists 6 > 0 such that for all
0 < X < ¢ the following function is a valid/mazimal/restricted maximal gDFF:

oa(z) = 736_1)_\7;@), 0<\<1.

Proof. Part (i). The proof of valid functions.
We want to show that 7 is a a valid cut-generating function for Y—;. Suppose

there is a function y : R — Z,, y has finite support, and ) _pry(r) = 1. We
want to show that for A € (0,1):

S m)y(r) > 1

reR

& Yoyl < 1.

reR

The last step is derived from ) _pry(r) =1 and ¢ is a gDFF.

On the other hand, the Lipschitz continuity of 7 at 0 guarantees that ¢y (z) >
0 for z > 0 if X is small enough. Then the proof for validity of ¢, is analogous
to the proof above.
Part (ii). The proof of maximal/minimal functions.

As stated in Theorem 5.3, 7 is minimal if and only if 7(0) = 0, 7 is subaddi-

tive and 7(z) = sup,{£(1 — (1 — kz)) : k € N}, which is called the generalized
symmetry condition. If 7y (z) = M, then 7, (0) = 0 and ) is subaddi-
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tive.

sup{%(l —m(l—kx)): keZi}
k

:sup{%(l—1_kx_(1_)\)\)¢(1_kx)):k62+}

k

B kr—(1—=X)(1—o¢(1 —kx))

_S%p{ 5 k€Z+}
x 1-A1

= Sl}ip{x — U —ka)) k€ Ly}

x 1—-X, .1

=3~ 1réf{%(1—¢)(l—kac)):keZ+}

z 1-=A

3 oW

:7'(')\(1’)

Therefore, 7 is minimal.

On the other hand, given a minimal cut-generating function 7, let ¢y (x) =
%‘é\(z), then it is easy to see the superadditivity and ¢ (0) = 0. The generalized
symmetry can be proven similarly. The Lipschitz continuity of 7 at 0 implies that
¢xa(x) > 0 for any = > 0 if A is chosen properly.

Part (iit). The proof of restricted maximal/minimal functions.

As stated in Theorem 5.4, 7 is restricted minimal if and only if #(0) =0, 7
is subadditive and 7(z) = supy{$(1 —7(1 —kx)) : k € Z}, and 7(1) = 1. Given
a restricted maximal gDFF ¢, we have ¢(1) = 1, which implies m(1) = 1.

On the other hand, a restricted minimal 7 satisfying 7(1) = 1, then ¢(1) =
1. Based on the maximality of ¢, we know ¢, is restricted maximal. a

Remark 5.6 We discuss the distinctions between these two families of func-
tions.

(i) It is not hard to prove that extreme gDFFs are always mazimal. However,
unlike cut-generating functions for Y_i, extreme gDFFs are not always
restricted mazimal. For instance, ¢(x) = 0 is an extreme gDFF but not
restricted mazimal.

(i) By applying the proof of [31, Proposition 28], we can show that no strongly
minimal cut-generating function for Y=, exists. However, there exist strongly
mazimal gDFFs by Theorem 4.7. Moreover, we can use the same conver-
sion formula in Theorem 5.5 to convert a restricted minimal cut-generating
function to a strongly mazimal gDFF (see Theorem 5.7 below). In fact, it
suffices to choose a proper A such that lim,_, ¢+ %6(6)

ization of strongly mazimal gDFFs (Theorem 4.4).

(iii) There is no extreme piecewise linear cut-generating function m for Y_q
which is Lipschitz continuous at x = 0, except for w(x) = x. If 7 is such
an extreme function, then for any A\ small enough, we claim that ¢y is an

= 0 by the character-
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extreme gDFF. Suppose ¢y = %(/51+%¢2 and let 7w}, 73 be the corresponding
cut-generating functions of ¢', $> by Theorem 5.5. Note that m = %(TF}\ +
%), which implies m = 7} = 73 and ¢ = ¢} = ¢3. Thus P is extreme. By
Lemma 6.2 and the extremality of ¢, we know ¢x(x) = x or there exists
e > 0, such that ¢x(z) = 0 for x € [0,¢). If dx(x) = z, then w(x) = x.
Otherwise, lim,_, o+ mT(x) =0 for any small enough \. The equation

0= lim oa(x) o w—Am(z) 1 Alimgor =
z—0+ €T z—0+ (1 _ /\)x 1—
implies limg o+ W(xx) = % for any small enough X\, which is not possible.

Therefore, © cannot be extreme except for w(x) = x.

Theorem 5.7. Given a non-linear restricted minimal cut-generating function
7 for Y—_1, which is Lipschitz continuous at 0, then there exists X > 0 such that
the following function is a strongly maximal gDFF':

oa(z) = %Z\(x)

6 Two-slope theorem for general DFFs

In this section, we prove a 2-slope theorem for extreme gDFF's, in the spirit of the
2-slope theorem of Gomory and Johnson [14,15]. First we introduce the lemma
showing that extreme gDFFs have certain structures. Similar to Lemma 3.1 and
Lemma 3.2, by studying the superadditivity of maximal gDFFs, it is not hard
to prove the following lemma.

Lemma 6.1 Piecewise linear maximal gDFFs are continuous at 0 from the
right.

Lemma 6.2 Let ¢ be a piecewise linear extreme gDFF.

(i) If ¢ is strictly increasing, then ¢(x) = x.
(ii) If ¢ is not strictly increasing, then there exists € > 0, such that ¢(z) =0
for x € [0,¢).

Proof. Similar to the proof of Lemma 3.2, we can assume ¢(x) = sz, x € [0,a1).
If s =1, then ¢(z) = z. If s = 0, then ¢ is not strictly increasing therefore (ii)
holds.

Next, we assume 0 < s < 1. Define a function:

o(x) — ST

S 1-s

Clearly ¢1(z) = 0 for = € [0,a1). The function ¢; is superadditive because it

is obtained by subtracting a linear function from a superadditive function. We
have that

28



_ o(x) — sx

gbl(x) B 1—s
= ot —ka)) kez
= 7 f{ (1 —o(1 —ka)) : k € Z } — sa]
= 115[115{%(1 — (1= 8)p1(1 — kx) + s(1 — kx)]) 1 k € Zy} — sa]
11
- 1_8[1%&{%[(1 —s)+skr — (1 —8)p(1 —kx)] - k € Z,} — sa]
= 0 - (- 9 k)] ke Zy)

. 1
= 1%f{E(1 — (1 —ka)): keZy}.

The above equation shows that ¢ satisfies the generalized symmetry condi-
tion in Proposition 4.1. Therefore, ¢, is also a maximal gDFF. The condition
¢(x) = sz + (1 — s)¢1(x) implies ¢ is not extreme, since it can be expressed as
a convex combination of two different maximal gDFFs: x and ¢;. a

From Lemma 6.2, we know 0 must be one slope value of a piecewise linear
extreme gDFF ¢, except for ¢(x) = z. Next, we introduce the 2-slope theorem
for extreme gDFF's. The proof of the following two-slope theorem follows closely
that of the Gomory—Johnson’s two-slope theorem.

Theorem 6.3 (Two-Slope Theorem for gDFFs). Let ¢ be a continuous
piecewise linear strongly mazximal gDFF with only 2 slope values, then ¢ is ex-
treme.

Proof. Since ¢ is strongly maximal with 2 slope values, we know one slope value
must be 0 by Theorem 4.4. Suppose ¢ = 3 (¢1+¢2), where ¢, ¢ are two maximal
gDFFs. From Proposition 2.12, we know ¢(1) = 1, which implies ¢ (1) = ¢2(1) =
1. Let s be the other slope value of ¢. Due to superadditivity of ¢, s is the limiting
slope of ¢ at 0~ and 0 is the limiting slope of ¢ at 0. More precisely, there exist
€,0 > 0 such that ¢(z) = sz for x € [—¢,0] and ¢(x) = 0 for = € [0,0]. We want
to show ¢1, P2 have slope 0 where ¢ has slope 0, and ¢, ¢2 have slope s where
¢ has slope s.

Case 1: Suppose [a,b] is a closed interval where ¢ has slope value 0. Choose
§ = min(6,%5%) > 0. Let I = [0,0'], J = [a,b— &), K = [a,b], then I,J, K
are three non-empty and proper intervals. Clearly ¢(x) + ¢(y) = ¢(x + y) for
x € I,y € J. Since ¢1, ¢o are also superadditive, they satisfy the equality where
¢ satisfy the equality. In other words, ¢; () + ¢;(y) = ¢i(x +y) forx € I, y € J,
i =1,2. By the Interval Lemma, ¢, is affine over [a, b] and [0, ¢'] with the same
slope value [;. Similarly, ¢o is affine over [a,b] and [0, '] with the same slope
value ls. It is clear that I = I3 = 0 since ¢1, ¢ are increasing and 0 = %(ll +12).

Case 2: Suppose [c,d] is a closed interval where ¢ has slope value s. Choose
¢ = min(e, 459). Let I = [—€,0], J = [c+ €,d], K = [c,d], it is clear that
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Fig. 2: Graphs of ¢ps1 [1, Example 3.1] for C = 3/2 (left) and C = 7/3 (right).

o(z) + o(y) = ¢(x + y) for z € I,y € J. Similarly we can prove that ¢; is affine
over [¢,d] and [—¢€,0] with the same slope value s; (i = 1,2).

Consider the interval [0 = ag,ay,...,a, = 1], where ¢ has slope 0 over
[ak, aks1] with k even and slope s over [a, ag41] with & odd. Then ¢; have slope
0 over [ag, ag4+1] with k even and slope s; over [ag, axt1] with k£ odd. Let Ly and
L be the total length of intervals where ¢ has slope 0 and s, respectively. Then
s+Lsg+0-Lo=1.1It is possible that ¢; has jumps at breakpoints ay, but it can
only jump up since ¢; is increasing. Suppose h; > 0 are the total jumps of ¢; at
discontinuous points. From ¢;(1) = 1 we can obtain the following equation:

Note that s = %(51—1—52) and s-L,+0-Lg=1.Sos1 =sy=sand hy = hy =0
which implies ¢1, ¢o are continuous and ¢; = ¢ = ¢. Thus, ¢ is extreme. a

Remark 6.4 Alves et al. [1] showed the following functions by Burdet and John-
son with one parameter C > 1 are maximal gDFFs, where {a} represents the
fractional part of a:

|Cx] + max(0, %{C{}C})
1C]

¢BJ,1(9€;C) =

We can prove that they are extreme. If C € N, then ¢pji(x) = z. If C ¢ N,
$BJ1 15 a continuous 2-slope mazimal gDFF with one slope value 0, therefore it
is extreme by Theorem 6.3. Figure 2 shows two examples of ¢pj1 and they are
constructed by the Python function phi_bj_1_gdff.

Remark 6.5 However, the analogous result does not hold for cDFFs. In other
words, the restriction ¢|j,1) is not always extreme as a cDFF even if ¢ is extreme
as a gDFF. In fact, ¢py1(x;C)ljo,1) is not extreme as a cDFF for 1 < C < 2,
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though it is a continuous 2-slope maximal cDFF with one slope value 0. We
found an interesting counterexample by computer-based search; it is shown in
Figure 3 and Figure 4.

7 Restricted maximal general DFFs are almost extreme

In the previous section, we have shown that any continuous 2-slope strongly
maximal gDFF is extreme. In this section, we prove that extreme gDFFs are
dense in the set of continuous restricted maximal gDFFs. Equivalently, for any
given continuous restricted maximal gDFF ¢, there exists an extreme gDFF eyt
which approximates ¢ as close as desired (with the infinity norm). The idea of the
proof is inspired by the approximation theorem of Gomory—Johnson functions
[9]. We first introduce the main theorem in this section. The approximation® is
implemented for piecewise linear functions with finitely many pieces.

Theorem 7.1 (Approximation Theorem). Let ¢ be a continuous restricted
mazximal gDFF, then for any € > 0, there exists an extreme gDFF ey such that

||¢ - ¢ext||oo < €.

Remark 7.2 The result cannot be extended to mazimal gDFF. Note that ¢(z) =
sz 1is mazimal but not extreme for 0 < s < 1. Any non-trivial extreme gDFF ¢’
satisfies ¢'(1) = 1, and ¢'(1) — ¢(1) =1 —s > 0 and 1 — s is a fived positive
constant. Therefore, ¢p(x) = sx cannot be arbitrarily approximated by an extreme
gDFF.

We briefly explain the structure of the proof. First we approximate a continu-
ous restricted maximal gDFF ¢ by a piecewise linear maximal gDFF ¢,1. Next,
we perturb ¢py such that the new maximal gDFF @jo0se satisfies Vioose(x, y) >
v > 0 for “most” (x,y) € R% After applying the 2-slope fill-in procedure to
Dloose, We get a superadditive 2-slope function ¢g.in, which is not symmetric
anymore. Finally, we symmetrize ¢q1.in to get the desired Pexs.-

By studying the superadditivity of maximal gDFF's near the origin, it is not
hard to prove Lemma 7.3. By choosing a large enough ¢ € N and interpolating
the function over éZ we can obtain Lemma 7.4.

Lemma 7.3 Any continuous restricted maximal gDFF ¢ is uniformly continu-
ous.

Proof. Since ¢ is continuous at 0 and nondecreasing, for any € > 0, there exists
0 > 0 such that —0 < ¢t < 0 implies —e¢ < ¢(t) < 0. For any z,y with —§ <
x —y < 0, by superadditivity we have 0 > ¢(x) — ¢(y) > ¢(x —y) > —e. So ¢ is
uniformly continuous. a

Lemma 7.4 Let ¢ be a continuous restricted mazximal gDFF, then for any e > 0,
there exists a piecewise linear continuous restricted mazimal gDFF ¢y, such
that ||¢ — ¢pw1||oo < %

! See the constructor two_slope_approximation gdff linear.
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Fig. 3: Continuous 2-slope maximal non-extreme cDFF
w_2slope_3covered nonextreme with 3 connected covered components.
We use 3 different colors to color additive faces to represent 3 different covered
components. The colors on the function are consistent with the colors of additive
faces. We plot the function on the left and upper border. The shadows represent
covered components from the projections of additive faces in 3 directions.
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Fig.4: Continuous 2-slope maximal non-extreme cDFF

w_2slope_3covered nonextreme (in black), an effective perturbation function
7 (magenta), and functions ¢* = ¢ + €4 (blue and red).
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Fig.5: The graph of ¢5¢ for s =2 and 0 = %

Next, we introduce a parametric family of restricted maximal gDFF's ¢4 s which
will be used to perturb ¢pwi. Define

st — 80 ifx <=6

2sx if -6<x<0

0 fo<z<d
@s.s(x) = 1_—12595—1%25 fo<z<l1-96.

1 1-/<ax<1

2sr —2s+1 1<z<1+94

st —s+1+sd zz>14+6

The function ¢, is a continuous piecewise linear function, which has break-

points: —9,0,9,1—46,1,1+ 6 and slope values: s, 2s,0, ﬁ, 0, 2s, s in each affine
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piece. Figure 5 is the graph of one ¢, s function constructed by the Python
function phi_s_delta.
Let Bs = {(z,y) eR?: - <ax<Jor —d<y<dorl-6<az+y<l1+d}.

Lemma 7.5 The function ¢ is a continuous restricted mazimal gDFF and
Voss(x,y) >0 for (z,y) ¢ Es, if s >1 and 0 < § < min{*5; ,% .

Proof. Verifying the above properties of ¢ 5 is a routine computation by analyz-
ing the superadditivity slack at every vertex in the two-dimensional polyhedral
complex (cf. subsection 3.1) of ¢, . See Appendix A for more details. O

Lemma 7.6 Let ¢ppw1 be a piecewise linear continuous restricted mazimal gDFF,
then for any € > 0, there exists a piecewise linear continuous restricted maximal
gDFF ¢ro0se satisfying: (i) ||Ploose — Ppwilloo < §5 (id) there ewist 6,y > 0 such
that Vdioese(z,y) > 7y for (z,y) not in Ej.

Proof. By Proposition 2.11, let t = lim,_ o d’p“”(w) ,then tz —t 4+ 1 < ¢pwi(z) <
tx. We can assume ¢t > 1, othervvlse @pwl is the 1dent1ty function and the result is
trivial. Choose s = t and ¢ small enough such that 0 < § < min{%1, 1, 1} where
q is the denominator of breakpoints of ¢y in previous lemma. We know that
the limiting slope of maximal gDFF ¢, 5 is also t and tz —t + 1 < ¢, 5(z) < tz,
which implies ||¢: 5 — Ppwi]loo <t — 1.

Define ¢ioose = (1 — ﬁ) Dpwl + ﬁ ¢¢,5- It is immediate to check ¢ioose
is restricted maximal, and ||¢1o0sc — Ppwllloc < § is due to [|¢rs — Ppwilloc <
t — 1. Based on the property of ¢ s, Vd)loose(x y)=(1- ﬁ)V(ﬁpwl(x,y) +

ﬁvﬁf’t,é(%y) > ﬁv@,é(ﬁay) >y = 3(t ) for (z,y) not in Ej. g

Lemma 7.7 Given a piecewise linear continuous restricted mazimal gDFF ¢1o0se
satisfying properties in previous lemma, there exists an extreme gDFF ¢ext such

that ||¢loose - ¢ext||o<> <

Proof. Let st > 0 be the largest slope of ¢ioese and (bloose( ) = stz for z €

[—9, 0] where (5 is chosen from previous lemma. Choose ¢’ € N such that 1 LsT <
min{ £ 5 3 = 50D . 1) } and the breakpoints of ¢1o0se and are contained in U ,Z.

Note that we can always choose a rational ¢ to ensure that the last step is fea81ble.
Define a function g: R — R and a 2-slope function ¢ay.i,: [0,1] — [0, 1]:

() 0 ifxz>0
x) = ,
g ste ifx<0

Gfill-in () = Iglea(i({qbloose(u) + gz —u)}.

We claim that ¢g)1.in is a continuous 2-slope superadditive function and ¢g.in <
Blooses Pill-in|U = @|u. The proof is similar to that of [14, Theorem 3.3]. |¢ai.in () —
Gloose(T)| < %54‘ < £ implies that |[¢1o0se — PalL-in|| < %s*’ < £. However, ¢givin
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does not necessarily satisfy the symmetry condition. If we symmetrize it and
define the following function:

) pain(z) if 2 <
Fese(2) = {1 — ¢ain(l — )  ifz >

We claim that ¢ey is the desired function. It is immediate to check @ext(0) =
0, ¢oxt 18 a 2-slope continuous function and it automatically satisfies the symme-
try condition. Since we use slope 0 and s to do the fill-in procedure, the limiting
slope of Geyxt at 07 is 0. Notice that ||@1o0se — Pext|| = ||Proose — PhilLin|| < %s"’ <%
because they both satisfy the symmetry condition. So we only need to prove @ext
is superadditive.

Case 1: If (z,y) is not in Es, Vext(x,y) > Vdioose(,y) — % — 9

D= N[

€~ _e e _ 0
9(t—1) = 3(t—=1) _ 3(t—-1)

Case 2: If 0 < x < §, there are also three sub cases.

(i) If y,x +y < 3, then Vexi(,y) = Voaiin(a,y) > 0.

(13) Ity < % and = +y > %, then Voext(2,y) = 1 — danin(l —z —y) —
¢ﬁ11—in($) - ¢ﬁ11—ir;(y) >1- ¢loose(1 — T — y) - (bloose(x) - ¢loose(y) > 0. Here we
use the fact that ¢ipose > GalLin and Gloese is & maximal gDFF.

(did) f y,x +y > %, then Voext(z,y) = (1 — danin(l — 2 — y)) — danin(z) —
(1 = ¢a-in(1 — ) = dain(l — ¥) — dain(I — 2 — ¥) — dain(z) > 0 due to
superadditivity of ¢gipin-

Case 3: If 0 > 2 > —6, based on the choice of § and s, we know ¢ext () =
stz for 0 > x > —4. For any y € R, Gext (T + y) — Pext (y) > sT2 = ext () since
Gext 18 a 2-slope function and sT is the larger slope.

Similarly we can prove Véext(z,y) > 0if —0 <y < 4.

Case 4:1f1-0 <z4+y <146, let =1—x—yand —0 < B <, so by case 2
and 3, (bext(ﬁ) + Pext (m) < (bext(ﬁ"i'x)' Then we have ¢ext(x+y) = ¢ext(1 _6) =
1- d)ext(ﬁ) =1- (bext(/@) + d)ext(z) - ¢ext(z) >1- ¢ext(,8 + SC) =+ ¢ext(x) =
1 — dext (1 = Y) + dext (T) = Pext (Y) + Pext (T)-

We have shown that ¢ey is superadditive, then it is a continuous 2-slope
strongly maximal gDFF. By the Two-Slope Theorem (Theorem 6.3), @oxt is
extreme. O

Combine the previous lemmas, and we have ||¢ — @extlloo < ||¢ — dpwilloc +
[Ppwl — Prooselloc + [|Ploose — Pext [loo < 3 X § = €. We can conclude the Approxi-
mation Theorem. Observe that we always use 0 as one slope value in the fill-in
procedure. It is due to the fact (Lemma 6.2) that almost all extreme gDFFs have

0 as the limiting slope at 0.

A Appendix: Verification of the properties of ¢, ;

In this appendix, we provide some details of the proof of Lemma 7.5 regard-
ing the properties of the function ¢ 5. We explain why it suffices to check the
superadditive slack at finitely many vertices in the two-dimensional polyhedral
complex.
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First we generalize the definition of the two-dimensional polyhedral complex
to piecewise linear functions with unbounded domain. Let ¢: R — R be a piece-
wise linear function with finitely many pieces with breakpoints 1 < xo < -+ <
Zn. To express the domains of linearity of V¢é(z,y), and thus domains of addi-
tivity and strict superadditivity, we introduce the two-dimensional polyhedral
complex AP, similar to the definition in subsection 3.1 for cDFFs. The faces F’
of the complex are defined as follows. Let I, J, K € P, so each of I, J, K is either
a breakpoint of ¢ or a closed interval delimited by two consecutive breakpoints in-
cluding +c0. Then F = F(I,J,K) ={(z,y) e RxR:zel,ye Ja+y € K }.
Let I' € AP and observe that the piecewise linearity of ¢ induces piecewise lin-
earity of V.

Lemma A.1 Let ¢: R — R be a continuous piecewise linear function with
finitely many pieces with breakpoints r1 < o < -+ < 0 < -+ < x, and ¢
has the same slope s on (—oo, 1] and [x,,00). Consider a one-dimensional un-
bounded face F where one of I,J, K is a finite breakpoint and the other two are
unbounded closed intervals, (—oo, 1] or [xn,00). Then Vo(z,y) is a constant
along the face F.

Proof. We only provide the proof for one case, the proofs for other cases are
similar.

Suppose I = {z;}, J = K = [2,,00). The vertex of F is (z,y) = (x;, z,) if
x; > 0 and (x,y) = (x5, xy, — x;) if 2; < 0. If z; > 0, we claim that Vo(z,y) =
Vo(x, xy,) for (x,y) € F. We have

Vo(w,y) = d(wi +y) — d(zi) = ¢(y) = ¢(xi + 2n) — d(2:1) — ¢(2n) = V(i, ).

The second step in the above equation is due to ¢ is affine on [z,,00) and
Ti+ Tn,Y = Tn.

If z; < 0, we claim that Vo(z,y) = Vé(xi, xn — 2;) for (x,y) € F. We can
deduce that

Vo(r,y) = ¢z +y) — d(xi) — o(y)
= (¢(xn) + s(x +y — ) — O(x5) — (P(xn — x3) + (i +y — Tn))
= ¢(xn) — d(x:) — P(xn — ;) = VP( @i, Tn — 7).

The second step in the above equation is due to ¢ has slope s on [z,,,c0) and
Tp — Ti, Ti +Y = Ty

Case 2: Suppose K = {xz;}, I = [x,,00) and J = (—o0, x1]. The vertex of F'
is (z,y) = (¥n, i — xp) if x; < 21 +2, and (2,y) = (v; — 1, 21) if T > 21 + X0

If z; < z1 + x,, we claim that Vo(z,y) = Vo(a,,x; — ) for (z,y) € F.
Similarly we have

Vo(z,y)

(z:) — d(x) — d(z; — )
(i) — (P(zn) + s(x — ) — (P2 — ) — s(x — 1))
o(x;) —



The second step in the above equation is due to ¢ has the same slope s on
(—o0,z1] and [z, 00) and z > zp, y =, — ¢ < x; — xy < 27

If x; > x1 + x,, we claim that Vo(z,y) = Vé(z; — x1, 1) for (x,y) € F, by
the following equation:

Vo(z,y) = d(xi) — d(xi —y) — ¢(y)
= ¢(z;) — (¢(xi — 1) + s(x1 — y)) — (¢(z1) — s(z1 —y))
= ¢(x;) — ¢z — x1) — d(1) = Vo (x; — 21, 21).

The second step in the above equation is due to ¢ has the same slope s on
(—o0,z1] and [x,,00) and y > a1, T =x; — Y > T; — X1 > Ty

Therefore, Vé(z,y) is a constant for (z,y) in any fixed one-dimensional un-
bounded face. a

By using the piecewise linearity of V¢, we can prove the following lemma.
Thus, it suffices to check the superadditivity slack at finitely many vertices in
the two-dimensional polyhedral complex to prove the desired properties of ¢; s,

ie. Voss(z,y) >0 for (z,y) ¢ Es,if s>1and 0 <6 < min{s;sl,% .

Lemma A.2 Define the two-dimensional polyhedral complexr AP of the func-
tion ¢ss5. If Vs s(z,y) > 0 for any zero-dimensional face (z,y) ¢ Ejs, then
Véss(@,y) =6 for (v,y) ¢ Es.

Proof. Observe that R? — Ej; is the union of finite two-dimensional faces. So
we only need to show V@, s(z,y) > d for (z,y) ¢ Es and (z,y) in some two-
dimensional face F'.

If F is bounded, then V¢, 5(z,y) > § since the inequality holds for vertices
of F' and V¢ is affine over F.

Suppose that F' is unbounded and is enclosed by some bounded and some
unbounded one-dimensional faces. For those bounded one-dimensional faces,
Vs,5(x,y) > § holds since the inequality holds for vertices. For any unbounded
one-dimensional face F’, by Lemma A.1, the V¢ is constant and equals to
the value at the vertex of F’. We have showed that V¢, s(z,y) > 6 holds for
any (z,y) in the enclosing one-dimensional faces, then the inequality holds for
(x,y) € F due to the piecewise linearity of V. O

Remark A.3 In the software [27], we define a parametric family of functions
¢s,5 with two variables s and 6. From the definition of ¢s 5, it is clear that ¢ s
satisfies the symmetry condition. Although ¢, s is defined in the unbounded do-
main R, V¢ only depends on the values at the vertices of AP which is a bounded
and finite set, based on the above lemma. In order to show the superadditivity
and Vs s(x,y) > § for (x,y) ¢ Es, only Vs s at all vertices of AP needs to be
checked. The Python function phi_s_delta_is_superadditive_almost_strict
verifies the claim for given numerical values of s and § that satisfy the hypotheses
of Lemma 7.5. Using the method of parametric metaprogramming introduced in
[24], the documentation tests of the Python function phi_s_delta_check_claim
verify the claim for the full parametric family, providing an automatic proof of
Lemma 7.5.
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