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Abstract. We investigate three competing notions that generalize the
notion of a facet of finite-dimensional polyhedra to the infinite-dimension-
al Gomory—Johnson model. These notions were known to coincide for
continuous piecewise linear functions with rational breakpoints. We show
that two of the notions, extreme functions and facets, coincide for the
case of continuous piecewise linear functions, removing the hypothesis
regarding rational breakpoints. We prove an if-and-only-if version of the
Gomory—Johnson Facet Theorem. Finally, we separate the three notions
using discontinuous examples.

1 Introduction

1.1 Facets in the finite-dimensional case

Let G be a finite index set. The space R(%) of real-valued functions y: G — R
is isomorphic to and routinely identified with the Euclidean space RICI. Let R
denote its dual space. It is the space of functions a: G — R, which we consider
as linear functionals on R(%) via the pairing (o, y) = > orec a(r)y(r). Again it is
routinely identified with the Euclidean space RI€!, and the dual pairing (o, y) is
the Euclidean inner product. A (closed, convex) rational polyhedron of R(E) is
the set of y: G — R satisfying (a;,y) > «a; 0, where o; € ZC are integer linear

* The authors gratefully acknowledge partial support from the National Science Foun-
dation through grant DMS-1320051, awarded to M. Kdppe. A preliminary version
appeared in Chapter 6 of the second author’s Ph.D. thesis Infinite-dimensional re-
lazations of mized-integer optimization problems, University of California, Davis,
Graduate Group in Applied Mathematics, May 2017, available from https://
search.proquest.com/docview/1950269648. An extended abstract appeared in:
M. Képpe and Y. Zhou, On the notions of facets, weak facets, and extreme func-
tions of the Gomory—Johnson infinite group problem, Integer Programming and
Combinatorial Optimization: 19th International Conference, IPCO 2017, Water-
loo, ON, Canada, June 26-28, 2017, Proceedings (Friedrich Eisenbrand and Jochen
Koenemann, eds.), Springer International Publishing, Cham, 2017, pp. 330-342,
https://doi.org/10.1007/978-3-319-59250-3_27, ISBN 978-3-319-59250-3.



2 Matthias Képpe and Yuan Zhou

functionals and «; o € Z, for ¢ ranging over another finite index set 1. We refer
to [22,9] for the standard notions of polyhedral geometry.

Consider an integer linear optimization problem in R(%), i.e., the problem of
minimizing a linear functional n € R over a feasible set F C {y: G — Z, } C
R(f), or, equivalently, over the convex hull R = conv F' C REFG). A walid inequality
for R is an inequality of the form (m,y) > m, where 7 € RY, which holds for
all y € R (equivalently, for all y € F). If R is closed, it is exactly the set of all
y that satisfy all valid inequalities. In the following we will restrict ourselves to
the case that R C RSFG) is a polyhedron of blocking type [22, section 9.2], i.e., a

polyhedron in Rf) whose recession cone is the positive orthant. Then it suffices
to consider normalized valid inequalities (m,y) > mp with # > 0 and 7 = 1,
together with the trivial inequalities y(r) > 0.

Let P(r) denote the set of functions y € F for which the inequality (7, y) > 1
is tight, i.e., (m,y) = 1. If P(w) # 0, then (m,y) > 1 is a tight valid inequality.
Then R is exactly the set of all y > 0 that satisfy all tight valid inequalities. A
valid inequality (7,y) > 1 is called minimal if there is no other valid inequality
(7',y) > 1 where 7’ # m such that #/ < 7 pointwise. One can show that a
minimal valid inequality is tight. A valid inequality (m,y) > 1 is called facet-
defining if

for every valid inequality (7', y) > 1 such that P(x) C P(r'), (wF)
w

we have P(r) = P(r'),
or, in other words, if the face induced by (m,y) > 1 is maximal [22, section 8.4].
Because R is of blocking type, it has full affine dimension [22, section 9.2].
Hence, there is a unique minimal representation of R by a finite system of lin-
ear inequalities (up to reordering them and multiplying them by positive real
numbers) which are in bijection with the facets [22, section 8.4]. Because of
our normalization, this implies the following two equivalent characterizations of
facet-defining inequalities of the form (7’,y) > 1:

for every valid inequality (7’,y) > 1 such that P(m) C P(x’),

(F)

we have m = 7/,

and

if (r',y) > 1 and (r?,y) > 1 are valid inequalities, and 7 = & (' + 7°)

i_ o (B

then 7 =7 = n~.

1.2 Facets in the infinite-dimensional Gomory—Johnson model

It is perhaps not surprising that the three conditions (wF), (F), and (E) are no
longer equivalent when R is a general convex set that is not polyhedral, and in
particular when we change from the finite-dimensional to the infinite-dimensional
setting. In the present paper, however, we consider a particular case of an infinite-
dimensional model, in which this question has eluded researchers for a long time.
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Let G = Q or G = R and let R(Y) now denote the space of finite-support
functions y: G — R. The so-called infinite group problem was introduced by
Gomory and Johnson in their seminal papers [13,14]. Let F = Fy(G,Z) C R&G)

be the set of all finite-support functions y: G — Z satisfying the equation

Y ry(r)=f (mod1) (1)

reG

where f is a given element of G \ Z. We study its convex hull R = R;(G,Z) C

RS_G), consisting of the functions y: G — Ry that can be written as (finite)
convex combinations of elements of F', and which are therefore finite-support
functions as well.

Valid inequalities for R are of the form (m,y) > my, where m comes from
the dual space R, which is the space of all real-valued functions (without the
finite-support condition). When G = Q, then R is again of “blocking type” (see,
for example, [8, section 5]), and so we again may assume 7 > 0 and 7y = 1.

If G = R (the setting of the present paper), typical pathologies from the
analysis of functions of a real variable come into play. By [4, Proposition 2.4],
there is an infinite-dimensional subspace IT* C RY of functions 7* such that the
equations (7*,y) = 0 are valid for R. The functions 7* are constructed using
a Hamel basis of R over Q, and each n* € II*, #* # 0 has a graph whose
topological closure is R2. Recently, Basu et al. [2, Theorem 3.5] showed that
for every valid inequality (m,y) > m there exists a valid inequality (7', y) > mg
with 7" > 0 such that 7 — 7 € IT*. Thus, ignoring trivial inequalities with
7o < 0, we may once again assume 7 > 0 and normalize to 7y = 1. We call such
functions 7 wvalid functions. In contrast to Gomory and Johnson [13,14], who
only considered continuous functions m, this class of functions contains many
interesting discontinuous functions such as the Gomory fractional cut.

(Minimal) valid functions 7 that satisfy the conditions (wF), (F), and (E),
are called weak facets, facets, and extreme functions, respectively. The relation
of these notions, in particular of facets and extreme functions, has remained
unclear in the literature. For example, Basu et al. [1], responding to a claim by
Gomory and Johnson in [15], wrote:

The statement that extreme functions are facets appears to be quite
nontrivial to prove, and to the best of our knowledge there is no proof in
the literature. We therefore cautiously treat extreme functions and facets
as distinct concepts, and leave their equivalence as an open question.

The survey [4, section 2.2] summarizes what was known about the relation of
the three notions: Facets form a subset of the intersection of extreme functions
and weak facets; see Figure 1. For the family F; of continuous piecewise linear
functions with rational breakpoints, [4, Proposition 2.8] and [5, Theorem 8.6]
proved that (E) < (F). Moreover, in this case, (wF) = (F) can be shown easily
as another consequence of [5, Theorem 8.6]. Thus (E), (F), (wF) are equivalent
when 7 is a continuous piecewise linear function with rational breakpoints.
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1.3 Contribution of this paper

A well known sufficient condition for facetness of a minimal valid function 7 is the
Gomory—Johnson Facet Theorem. In its strong form, due to Basu—Hildebrand—
Koéppe-Molinaro [7], it reads:

Theorem 1.1 (Facet Theorem, strong form, [7, Lemma 34]; see also [4,
Theorem 2.12]). Suppose for every minimal valid function ©’, E(r) C E(n’)
implies ™' = w. Then 7 is a facet.

(Here E(m) is the additivity domain of 7, defined in section 2.) We show (The-
orem 4.4 below) that, in fact, this holds as an “if and only if” statement.
The technique of the proof of this converse is not surprising, but the result is
crucial for the remainder of the paper, and it closes a gap in the literature.

As we mentioned above, for the family F; of continuous piecewise linear
functions with rational breakpoints, Basu et al. [4, Proposition 2.8] showed that
the notions of extreme functions and facets coincide. This was a consequence of
Basu et al.’s finite oversampling theorem, which connects the extremality of a
function = € F; to the extremality of its restriction in a finite group problem [3].
We sharpen this result by removing the hypothesis regarding rational
breakpoints.

Theorem 1.2. Let F, be the family of continuous piecewise linear functions
(not necessarily with rational breakpoints). Then

{meFy:misextreme} ={meFy:7is a facet}.

The proof relies on our new characterization of facets, as well as on a technical
development on so-called effective perturbation functions in section 3, which is
also of independent interest.

Then we investigate the notions of facets and weak facets in the case of
discontinuous functions. This appears to be a first in the published literature.
All papers that consider discontinuous functions only used the notion of extreme
functions.

We give three discontinuous functions that furnish the separation
of the three notions (section 6): A function ¢ that is extreme, but is neither
a weak facet nor a facet; a function 7 that is not an extreme function (nor a
facet), but is a weak facet; and a function 7 that is extreme and a weak facet
but is not a facet; see Figure 1. Two of these three separations are obtained by
extending a rather complicated construction from the authors’ paper [19]; the
proofs are in part computer-assisted.

It remains an open question whether this separation can also be done using
continuous (necessarily non—piecewise linear) functions. We discuss this question
in the conclusions of the paper, section 7.

2 Minimal valid functions and their perturbations

Following [4], we define possibly discontinuous piecewise linear functions = on R
as follows. Take a collection P; of closed proper intervals (one-dimensional faces)
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Fig. 1. Separation of the three notions in the discontinuous case

I C R such that R = [JP1 (completeness) and the intersection of any two
distinct I, Is € P; is either empty or a singleton that consists of a common
endpoint of I1 and Iy (face-to-face property). Let Py be the set of singletons (zero-
dimensional faces, vertices) arising as intersections I3 NIy for I, Is € P;. Define
P = {0} UPyU Py, which we refer to as a polyhedral complex. We assume that
it is locally finite, i.e., every compact interval of R has a nonempty intersection
with only finitely many elements of P. We call a function 7 piecewise linear over
the complex P if it is affine linear on the relative interior of each face I € P.
This is a nontrivial condition only for the one-dimensional faces I = [a,b] € Py,
for which it means that 7 is affine linear on the open interval (a,b). To express
limits, for x € I we denote

mr(x) = lim  7(u). (2)
u€rel int([)
We have
mw(x) = wr(x) for all z in the relative interior of the face I € P, (3)

and thus 7y is the extension of the affine linear function on relint(F') to the
closed face F. When 7 is continuous, we have

mw(x) = wr(x) for all z in the face I € P. (4)

Ezample 2.1. Consider the discontinuous piecewise linear function ¢ shown in
Figure 2, which will become important in section 6. It was constructed by Hilde-
brand (2013, unpublished; reported in [4]) and is available in the electronic
compendium of extreme functions [20] as hildebrand_discont 3.slope_1(). Here P;
consists of the one-dimensional faces (closed proper intervals) [0, %], [%, g], [%, %],
[2,5],[8, 4], [£,1], and their translations by integers. Py consists of the singletons
corresponding to all endpoints of these intervals. For I = [0, %] € P1, we have the
linear function 77(x) = 6x for x € I, and 7(x) = 77(z) for z € relint(I) = (0, ).

8
For I = relint(I) = {1} € Py, we have m(%) = m(%) = 1.
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Fig. 2. The piecewise linear function 1 = hildebrand discont 3 slope_1().

For a function 7: R — R, define the subadditivity slack of m as Arn(x,y) =
m(x) + 7(y) — w(x + y); then 7 is subadditive if and only if Axn(z,y) > 0 for all
z,y € R. Denote the additivity domain of m by

E(r) ={(z,y) | An(z,y) =0},

By a theorem of Gomory and Johnson [13] (see [4, Theorem 2.6]), the minimal
valid functions are exactly the subadditive functions 7: R — R, that satisfy
m(0) = 0, are periodic modulo 1 and satisfy the symmetry condition mw(x) +
w(f —x) = 1 for all x € R. As a consequence, minimal valid functions are
bounded between 0 and 1.

To combinatorialize the additivity domains of piecewise linear subadditive
functions, we work with a two-dimensional polyhedral complex AP. It is defined
as the collection of (closed) polyhedra

F(ILLK)={(z,y) eERxR|zel,ycJ z+ycK}

for I,J, K € P, which we refer to as the faces of AP. As I, J, and K can
be proper intervals or singletons of P, the nonempty faces F' of AP can be
zero-, one-, or two-dimensional. Figure 3 (left) shows AP corresponding to the
function 1 of Example 2.1. Define the projections pi,p2,p3: R x R — R as
pi(z,y) =z, p2(z,y) =y, p3(z,y) =T+ y.

In the continuous case, since the function 7 is piecewise linear over P, we
have by (4) that A is affine linear over each face F' € AP. Let 7 be a minimal
valid function for R;(R,Z) that is piecewise linear over P. Following [4], we
define the space of perturbation functions with prescribed additivities E = E ()

7(0)=0
7E _ ). T(f)=0
IE(R,Z) = (7 R = R Am(x,y) =0 for all (z,y) € E - ()
Flx+2)=7(x) foralz eR, 2z €Z

When 7 is discontinuous, one also needs to consider the limit points where
the subadditivity slacks are approaching zero at the relative boundary of a face.
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Let F be a face of AP. For (z,y) € F, we denote

Arp(x,y) = lim Ar(u,v). (6)
(u,0) = (z,y)
(u,v)€relint(F)

(For (z,y) € relint(F'), we have Anp(x,y) = An(z,y). In particular, for zero-
dimensional faces F = {(z,y)}, we have relint(F) = {(x,y)}, so the only se-
quence considered in the limit is the constant sequence (z,y), and thus the limit
is just the value Az (z,y).) Define

Ep(m)={(z,y) € F | Arp(z,y) exists, and Arp(z,y) =0}.

Notice that in the above definition of Fr(7), we include the condition that the
limit denoted by Amp(z,y) exists, so that this definition can as well be applied
to functions 7 (and 7) that are not piecewise linear over P.

We denote by Fe(m, P) the family of sets Ep(w), indexed by F € AP. De-
fine the space of perturbation functions with prescribed additivities and limit-
additivities FEy = Eq4(,P)

7‘7((()%:0

= E. )= 7(f)=0

T™®R,z)=(":R—>R Arp(z,y) =0 for (z,y) € Ep(w), F € AP
T(x+z)=7(z) forzeR, z€Z

(7)

Remark 2.2. Let # € ITFP(R,Z). The third condition of (5) is equivalent to
E(r) C E(7). Let © € ITP+(R,Z). The third condition of (7) is equivalent to
Er(n) C Ep(7) for all faces F' € AP, which is stronger than E(r) C E(7) in (5).
Thus, in general, [T+ (R,Z) C IT¥(R,Z). If 7 is continuous, then Anp(z,y) =
Ar(x,y) for (z,y) € F. Therefore, E(w) C E(7) implies that Ep(7) C Ep(7)
for all faces F € AP, hence 1%+ (R, Z) = IT*(R, Z).

3 Effective perturbation functions

Following [19], we define the vector space
I (R,Z) = {#m:R—=R | Je>0st. 7 = 7 + ex are minimal valid },  (8)

whose elements are called effective perturbation functions for m. Because of [4,
Lemma 2.11 (i)], a function 7 is extreme if and only if I77(R,Z) = {0}. Note
that every function # € IT™(R,Z) is bounded.

It is clear that if 7 € IT™(R,Z), then # € IT®*(R,Z), where E, = Eo(7, P);
see [3, Lemma 2.7] or [19, Lemma 2.1].

The other direction does not hold in general, but requires additional hy-
potheses. Let 7 € IT%+(R,Z). In [6, Theorem 3.13] (see also [4, Theorem 3.13]),
it is proved that if 7 and 7 are continuous and 7 is piecewise linear, we have
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e Il ™(R,Z). (Similar arguments also appeared in the earlier literature, for
example in the proof of [3, Theorem 3.2].)

We will need a more general version of this result. Consider the following
definition. Given a locally finite complete polyhedral complex P of R, we call
a function 7: R — R piecewise Lipschitz continuous over P, if it is Lipschitz
continuous over the relative interior of each face of the complex. Under this
definition, piecewise Lipschitz continuous functions can be discontinuous at the
relative boundaries of the faces.

Theorem 3.1. Let m: R — R be a minimal valid function that is piecewise
linear over a locally finite polyhedral complex P. Let @ € IT¥*(R,Z) be a per-
turbation function, where Eo = Eo(m, P). Suppose that T is piecewise Lipschitz
continuous over P. Then 7 is an effective perturbation function, © € II (R,Z).

Proof. Let

m = min{ Arp(z,y) | (z,y) € vert(AP), F is a face of AP
such that (x,y) € F and Arp(z,y) #0};

Because 7 is minimal, it is periodic modulo 1; thus 7 € ITF* (R, Z) implies that 7
is also periodic modulo 1. Because P is locally finite, only finitely many faces of it
have a nonempty intersection with [0, 1]. Take a positive number C that is greater
than the Lipschitz constant of & on the relative interior of each of these finitely
many faces. Then because of periodicity, C is larger than the Lipschitz constant
on all faces of P. Moreover, because 7 is piecewise linear over P, periodic, and
nonconstant (as 7(0) = 0 and 7(f) = 1), all faces of P are bounded. Hence 7 is
bounded, and therefore
M:= sup [Ar(z,y)
(z,y)ER2

is finite. If M = 0, then 7 is additive; because it is also piecewise Lipschitz
continuous and periodic, it follows that # = 0, and thus 7 € IT (R, Z) holds
trivially. In the following, we assume M > 0. Define € := min{%, %} We also
have m > 0, since 7 is subadditive and Ax is non-zero somewhere. Thus, € > 0.
Let 7t = 7+ e and 7~ = m — ex, which we collectively refer to as 7. We want
to show that 7% are minimal valid.

We claim that 7+ and 7~ are subadditive functions. Let (z,y) € [0, 1]2. Let
F be a face of AP such that (z,y) € F. We denote the limit (6) of 7% by
An(z,y); we will show that it is nonnegative. First, assume Anp(z,y) = 0.
It follows from Er(r) C Ep(7) that A%g(x,y) = 0. Therefore, Ar% (x,y) = 0.
Next, assume Arp(z,y) # 0. Consider S = { (u,v) € F | Anp(u,v) = 0}, which
is a closed set since Amp is continuous over the face F'.

If S =0, then Arp(u,v) > m for any (u,v) € vert(F). We have Arp(z,y) >
m by the fact that Anp is affine over F'. Hence, in this case,

Aﬂ'%(l‘, y) = Aﬂ-F(xa y) + GAﬁ-F(m) y)
> Arp(a,y) — €| Arp(z,y)| = m — %M > 0.
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Now consider the case S # (. Let d denote the Euclidean distance from
(xz,y) to S. Since S is a closed set, there exists a point (z,y’) € S such that
(x =2+ (y —¢)* = d* Let I = pi(F),J = pa(F) and K = p3(F). Then
x, 2’ €1, y,y € Jand x +y, 2’ +y € K. It follows from Ep(r) C Ep(7) and
Anp(2’,y’) = 0 that ATp(2’,y’) = 0. Therefore,

Aﬁ-F(J;:y) = Aﬁ-F(xay) - Aﬁ-F(xl?y/)

=7r(x) = 7r(2") + Ts(y) — 7 (y) + Tr(z+y) — Tx (2 +y'),

~

where T7(x) = limy,_,; werelint(r) 7(u) as in (2). Since 7 is Lipschitz continuous
over relint(I), relint(J) and relint(K'), we have that

7r(z) —7r(2)| < Clo — 2| < Cd;
17s(y) —7s(y)| < Cly—y'| < Cd;
Tz +y) — 7@ +9)| < Cle+y—2 —y| <20Cd.

Hence |A7p(z,y)| < 4Cd. Applying a geometric estimate (Lemma A.1 in Ap-
pendix A with g = Anp) shows that Arp(z,y) > de. Therefore, in the case
where S # 0,

Aﬂ-# (SC, y) = ATFF(Ia y) + EAﬁ-F(‘ra y)
m
8C

We showed that 7% are subadditive. Since © € IT¥(R,Z), we have 7%(0) =
7(0) = 0 and 7% (f) = 7(f) = 1. The last result along with E(7) C E(7) imply
that 7 (2) + 7t (y) =7 () + 7 (y) =l if  +y = f (mod 1). The functions
7+ are non-negative. Indeed, suppose that 7+ (z) < 0 for some = € R, then it
follows from the subadditivity that 7 (nz) < nr*(x) for any n € Z,, which is
a contradiction to the boundedness of 7.

Thus, 7* are minimal valid functions. We conclude that 7 € II™(R,Z). 0O

> Arp(e,y) — el A7p ()] 2 0~ T a0d) = 0

4 Extreme functions and facets

In this section, we discuss the relations between the notions of extreme functions
and facets. We first review the definition of a facet, following [4, section 2.2.3];
cf. ibid. for a discussion of this notion in the earlier literature, in particular [15]
and [11].

Let P(m) denote the set of functions y: R — Z, with finite support satisfying

Zry(r) =f (mod1l) and Zﬂ(r)y(T) =1.

reR reR

A valid function 7 is called a facet if for every valid function 7’ such that
P(w) C P(n’) we have that 7’ = 7. Equivalently, a valid function = is a facet if
this condition holds for all such minimal valid functions 7’ [7].
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Remark 4.1. In our paper we investigate the notions of facets (and weak facets)
in particular for the case of discontinuous functions. This appears to be a first in
the published literature. All papers that consider discontinuous functions only
used the notion of extreme functions. In particular, Dey—Richard-Li—Miller [12],
who were the first to consider previously known discontinuous functions as first-
class members of the Gomory—Johnson hierarchy of valid functions, use extreme
functions exclusively; whereas [11], which was completed by a subset of the
authors in the same year, uses (weak) facets exclusively. The same is true in Dey’s
Ph.D. thesis [10]: The notion of extreme functions is used in chapters regarding
discontinuous functions; whereas the notion of facets is used when talking about
(2-row) continuous functions. Dey (2016, personal communication) remembers
that at that time, he and his coauthors were aware that facets were the strongest
notion and they would strive to establish facetness of valid functions whenever
possible. However, in the excellent survey [21], facets are no longer mentioned
and the exposition is in terms of extreme functions.

Remark 4.2. In the discontinuous case, the additivity in the limit plays a role in
extreme functions, which are characterized by the non-existence of an effective
perturbation function & # 0. However facets (and weak facets, see the next
section) are defined through P(7), which does not capture the limiting additive
behavior of 7. The additivity domain E(7), which appears in the Facet Theorem
as discussed below, also does not account for additivity in the limit.

A well known sufficient condition for facetness of a minimal valid function 7
is the Gomory—Johnson Facet Theorem. We have stated its strong form, due to
Basu—Hildebrand—Koéppe—Molinaro [7], in the introduction as Theorem 1.1. In
order to prove our “if and only if” version, we need the following lemma.

Lemma 4.3. Let m and ©’ be minimal valid functions. Then E(r) C E(x') if
and only if P(w) C P(x').

Proof. The “if” direction is proven in [7, Theorem 20]; see also [4, Theorem 2.12].
We now show the “only if” direction, using the subadditivity of 7. Assume that
E(m) C E(r'). Let y € P(rw). Let {r1,r2,...,r,} denote the finite support of y.
By definition, the function y satisfies that y(r;) € Z4, > ., riy(r;) = f (mod 1),
and Y., w(r;)y(r;) = 1. Since 7 is a minimal valid function, we have that
1= m(r)y(r;) > n(3Xi, riy(r;)) = 7(f) = 1. Thus, each subadditivity
inequality here is tight for 7, and is also tight for 7’ since E(w) C E(n’). We
obtain !, 7'(r))y(r;) = 7' (31 riy(r;)) = #'(f) = 1, which implies that
y € P(r’). Therefore, P(w) C P(7'). O

Theorem 4.4 (Facet Theorem, “if and only if” version). A minimal valid
function 7 is a facet if and only if for every minimal valid function 7', E(7) C
E(n') implies ' = .

Proof. It follows from the Facet Theorem in the strong form (Theorem 1.1) and
Lemma 4.3. O
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Recall the space IT¥(R,Z) of perturbation functions with prescribed addi-
tivities F = E(7) from section 2. In [4, page 25, section 3.6], the Facet Theorem
is reformulated in terms of perturbation functions as follows:

If 7 is not a facet, then there exists a non-zero ©# € IT¥(™)(R,Z) such
that 7’ = 7 4+ 7 is a minimal valid function.

The authors of [4] caution that this last statement is not an “if and only if”
statement. We now prove that actually the following “if and only if” version
holds.

Lemma 4.5. A minimal valid function m is a facet if and only if there is no
non-zero 7 € IT¥ (R, Z), where E = E(r), such that © + 7 is minimal valid.

Proof. Let m be a minimal valid function.

Assume that 7 is a facet. Let 7 € ITP(R,Z) where E = E(w) such that
7’ = 7 + 7 is minimal valid. It is clear that E(7) C E(x’). By Theorem 4.4,
7' = . Thus, # = 0.

Assume there is no non-zero 7 € I1”(R,Z), where E = E(r), such that 7+ 7
is minimal valid. Let 7’ be a minimal valid function such that E(x) C E(n’).
Consider 7 = 7/ — 7. We have that 7 € I[T¥(R,Z) and that 7+7 = 7’ is minimal
valid. Then 7 = 0 by the assumption. Hence, 7’ = . It follows from Theorem 4.4
that 7 is a facet. O

We will not use this lemma in the following.

Now we come to the proof of a main theorem stated in the introduction.

Proof (of Theorem 1.2). Let m be a continuous piecewise linear minimal valid
function. As mentioned in [4, section 2.2.4], [7, Lemma 1.3] showed that if 7 is
a facet, then 7 is extreme.

We now prove the other direction by contradiction. Suppose that 7 is ex-
treme, but is not a facet. Then by Theorem 4.4, there exists a minimal valid
function 7/ # 7 such that E(x) C E(x’). Since 7 is continuous piecewise lin-
ear and m(0) = 7w(1) = 0, there exists 6 > 0 such that An(z,y) = 0 and
An(—z,—y) = 0 for 0 < x,y < §. The condition E(r) C E(n’) implies that
Ar'(z,y) = 0 and Arn'(—z,—y) =0 for 0 < x,y < § as well. As the function 7’
is bounded, it follows from the Interval Lemma (see [4, Lemma 4.1], for exam-
ple) that 7’ is affine linear on [0, 4] and on [—4, 0]. We also know that 7/(0) =0
as 7’ is minimal valid. Using the subadditivity, we obtain that «’ is Lipschitz
continuous.

Let # = #' — 7. Then 7 # 0, # € II¥(R,Z) where E = E(r), and 7 is
Lipschitz continuous. Since 7 is continuous, we have IT¥(R,Z) = IT1¥+(R,Z) by
Remark 2.2. By Theorem 3.1, there exists € > 0 such that 7% = 7 + 7 are
distinct minimal valid functions. This contradicts the assumption that 7 is an
extreme function.

Thus, the equality {extreme functions in F,} = {facets in F4} is proved. O
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5 Weak facets

We first review the definition of a weak facet, following [4, section 2.2.3]; cf. ibid.
for a discussion of this notion in the earlier literature, in particular [15] and [11].
A valid function 7 is called a weak facet if for every valid function 7’ such that
P(r) C P(xn") we have P(w) = P(n').

As we mentioned above, to prove that 7 is a facet, it suffices to consider 7’
that is minimal valid. The following lemma shows it is also the case for weak
facets.

Lemma 5.1. (1) Let w be a valid function. If 7 is a weak facet, then 7 is min-
imal valid.

(2) Let m be a minimal valid function. Suppose that for every minimal valid
function ', we have that P(rw) C P(x’) implies P(x) = P(n’). Then 7 is a
weak facet.

(3) A minimal valid function 7 is a weak facet if and only if for every minimal
valid function 7', we have that E(w) C E(7’) implies E(w) = E(7').

Proof. (1) Suppose that 7 is not minimal valid. Then, by [7, Theorem 1], 7 is
dominated by another minimal valid function 7/, with m(zg) > 7’'(z¢) at some
xo. Let y € P(w). We have

L= a(r)y(r) =Y «'(r)y(r) =o' (3 ry(r) =='(f) = L.

reR reR reR

Hence equality holds throughout, implying that y € P(n’). Therefore, P(7) C
P(r"). Now consider y with y(xzg) = y(f — xo) = 1 and y(x) = 0 otherwise.
It is easy to see that y € P(xn’), but y € P(rw) since w(xg) + 7(f — mo) >
7 (zg) + 7' (f — zp) = 1. Therefore, P(r) C P(n’), a contradiction to the weak
facet assumption on 7.

(2) Consider any valid function 7* (not necessarily minimal) such that P(7) C
P(7*). Let ' be a minimal function that dominates 7*: 7/ < 7*. From the proof
of (1) we know that P(7*) C P(rn’). Thus, P(r) C P(x’). By hypothesis, we
have that P(w) = P(7*) = P(x’). Therefore, 7 is a weak facet.

(3) Direct consequence of (2) and Lemma 4.3. O
By Theorem 1.2, for continuous piecewise linear functions, the notions of

extreme functions and facets are the same. Next we discuss the relation to weak
facets. We have the following theorem.

Theorem 5.2. Let F be a subfamily of the family F4 of continuous piecewise
linear functions such that

existence of an effective perturbation for any minimal valid m € F

implies existence of a piecewise linear effective perturbation.

Let m € F. The following are equivalent. (E) 7 is extreme, (F) 7 is a facet, (wF)
w is a weak facet.
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Before proving the theorem, we discuss a hierarchy of known subfamilies that
satisfy the hypothesis.

Remark 5.8. As shown in [3] (for a stronger statement, see [5, Theorem 8.6]),
the family F7 of continuous piecewise linear functions with rational breakpoints
is such a subfamily where existence of an effective perturbation implies existence
of a piecewise linear effective perturbation.

Remark 5.4. Zhou [23, Chapter 4] introduces a completion procedure for decid-
ing the extremality of piecewise linear functions, which is known to terminate
for all functions with rational breakpoints and some functions with irrational
breakpoints. Let Fo D F1 be the family of continuous piecewise linear functions
with rational breakpoints for which the procedure terminates. In this case, by
[23, Lemma 4.11.3, Theorems 4.11.4, 4.11.6], the space of effective perturba-
tions has a precise description as a direct sum of a finite-dimensional space of
continuous piecewise linear functions and finitely many spaces of Lipschitz func-
tions. Because the spaces of Lipschitz functions contain nonzero piecewise linear
functions, this implies that F5 satisfies the hypothesis of Theorem 5.2.

Remark 5.5. Hildebrand-Ko6ppe—Zhou [16,17] consider the family F3 2O Fy of
continuous piecewise linear functions that have a finitely presented moves closure
[16, Assumption 4.2]. For these functions, by [16, Theorems 4.14-4.16], the space
of effective perturbations has a direct sum decomposition of the same type as for
the family F3, and again this implies that the family F3 satisfies the hypothesis
of Theorem 5.2.

Open question 5.6 It is an open question whether the whole family F4 O F3 of
all continuous piecewise linear functions satisfies the hypothesis of Theorem 5.2.

Proof (of Theorem 5.2). By Theorem 1.2 and the fact that {facets} C {extreme
functions} N {weak facets}, it suffices to show that {weak facets} C {extreme
functions}.

Assume that 7 is a weak facet, thus 7 is minimal valid by Lemma 5.1. We
show that 7 is extreme. For the sake of contradiction, suppose that 7 is not
extreme. By the assumption m € F, there exists a piecewise linear perturbation
function 7 # 0 such that 7 = 7 are minimal valid functions. Furthermore, by [4,
Lemma 2.11], we know that 7 is continuous, and E(7) C E(7). By taking the
union of the breakpoints, we can define a common refinement, which will still be
denoted by P, of the complexes for m and for 7. In other words, we may assume
that m and 7 are both continuous piecewise linear over P. Since A7 # 0, we may
assume without loss of generality that Aw(z,y) > 0 for some (z,y) € vert(AP).
Define A

€= min{iAZg: zg ‘ (z,y) € vert(AP), Axw(z,y) > O} .
Notice that € > 0, since Ar > 0 and E(n) C E(7). Let 7’ = 7 — e7r. Then 7’ is
a bounded continuous function piecewise linear over P, such that ' # 7.
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The function 7’ is subadditive, since An’(z,y) > 0 for each (z,y) € vert(AP).
As in the proof of Theorem 3.1, it can be shown that 7’ is non-negative, 7’ (0) = 0,
7'(f) = 1, and that =’ satisfies the symmetry condition. Therefore, 7’ is a
minimal valid function. Let (u,v) be a vertex of AP satisfying Aw(u,v) > 0
and Am(u,v) = eA7(u,v). We know that Az’ (u,v) = An(u,v) — eAT(u,v) =0,
hence (u,v) € E(n’). However, (u,v) ¢ E(n), since A7(u,v) > 0 implies that
Am(u,v) # 0. Therefore, E(r) C E(n'). By Lemma 5.1(3), we have that 7 is not
a weak facet, a contradiction. a

Remark 5.7. The theorem is stated for functions m and 7 that are piecewise
over the same complex P. This is not a restriction because if we are given two
complexes P and P, then we can define a new complex, the common refinement
of P and P, whose set of vertices is the union of those of P and P.

6 Separation of the notions in the discontinuous case

6.1 Extreme, but not a weak facet

The definitions of facets and weak facets fail to account for additivities-in-the-
limit, which are a crucial feature of the extremality test for discontinuous func-
tions. This allows us to separate the notion of extreme functions from the other
two notions. Below we do this by observing that the discontinuous piecewise
linear extreme function ¢ = hildebrand.discont.3slope_1(), which appeared above
in Example 2.1, works as a separating example.

Theorem 6.1. The function 1p = hildebrand.discont3slope 1() is a one-sided
discontinuous piecewise linear function with rational breakpoints that is extreme,
but is neither a weak facet nor a facet.

Proof. The function ¢ = hildebrand.discont 3.slope.1() is extreme (Hildebrand,
2013, unpublished, reported in [4]). The extremality proof appears as [18, Ex-
ample 7.2]; it can also be verified using the software [20].> The function 1 is
piecewise linear on a complex P, which is illustrated in Figure 3 (left). Consider
the minimal valid function ¢’ = discontinuous facets paper_ example psi_prime() de-

fined by
2¢  ifze€|0,1];
¥'(a) = foe sl
Y(x) ifze(3,1).
It can be considered as piecewise linear on the same complex P. Observe that

E(%) is a strict subset of E(¢). See Figure 3 for an illustration of this inclusion.
Thus, by Lemma 5.1(3), the function % is not a weak facet (nor a facet). O

3 The command h = hildebrand discont 3 slope 1(); extremality test(h) carries out the
verification.
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Fig. 3. Two diagrams of functions h (graphs on the top and the left) and polyhedral
complexes AP (gray solid lines) with additive domains E(h) (shaded in green). (Left,
black graph) h = hildebrand discont 3slope.1() = v. (Right, red graph) h =1’ from the
proof of Theorem 6.1.
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Fig. 4. Two diagrams of functions h (graphs on the top and the left borders) and poly-
hedral complexes AP (gray solid lines) with additive domains E(h) (green triangles)
and Eo(h,P) (green arrows). (Left) h = hildebrand_discont 3slope 1() = ¢. (Right) h =
discontinuous_facets_paper_example_psi_prime() = ¢’ from the proof of Theorem 6.1.
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We remark that there is no inclusion relation between the limit-additivities
captured in the set families E4(¢),P) and E4(¢’,P), as illustrated in the dia-
grams in Figure 4. We will explain these diagrams on an example only; see [18§],
where these types of diagrams for discontinuous piecewise linear functions were
introduced, for a full discussion.* Consider (2, 2) as a vertex of the face F € AP
that is the triangle to the northeast of it. The limit of Ay within relint(F") to
(2,2)is lim, ) s+ s+) A¥(z,y) = 0, thus we have additivity in the limit. This
is indicated by the green arrow from the northeast of (%, %) But the correspond-
ing limit of Av)’ is lim(z ) (3+,3%) Ay (x,y) > 0. As a result, the perturbation
_ ’ 8 8
Y = 9" — 1) is not an effective perturbation for ¢: For any € > 0, the function
¢ — e violates subadditivity near (%, %) In fact, 1 does not belong to the space
ITE+(R,Z) with E, = E4(1, P).

6.2 Weak facet, but not extreme

The other separations appear to require more complicated constructions. Re-
cently in [19], the authors constructed a two-sided discontinuous piecewise lin-
ear minimal valid function, 7 = kzh_minimal_has_only_crazy perturbation_1(), which
is not extreme, but which is not a convex combination of other piecewise lin-
ear minimal valid functions; see Table 1 in Appendix B for the definition and
Figure 5 for a graph.

This function has 40 breakpoints 0 = 29 < 1 < --- < x39 < X409 = 1 within
[0,1]. Tt has two special intervals (I,u) = (217, z18) and (f —u, f—1) = (z19, 220),
where f =237 = 2, 1 = 218w = 28 on which every nonzero perturbation is
microperiodic, namely invariant under the action of the dense additive group
T = <t1,t2>Z, where tl = a1 —ap = T10 — Tg = %\/ﬁ and tg = a3 — apg =
T13 — T = %. Below we prove that it furnishes another separation.

Theorem 6.2. The function m = kzh.minimal_has only crazy perturbation.1() is
a two-sided discontinuous piecewise linear function (with some irrational break-
points) that is not extreme (nor a facet), but is a weak facet.

Proof. By [19, Theorem 5.1], we know that the function 7 is minimal valid, but
is not extreme. Let 7’ be a minimal valid function such that E(w) C E(n’"). We
want to show that E(n) = E(n’). Consider # = ' — 7w, which is a bounded Z-
periodic function satisfying that F(r) C E(7). As a difference of minimal valid
functions, it satisfies the symmetry condition

7(x)+7(y) =0 for x,y € R such that x +y = f 9)
as well as the conditions
_ _ _ _/1 _
7(0) =7(§) =7(f) = 7(HL) =7(1) = 0. (10)
4 The graphs in Figure 3 can be reproduced with the command plot_2d_diagram_additive.

domain_sans.limits(h), those in Figure 4 with the command plot 2d diagram_additive.
domain.sans.limits(h) + plot_2d_diagram_ with_cones(h).
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We reuse parts of the proof of [19, Theorem 5.1, Part (ii)], applying it to the
perturbation 7.

First, as in the proof of [19, Theorem 5.1, Part (ii)], we prove the following
claim:

(o) The function 7 is piecewise linear on P outside of the special intervals,
with unknown slopes ¢;,¢3 € R on all intervals where 7 has slopes ¢;
and cg, respectively.

See Table 1 for a list of the intervals. We reuse the computer-assisted proof in
[19, Appendix C] to prove Claim (o). Because E(w) C E(7), if a two-dimensional
face F' € AP satisfies

An(z,y) =0 for (z,y) € relint(F), (11)
then we also have
Am(z,y) =0 for (z,y) € relint(F). (12)

Table 2 shows a list of faces F' € AP with this propety. Our proof repeatedly
applies the Gomory—Johnson Interval Lemma in the form of [4, Theorem 4.3] to
these faces. (This version of the theorem only requires the boundedness of the
function 7; this is contrast to the proof in [19]. The latter uses a version that is
stated for effective perturbations only.) By the theorem, 7 is affine linear with
the same slope on the open intervals int(p;(F)) for i = 1,2, 3.

Then the proof considers the edges F' € AP that satisfy (11) shown in
Table 3. Let {i,j} C {1,2,3} such that p;(F) and p;(F) are proper intervals.
Let L C F be a line segment such that 7 is affine linear on p;(L). Then by
(12), 7 is also affine linear with the same slope on p;(L). (There is another
difference to the proof in [19]: property (11) is more specific than the hypothesis
of [19, Theorem 3.3]. The latter only requires limit-additivities Arp/(x,y) = 0
for (z,y) € relint(F) where F/ D F is an enclosing face. This distinction is
crucial because we have no control over the limit-additivities of 7.)

Next we establish the following stronger claim:
(i) We have 7(z) =0 for x & (l,u) U (f —u, f —1).

Our proof is again similar to the one of [19, Theorem 5.1, Part (ii)], but in
contrast to that, we consider only the restriction of 7 to

[Oﬂl]u[uvf_u]u[f_lal]y

where the function is piecewise linear by (o). The restricted function is deter-
mined by a finite system of parameters as follows: two slope parameters ¢; and
C3, 19 parameters that determine the function value 7(z;) at each breakpoint,
and 18 parameters that determine the midpoint function value ﬁ(%) on
each interval of P except for the special intervals. (Here we used the symmetry
condition (9), as well as the conditions (10) to reduce the number of parame-
ters.) We set up a finite linear system of equations that expresses the additivity
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relations (12) for faces F' that satisfy (11). We do this by writing equations
Arp(x,y) = 0 for (z,y) € vert(F) for these faces F. The system has full rank;
a regular 39 x 39 subsystem is shown in Tables 4 and 5. Therefore the unique
solution of the system is 0, and Claim (i) is proved.

Next, we show that

(ii) 7 is constant on each coset Z + T € R/T on the special interval (I, u),
and likewise on the special interval (f —u, f —1).

The function 7 satisfies the additivity relations (12) from the faces F({a;}, [I, u],
[f —u, f—1]) for i =0,1,2, where ap = g, a1 = x19 = ap +t1 = %\/54— %7
and as = x13 = ag + t2. These faces appear in Table 6; see also Figure 5. Let
Z be an arbitrary real number. Then there exists a point & € (I,u) such that
Z—& € T and & £t; € (l,u). Then @ and & satisfy the hypothesis of [19,
Lemma B.1]. Writing Z — & = A1t; + Aato for some A\, Ay € Z, the lemma
gives ©(Z) — 7(%) = Zle Ai(7(a;) — w(ap). Using 7(a;) = 0, as the points a;
lie outside of the special intervals, we obtain 7(Z) = 7(Z). Using the symmetry
relation given by (12) for the face F([l,u],[f — u, f — 1], {f}), we obtain that 7
is constant on the set (f —u, f =) N(f —z +T) as well.

Next, using the face F([l,u], [I, u], {{+u}), which satisfies (11), and 7(I+u) =
0 from (i) because | + u lies outside the special intervals, we obtain that

(iii) 7(z) +7(y) =0 for x,y € (I,u) such that x +y =1+ u.
Together with (ii), we obtain that

(iv) m(x) +7(y) =0 for z,y € (l,u) such that x +y € (I +u)+T.

We now show that 7 also satisfies the following condition:

(v) |7(x)| <sforall z € (Lu)U(f —u, f—1),

where
s=m(z39) + (141 —239) — (1) = 53065 (13)

Indeed, by (iii) and (9), it suffices to show that for any = € (I,u), we have
7(x) > —s. Suppose, for the sake of contradiction, that there is Z € (I,u) such
that 7(Z) < —s. Since the group T is dense in R, we can find = € (I,u) such
that x € T 4+ T and x is arbitrarily close to 1 + [ — x39. We choose x so that
d=x—(1+1—1z39) € (0, _ig_i(f) ), where ¢o and ¢3 denote the slope of 7 on the
pieces (I,u) and (0, z1), respectively. See Table 1 for the concrete values of the
parameters. Let y = 1+ —x. Then y = 239 — 0. It follows from (i) that 7(y) =0
and 7(x + y) = 7(l) = 0. Now consider An'(z,y) = «'(z) + 7'(y) — 7' (x + y),
where

m(z) = 7(z) + w(z) =7(x) + 7(1 + 1 — x39) + deo;
™' (y) = m(y) = m(z39) — des;
mx+y)=nx+y) =x().
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Fig.5. Diagram of the polyhedral complex AP of the function n =
kzh_minimal_has.only_crazy perturbation 1() (shown at the top and left borders), where
two-dimensional faces F' are color-coded according to the values ng: ngp = 0 (white),
ng = 1 (light blue), nrp = 2 (medium lavender blue). One-dimensional faces F with
nrg > 0 are shown in (a) light green if Arp(u,v) =0, (b) dark blue if Arp(u,v) > ng-s
for (u,v) € vert(F).

Since x — Z € T, the condition (ii) implies that 7(z) = 7(Z). We have

Ar'(z,y) = 7(2) + [7(1 +1 — @39) + 7(239) — 7(1)] + (c2 — c3)
=7(Z)+s+0(ca —c3) <0,

a contradiction to the subadditivity of #’. Therefore, 7 satisfies condition (v).

Let F be a face of AP. Denote by np € {0,1,2} the number of projections
pi(relint(F)) for ¢ = 1,2, 3 that intersect with (I, u)U(f —u, f —1). See Figure 5;
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note that there is no face F' with np = 3. It follows from the conditions (i)
and (v) that

|A7(x,y)| < np-s for any (x,y) € relint(F).

Moreover, we make the following claim.

(vi) If F' € AP has np # 0, then either
(a) Amp(u,v) =0 for all (u,v) € vert(F'), or
(b) Arp(u,v) > ng-sforall (u,v) € vert(F), and the inequality is strict
for at least one vertex.

We have verified this claim computationally (using exact computations) in our
software, by enumerating all faces F of AP with np > 0.° We provide the
relevant data of the function in Appendix B (Tables 6 and 7) for the reader’s
reference and for archival purposes.

Next, we show the following simple corollary of Claim (vi):

(vii) If F € AP has np # 0, then either
(a) Am(z,y) =0 for all (x,y) € relint(F'), or
(b) Arn(z,y) > np - s for all (x,y) € relint(F).

To prove this, assume that np # 0. Since Anp is affine linear on F, An(z,y)
for (xz,y) € relint(F) is a strict convex combination of { Arp(u,v) | (u,v) €
vert(F) }. As at least one of the inequalities Anp(u,v) > np - s is strict, (b)
follows.

Finally, we prove the following claim:
(viii) For (z,y) € R? such that An(x,y) > 0, we have An'(z,y) > 0.

To prove this, consider the (unique) face F' € AP such that (z,y) € relint(F).
If np =0, then A7 (z,y) = 0, and hence An'(z,y) = An(z,y) > 0. Otherwise,
because we have Am(z,y) > 0 by assumption, the above case (b) applies, and
hence Arn'(z,y) = An(z,y) + A7 (x,y) > 0 holds when np # 0 as well.

We obtain that E(n’) C E(w). This, together with the assumption E(7) C
E(n’), implies that E(r) = E(n’). We conclude, by Lemma 5.1(3), that 7 is a
weak facet. O

6.3 Extreme and weak facet, but not a facet

For the remaining separation, we construct an extreme function 7 as follows.
In [19, Theorem 5.1], the authors showed that m = kzh_minimal_has only crazy.
perturbation 1() admits an effective locally microperiodic perturbation that is
supported on the cosets [ + 7', u+ T of the group T on the special interval (I, u)

5 The enumeration is done by the function generate faces.with_projections.intersecting.
A fully automatic verification is carried out by the command kzh_minimal_has.only.
crazy perturbation_1_check subadditivity slacks().
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and, equivariantly, on the cosets f — [+ T, f —u + T on the special interval
(f —u,l —u).

We perturb the function 7 instead on infinitely many (almost all) cosets of
the group 7" on the two special intervals as follows. Consider the involution (point
reflection) pj4y: ¢ — 4+ u —x = f — ap — x, which has the unique fixed point
H’T“. Because piiy(z +t) = pigu(z) —t for z € R and ¢ € T, the involution can
be considered as a map from the quotient R/T (whose elements are the cosets
of T') to itself. The set of fixed points of R/T under this map is

C = {lJrTu +T, l+u2*t1 +T, l+u2*t2 +T, l+1t—(2171+t2) +T}

The remaining elements of R/7T" are paired by the involution into two-element
orbits {z, pj1(z)}. Fix a choice function ¢ that maps each of the two-element
sets {z, pryu(2)} C R/T to one of its two elements. (We remark that the existence
of such a choice function does not depend on the axiom of choice because the
sets in question are finite.) Then define

Cct={c"({z,pipu(x)}) ER/T |z € R/T, 2 ¢ C }.

Using these sets, we define for every z € [0, 1]

Lu)U(f—u,f—1),or

l,u) such that x + T € C, or
ifee(f—u,f—1)suchthat f—a+T € C;

m(x)+s if x € (l,u) such that z + T € C*, or
ifre(f—u,f—1)suchthat f—x+T € CH;

w(x) —s otherwise,

7(x) ifx ¢
ifze

(14)

Py

where s is the constant defined in (13) in the proof of Theorem 6.2. We extend
this function to R by setting #(x + z) = #(x) for z € R and z € Z.

Theorem 6.3. The function * = kzh_extreme.and weak facet but not facet()°® de-
fined in (14) is a two-sided discontinuous, non—piecewise linear function that is
extreme and a weak facet, but is not a facet.

Proof. Let @ = ®# — m. By definition of 7, the function 7 is periodic modulo 1.
Moreover, it satisfies the symmetry condition (9), the conditions (10), as well
as the conditions (i) to (v) in the proof of Theorem 6.2. We claim that 7 is
subadditive. To this end, recall the notation ng from the proof of Theorem 6.2.

For all faces F € AP with ngp = 0, because 7 equals 7 outside of the special
intervals, we have A7p(z,y) = 0 for (z,y) € relint(F), and thus Arp(z,y) =
Arnp(x,y) for (z,y) € relint(F).

Next, consider the faces F' with np > 0. By Claim (vii) from Theorem 6.2, we
either have (a) Anp(z,y) = 0 for all (z,y) € relint(F), or (b) Anp(x,y) > np-s
for all (z,y) € relint(F").

5 The authors thank Jiawei Wang for his help with implementing this function in the
software.
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From Table 6 (see also Figure 5), we see that these faces satisfying (a) are
exactly the following (up to replacing F(I,J, K) by F(J,I,K) and up to Z-
periodicity):

(1) F = F([l,u],{a;},[f — u, f —1]) for i = 1,2,3. Denoting t; = 0 for conve-
nience, we have a; = ag + t;, where ¢; € T. Fix i and let (z,a;) € relint(F),
sox € (l,u) and = + a; € (f —u, f —1). Because 7(a;) = 0, as a; lies out-
side of the special intervals, and (l,u) > f— (z+a;)) = f—ag—x —t; =
Priw(T) —t; € prywu(z) + T, we have AT (z,a;) = 7(x) + 7(a;) — 7T(r +a;) =
7(x) +7(f — (x4 a;)) = 7(x) + T(pigu(x)) = 0.

(2) F = F([l,u],[l,u],{f — a;}) for i = 1,2,3. Again fix ¢ and let (z,y) €
relint(F),sox+y=f—a;=f—ap—t; and z,y € (l,u). Then A7(z,y) =
7x)+7((f —ao) —z—t;) —7(f — a;) = 7(x) + T(pryu(z)) = 0.

(3) F =F(l,ul,[f —u, f=1],{f})- Then, by the symmetry condition (9), we
have A7 (z,y) = 0.

(4) F({0},[l,u}, [I,u]) and F ({0}, [f —u, f =], [f —u, f —1]). Here A7 (z,y) =0
trivially.

Again, we conclude that Arp(z,y) = Anp(z,y) for (z,y) € relint(F).

Finally, consider the faces F' with np > 0 that satisfy (b), i.e., Anp(z,y) >
np-s for (x,y) € relint(F). Because |ATp(z,y)| < np-s, we have Aftp(z,y) > 0
for (x,y) € relint(F).

Hence, 7 is subadditive as claimed, and therefore a minimal valid function,
and in fact E(7) = E(mx).

Let ' be a minimal valid function such that F(#) C E(x’). Then, as shown in
the proof of Theorem 6.2, we have E(#) = E(x’). It follows from Lemma 5.1(3)
that 7 is a weak facet. However, the function 7 is not a facet, since E(7) = E(7)
but 7 # 7. Next, we show that 7 is an extreme function.

Suppose that & can be written as T = %(ﬂ'l + %), where 7!, 72 are minimal
valid functions. Then E(7) C E(r!) and E(#) C E(n?). Let #' = n! — 7 and
72 = 72 — . We have that E(r) C E(7') and E(r) C E(7?). Hence, as shown
in the proof of Theorem 6.2, 7! and 72 satisfy the symmetry condition (9) and
the conditions (i) to (v). We will show that 7! = 72.

For z & (I,u) U (f —u, f — 1), we have 7*(z) = 0 (i = 1,2) by condition (i).
It remains to prove that 7!(z) = 72(x) for z € (l,u) U (f — u, f — ). By the
symmetry condition (9), it suffices to consider z € (I,u). We distinguish three
cases. If 7+ T € C, then condition (iv) implies 7*(z) = 0 (i = 1,2). If 2 +T € C*,
then 7(z) = s by definition. Notice that 7! +72? = 7! + 7% — 21 = 27 — 27 = 27,
and that 7%(z) < s (i = 1,2) by condition (v). We have 7’(z) = s (i = 1,2) in
this case. f 1+ 7 ¢ C and z +T ¢ C™, then 7(z) = —s, and hence 7(z) = —s
(i = 1,2). Therefore, 7! = 72 and 7! = 72, which proves that the function # is
extreme. a

7 Conclusion

As a conclusion to our paper, we discuss the three notions relative to subspaces
of functions.
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Gomory and Johnson introduced the notion of facets in [15] in a setting
in which valid functions, by definition, are continuous functions. Following the
discussion in [1], a continuous valid function 7 is defined to be a facet in the
sense of Gomory-Johnson it P(w) C P(n’) implies 7’ = x for every continuous
valid function 7’. As remarked in [1], every continuous facet is also a facet in the
sense of Gomory—Johnson. We have a partial converse as follows.

Corollary 7.1. Every continuous piecewise linear function (not necessarily with
rational breakpoints) that is a facet in the sense of Gomory—Johnson is also a
facet.

Proof. Let m be a continuous piecewise linear minimal valid function that is
not a facet. Then 7 is not an extreme function. Thus 7 = %(7‘(‘1 + 72) with some
minimal valid functions !, 72 # 7, which are Lipschitz continuous by [4, Lemma
2.11 (iv)] and satisfy E(r) C E(x?) by [4, Lemma 2.11 (ii)]. Setting 7' = =, it
follows from Lemma 4.3 that P(7) C P(n’). Therefore 7 is not a facet in the
sense of Gomory—Johnson. O

Open question 7.2 s every facet in the sense of Gomory-Johnson a facet?

An approach to resolve this question in the negative would be to construct a
continuous non—piecewise linear minimal valid function 7 such that there exists
a minimal valid function 7’ # 7 with P(7) C P(n’) (equivalently, F(7w) C E(x'))
that is discontinuous, and all such functions 7’ are discontinuous. Note that the
differences # = 7/ —7 cannot be effective perturbations for m, because all effective
perturbations of a continuous function 7 are Lipschitz continuous by [4, Lemma
2.11 (iv)].

Basu et al. [2] highlight the subspace of Lipschitz continuous functions. All
minimal valid functions that are liftable to cut-generating function pairs for the
mixed integer problem belong to this space [2, Remark 2.7]. Define a facet in the
sense of Lipschitz to be a Lipschitz continuous function such that P(m) C P(r’)
implies 7’ = 7 for every Lipschitz continuous valid function 7’. Thus we can ask:

Open question 7.3 Is every facet in the sense of Lipschitz a facet?
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A Auxiliary result

In the proof of Theorem 3.1, we need the following elementary geometric esti-
mate.

Lemma A.1. Let F C [0,1]? be a convex polygon with vertex set vert(F), and
let g: F — R be an affine linear function. Suppose that for each v € vert(F),
either g(v) = 0 or g(v) > m for some m > 0. Let S = {z € F | g(x) =0},
and assume that S is nonempty. Then g(x) > md(z,S)/2 for any x € F, where
d(x,S) denotes the Fuclidean distance from x to S.

Proof. Let x € F be arbitrary. We may write

T = E Qv

vevert(F)

for some a,, € [0,1] with >° o, =1.
Since S is a closed set, for each v € vert(F), there exists s, € S such that
d(v,S) = d(v, sy). Let s* =3 0, Sy. We have that s* € S since the set

vevert(F)
S is convex. Thus,

d(z,S) < d(x,s*) (by definition)
=d( Z Qy, Z QySy )
< Z apd(v, sy) (by the triangle inequality)

= Zavd(v,S).

For those v € vert(F') with g(v) = 0, we have v € S by definition and thus
d(v,S) = 0. Therefore,

dz,8) < Y wdw,8) <2 Y .

vevert(F) vevert(F)
g(v)>m g(v)>m

Using the affine linearity of g, it thus follows that

md(x, S

= Y g = Y ag)t Y gl > M5
vevert(F) vevert(F) vevert(F)
9(v)=0 g(v)>m
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B Data of the function
7 = kzh_minimal _has only crazy perturbation 1()

The following pages provide tables with data of the piecewise linear function
7 = kzh_minimal_has_only crazy perturbation_1() of Theorem 6.2.

Table 1 defines the function by listing the breakpoints x; and the values and
the left and right limits at the breakpoints. (A version of this table has previously
appeared in [19].)

Tables 2 and 3 list the faces F' = F(I,J, K) of the complex AP that we use
for proving piecewise linearity of 7 outside of the special intervals, i.e., Claim (o)
in the proof of Theorem 6.2. In all tables, the faces are listed by lexicographi-
cally increasing triples (I, J, K); and of the two equivalent faces F'(I, J, K) and
F(J,1,K), we only show the lexicographically smaller one.

Table 4 shows a list of faces F' that satisfy A7p(x,y) = 0 for all (z,y) €
relint(F'). This property can be verified by inspecting the provided list of vertices
of each face. A selection of one vertex (u,v) for each listed face F', listed first
in the table, suffices to form a full-rank homogeneous linear system of equations
A7p(u,v) = 0. We obtained the selection of faces and their vertices by Gaussian
elimination. The full-rank system, shown in Table 5, proves that 7 is 0 outside
of the special intervals, Claim (i) in the proof of Theorem 6.2.

Finally, Tables 6 and 7 list the faces F' whose projections p;(relint(F)), ¢ =
1,2, 3, overlap with the special intervals (ng > 0). They are relevant for verifying
Claims (ii), (iii), and (vi) in the proof of Theorem 6.2. For each face F, we list
the values of the subadditivity slack Amp(u,v) for all vertices (u,v) of F in
nondecreasing order from left to right. If there is an enclosing face F/ O F
with Arp/(u,v) = Anp(u,v) for all vertices (u,v) of F because of one-sided
continuity, then we suppress F' in the table. All numbers have been rounded to 3
decimals for presentation. Claims (ii) and (iii) use faces with Anp(z,y) = 0 for
(x,y) € F. To verify Claim (v), note that if Anp(u,v) = 0 for one vertex of F,
then Arp(u,v) = 0 for all vertices of F. Next, note that for all other faces F'
with np > 0, the inequality Anp(u,v) > np - s (where s ~ 0.001) is satisfied
and tight for at most one vertex (u,v) of each face. These vertices are marked
by the word “(tight)” in the tables; we have np = 1 for each of these faces.
All remaining subadditivity slacks Amp(u, v) for vertices (u,v) € vert(F') exceed
0.003 > 3 - s.



Table 1. The piecewise linear function 7 = kzh_minimal_has_only_crazy_perturbation_1(), defined by its values and limits at the breakpoints.

If a limit is omitted, it equals the value.

7 T; (2] ) = Ty, (@) m(z;) m(x]) = W[Iivmi+1]($z) slope
101 101
0 0 650 0 650 c3=—5
1 101 707 2727 707
5000 13000 13000 13000 ¢ = 32
9 60153 421071 13
369200 959920 c3 = —5
3 849 4851099 _ 1925 /5 | 4851099 4851099
5000 11999000 71994 11999000 11999000 ¢ =38
1925 849 67375 4851099 13
4 298129\/§+ 5000 3875677\/§+ 11999000 c3=—5
77 849 385 4851099 2695 4851099 385 4851099
5 7752 V2 + 5000 93016248 V2 + 11999000 100776 v2+ 11999000 93016248 V2 + 11999000 , — 35
_ 19 1925 275183 18196 1925 275183 13
6 a0 = 1o 71994\/§+ 599950 59995 71994\/§+ 599950 ¢ =3
77 281986521 385 10467633 13
7 22152 V2 + 1490645000 T 22152 V2 + 22933000 c3 = —5
8 40294 848837 795836841 848837
201875 2099500 1937838500 2099500 ¢ = 38
9 36999 975607 13
184600 2399800 c3=—5
_ 7 19 _ 385 275183 385 18196 385 275183
10 a1 = 7753 V2 + 100 7752 V2 + 599950 93016248 V2 + 59995 7752 V2 + 599950 c3 = —5
11 1051 4291761 _ 1925 /5 4 4201761 4201761
5000 11999000 71994 11999000 11999000 ¢ =38
13
1925 1051 67375 4291761
12 208129 v2+ 5000 3875677 V2+ 11999000 c3=—5
_ 14199 192500 240046061 50943 192500 240046061
13 2 = 64600 3875677\/5 + Z75135400 167960 3875677‘/5 + Z75135100 c3=—5
77 1051 385 4291761 2695 4291761 385 4201761
14 7752 V2 + 5000 93016248 V2 + 11999000 100776 V2 + 11999000 93016248 V2 + 11999000  — 35
77 342208579 385 122181831 13
15 22152 V2 + 1490645000 T 22152 V2 + 298129000 c3 = —5
16 193799 187742
807500 524875 ¢ = 32
_ 4 _ 219 933 51443 13
17 =A== === 2 5
800 2080 147680 Cy =
18 u= Ay = 269 668809 683 11999
= 410 = 300 1919840 2080 ¢ =38
19 fou=231 1397 1251031 13
= 800 2080 1919840 cy = D
20 o= 121 96237 1147 11999
800 147680 2080 cp = 38

13

[\

noyy, wenx pue oddoy] seryijey



Cc1 = 13
21 452201 337133
807500 524875 c3 = —5
77 850307421 385 175947169
22 T 22152 V2 + 1490645000 22152 V2 + 298129000 cp = 38
77 2949 385 7707239 2695 7707239 385 7707239 13
23 7752 V2 + 5000 93016248 V2 + 11999000 100776 V2 + 11999000 ~ 93016248 V2 + 11999000 ¢, — 5
__ 37481 192500 535089339 117017 192500 535089339
24 f—a2= 64600 3875677\/5 + 775135400 167960 3875677\/§ + T75135400 c3 = —5
1925 2949 67375 7707239
25 298129 \/5 + 3000 T 3875677 \/5 + 11995000 ¢ =35
2 2949 7707239 1925 /5 | 7707239 7707239 13
5000 11999000 71994 11999000 11999000 c3=—5
_ 17 61 385 324767 385 41799 385 324767
21 f-a= 7752\/§+ 100 7752\/5 + 550050 93016248\/§+ 59995 7752\/§+ 599950 c3 = —5
28 110681 1424193
184600 2399800 ¢ =3
29 121206 1250663 1142001659 1250663 13
201875 2099500 1937838500 2099500 c3=—5
77 910529479 385 12465367
30 T 22152 V2 + 1490645000 22152 V2 + 22933000 L =3
13
_ _ 61 1925 324767 41799 1925 324767
31 f-ao=1l+u= 100 71994 V2 + 599950 59995 71994 V2+ 599950 L =35
77 3151 385 7147901 2695 7147901 385 7147901 13
32 7752 v2+ 5000 93016248 v2+ 11999000 100776 V2 + 11999000 93016248 V2 + 11999000 ¢, — _5
1925 3151 67375 7147901
33 T 298129 V2 + 5000 T 3875677 V2 + 11999000 c =35
34 3151 7147901 1925 /5 | 7147901 7147901 13
5000 11999000 71994 11999000 11999000 c3=—5
35 235207 538849
369200 959920 ¢ = 35
36 3899 12293 10273 12293 13
5000 13000 13000 13000 c3=—5
_ 4 549 549
37 f= 5 650 L 650 c1 = 35
38 4101 899 9667 899 13
5000 1000 13000 1000 c3 =5
39 4899 101 3333 101
5000 1000 13000 1000 cp = 38
101 101 13
40 1 650 0 650
; ) — ) ) +) — )
7 T (2] ) = Ty e (@) (i) w(x]) = 7T[z,;,z,;+1]($z) slope
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Table 2: Two-dimensional faces F' with additivity on int(F') for proving piecewise linearity outside of the
special intervals. All intervals I, J, K are closed and elements of the complex P; notation (a,b): endpoints
are not reached by the projection of the face; (a,b): function 7 is one-sided discontinuous at the endpoints
from within the interval; [a, b]: function 7 is one-sided continuous at the endpoints from within the interval.

Face F = F(1,J,K)

vertices of F

I J K slope U v u—+v U v u—+v U v ou+ov
(x1,22) (21, 72) (@1, 2] c1 T1 ot 22T R T A —zi+xe” 1T w2
(z1,22) [u, f—u) (u, f—u] c1 x1 T ut udx T 0T f-u—z1T  f-u” f—2u~ ut f-u”
(z1,22) [235,T36) (35, T36) c1 zt xas T z1+wssT ot —zitwseT was —w35+w36” T3zt Tas

(wss,739) (T38,230) (w3s+1,T30+1) c3 T3s—T3o+1" 230~ was+17T T30” Tag—T39+1T gz +17T T39 39~ 2T39

0€
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Table 3: One-dimensional faces F' with additivity on relint(F") for proving piecewise linearity outside of the
special intervals. All intervals I, J, K are closed and elements of the complex P; notation (a,b): endpoints
are not reached by the projection of the face; (a,b): function 7 is one-sided discontinuous at the endpoints
from within the interval; [a, b]: function 7 is one-sided continuous at the endpoints from within the interval.

Face F = F(I,J,K)

vertices of F'

1 J K slope U v U+ v U v U+ v
(0, 21) {ao} [x9,a1) ez —aotxeT ap xo ™t —aop+ai” ap a1~
(0,21) {ao} (a1,z11) cs —aptart ao ar™ T ap ap+x1
0,21)  {a} (12, az) cs —ar+zn’t a1 z12t —a14as” a as”

(0, z1) {a1} (az,x14) c3  —aitast ai as™ 1 ai a1+x1
(0,21) {as} [15, Z16] c3 —axt+xist as T15" T asz as+x1
(0,21) {zs6} (z36, f) c3 ot 36 x36 ™ 1 36 T1+T36
(0,21) {z3s} (238, T39) c3 ot 38 z3s ™ r1 38 T1+x38”
(z1,22)  {x3} (ao, 7] c1 z1 T z3 zi+azst —T3+x7” 23 o
(21, z2) {ao} (@11, T12] c1 ot ao aot+a1t —Qo+T12 ao Ti2
(z1,z2) {a1} (14, Z15] c1 a1 T ay a1+x1 " —a1+T15 ai T15
(z1,22) {az2} [x16,1] c1 xt a2 as+xt —az+1~ a2 =
(z1,z2) {z36} (f,z38) c1 ot 36 x1+z36 —T36+T38 36 T3s
{z3} [xs0,f—a0)  (z35,236) c1 x3 230 3+wso” x3 f—ao™  f—aot+x3”
{ao}  [w25,72) (w35, x36) c1 ap Tas ao+was™ ag To6 ao+26~
{ao} (226, f—a1) (x36, f) c3 ap T26" ao+z26" ap f—a1 f+ao—ai™
{ao} (f—a1,z2s] (36, f) C3 ap f—ai™ ftao—ar™ ag Tag ap+xes
{ao} [z33,34) (f,x3s) c1 ap x33" ao+x33™ ag T34 apo+Tss
{ao}  (z34,s3s5) (38, T39) c3 ao x3aT ao+x34T ao T35 ao+x35”
{ao} (mss,z39) [w241,235+1) c3 ao —ap+wo+1T w17 ao 39 ao+x39~
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Table 3: One-dimensional faces F' with additivity on relint(F') for proving piecewise linearity outside of the
special intervals (ctd.)

Face F = F(I,J,K)

vertices of F'

I J K slope U v u—+v u v u—+v
{ao} (z39,1) (z3+1,z4a+1] ao Z39 ao+x30™ ao —ao+xa+1"  xa+17
{a1}  [w22,223) (w35, T36) cl ax Z22 a1+x2t a1 T23~ a1+x23
{a1} (@23, f—a2) (236, f) c3 a 293 a1 +xas™ a1 f—as~  fHai—as”
{aa} (f—az,@25] (w36, [) cs a f—axt  fHai—ax”t a To5~ a1+x25~
{ar} (f—ao,z32)  (f 2ss) c a1 f—aot  f-aotar” a1 T3~ a1+xs2”
{a1}  (w32,x33] (238, T39) C3 ai x32" ai+r32’ ai 33 a1+xs3
{a1} (wss,z39) [za+1l,25+1) c3 a1 —a1+za+1T ag 1T a1 39~ a1+x39~
far}  (@30,1)  (@5+l,a0tl) a1 z30 " a1+z30 " a ao—a1+1"  ao+1”
{a2} [f—1,z21] (%35, T36) c1 az f—Ir fras—IT as To1~ a2+T21~
{az}  [w21, 222] (36, f) cs as xo1t az+ma1 " az Loz~ as+Taa~
{az} [28, 229) (f, z38) c1 a2 xos™ az+wos™ a2 T29 a2+x29
{a2}  (220,w30] (238, 230) cs as Ta0 " az+m20 " as T30~ as+x30~
{a2}  (x3s,w30) [z7+1,284+1) 3 az —ax+wr+1T w17 az Z39~ az+x39~
{az}  (w30,1)  (zs+l,20+1] as T30 az+xse™ as —az+wo+1"  mo+l”
{36} (z39,1)  (x35+1,236+1) @ 36 2397 Tag+T39 " 36 1~ r36+1"
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Table 4: Faces F' with additivity on relint(F’), one vertex of each providing an equation A7p(u,v) = 0, to
form a full-rank homogeneous linear system in the proof of Theorem 6.2. All intervals I, J, K are closed and
elements of the complex P; notation (a,b): endpoints are not reached by the projection of the face; (a,b):
function 7 is one-sided discontinuous at the endpoints from within the interval; [a, b]: function 7 is one-sided
continuous at the endpoints from within the interval.

Face F = F(I,J,K) selected vertex other vertices of F'
J K U v u+v U v u+v U v u+v
{ao} {zs} —ag+eg ag zg
{ao} [z9,a1) —ag+wg™ ag w9 —agtay” ag” a1~
{ao} (a1, z11) z1 7 ag ag+axy —ag+ar T ap” apt
{al} [15127 az) —ap+wipT ay w1p —aj+tag” a1” ag™ %?
{ai} (a2, 714) w1~ a1 ay+wy~ —aptast e ag* &
{a2} {15} —az+a1s az 215 z
{CL?} [m157x16] 17 az ag+zy” —ag+a15T ag™ zy5T =
{36} (w36, f) ot 36 w36 @17 36 x1+az6 gﬁ
{z3s} (z38, T39) ot ©38 w3 zy z38”  w1twgg” g'
(z1,22) (1, x2] ot oyt 22, F ot —ei4@aT @y —oytwy oyt @y~ g
{as} (a0, 7] oyt @3 @ty —zgtar T z3” 2 f;
{ao} (w11, T12] @ T ag ag+a ™ —ag+xi2” ag™ w127 E'.:'
{ao} {z12} —ag+txi2 ag z12 %
{a1} (%14, T15] @y ay ap+a;t —ay+wys T a;” x5~ =
{3511} <1‘1473715] Eh 11 wy+aqp T —wy11teis 11 15" 5,
{a2} [z16,1] ot az ag+ay ™t —ag+1~ ag” i g.
{z16} (z16,1] @t z16 w1+a16T l—x16™ x167 1

{u} (u, f—u]

u+m1+ f—2u— u f—u—
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Table 4: Faces F with additivity on relint(F), one vertex of each providing an equation A7 p(u,v) =0 (ctd.)

¥e

Face F = F(I,J,K)

selected vertex

other vertices of F’

I J K U v u~+v U v u~+v U v u+v

(371,%2) {fﬁl} <f*l7$21] L f=i foltoy T —fHitea T f=1 21

<$1,l‘2> {l‘ZS} {f—ao} f—ag—z23 z23 f—ag

(w1, 22) {x3s} (w35, T36) @y F z35 ey+a3s™ —wx35+®36~ @35 36~

(w1, 72) {z36} (f, w3s) @yt z36 w1 +e36T —w36+tr3sT 36 x38~
{ao} {z32} (fsz3s) ag ©32 ag+w32
{ao} [z33, ¥34) (fsz38) ag w33 ag+waz ™ ag z34 ag+x34”
{ao} (z34, T35] (38, 239) ag wga™ ag+wgs ™ ag” 357~ ag+w3s” §
{ar}  [zs0, f—a0)  (f,z38) a1 w30 ag+ago™ a1 f-ag™ f-agter” §
{a1}  (f—ao,zs2) (fsz38) a1 f-ag™ f-ag+ar™ ay 32 aj+x3a” @
{a1} (32, T33] (w38, T39) a1 w30 ay+egy™ a1 z33 ap+z3z” 5
{ar}  (wss, w30) {za+1} a1 —aptestl gl %
{z11} {22} (%35, T36) z11 w92 @11 +wo =
{a2} [$167l> <u,f—u] ag w16T ag+a16T ag™ f-ag—uT  f-uT i
{CLQ} {Igg} <f, I38> as zog ag+wog g
{a2} [ZB?S: :L'gg) <f7 2233) a2 wog T ag+wog™ az” 29 ag+w29 EN
{a2} (w29, T30] (w38, 230) az @™ ag+wag™ as” ©30 ag+wz0” g
{z30} (x39,1) {f—a1+1} z30 f—aq—wz30+1 foag+1
{33} (z39,1) {f—ao+1} z33 f—ag—z33+l  f-ag+1l
{zss}  (zss,w30)  {f—ao+1} w35 foag—wgs+1l  f-ag+l
{z3s} (z39,1) (f+1,x38+1) z38 w39 w38 +wze ™ x38~ 1= x3g+17

<$38»$39) <$38»$39) (1338"‘171’39“‘1) z39 39~ 2239~ w3g—w39+17T  wgg~ wgg+1T w39”  wgg—z39+1T wgg+1T




Table 5: Homogeneous linear system for determining the restriction of © to the non-special intervals in the
proof of Theorem 6.2. The variables are the values of 7 at breakpoints (e) and at midpoints of intervals between
breakpoints (—), and the slopes ¢, 3 of T on the non-special intervals. Matrix coefficients are abbreviated as
+=1,—=-1,and - = 0.

Eqn. A7p(u,v) =0

Coefficients of 7(z;) and 7(

itT;
T ;1+1)

Coefficients of slopes

u v u+v 7f17.7.7.7.7(.107.7.7.7(:17.7.7227.7.7.7£1: 2 —1038 51 63
z36 ot Tl36+ D e e
ag —ag+ag Tg A e O, %(—20/0—@,1—%—2@,8)
ag ,a0+m9+ 19+ .......... e e %(,2a0+a1,z1+m9)
ag zq T ag+my T A e e e e e %(—ﬂ0+ﬂ1)
aq —a,1+m12+ z1oT o — %(—20,1+0,2—w1+m12)
aq zq ap4Ty T e e e %(—a1+a2)
ag —ag+z1s TUg b e e + . _ %(—20.2—0314—29315)
ag T ag+T1 T A e + - — %(7a2+m15)
z38 ot zggT . %(—ﬂl—ﬂ:l—-’ﬂSQ‘FIsg)
z36 ,,1+ “’1+m36+ o e e %(_z2_“’36+“’38)
z35 zl+ Il+7”35+ D %(_ml_IZ_‘TﬂS‘*"T'SG)
@3 z1+ m1+z3+ o i e e %(,m27m3+m7)
ag 2t ag4xy T 4 e e %(,a0+w12,,42>
aq —ag+z1o z19 e e e e e %(—2@0—11+2m12—m2)
zo3 f—ag—=z23 f—ao 4 e e o %(2f—2u0—11—z2—2123)
aq T ay4a, T T e — %(_’11+$15_I2>
z11 T z1+a1 T e e e e . %(0,1,2z11+115,m2)
11 22 11 +w22 L o - 5 (—2@11 —2@0 35 +236)
as T ag+zp T e 4. — %(—a.2+l—m2)
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Table 5: Homogeneous linear system for determining the restriction of @ to the non-special intervals in the
proof of Theorem 6.2 (ctd.)

Eqn. A7p(u,v) =0

Coefficients of 7(z;) and ﬁ(m#)

Coefficients of slopes

x1 ag 2 Lu

u v u+v —n—n—-—.—.—o—c—c—c—%l—-—c—‘:—o—o—o—-- —z.38 61 63
z16 @yt z1+ai6T e +- $(ag+i—2w16-=2)
f—1 11+ f—l+11+ e e +— %(_f_”'2+l_$l_m2+m36)
w z1+ utay T e e + %(f,zu,zl,zz)
w1+ $1+ 2$1+ e e e %(,I1,w2)
w35 f—ag—wmg5+l  foagtl - e— e e %(2‘)“_20,0_(1’1_132_2135_139+2)
ag wgq T ag+mga T o — oo $(—a1—=z33+@34 —235+239)
ag 133+ ‘10+$33+ ........... e _ %(_G'O+m1_m33+136)
33 f—ag—wm33+1 Ff—ag+l - - .- B _ %(2f—2a0—2z33—z39+1)
ay —ajtaxg+1 P e %(,3a171327139+2334+2)
aq 132+ a,1+$32+ ................... e %(_a1_133+139)
ag z39 ag+Tgy e e — %(_2a0+11_2132+136+138>
aq f—agT f—a0+a,1+ ................... e — %(—f+a,0—a1+w1+m36)
ay 130+ a1+m30+ ............ I e — %(*QQI‘*’EI‘FES*ZSD‘FZBB)
@30 f—ap—@g0+l foaidl e e — %(2f_2a1_2130_139+1)
ag 1294— a,2+m29+ ......................... e %(—a,1+m29—m30—m32+m39)
ag zog T agtmogt oo 4 — %(‘“2‘*’11—128‘*"‘36)
ag 98 R Y T Fooe e - %(—20,2+m1—2m28+m35+m38)
ag z16T ﬂ2+216+ ......................... 4 + %(f*a2*l+21*2m16)
z38 x39+ 138+x39+ ................................... 2 —
39 z39 2EZ9 T e e e %(_0,1_w32_m39+2)

9€
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Table 6: Subadditivity slacks Anp for dim F' = 1 and ng > 0. All intervals I, J, K are closed and elements
of the complex P; notation (a,b): endpoints are not reached by the projection of the face; (a,b): function 7
is one-sided discontinuous at the endpoints from within the interval; [a, b]: function = is one-sided continuous
at the endpoints from within the interval. An asterisk marks the special intervals.

J K nr Arnp(z,y), (z,y) € F=F(,J,K) Arp(u,v), (u,v) € vert(F)
(Lu)* (Lu)* 2 0 0 0
(f=uw, f=D*  (f—u, f=D* 2 0 0 0
{z1} (w16, 1] (l,u)* 1 —com + (c1 —eg)y — 4280651 0.256 0.310
{z1} (1, uy* (1, u)* 2 —cow + R, 0.210 0.210
{z1} (I, u)* [u, f—u) 1 —c1z — (1 —eg)y + 1192237 0.175 0.230
{z:1} (u, f—u] (f—u, f-0)* 1 —com + (cy —eg)y — 1227763 0.175 0.230
{z:1} (f—u, f=1)* (f—u, f=D* 2 —egw + 22T 0.210 0.210
{z1} (f—u, f=1)* [f—1,z21) 1 —cr@ — (e —ecg)y + 3579349 0.256 0.310
Z1,x2) {zs} (I, u)* 1 (e1—e)w — coy — 925 /3 4 12937 0.298 0.457
x1,T2) {z5} (I, u)* 1 (e1—e2)m — eqy + 128955 V2 + 22937 0.336 0.504
2) {ao} (1, u)* 1 (c1—ea)e — oy — A85% 0.180 0.349
2) {xs} (u)* 1 (c1—e2)a — coy + ABOLO880. 0.262 0.430
2) {a1} (1, u)* 1 (c1—e2)e — coy + 5y V2 — 2858 0.143 0.311
2) {z11} (I, u)* 1 (e1—ea)w — epy — AR5 3 4 4361 0.143 0.311
2) {az} (L u)* 1 (c1—e2)a — coy — 7870827 0.100 0.268
2) {z14} (1,u)* 1 (c1—ep)e — eoy + 12828 VB + 361 0.180 0.349
2) (f—u, f=0)* {z23} 1 1o+ coy + 12095 V3 + 534693 0.180 0.349
2) (f—u, f=1)* {f—a2} 1 e1 + cay — 1SI698T 0.100 0.268
2) (f—u, f=1)* {za6} 1 1o+ egy — A925 V3 4 24693 0.143 0.311
T1,T2) (f—u, f=D* {f—a1} 1 1+ coy + giiiag V2 — AU2T 0.143 0.311
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Table 6: Subadditivity slacks Arp for dim F =1 and nr > 0 (ctd.)

K ng Anp(z,y), (z,y) € F=F(,J,K) Arp(u,v), (u,v) € vert(F)
{z20} 1 1o+ ey + RAQTESEET. 0.262 0.430
{f—ao} 1 1o+ epy — BT 0.180 0.349
{$32} 1 c1z + cay + 150955 V2 + 850480 0.336 0.504
{w34} 1 1o+ gy — 2925 3+ JGTISL 0.298 0.457
(l» u)* 1 —(eg—cg)z — cay — 711992954 V2 + ESSS‘;SS 0.439 0.457
{34} 1 cae +cau — P vE+ 133451 0.439 0.457
(u, f—u] 1 —cyo—(er—eoy — 2225 va+ 2955987 (.043 0.098
(f—u, f=0)* 2 —cqw — 4925 V3 + f2l28d0 0.063 0.063
(f=u, f=D)* 1 ot (cr—co)w— 225 v2- 4384013 0.043 0.098
(34, T35) 1 —cgot(ca—ea)y — 4925 va - 181518 (0.439 0.457
[x35, Z36) 1 —crm — (e1—eo)y — 2925 V2 4 §628181  (0.298 0.457
(u, f—u] 1 —cio— (e1—co)y + 12025 va+ 2973987 (.119 0.135
(f—u, f=0)* 2 —epw + 12895 3 4 (212840 0.139 0.139
(f—u, f=D)* 1 —cpw+ (cr—ep)y + 18528, vZ — 434013 (.119 0.135
(@35, T36) 1 —epo - (e1—ea)y + 12025 va + 8628181 (0.336 0.504
(f—u, f=1)* 2 0 0 0
(235, T36) 1 —era — (e —eg)y + 112033 0.180 0.349
(f—u, f=0)* 1 —com + (c] —eg)y — 2021079943 0.182 0.208
(f—u, f=D)* 2 —cow + 304120733 0.107 0.107
[f—1,z21) 1 —c1o — (c1 —cg)y + §225240057 0.182 0.208
<l‘35, x36> 1 —ci1z — (c1 —co)y + % 0.262 0.430
(f=u, f=D)* 1 —epot(cr—co + 5ol v - 323347 0.062 0.100
(f—u, f-1)* 2 0 0 0
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Table 6: Subadditivity slacks Arp for dim F =1 and nr > 0 (ctd.)

1 J K ng Anp(z,y), (z,y) € F=F(,J,K) Arp(u,v), (u,v) € vert(F)
{a1} (I, u)* [f=1,z21) 1 —cio—(e1—co)v + golis v2+ 128053 0.062 0.100
{ai} (f—u, f=0)* (35, 36) 1 —cro— (er—eo)y+ gy vZ+ 102033 (.143 0.311
{z11} (216, 1] (f—u, f=1)* 1 —eaw + (c1—e2)y — Fogr V2 — 3535855 0.062 0.117
{z11} (L u)* (f—u, f=0* 2 e — KB VI (953511 0.017 0.017
{z11} (L, u)* [f—1,@21) 1 —epo— (o1 —ea)y — 4025 va 4 9426043 (0,062 0.117
{zu} (f=u, f=D)* (35, T36) 1 —ere — (e1—e2)y — gy vE - BEGR 0.143 0.311
{az} (x16,1] (f—u, f=1)* 1 —com + (c) —eg)y — 24672439 0.020 0.100
{a2} (L, u)* (f—u, f=0* 2 0 0 0 (ii)
{as} (I, u)* [f=1,x21) 1 —ere — (o1 —ca)y + 38790761 0.020 0.100
{a2} (f—u, f=0)* (235, 236) 1 —e1w — (ey—eg)y + 44801073 0.100 0.268
{14} (%15, T16] (f=u, f=D* 1 —cpu— (co—eg)w + 125235 vZ+ 2449272120 0.102 0.104
{14} (216, 1] (f=u, f=D)* 1 —cpa+ (cr—cow + 135985 v2 — 2493057 0.102 0.192
{w14} (1, u)* (f—u, f=D* 2 —ege + 72835 3+ (03351 0.092 0.092
{14} (I, u)* [f=1,22] 1 ey (er—co)w + 128885 v2 + 228243 0.102 0.192
{14} (T, u)* [Z21, T20) L —ego+ (ea—ep)y+ 128855 va — 221811 0.102 0.104
{z14} (f—u, f=0)* (35, T36) 1 —e1w — (e1—e2)w + 100955 V2 + Hggsse  0.180 0.349

(@15, 216] (I, u)* {w2a} 1 eaw+ v+ 1339 V2 + 103630438 0.1020.104
(16, 1] (T, u)* {223} 1 ere + cqu + 138885 v — 3435057 0.102 0.192
(16, 1] (L u)* {f—az2} 1 c1+ cpy — 24683859 0.020 0.100
(z16,1] (1, u)* {226} 1 ere +eay — A925 va - 3495057 0.062 0.117
(z16,1] (I u)* {f—ai} 1 cro + coy + gaiiie V3 — 303707 0.062 0.100
T16, U T29 c1@ + coy — 2052371043 . .

l l * 1 3875677000 0 182 0 208
(216, (] (f=u, f=1)* {236} 1 ero + oy — 3283651 0.256 0.310
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Table 6: Subadditivity slacks Arp for dim F =1 and nr > 0 (ctd.)

* X K X X X ¥

f g g g g g g g g & &
*

— O O~ N Y e

*

J K ng Anp(z,y), (z,y) € F=F(,J,K) Arp(u,v), (u,v) € vert(F)
(1, u)* {z23} 2 cow + coy + 20255 V3 4 949511, 0.092 0.092
(I, u)* {f—a2} 2 0 0 0
(lv u>* {$26} 2 e + coy — 711992954 V2 + 1(15383(1)(1)0 0.017 0.017
(1, u)* {f—ai} 2 0 0 0
(l, U)* {J)Qg} 2 cox + coy + éggg?g;gg 0.107 0.107
(L, u)* {f—ao} 2 0 0 0 (iii)
(1, u)* {232} 2 e + oy + 129905 V3 + A20ssd0 0.139 0.139
{1, u)* {z34} 2 cgn+ cay — A925 34 120ssd 0.063 0.063
[u, f—u) {232} 1 cow +ery + 18585 V2 — 4335048 0.119 0.135
[u, f—u) {x34} 1 ey +ery — A28, V3 4940013 0.043 0.098
(u, f—u] {x36} 1 com + oqy — 1528263 0.175 0.230
(f—u, f—1)* {236} 2 can 4 ey + 20021 0.210 0.210
(f—u, f=1)* {z36} 2 e + cgy + 2513021 0.210 0.210
(f—u, f=D* {f} 2 0 0 0 (symm.)
(f—u, f=0)* {f} 2 0 0 0 (symm.)
(f—u, f=D)* {zss} 2 can t eay + AOI2350 0.256 0.256
(f—u, f=1)* {38} 2 ey + eqy + 072350 0.256 0.256
[f—1,z21) {z3s} 1 com + eqy — 1891002 0.156 0.211
{z23} (38, 239) 1 (ea—eg)w — cgu — 12823, va— 1830361 (0.200 0.513
{f—az2} (%38, T39) 1 (cp—cg)w — cgy — 78643013 0.315 0.627
{26} (38, T39) 1 (cz—eg)e — ey + 4025 va — 1850361 (.346 0.659
{(f—a1} (w38, T39) 1 (ep—eqre — cgu — il v3 - 140021 0.394 0.706
{z20} (x38,T39) 1 (eg—cg)w — cgy — LZLLL33880 0.308 0.621
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Table 6: Subadditivity slacks Arp for dim F =1 and nr > 0 (ctd.)

J K Arp(x,y), (z,y) € F=F(,J,K) Arp(u,v), (u,v) € vert(F)
{f—ao} <$38, $39> 1 (cg—e3)@ — cgy — 13%%02201 0.464 0.776
{w32} (w38, T39) 1 (ca—cg)e — cgy — 12893 /3 — 938931 0.356 0.668
{wsa} (238, 39) 1 (ca—e)e — cau + 2928 v3 - 933937 0.502 0.814
(T35, T36) {zs0} 1 caw + oyy — 1392873 0.671 0.839
(35, T36) {1} 1 com +ery — 55333 0.982 1.150
(35, T36) {z1+1} 1 cam+cqy — 9931823 0.826 0.994
{wse} (141, 224+1) 1 —(er—e)e — ery +eq + $8301TT 0.826 0.994
{r} (T1+lz24+1) 1 ~(er—eg)a — eyy + o1 + A2 0.982 1.150
{zas} (Ti+l,224+1) 1 ~(e1—ea)e — exy + oy + 1837627 0.671 0.839
<$387 .’L‘39> {l’3+1} 1 cox + czy + 711992954 V2 + 1213400785103 0.502 0.814
(238, T39) {zs+1} 1 cow + cqy — 126255 V3 + L0M3 0.356 0.668
(38, T39) {ao+1} 1 caw + gy + 186259 0.464 0.776
(38, T30) {zs+1} 1 cow + cay + LAT2025111 0.308 0.621
(38, T39) {a1+1} 1 cow + cay — o3ihg VI + 150259 0.394 0.706
(238, ®30) {z11+1} 1 eaw + egy + 25 V3 + 2303139 0.346 0.659
(238, T30) {az+1} 1 cow + cgy + 95762452 0.315 0.627
(38, T30) {w1a+1} 1 eaw + cgy — 128255 V3 + 2303139 0.200 0.513
{wao} (Tre+1,0+1] 1 —(e1—e2) — ery + o1 + 1339498 0.156 0.211
39 I+l ut+l)* 2 —egy + ea + 333 0.256 0.256
13000

{1} (I+1,u+1)* 2 0 0 0
(f—u, f=1)* {z3s} 1 1o + oy — 2007129 0.236 0.291
f—u, f=1)* T39 1 e1m + epy — 1091117 1.039 1.067

5999500

{38} (4+Lu+1)* 1 (c1—c)w — cay + cg — L959L1T 1.039 1.067
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Table 6: Subadditivity slacks Arp for dim F =1 and nr > 0 (ctd.)

1 J K nrg Arnp(z,y), (x,y) € F=F(,J,K) Anp(u,v), (u,v) € vert(F)

[u, f—u) {z39} (41, u+1)* 1 (e1—e2)m — cgy + cp — 3096120 0.236 0.291
(f—u, f=0)* (f—u, f-1)* {z30} 2 com + cqy + 12556801 1.047 1.047
(f—u, f[=D* (f—u, f=1)* {1} 2 exw + oy + $2533 1.303 1.303
(f—u, f=D* (f—u, f-D)* {z1+1} 2 cow + gy + 13116229 1.094 1.094
(f—u, f=0*  [f—1,x21) {1} 1 cow +cyy — 20837 1.203 1.230
(f—u, f=0* [f=1,x21) {z:1+1} 1 cow + oy — 2542073 0.993 1.075
(ffu, *l)* {.I'Qs} <$1 +1, $2+1> 1 —(e1—ex)z—cry+eg — % V2 + ﬁggg?g 0.982 1.150
(f—u, f=-D* {f—a2} (141, 2z2+1) 1 —(c1—e)® — eqy + o + 104408743 1.062 1.230
(f—u, f=1)* {x26} (z1+1, 22+1) I —(er—ep)w —eyy +er + 4925 va+ 1940483 1,019 1.188
(f—u, f=0*  {f-ar} (z1+1, z2+1) I —(e1—cp)m — e1v+ o1 — gl v2+ $47057 1.019 1.188
(f—u, f=1)* {z29} (x14+1, z2+1) 1 —(e1—co)w — eqy + oy + 4808773193 0.900 1.068
(f—u, f=D* {f—ao} (141, z2+1) 1 —(e1—e2)w — ey + o1 + 47957 0.982 1.150
(f—u, f=D)* {z32} (x1+1, z2+1) 1 —(er—co)e — ey + e — 12828, vz + 1482263 (0.826 0.994
(f—u, f=0)* {x34} (z1+1, z2+1) I —(er—ep)w —ery +e1 + 4925 va+ 7482268 (0.864 1.032
(f—u, —l)* <£L‘35,Q§36> {:I?g-i—].} 1 com+cry + 711992954 No ggggggg 0.864 1.032
(f—u, f=D* {(x35,%36) {z5+1} 1 cow+cry — 72895 3 — 2439737 0.826 0.994
(f—u, f=0)*  (x35,736) {ao+1} 1 cpe + cyy — 338703 0.982 1.150
(f—u, —l)* <1‘35, m36> {:I?g-i—].} 1 cow 4 cry — % 0.900 1.068
(f—u, f=0)* (x3s5,x36) {a1+1} 1 com 4 c1y — gpSEo V3 - 386703 1.019 1.188
(f—u, f=0*  (z35,736) {zu+1} 1 cow + ery + 25 VE - 133001 1.019 1.188

—u, —)* X35, L36 as+1 1 com + cpy — 82453497 1.062 1.230

77513540

(f—u,f—l)* <l‘35,$36> {$14+1} 1 com + 1y — % VZ - %zggg%g 0.982 1.150
(f—u, f—l>* {m36} <l‘16+1, l+1] 1 —(c1—cg)xz —c1y + ¢ + 15093929590207 0993 1075
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Table 6: Subadditivity slacks Arp for dim F =1 and nr > 0 (ctd.)

K nr Aﬂ—F(mvy)» (xvy) EF:F(I7 ‘]7K) AWF(“»”)» (u,v) EVeI't(F)
(I+1,u+1)* 2 —eay + ep + 13120220 1.094 1.094
(1641, 1+1] 1 —(e1—c)a — c1y + o1 + LB0215 1.203 1.230
(I4+1,ut+1)* 2 —eay+ o + 62349 1.303 1.303
(41, u+1)* 2 —coy + ep + 12500891 1.047 1.047
[u+1, f—u+1) 1 —(e1—eg) — eqy + o + 11830883 1.039 1.067
(u+1l, f—u+1] 1 —(e1—eg)m — ey + op + AA53871 0.236 0.291
(f—u+tl, f=I+1)* 2 —eay +ep + {5338 0.256 0.256
(f—u, f=D* (f—u+1, f=I14+1)* 2 0 0 0

(+1,u+1)* 1 (e1—c2)m — cay + ep — 2340073 0.993 1.075
(+1,u+1)* 1 (e1—c2)w — eay + ey — 20505 1.203 1.230
(f—u+l, f=l+1)* 1 (c1—c2)a — cgy + cp — 1890502 0.156 0.211
(I4+1,u+1)* 1 —com+ (c1—en)y + eo — 128955 va — 1289517 (.982 1.150
(f_qu]., f_l+].)* 1 —coxz — (cg—c3)y + cg — 1832?6 V2 + 25?999492580007 0.200 0.513
(I4+1,u+1)* 1 —eow + (c1 —c2)y + ep — 52427657 1.062 1.230
(f—u+l, f=l+1)* 1 —cow — (eg—c3)y + cg + LITOBOL2 0.315 0.627
(I+1,u+1)* 1 —epw+(cr—en)y +eo + 4225 v2 — 1289517 1,019 1.188
(F=ud1, f=I+1)* 1 —cqo — (co—eca)w + o+ 2085 va+ 202807 0.346 0.659
(41, u+1)* 1 —cpm+ (c1—co)y +c2 — gaiS8yg v2 - 386543 1.019 1.188
(f=utl, f=IH1)% 1 —cho— (cr—cy)u+ ca — 5388 V2 + 2820527 0.394 0.706
(41, u+1)* 1 —cgw + (e —cg)y + op — S33THAO80T 0.900 1.068
(f—u+tl, f—I+1)* 1 —cam — (eg—c3)y + cp + LAATOLEAS 0.308 0.621
(I+1,u+1)* 1 —com + (e1—c2)y + cp — 556343 0.982 1.150
(f_u+]., f—l+1)* 1 —cox — (cg—c3)y + cg + 2447291956207 0.464 0.776
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Table 6: Subadditivity slacks Arp for dim F =1 and nr > 0 (ctd.)

1 J K ng Anp(z,y), (z,y) € F=F(,J,K) Arp(u,v), (u,v) € vert(F)
{z32} (235, T36) (I+1,u+1)* 1 —com+ (c1—co)y +ep — 12828, v2 — 2487787 (.826 0.994
{z32} (38, 239)  (f—u+1, f=I+1)* 1 —coo— (ca—ca)y +cn — 129225 v3 + 14831569 ().356 0.668
{z34} (@35, T36) (I+1,u+1)* 1 —cpm+ (cr—eny + e + A28 va - 3487737 (0.864 1.032
{z34} (w38, 30)  (f=ut1, f=l+1)* 1 —cor— (co—epyy+ g + 2025 v3 + imniseo 0,502 0.814
(35, T36) {z36} (f—u+1, f=I+1)* 1 (c1—ca)m — cay + cp — 0089823 0.826 0.994
<$357 m36> {f} (f—u+1 f l+1)* 1 (c1—co)x — coy + co — gggg% 0.982 1.150
<.’1}35, $36> {.1'38} (f*u+1 f l+1)* 1 (e1—cg)zw — coy + g — 1592373 0.671 0.839

Table 7: Subadditivity slacks Anp for dim F' = 2 and ny > 0. All intervals I, J, K are closed and elements
of the complex P; notation (a,b): endpoints are not reached by the projection of the face; (a,b): function 7

is one-sided discontinuous at the endpoints from within the interval; [a,

b]: function 7 is one-sided continuous

at the endpoints from within the interval. An asterisk marks the special intervals.

1 J K ng Arp(z,y), (v,y) € F=F(I,J,K) Amp(u,v), (u,v) € vert(F)

(0,1) (x16,1] (L, uy* 1 —(eg—eg)m + (c1 —en)y — 4153033 0.100 0.155 0.256

(0,21) (1, u)* (1, u)* 2 (ea—eg)e+ 4} 0.054 0.054 0.155 0.155
(0,21) (1, u)* [, f—u) 1 (er—ea)e — (e —ea)y + 3393007 0.020 0.074 0.175

(0,z1) (u, f—u] (f—u, f-1)* 1 —(cp—e3)m + (e1—cz)y — 2574933 0.020 0.074 0.175

O,21)  (f—u, f=D*  (f—u, f-D* 2 epeg)a + 103 0.054 0.054 0.155 0.155
0,21)  (f—u, f-D*  [f~Loa) 1 e —e)e — (er—en)y + A0 0.100 0.155 0.256

(1, x2] (x1, 2] (I, u)* 1 (e1—co)w + (e —cz)y — 23427 0.389 0.389 0.529

(x1,22] [x2, z3) (1, u)* 1 (e1—eo)a — (cg—cz)y + 5653 0.336 0.389 0.495 0.529

(1, x2] (z3,z4] (L, u)* 1 (c1—co)m + (1 —cg)y — 7041 0.336 0.336 0.495 0.504 0.504

144
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Table 7: Subadditivity slacks Arp for dim F' = 2 and ng > 0 (ctd.)

1 J K ng Arp(x,y), (z,y) € F=F(,J,K) Arp(u,v), (u,v) € vert(F)
(21, 2) (24, x5) (I, u)* 1 (e1—e2)e — (ea—ex)y + 492500 3. 8683 (0298 0.336 0.466 0.504
(21, 2) (25, a0) (I, u)* 1 (1 —e2)e + (e1 —ea)y — 023, V3 - TA0ML 0.298 0.298 0.466 0.466
(21, 2) (a0, z7] (I, u)* 1 (e1—ea)e + (1 —ea)y — 4925, va— moar (.298 0.298 0.466 0.466
(z1,T2) [z7,T8) (1, u)* 1 (1 —ca)e — (e —cg)y + 32681917 0.256 0.298 0.424 0.466
(z1,22) (s, z9] (l,u)* 1 (e1—ca)z + (e —en)y — 4155033 0.256 0.256 0.424 0.424
(z1,22) [z9,a1) (L,u)* 1 (c1—ca) — (3 —cz)y + 123288 0.228 0.256 0.396 0.424
(21, 2) (a1,x11) (I, u)* 1 (1 —e2)e — (g —ez)y + 195759 0.180 0.228 0.349 0.396
(z1,T2) (11, 212] (1, u)* 1 (e1—e2)w + (1 —ez)y — 4109 0.180 0.180 0.349 0.349
(@1, z2) [%12,a2) (I, u)* 1 (e1—c2)m — (ep—ez)y + A92500 34 198750 (0,177 0.180 0.345 0.349
(@1, x2) (a2, x14) (L u)* 1 (e1—e)a — (co—cz)y + 492500 54 195750 (0,143 0.177 0.311 0.345
(x1,22) (w14, T15] (1, u)* 1 (e1—ea)e + (e1 —ea)y — A28 V3 — 4109 0.143 0.143 0.311 0.311
(@1, x2) [z15, T16] (,u)* 1 (e1—ca)z — (cp—cg)y + 237492041 0.100 0.143 0.268 0.311
(x1, x2) [z16, 1] (1, u)* 1 (e1—e2)e + (1 —ep)y — S1117 0.100 0.100 0.155 0.268 0.268
(x1,22) (1, u)* (1, u)* 2 (c1—ea)w 0.054 0.054 0.168
(1, 2] (1, u)* [u, f—u] 1 —(c1—ca)y + 58891 0.020 0.020 0.074 0.115 0.188 0.188
(21, 2] (L, u)* (f—u, f=0)* 2 (1 —ez)e — 14553 0.040 0.135 0.135
(21, 22] [u, f—u] (f—u, f=0* 1 (e1—e2)m + (1 —ca)y — LT3 0.020 0.020 0.074 0.115 0.188 0.188
(z1,22) (f—u, f=0)* (f—u, f=1)* 2 (1 —co)a 0.054 0.054 0.168
(x1,22)  (f—u, f-1)* [f—1, x21] 1 —(e1—ez)y + 14002 0.100 0.100 0.155 0.268 0.268
<l’1, 1‘2> (f—u, f—l)* [51721, 3;'22] 1 (c1—c3)m + (cg—ecz)y — % 0.100 0.143 0.268 0.311
(z1,72) (f—u, f-1)* (222, T23) 1 —(e1—ea)y — 2925 V3 + 153303 0.143 0.143 0.311 0.311
(w1, 22) (f—u, f=D)* (w23, f—a2) 1 (er—ea)m + (eo—eg)y + 422500 3 — 7955138 (0.143 0.177 0.311 0.345
(z1,22) (f—u, f=0*  (f—az2,v2s] 1 (er—ea)a+ (ca—ca)y + 492390 v3 — 7935133 (.177 0.180 0.345 0.349
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Table 7: Subadditivity slacks Arp for dim F' = 2 and ng > 0 (ctd.)

1 J K ng Arp(x,y), (z,y) € F=F(,J,K) Arp(u,v), (u,v) € vert(F)

(x1,22)  (f—u, f-1)* (225, T26) 1 —(e1—ea)y + L3303 0.180 0.180 0.349 0.349

(21, 22) (f—u, f-0* (26, f—a1) 1 (c1—c3)w + (ca—cg)y — 1955133 0.180 0.228 0.349 0.396

(w1, 22) (f—u, f=1)* (f—a1, z2s] 1 (c1—ca)e + (ca—ca)y — 5933432 0.228 0.256 0.396 0.424

(1, z2) (f—u, f=0)* [z2s, T29) 1 —(e1—e2)y + 4012067 0.256 0.256 0.424 0.424

(@1, 22) (f—u, f-0* (220, x30] 1 (e1—e3)z + (ep—ey)y — S1350083 0.256 0.298 0.424 0.466

(x1,22) (f—u, f=1)*  [z30, f—a0) 1 —(e1—en)y — 4825, V3 4 4205467 0.298 0.298 0.466 0.466

(@1, 22) (f—u, f-0* (f—ao,x32) 1 —(c1—co)y — A28 V3 + 4205467 0.298 0.298 0.466 0.466

(x1,22)  (f—u, f-1)* (z32, 733] L (er—eao+ (ca—cq)y + 282500 y5 — 297121 0.298 0.336 0.466 0.504 =
(w1, 22] (f—u, f=1)* [#33, 34) 1 —(e1—ea)y + 5205467 0.336 0.336 0.495 0.504 0.504 =
(1, x2] (f—u, f=D* (234, T35] 1 (e1—eg)m + (ex—ez)y — 227121 0.336 0.389 0.495 0.529 ?
(x1,22] (f—u, f=0)* [235, Z36) 1 —(c1—co)y + 173298 0.389 0.389 0.529 5
[x2,23) [22,73) (L, u)* 1 (e —e3)m — (ez—e3)y + 207185 0.477 0.477 0.495 0.495 0.529 =t
["1}'2, 1‘3) (CZ?B, 1'4) <l, U)* 1 —(cg—c3)z + (c1—c2)y + ggégéég 0.477 0.495 0.504 g
[22,x3) (L, u)* {u, f—u] 1 —(e1—eg)w — (c1—ca)y + 299043 0.081 0.115 0.135 0.188 2
[x2,23) (Lu)* (f—u, f=01)* 2 —(ca—cg)w + 11490 0.101 0.101 0.135 0.135 =
[22,3) [u, f—u) (f—u, f=D* 1 C(ep—eg)m 4 (1 —en)y + 2398 0.081 0.115 0.135 0.188 8
(T2, x3)  (f—u, f—I)* (233, w34) 1 (e —es)e — (e1—ea)y + TRINT 0.477 0.495 0.504 =
[mg, 1‘3) (f—u, f—l>* ($34, 3335] 1 (eg—c3)y — 19756989125 0.477 0.477 0.495 0.495 0.529 =
[x2, 23) (f—u, f=0)* [235, T36) 1 —(e1—eg)w — (c1—ea)y + 293599 0.336 0.389 0.495 0.529

(z3, x4] (I, u)* (u, f—u] 1 —(e1—cz)y + 2993311 0.081 0.106 0.135 0.135

(w3, 4] (Lu)* (f—u, f=0)* 2 (e1—co)w — 253621 0.101 0.101 0.126 0.126

(23,74 [u, f—u) (f—u, f=D* 1 (1 —ca)e + (1 —ea)y — 3974683 0.081 0.106 0.135 0.135

(l'3, 1‘4> (f—u, f—l>* <1'347 l'35] 1 (c1—e3)x + (cp—c3)y — ;gggggg 0477 0.495 0.504




Table 7: Subadditivity slacks Arp for dim F' = 2 and ng > 0 (ctd.)

J K nr Aﬂ-F(x7y)7 (x,y) € F:F(]7J7K) Aﬂ-F(u7U)7 (U7U) Evert(F)
(f—u, f=0)* [x35, T36) 1 —(e1—eg)y + 4295467 0.336 0.336 0.495 0.504 0.504
(Lu)* {u, f—ul L —(er—eg)m — (e1—eo)y + 222500 2+ 209118 (.081 0.098 0.106 0.135
(lu)* (f~u, f=0* 2 —(ep—eg)e + 92500 /3 1 11400 0.101 0.101 0.126 0.126
[u, f—u) (f=u, f=D)* 1 —(ea—eg)o+ (cr—coy+ 492590 o+ 2393 0.081 0.098 0.106 0.135
(f—u, f=0)* (35, T36) L —(er—ca)m — (e —ea)y + 423500 v+ 293500 (.298 0.336 0.466 0.504
(L u)* (u, f—u] 1 —(e1—en)y — 4825, V3 4 2098817 0.081 0.098 0.098
(L, u)* (f—u, f=0* 2 (c1—ea)w — 925, 3 — 213621 0.101 0.101 0.118 0.118
[u, f—u) (f—u, f=0* 1 (e1—e2)e + (e1—ea)y — 023 va — 8074683 0.081 0.098 0.098
(f—u, f=1)* (35, T36) 1 —(e1—co)y — A925; V3 + 4205467 0.298 0.298 0.466 0.466
(@16, 1] (f—u, f=0)* 1 (e1—ea)m + (1 —eo)y — 4928 V2 — 2382433 0.218 0.218 0.229
(L, u)* (f—u, f=0* 2 (c1—co)e — A28 3 — 243627 0.118 0.118 0.129 0.129
(Lu)* [f=1,221) 1 —(e1— o)y — AE2; V3 + 385567 0.218 0.218 0.229
(f—u, f=D)* (235, 236) 1 —(e1—co)y — A825; V3 4 4205467 0.298 0.298 0.466 0.466
(z16,1] (f—u, f=0)* 1 —(eg—eg)e + (1 —ea)y + 44338809 0.175 0.201 0.218 0.229
(1, uy* (f—u, f-1)* 2 —(cg—eg)a + 4259700 0.101 0.101 0.129 0.129
(Lu)* [f=l 221) 1 —(c1—eg)e — (e1 —cp)y + SHI07369 0.175 0.201 0.218 0.229
(f—u, f=D)* (35, 236) 1 —(e1—e3)m — (1 —ez)y + 39452477 0.256 0.298 0.424 0.466
(16, 1] (f—u, f=0* 1 (e1—e2) + (e1 —cz)y — 2374933 0.175 0.175 0.201 0.203
(L u)* (f—u, f=0* 2 (c1—ea)e — 130876 0.101 0.101 0.103 0.103
(l,u)* [f=1,221) 1 —(e1—ca)y + 2333987 0.175 0.175 0.201 0.203
(f—u, f=1)* (35, x36) 1 —(e1—co)y + 4912967 0.256 0.256 0.424 0.424
(@16, 1] (f—u, f=0)* 1 —(ez—cg)m + (e —co)y + 324967 0.148 0.175 0.185 0.203
(L, u)* (f=u, f=0)* 2 —(eg—eg)e + §63223 0.085 0.085 0.103 0.103
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Table 7: Subadditivity slacks Arp for dim F' = 2 and ng > 0 (ctd.)
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1 J K ng Arp(x,y), (z,y) € F=F(,J,K) Arp(u,v), (u,v) € vert(F)
[x9,a1) (L u)* [f—1,z21) 1 —(e1—cg)m — (1 —co)y + S292967 0.148 0.175 0.185 0.203
[x9,a1) (f—u, f=D* (r35, T36) 1 —(e1—eg)w — (1 —cg)y + SLL2867 0.228 0.256 0.396 0.424
(a1, z11) (w16,1] (f—u, f-0)* 1 —(eg—cg)a + (e1—co)y + 1124967 0.100 0.148 0.155 0.185
(a1,z11) (L, u)* (f—u, f=1)* 2 —(eg—e3)w + 883223 0.054 0.054 0.085 0.085
(a1,z11) (I, u)* [f—1, 221) 1 —(e1—eg)w — (e1—cz)y + $292067 0.100 0.148 0.155 0.185
(al, 1'11) (f—u, f—l)* <x35, 1'36> 1 —(c1—c3)x — (e —ca)y + ggégggg 0.180 0.228 0.349 0.396

(@11, 212] (w16,1] (f—u, f=1)* 1 (e1—e2)a + (e —eg)y — 110213 0.100 0.100 0.155 0.179

(z11, z12] (1, uy* (f—u, f-1)* 2 (1 —eg)w — S18T 0.054 0.054 0.079 0.079

(211, z12] (lu)* [f—1, z21) 1 —(e1—cp)y + 98597 0.100 0.100 0.155 0.179

(w11, T12] (f—u, f=D)* (235, T36) 1 —(ep—eg)y + 153303 0.180 0.180 0.349 0.349
[z12,a2) (216, 1] (f—u, f=0)* 1 —(co—c)a + (1 —eo)y + 422800 3 4 L24967  (0.097 0.100 0.177 0.179

[z12, a2) (1, u)* (f—u, f-1)* 2 —(eg—ez)w + 92800, /3 + 663223 0.077 0.077 0.079 0.079
[z12,a2) (L u)* [f—1, z21) 1 —(e1—cg)e — (e —eg)y + 92500 5 4 6202067 (0.097 0.100 0.177 0.179
[z12,a2) (f—u, f-0)* (235, 36) I —(er—e)e — (e1—eo)y + 482590 a4 7712867 (),177 0.180 0.345 0.349
(az,14) (15, 216] (f—u, f=1)* 1 —(ea—ez)m — (ca—c3)y + 2800 3 + Lzad3zelar - ().064 0.066 0.066

(a2, x14) [z16,] (f—u, f-0)* 1 —(co—c)a + (1 —co)y + 422800 3 4 1124967 ().064 0.066 0.097 0.155 0.177
(a2,14) (1, uy* (f—u, f-1)* 2 —(eg—eg)w + 92500 /3 4 663223 0.054 0.054 0.077 0.077

(a2, x14) (L u)* [f—1, @21] 1 —(er1—cg)a — (c1—ca)y + 432500 34 6292067 ().064 0.066 0.097 0.155 0.177
<CL2, 1'14) <l, u)* [.2321, 1’22> 1 (ca—c3)y + 92300 /2 — 1306423843 0.064 0.066 0.066

(a2, x14) (f—u, f=1)* (35, 236) 1 —(e1—eg)e — (c1—e2)y + #2800 3 4 I712867  ().143 0.177 0.311 0.345

(14, T15) (14, T15] (f—u, f=01)* 1 (e1—e2)a + (1 —e2)y — 225 2 — 102513 0.105 0.105 0.119

($14, 1‘15] [$15, 3316] (f—u, f—l)* 1 (c1—eo)@ — (eg—c3)y — % V2 + ?éé?gé%é 0.064 0.066 0.091 0.105 0.119
(214, x15] [®16,1] (f—u, f=1)* 1 (c1—c2)e + (e1—co)y — A28 V3 — 110213 0.064 0.091 0.155 0.182




Table 7: Subadditivity slacks Arp for dim F' = 2 and ng > 0 (ctd.)

AWF('T7 y)7 (mv y) €

F(1,J,K)

Arp(u,v), (u,v) € vert(F)

<f_u7 f_l)*
(e1—ez)w + (ca—c3)y — gy

(f=u, f=D*
(f=u, f=D)*
(f=u, f=0)*
(f=u, f=D)*

(f—u, f=D)*
(f—u, f-0)*

(c1—ec3)m + (c2—c3)y + 3875677

I = T e e T = T T e T e T = S S e N B e e e e e )

F =
_ _ 1925 5 _ 6137
(e1—e2)= — 71551 V2 ~ 11599

Ny 1925 96507
—(e1—<2)v — 71551 V2 + 558093

25 _ 2559758159
V2 - 155400

1925 104207
—(e1—e2)v — 35567 V2 + ‘95503

. _ 1925 153303
—(e1—c2)v — 71551 V2 + 58503

4 1909876157
775135400

—(cg—ecg)w — (ec2—c3)y

478864341
—(e2—e3)z + (e1-e2)y + 775135100

243096029
—(e2—e3)® + 153753850

12148128341
775135400

—(c1—eg)w — (e1—c2)y

o eayy _ 1190923843
(e2=¢3)¥ = 75135400

—(e1—c)w — (1 —ca)y — 4925, V3 4 2210305841

775135400
(c2—c3)y + gersery V2 — PASAEERE
(c1—e2)@ + (c1 —co)y — LT3
(e — 448
e+ B8
2621935659

(e1—ez)e + (e2—e3)y — 75755400

1925 96507
—(e1—e2)v — 7155y V2 + 95803

192500 /5 _ 8475033

2359800
(e + cameor - 88y V3~ SRS
—(c1—ca)y + 8597
O,
8475033

(c1—ec3)m + (c2—e3)Yy — 5359800

0.054 0.054 0.082 0.082
0.064 0.091 0.155 0.182
0.064 0.066 0.091 0.105 0.119
0.105 0.105 0.119

0.143 0.143 0.311 0.311

0.064 0.091 0.091 0.119
0.064 0.091 0.155 0.182
0.054 0.054 0.082 0.082
0.064 0.091 0.155 0.182
0.064 0.091 0.091 0.119
0.064 0.066 0.091 0.105 0.119
0.064 0.066 0.066

0.100 0.143 0.268 0.311

0.064 0.155 0.155 0.188 0.188
0.054 0.054 0.088

0.064 0.155 0.155 0.188 0.188
0.064 0.091 0.155 0.182
0.064 0.091 0.155 0.182
0.064 0.066 0.097 0.155 0.177
0.097 0.100 0.177 0.179

0.100 0.100 0.155 0.179
0.100 0.148 0.155 0.185
0.148 0.175 0.185 0.203
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Table 7: Subadditivity slacks Arp for dim F' = 2 and ng > 0 (ctd.)

K

Aﬂ-F(x7y)7 (x,y) € F:F(]7J7K)

Arp(u,v), (u,v) € vert(F)

[z28, T29)
(229, T30]
[z30, f—a0)
(z35, T36)
(z36, f)
(f=1,221]
[1’21, 3722]
[z22, T23)
(w23, f—a2)
(ffa% .1'25]
[225, T26)
(w26, f—a1)
(f—a1, z2s]
[228, T29)
(229, 30]
[3730, f—ao)
(f—ao, r32)
(232, x33]
[33, T34)
(234, x35]
[%35, T36)
(f—ao, r32)

(

T32,T33)

NN DN DNDDNDDNDDNDNDNDDNDNDNDDNDDNDDNDN -~ =

250306
—(e1—c2)v + 3355335

(c1—e3)m + (eg—ez)y — LP005101

1925 2785567
—(e1—e2)v — 71651 V2 + 3555800

145603
—(e1—c2)y + ‘55503

o —ca)y — 10755033
(c1—eg)m + (c2—e3)¥ — 5350800

—(c1—c2)m — (1 —e2)y + 3548L

, 532103971
(ez—e3)@ + (e2—e3)y — 753783850

—(e1—e2)w = (e1-c2)v — Fga1 VZ + 11698

(ca—cg)w + (ca—ca)u + 492800 /5 1736777

599950
(ca—eg)w + (c2—c3)y + 35f6rr V2 — Hoo050-
—(e1—c2)m — (1 —ex)y + 19533
(e2—eg)e + (ez—cg)y — HEEET
(e —cg)a + (ez—cg)y — LHOETT

515124

—(e1—eg)z — (e1—c2)¥ + 355575

) ea)y — 11244300
(c2—c3)m + (c2—c3)y — 3575677

e — (e1 — o)y — 1925 1078373
—(e1—e2)z — (e1—<2)¥ — 71501 V2 + ‘550650

102 1
—(e1—e)m — (c1—e2)y — gy V2 + HEEE

(ez—c3)w + (c2—e3)y + ggisgr V2 — 19583
—(c1—cg)m — (e —eg)y + LOTEITS
36600

(ez—c3)m + (c2—c3)y — Y7999
—(e1—cg)z — (e —eg)y + §580T

(e — _ 1925 53 . 2093317
(e1—e2)= — 21567 V2 + 2300800

) . 192500 _ 381607
(eg—e3)@ + (e1—e3)v + 35756577 V2 — “g550%

0.175 0.175 0.201 0.203
0.175 0.201 0.218 0.229
0.218 0.218 0.229

0.100 0.100 0.155 0.268 0.268
0.100 0.155 0.256

0.054 0.054 0.088

0.054 0.054 0.082 0.082
0.054 0.054 0.082 0.082
0.054 0.054 0.077 0.077
0.077 0.077 0.079 0.079
0.054 0.054 0.079 0.079
0.054 0.054 0.085 0.085
0.085 0.085 0.103 0.103
0.101 0.101 0.103 0.103
0.101 0.101 0.129 0.129
0.118 0.118 0.129 0.129
0.101 0.101 0.118 0.118
0.101 0.101 0.126 0.126
0.101 0.101 0.126 0.126
0.101 0.101 0.135 0.135
0.040 0.135 0.135

0.081 0.098 0.098

0.081 0.098 0.106 0.135

0G
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Table 7: Subadditivity slacks Arp for dim F' = 2 and ng > 0 (ctd.)

J K nr Aﬂ-F(x7y)7 (x,y) € F:F(]7J7K) Aﬂ-F(u7U)7 (U7U) Evert(F)
[u, f—u) [x33, T34) 1 (o1 —ea)e + 2098317 0.081 0.106 0.135 0.135
[u, f—u) (34, 35) 1 (c2—e3)e + (e1 —ez)y — 331607 0.081 0.115 0.135 0.188
[u, f—u] [£35, ¢36) 1 —(e1—ez)e + 58807 0.020 0.020 0.074 0.115 0.188 0.188
(u, f—u] (36, f) 1 (ca—cg)a + (e —cg)y — 1244933 0.020 0.074 0.175
(f—u, f=1)* (35, T36) 2 —(e1—e2)w — (1 —ea)y + 25540 0.054 0.054 0.168
(f—u, f=0)* (35, T36) 2 —(e1—e2)w — (c1 —cg)y + 25840 0.054 0.054 0.168
(f—u, f=1)* (36, f) 2 (e —e3) + (cp—cg)y — 306TT7 0.054 0.054 0.155 0.155
(f—u, f=1)* (36, f) 2 (e —e3) + (ep—eg)y — Z306TTT 0.054 0.054 0.155 0.155
(f—u, f=0)* (f,x3s) 2 —(e1—co)w — (o1 —eg)y + 1383223 0.101 0.101 0.155 0.155
(f—u, f=D* (f, z38) 2 —(e1—eg)m — (e —ep)y + 1385223 0.101 0.101 0.155 0.155
(f—u, f=0)* (w38, T39) 2 (c2—e3)z + (cp—cz)y — 48000 0.101 0.101 0.313
(f—u, f=0)* (238, x39) 2 (ez—e3)a + (ep—cg)y — 28900 0.101 0.101 0.313
[f =1 221) (fsx3s) 1 —(e1—ep)o + 3999817 0.001 0.055 0.055 (tight)
[f—1, z21] (38, T39) 1 (ca—eg)a + (1 —cg)y — 329008 0.001 0.055 0.159 0.212 0.472 (tight)
[z21, T22] (w3s, T39) 1 (co—cg)w — 237492041 0.159 0.159 0.472 0.472
[x22, 723) (w38, T39) 1 (ea—eg)e + (e —eg)y + A925; V2 — 41381 0.159 0.238 0.472 0.551
(:l‘23, f—az) <«7338, $39> 1 (cg—cg)a — 3189725560707 V32— %giggg 0.238 0.238 0.551 0.551
(f—az, v25] (38, T39) 1 (cp—cg)w — 292500 /5 — 195759 0.238 0.238 0.551 0.551
[xgs, ng) <$38, l’3g> 1 (ep—c3)m + (c1 —c3)y — 471338341 0.238 0.308 0.551 0.621
(z26, f—ar) (38, T30) 1 (g —eg)e — 193759 0.308 0.308 0.621 0.621
(f—a1, z2s] (w38, T39) 1 (ea—cg)e — 195759 0.308 0.308 0.621 0.621
[ng, £I329) <$38, 3339) 1 (cog—cg)m + (c1 —eg)y — 123369192890%7 0.308 0.315 0.621 0.627
(w29, T30] (w38, T30) 1 (ca—cg)e — 32681917 0.315 0.315 0.627 0.627
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Table 7: Subadditivity slacks Arp for dim F' = 2 and ng > 0 (ctd.)

AWF('T7?J)7 (x,y) € F:F(]7J7K)

Arp(u,v), (u,v) € vert(F)

(w1+1, ro+1
<.T1+1, ro+1

(z5+1,a0+1
ao+1,z7+1]
z7+1,z8+1)
(zs+1, z9+1]
[xo+1,a1+1)
(a1+1,2114+1)
(1141, z12+1]
[z12+1,a2+1)

—(c1—eg)z — (e1—e3)y + ¢1 + 51591

T = T T = T = T = S S e e = T = T = T =SS

102 1061
(cz=e3)w + (c1=e3)v + 7igog V2 ~ ist0

(e2—eg)e + (e1—e3)v + Fggy V2 — HElGo

Ve — 192500 /5 _ 6683
(eg—e3)e — ggrmgry V2 — 7384

1061959
(eg—eg)@ + (c1—-¢3)¥ — 484600

(3 —c3)e — 6683

(eg—cg)z + (e1—c3)y — 59557929923

. 4154783
—(e1—e2)= + 3395800

(eg—ez)@ + (1 —ez)y + c3 — 339621

o) 4 cq _ TT333
—(c1—e2)z + c1 — §E555

—(e1—cg)w — (ep—eg)y + 1 + SZHELT83

—(e1—ea)e + 1 — F35630G

—(e1—e2)m — (c1—e3)y + c1 + pinns

(e —cg)w + c3 + 39231

—(c1—cg)w — (e1—eg)y + 1 + $9794L

) _ 192500 30237
(ez—e3)@ + c3 — ggrserr V2 + Tag

A5 v + SEHRD

—(e1—e2)w — (e1—e3)y +e1 + Fgeg V2 + 184800
(ez—c3)w + 3 + EHHEHE
—(c1—cg)w — (ep—eg)y + 1 + 4033
(e meore + s+ TR

727241
(cz—c3)e + c3 + 131500

—(e1—e)w — (c1—eg)y + e + 202D

o _ 192500 727241
(ez—e3)e + e3 — 3g75577 V2 + 185600

0.315 0.346 0.627 0.659
0.346 0.394 0.659 0.706
0.394 0.394 0.706 0.706
0.394 0.464 0.706 0.776
0.464 0.464 0.776 0.776
0.464 0.776 0.826 0.994
0.826 0.826 0.994 0.994
0.826 0.982 0.994 1.150
0.982 0.982 1.150 1.150
0.826 0.982 0.994 1.150
0.826 0.826 0.994 0.994
0.464 0.776 0.826 0.994
0.464 0.464 0.776 0.776
0.394 0.464 0.706 0.776
0.394 0.394 0.706 0.706
0.346 0.394 0.659 0.706
0.315 0.346 0.627 0.659
0.315 0.315 0.627 0.627
0.308 0.315 0.621 0.627
0.308 0.308 0.621 0.621
0.308 0.308 0.621 0.621
0.238 0.308 0.551 0.621
0.238 0.238 0.551 0.551
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Table 7: Subadditivity slacks Arp for dim F' = 2 and ng > 0 (ctd.)

Aﬂ-F(x7y)7 (x,y) € F:F(]7J7K)

Arp(u,v), (u,v) € vert(F)

(a2+1,214+1)
(z14+1, z15+1]
[z15+1, z16+1]

(z16+1,14+1]

£

(f=u, f=D)*
(f—u, f=D)*
(f=u, f=D)*

e

|
g

x&ls\\xx

£ 2 g g
<

E
|
£ =

|

|
~

*

R T T S Sy

*

|
|
~

*

o~

*

o~

(141, z2+1)

*

o~

*

|
~

*

|
~

*

o~

—(c1—eg)z — (e1—ez)y + 1

*

o~

o~~~ —~
N SN SN N SN N Y SN N e s —

g 2 g g g 2 g 2 & =g

o N N N SN S N N Y ~—

*

|
~

Sy v+ Rt

(e2=c3)@ + 3 — 3575677

—(e1—eg)z — (c1—e3)y + e1 + 42y VI +

(cz—ez)w +cg + ZABIHESD

541077
—(e1—eg)z — (e1—c3)y + ¢1 + HEggs

—(cp—c3)y+eo+5

~(er—enn + o1 - H3AHH

1649
(e1—e2)y + c2 — w55

—(er—c2)v + 3356555

1 —ca)a o —ea)y — 472807
(c1—c3)m + (c2—¢3)Y — HEg03

~(ca o+ $399880

(e1—c)@ + (1 —ca)y + cp — 330306

(c1—c2)z — (cg—e3)y + e + 23

8308283
(e1—e2)@ + (e1—e2)y + c2 — 5595800

(ea—e3)a + (cp—c3)y — LLTAAT

4607379
—(er—e2)z — (e1—e2)y + 1795000

o —ca)i o —ca)y L cq L 1376879
(cg—c3)z + (c2—e3)y + 3 + 1169900

—(e1—e2)w — (c1—e)y + c1 + $2533

5574683
—(e1—e2)z + 5365800

(eg—ez)x + (c1—c3)y + c3 — 2838969381070

2

+
.
—(e1—e2)w +e1 + Fgog V2

95992

3173215909
775135400
_ 28237

0.238 0.238 0.551 0.551

0.159 0.238 0.472 0.551

0.159 0.159 0.472 0.472

0.001 0.055 0.159 0.212 0.472
0.101 0.101 0.313

0.001 0.055 0.055

0.101 0.101 0.155 0.155

0.081 0.135 0.135

0.081 0.135 0.293 0.961 1.195 1.222
1.195 1.195 1.222

1.195 1.195 1.222

0.081 0.135 0.293 0.961 1.195 1.222
0.081 0.135 0.135

0.941 1.202 1.202

1.148 1.148 1.175 1.175 1.202 1.202
1.148 1.148 1.249 1.249

1.162 1.249 1.249

1.048 1.075 1.075

1.048 1.075 1.149 1.230

1.062 1.062 1.149 1.230 1.230
1.019 1.062 1.188 1.230

1.019 1.019 1.188 1.188

C(er—en)m — (e1—ea)y +or — 492500 3 ¢ lo1sirsa 0,985 1.019 1.153 1.188
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Table 7: Subadditivity slacks Arp for dim F' = 2 and ng > 0 (ctd.)

1 J K ng Arp(x,y), (z,y) € F=F(,J,K) Arp(u,v), (u,v) € vert(F)
(f—u, f=D* (f—az,z25] (x1+1,2z2+1) 1 —(e1—co)e — (c1—cg)y + o1 — 222500 34 10181783 (0.982 0.985 1.150 1.153
(f=u, f~1)*  [m25,T26) (T141,2241) 1 er—epye 4 ey — 38337 0.982 0.982 1.150 1.150
(Ff—u, f=D* (w26, f—a1)  (z1+1,22+1) 1 er—eg)m — (e —ea)y + o1 + 10IEATSS 0.934 0.982 1.102 1.150
(f=u, f=D* (f—a1,z2s] (x141, z2+1) 1 —(c1—c)@ — (e1—cg)y + o1 + 10181783 0.906 0.934 1.075 1.102
(f—u, f=1)*  [was,x20) (@i+1,2241) 1 er—epye 4 o — ST 0.906 0.906 1.075 1.075
(f—u, f=D* (20, 230] (141, z2+1) 1 —(e1—eg)e — (e1—cg)y + o1 + LTG0 0.864 0.906 1.032 1.075
(f—u, f=0* [x30, f—a0) (141, z2+1) 1 —(e1—ep)w + o + 4925, /3 — 1078817 0.864 0.864 1.032 1.032
(f=u, f=)* (f—ao,ms2) (w4l aotl) 1 er—enym e + 4925 v JoTRiz 0.864 0.864 1.032 1.032
(f—u, f=0* (w32, z33] (11, 22+1) 1 —(er—co)o — (c1—ca)y+ o1 — A92500 v3 4 422187 0.826 0.864 0.994 1.032
(f=u, f=1)*  [w33,34) (@i+1,2241) 1 (er—cara + o1 - AQERET 0.826 0.826 0.994 0.994
(f—u, f=D* (z34,235] (141, z2+1] 1 —(e1—e2)z — (e —c3)y + e + 222187 0.774 0.776 0.826 0.942 0.994
(f=u, f=1)* (w34, 35] (w241, 25+1) 1 (c—ca)s + cg + 301881 0.774 0.776 0.776
(f—u, f=D)*  [z35,236) (141, z2+1] 1 —(e1—eg)w + o — 48221 0.774 0.942 0.942
(f—u, f=0D)* [mgs, Z36) [$2+1 x3+1) 1 (eg—c3)w + (c1 —e3)y + c3 — LO8533 0.774 0.776 0.826 0.942 0.994
(F=u, f=1)* (w5, T36) (watl,za+1] 1 o1 —eay + 1 — BTEMIT 0.826 0.826 0.994 0.994
(f=u, f=1)* (w33, w36) [Za+1,254+1) 1 (cqmeqrs = (c1—eq)y + s — 22390 /5 _ 168333 0.826 0.864 0.994 1.032
(f—u, f=D)* (235, 36) (r5+1,a0+1) 1 (1 —epe +er + A2E V3 - LoTRLT 0.864 0.864 1.032 1.032
(f—u, f—l)* <1‘35, 1'36> (a0+1, x7+1] 1 —(c1—cp)w + e + 425 3 — 1078817 0.864 0.864 1.032 1.032
(F=u, f=D)* (w35, T36) [tr4+1,2s+1) 1 (ea—ca)a + (e —ea)y + ey — 52956150 0.864 0.906 1.032 1.075
(f=u, f=1)* (w5, Ta6) (ws+1,294+1] 1 o1 —egye 4 o — ST 0.906 0.906 1.075 1.075
(F=u, f=D)* (w35, 36) [to+1,a14+1) 1 (ca—c)e + (e1 —c)y + e — 4555217 0.906 0.934 1.075 1.102
(f=u, f=D)* (was,36)  (a141l,z141) 1 (ea—ca)e + (e1—ca)y + cs — 4359217 0.934 0.982 1.102 1.150
(f—u, f=0)* (a5, x36)  (z1+1,212+1] 1 ey =)o+ ey — 38337 0.982 0.982 1.150 1.150
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Table 7: Subadditivity slacks Arp for dim F' = 2 and ng > 0 (ctd.)

1 J K ng Arp(x,y), (z,y) € F=F(,J,K) Arp(u,v), (u,v) € vert(F)

(f—u, f—l)* <.T35, $36> [$12+1, a2—|—1) 1 (eg—cg)e+ (c1—e3)y + c5 — ,189725569707 V2 — %ggggég 0.982 0.985 1.150 1.153
(f—u, f=0* (w35,236) (a24+1,2144+1) 1 (co—eg)m+ (e1—ca)y + 5 — 222500 vz — 4886217 (0.985 1.019 1.153 1.188
(f—u, f=0)* (xss,w36)  (vratl,zs+1] 1 (o1 —ea)a + er + 25 VI - 28281 1.019 1.019 1.188 1.188
(f=u, f=0* (x35,736) [ti5+1,216+1] 1 (co—cg)a + (c1 —cg)y + cg — 596848001 1.019 1.062 1.188 1.230
(f—u, f=0)* (235,736) [v16-+1, 1+1] 1 —(e1—cp)z + ¢y — 20332 1.062 1.062 1.149 1.230 1.230
(f—u, f=D* (235, 236) (41, ut+1)* 2 (c1—ca)y + cp — 40827 1.162 1.249 1.249
(f*’u, f*l>* (1‘36, f) <.T16+1, l+1] 1 —(c1—co)z — (¢ —e3)y + c1 + 123389891860803 1.048 1.075 1.149 1.230
(f—u, f=0* (a3, f) (41, u+1)* 2 —(eg—cg)y + cq + $176879 1.148 1.148 1.249 1.249
(f—u, f—l>* (f7 1:38) <l'16+]., l+1] 1 —(c1—eg)x +c1 — 2838969381070 1.048 1.075 1.075
(f=u, f=D*  (f,x38) (41, u+1)* 2 (e1—ea)y + ep — 1207121 1.148 1.148 1.175 1.175 1.202 1.202
(f—u, f=D)*  (f, x38) [u+1, f-u+1) 1 (e —eg)w + e — ADA06T 1.195 1.195 1.222
(f—u, f=D)* (w38, 230) (41, u+1)* 2 —(eg—eg)y + cp + 234583 0.941 1.202 1.202
(f—u, f=1)* (x38,T30) [u+1, f—u+1] 1 (e1—eg)m — (e1—ca)y + oy + BITET 0.081 0.135 0.293 0.961 1.195 1.222
(f—u,f—l)* <$38,l'39) (f—u+1,f—l+1)* 2 —(ep—c3)y +c2 +5 0.101 0.101 0.313
(f—u, fF=D*  (z30,1) (u+l, f—u+l] 1 —(e1—ca)m + o1 — 2140283 0.081 0.135 0.135
(f—u, f=D)*  (x30,1) (f—u+1, f—I4+1)* 2 (e1—e)y + eg — 1649 0.101 0.101 0.155 0.155

[f—1,x21] (235, T36) (141, u+1)* 1 (e1—e2)a + (1 —ea)y + en — 23257 1.062 1.062 1.149 1.230 1.230
[f—l,l'21> (m36,f) <l+l,u+l)* 1 (c1—co)x — (cp—c3)y + cg + ggégggg 1.048 1.075 1.149 1.230

[f—1,z21) (f, z3s) (41, u+1)* 1 (e1—e2)w + (1 —eo)y + g — SOB43LT 1.048 1.075 1.075

[f—1, 221] (z3s,m39)  (f—u+1, f=I+1)* 1 (e1—c)a — (ca—c3)y + cg + 334857 0.001 0.055 0.159 0.212 0.472 (tight)
[f—1, 221) (w39,1) (f—u+1, f=l+1)* 1 (e1—e2)a + (c1 —e2)y + g — JE28183 0.001 0.055 0.055 (tight)

[l’m,l‘gz] <$35,$36> (l+1,u+1)* 1 —(cg—egz)x + (c1—ep)y + cg + % 1.019 1.062 1.188 1.230

[za1, 2] (z3s,39)  (f—u+1, f=I+1)* 1 —(ca—c3)w — (cp—ca)y + op + 5938984059 0.159 0.159 0.472 0.472
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Table 7: Subadditivity slacks Arp for dim F' = 2 and ng > 0 (ctd.)

1 J K ng Arp(x,y), (z,y) € F=F(,J,K) Arp(u,v), (u,v) € vert(F)
[Z22, T23) (x35, T36) (41, ut1)* 1 (o megrm + (e —emy +ep + 4225 35— 284057 1,019 1.019 1.188 1.188
[£22,223)  (T3s,x30)  (f—utl, f=I+1)* 1 (cy—co)e— (ca—eghu + o+ A5 vE+ 328857 0.159 0.238 0.472 0.551

(w23, f—az)  (x35,236) (I+1,u+1)* 1 —(ea—cp)e + (e1—ea)y + ep — 292500 /3 1 5918783 (0.985 1.019 1.153 1.188
(as, f—az)  (was,30)  (f—uA1, fol+1)* 1 —(eomegyr— (comen)y + o — 92500 y3 4 19051133 0.238 0.238 0.551 0.551
(f—a2,225]  (w35,236) (I+1,u+1)* LI —(ea—cg)a + (ex—co)y + o — A92800 /5 4 5018783 ().982 0.985 1.150 1.153
(f—az,m25]  (mas,w30)  (f=urtl, f=l41)* 1 —(cycarr— (ea—cary +en — A0 /5, 19054133 ().238 0.238 0.551 0.551
[Z25, 26 ) (35, T36) (I+1,u+1)* 1 (e1—e2)m + (e1 —ea)y + ey — 234957 0.982 0.982 1.150 1.150
[Tos, 26)  (mas,w30)  (F—utl, f—I+1)* 1 (e1 — ) — (e —ca)y + cg + 320637 0.238 0.308 0.551 0.621
(w26, f—a1)  (x35,%36) (I+1,u+1)* 1 —(cg—eg)a + (e1—e2)y + co + 2913783 0.934 0.982 1.102 1.150
(z26, f—a1)  (xss,z39)  (f—ut+l, f=I4+1)* 1 —(eg—eg)@ — (ea—eg)y + cp + 10954133 0.308 0.308 0.621 0.621
(f—a1, x2s] (35, T36) (141, u+1)* 1 —(eg—eg)w + (e1 —c)y + ep + 3913783 0.906 0.934 1.075 1.102
(f—a1, z2s] (238, T39) (f—u+1, f=I+1)* 1 —(eg—cg)m — (eg—cg)y + ep + 12054133 0.308 0.308 0.621 0.621
[CL’QS, 1‘29) <1‘35, I36> (l+1, u+ l)* 1 (c1—e2)@ + (c1—c)y + cg — gggégég 0.906 0.906 1.075 1.075
[T28, z20) (was,z30)  (f—ut+l, f-I+1)* 1 (e1—c2)w — (ca—e3)y + e + 1986033 0.308 0.315 0.621 0.627
(mgg, 1‘30] <I35, 1'36> (l—l—l, u+ l)* 1 —(ca—cg)x + (c1—c2)y + co + g%gggi‘fé 0.864 0.906 1.032 1.075
(220,230]  (wss,ws0)  (f—u+l, f—I+1)* 1 (eg—e3)m — (ca—ecy)y + cp + 246377163 0.315 0.315 0.627 0.627
[30, f—ao) (%35, T36) (141, u+1)* 1 (cr—co)a+ (1 —eo)y + e + 2025 v2 — §246817 (0.864 0.864 1.032 1.032
[30, f—ao0)  (@as,w30)  (f—utl, f—I4+1)* 1  (c1—co)e — (co—cg)y+ o+ 2925 vZ+ 3793533 0.315 0.346 0.627 0.659
(f—ao,x32)  (x35,236) (I+1,u+1)* I (er—ea)w+ (ex—eca)y + c2 + 2225, v3 — G246817  ().864 0.864 1.032 1.032
(f—ao,z32)  (@ss,w30)  (f—utl, f=I+1)* 1 (c;—co)w— (co—cgy +co + 4925 vZ+ 1323533 (.346 0.394 0.659 0.706
(zaz, 23] (235, T36) (41, ut1)* 1 (epmeqre + (1 —cary + en — 292500 5 ¢ 213467 0.826 0.864 0.994 1.032
(p32,w33)  (was,w30)  (f=utL, f—I+1)* 1 —(cpegys— (camea)y + o — 22599 /31 727081 0.394 0.394 0.706 0.706
[11,‘33, $34) <$35, 1'36> (l-l—l, U+1)* 1 (c1—co)w + (] —eg)y + co — g%éggég 0.826 0.826 0.994 0.994
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Table 7: Subadditivity slacks Arp for dim F' = 2 and ng > 0 (ctd.)

J K ng Arp(x,y), (z,y) € F=F(,J,K) Arp(u,v), (u,v) € vert(F)

(wss, ma0)  (f—ut1, f—I+1)* 1 (c1—ca)e — (ca—ca)y + 3 + JE8503 0.394 0.464 0.706 0.776

(€34, T35] (141, u+1)* 1 —(cg—cg)aw — (cp—c3)y + co + SE5881 0.774 0.776 0.776

(235, T36) (+1,ut1)* 1 en—cg)e + (e1—ea)y + 3 + 24T 0.774 0.776 0.826 0.942 0.994
(38, T39) (f—u+1, f=Il+1)* 1 —(ea—cz)w — (ea—e3)y + co + LIO8L 0.464 0.464 0.776 0.776

(35, T36) (I+Lut+l)* 1 (c1—ea)s + (e1—c)y + ez — 234047 0.774 0.942 0.942
(z35,236)  (f—u+tl, f—I+1)* 1 (c1—ea)e + (e1— )y + 3 — 244053 0.982 0.982 1.150 1.150

(wse, f)  (f—utl, f—I+1)* 1 (e1 ) — (ca—ca)y + 2 + (203783 0.826 0.982 0.994 1.150

(frss)  (f—utl, f—I+1)* 1 (e1—ca)a + (e —ca)y + cp — JATI2IT 0.826 0.826 0.994 0.994
(v3s,730)  (f—utl, f—I+1)* 1 (e1—ca)e — (ca—ca)y + g + 305967 0.464 0.776 0.826 0.994
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