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G e n er ali z e d  A ut or e gr essi v e  Li n e ar  M o d els f or
Dis cr et e  Hi g h- Di m e nsi o n al  D at a

P art h e P a n dit , St u d e nt  M e m b er, I E E E ,  M ojt a b a S a hr a e e- Ar d a k a n, St u d e nt  M e m b er, I E E E ,  Ar as h  A.  A mi ni,

S u n d e e p  R a n g a n , Fell o w, I E E E , a n d  Al ys o n  K. Fl et c h er , M e m b er, I E E E

A bstr a ct — Fitti n g  m ulti v a ri at e a ut o r e g r essi v e ( A R)  m o d els is
f u n d a m e nt al f o r ti m e-s e ri es d at a a n al ysis i n a  wi d e r a n g e of
a p pli c ati o ns.  T his a rti cl e c o nsi d e rs t h e p r o bl e m of l e a r ni n g a
p -l a g  m ulti v a ri at e  A R  m o d el  w h e r e e a c h ti m e st e p i n v ol v es a li n-
e a r c o m bi n ati o n of t h e p ast p st at es f oll o w e d b y a p r o b a bilisti c,
p ossi bl y n o nli n e a r,  m a p pi n g t o t h e n e xt st at e.  T h e p r o bl e m is
t o l e a r n t h e li n e a r c o n n e cti vit y t e ns o r f r o m o bs e r v ati o ns of t h e
st at es.  We f o c us o n t h e s p a rs e s etti n g,  w hi c h a ris es i n a p pli c ati o ns
wit h a li mit e d n u m b e r of di r e ct c o n n e cti o ns b et w e e n v a ri a bl es.
F o r s u c h p r o bl e ms, 1 - r e g ul a ri z e d  m a xi m u m li k eli h o o d esti m a-
ti o n ( o r  M- esti m ati o n  m o r e g e n e r all y) is oft e n st r ai g htf o r w a r d t o
a p pl y a n d  w o r ks  w ell i n p r a cti c e.  H o w e v e r, t h e a n al ysis of s u c h
m et h o ds is dif fi c ult d u e t o t h e f e e d b a c k i n t h e st at e d y n a mi c a n d
t h e p r es e n c e of n o nli n e a riti es, es p e ci all y  w h e n t h e u n d e rl yi n g
p r o c ess is n o n- G a ussi a n.  O u r  m ai n r es ult p r o vi d es a b o u n d o n
t h e  m e a n-s q u a r e d e r r o r of t h e esti m at e d c o n n e cti vit y t e ns o r as a
f u n cti o n of t h e s p a rsit y a n d t h e n u m b e r of s a m pl es, f o r a cl ass of
dis c r et e  m ulti v a ri at e  A R  m o d els, i n t h e hi g h- di m e nsi o n al r e gi m e.
I m p o rt a ntl y, t h e b o u n d i n di c at es t h at,  wit h s uf fi ci e nt s p a rsit y,
c o nsist e nt esti m ati o n is p ossi bl e i n c as es  w h e r e t h e n u m b e r of
s a m pl es is si g ni fi c a ntl y l ess t h a n t h e t ot al n u m b e r of p a r a m et e rs.

I n d e x  Ter ms — A ut o r e g r essi v e p r o c ess es, c o m p r ess e d s e nsi n g,
hi g h- di m e nsi o n al ti m e s e ri es a n al ysis, l o n g-t e r m m e m o r y, n o nli n-
e a r d y n a mi c al s yst e ms,  m a xi m u m li k eli h o o d esti m ati o n.

I. I N T R O D U C T I O N

W E  C O N SI D E R t h e pr o bl e m of l e ar ni n g a p -l a g a ut or e-
gr essi v e ( A R) g e n er ali z e d li n e ar  m o d el ( G L M) f or a

m ulti v ari at e ti m e s eri es i n v ol vi n g N - v ari a bl es: x t = (x t
i) ∈ R N ,

w h er e x t
i ∈ X i ⊆ R f or all i ∈ [N ], t ∈ Z .  A p arti c ul ar c as e of

M a n us cri pt r e c ei v e d  M a y 1 5, 2 0 2 0; r e vis e d  N o v e m b er 2 3, 2 0 2 0; a c c e pt e d
N o v e m b er 2 4, 2 0 2 0.  D at e of p u bli c ati o n  D e c e m b er 2, 2 0 2 0; d at e of c urr e nt
v ersi o n J a n u ar y 7, 2 0 2 1.  T h e  w or k of P art h e P a n dit,  M ojt a b a S a hr a e e-
Ar d a k a n, a n d  Al ys o n  K. Fl et c h er  w as s u p p ort e d i n p art b y t h e  N ati o n al
S ci e n c e F o u n d ati o n u n d er  Gr a nt 1 2 5 4 2 0 4 a n d  Gr a nt 1 7 3 8 2 8 6, a n d i n p art
b y t h e  Of fi c e of  N a v al  R es e ar c h u n d er  Gr a nt  N 0 0 0 1 4- 1 5- 1- 2 6 7 7.  T h e  w or k
of S u n d e e p  R a n g a n  w as s u p p ort e d i n p art b y t h e  N ati o n al S ci e n c e F o u n d ati o n
u n d er  Gr a nt 1 1 1 6 5 8 9,  Gr a nt 1 3 0 2 3 3 6, a n d  Gr a nt 1 5 4 7 3 3 2; i n p art b y
t h e S e mi c o n d u ct or  R es e ar c h  C or p or ati o n; i n p art b y  N ati o n al I nstit ut e of
St a n d ar ds a n d  Te c h n ol o g y; a n d i n p art b y t h e i n d ustri al af fili at es of  N Y U
WI R E L E S S. P orti o ns of t his arti cl e  w er e pr es e nt e d at  AI S T A T S 2 0 1 9 [ 1].
C o d e a v ail a bl e at [ 2]. ( C orr es p o n di n g a ut h or:  P art h e  P a n dit.)

P art h e P a n dit a n d  M ojt a b a S a hr a e e- Ar d a k a n ar e  wit h t h e  D e p art m e nt
of  El e ctri c al a n d  C o m p ut er  E n gi n e eri n g,  U ni v ersit y of  C alif or ni a  L os
A n g el es,  L os  A n g el es,  C A 9 0 0 9 5  U S A ( e- m ail: p art h e p a n dit @ u cl a. e d u;
ms a hr a e e @ u cl a. e d u).

Ar as h  A.  A mi ni a n d  Al ys o n  K. Fl et c h er ar e  wit h t h e  D e p art m e nt of
St atisti cs,  U ni v ersit y of  C alif or ni a  L os  A n g el es,  L os  A n g el es,  C A 9 0 0 9 5  U S A
( e- m ail: a a a mi ni @ u cl a. e d u; a k fl et c h er @ u cl a. e d u).

S u n d e e p  R a n g a n is  wit h t h e  D e p art m e nt of  El e ctri c al a n d  C o m p ut er
E n gi n e eri n g,  N e w  Yor k  U ni v ersit y  Ta n d o n S c h o ol of  E n gi n e eri n g,  Br o o kl y n,
N Y 1 1 2 0 1  U S A ( e- m ail: sr a n g a n @ n y u. e d u).

T his arti cl e h as s u p pl e m e nt ar y d o w nl o a d a bl e  m at eri al a v ail a bl e at
htt ps:// d oi. or g/ 1 0. 1 1 0 9/J S AI T. 2 0 2 0. 3 0 4 1 7 1 4, pr o vi d e d b y t h e a ut h ors.
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t h e  m o d el  w e c o nsi d er is of t h e f or m,

x t
i | z t

i ∼ Q i · | z t
i , z t

i = fi
∗
i , X t− 1 , ( 1)

w h er e t h e i n n er pr o d u ct c orr es p o n ds t o R N × p , f or t = 1 , 2 , . . .
a n d i = 1 , 2 , . . . , N w h er e X t− 1 = [x t− 1 x t− 2 . . . x t− p ] ∈
R N × p i s t h e p -l a g hist or y of t h e pr o c ess u p t o ti m e t − 1, a n d
Q i( · | z t

i) i s a pr o b a bilisti c li n k f u n cti o n.  T h e pr o bl e m is t o esti-
m at e t h e u n k n o w n p ar a m et ers ∗

i ∈ R N × p f or i = 1 , 2 , . . . , N ,
gi v e n o bs er v ati o ns of n ti m e s a m pl es x t, t = 1 , . . . , n . T h e
c o n diti o n al distri b uti o ns Q i( · | z t

i) a n d li n k f u n cti o ns fi ar e
ass u m e d t o b e k n o w n.

M o d eli n g pr o bl e ms of t his f or m a p p e ar i n a  wi d e-r a n g e
of a p pli c ati o ns  wit h ti m e-s eri es d at a. F or e x a m pl e, i n n e ur al
m o d eli n g, x t c a n r e pr es e nt a v e ct or of s pi k e c o u nts or s o m e
ot h er  m e as ur e of a cti vit y fr o m N n e ur o ns or br ai n r e gi o ns.
I n t his c as e, esti m ati o n of t h e t e ns or ∗ i n ( 1) c a n pr o vi d e
i nsi g ht i nt o t h e n e ur al c o n n e cti vit y.  Ot h er a p pli c ati o ns i n cl u d e
g e n o mi cs, e c o n o m etri cs [ 3], d at a s ci e n c e, s o ci ol o g y, b usi n ess
m a n a g e m e nt, fi n a n ci al  m ar k ets [ 4], [ 5] a n d n at ur al l a n g u a g e
pr o c essi n g.

A k e y c h all e n g e i n esti m ati n g t h e  m ulti v ari at e  A R( p )  m o d-
els is t h e l ar g e n u m b er of u n k n o w n p ar a m et ers t o esti m at e,
p arti c ul arl y as t h e di m e nsi o n of t h e pr o c ess, N , a n d n u m-
b er of ti m e l a gs, p , gr o ws.  H o w e v er, i n  m a n y c as es, o n e c a n
ass u m e s o m e s p arsit y c o nstr ai nt i n t h e c o n n e cti vit y t e ns or ∗ .
F or e x a m pl e, i n n e ur al  m o d eli n g, t h er e ar e p h ysi c all y li mit e d
n u m b ers of dir e ct c o n n e cti o ns b et w e e n br ai n r e gi o ns.  U n d er
a s p arsit y ass u m pti o n, it is c o m m o n t o esti m at e ∗ vi a a n

1 -r e g ul ari z e d  M- esti m at or of t h e f or m,

:= ar g mi n
∈ R N × N × p

1
n

N

i= 1

n

t= 1

L it x t
i; i, X t− 1

+ λ n 1 ,1 ,1 , ( 2)

w h er e L it : X i × R → R ar e l oss f u n cti o ns a n d λ n 1 ,1 ,1

i s a n 1 r e g ul ari z er ( pr e cis e d e fi niti o ns  will b e gi v e n i n t h e
S e cti o n II b el o w).  T h e br o a d g o al of t his arti cl e is t o a n al y z e
t h e s a m pl e c o m pl e xit y of s u c h 1 -r e g ul ari z e d  M- esti m at ors.
T h at is, gi v e n a s p arsit y c o nstr ai nt o n ∗ , a n d t h e n u m b er of
m e as ur e m e nts, n , h o w  w ell c a n  w e esti m at e ∗ ?

A.  K e y  C o ntri b uti o ns

We c o nsi d er t h e c as e  w h er e {X i}
N
i= 1 ar e b o u n d e d c o u nt a bl e

s u bs ets of R .  We a n al y z e t h e 1 -r e g ul ari z e d  M- esti m at or ( 2)
w h e n t h e l oss f u n cti o ns v → L it(u ; v ) ar e str o n gl y c o n v e x,
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f or all u ∈ X i.  We ass u m e t h at t h e c o n n e cti vit y t e ns or c a n
b e a p pr o xi m at e d b y a s p ars e t e ns or  wit h at  m ost s m a x n o n-
z er o v al u es i n e a c h sli c e ∗

i .  U n d er t h es e ass u m pti o ns, o ur
m ai n r es ult i n  T h e or e m 1 est a blis h es t h e c o nsist e n c y of t h e
r e g ul ari z e d  M- esti m at or ( 2) i n t h e hi g h- di m e nsi o n al r e gi m e
of n = p ol y (s m a x l o g(N 2 p )) u n d er s o m e r e g ul arit y c o n diti o ns.

I n pr o vi n g o ur  m ai n r es ult,  w e est a blis h t h e s o- c all e d
r estri ct e d str o n g c o n v e xit y ( R S C) [ 6] f or a l ar g e cl ass of
l oss f u n cti o ns, f or a d e p e n d e nt n o n- G a ussi a n dis cr et e- v al u e d
m ulti v ari at e pr o c ess.  O ur pr o of of t h e  R S C pr o p ert y r e q uir es
s h o wi n g a r estri ct e d ei g e n v al u e c o n diti o n,  w hi c h is n o ntri vi al
d u e t o t h e n o n- G a ussi a n a n d hi g hl y- c orr el at e d n at ur e of t h e
d esi g n  m atri x.  W h at  m a k es t h e pr o bl e m  m or e c h all e n gi n g is
t h e e xist e n c e of f e e d b a c k fr o m  m or e t h a n j ust t h e i m m e di at e
p ast (t h e c as e p > 1).

We est a blis h t h e  R S C f or g e n er al p ≥ 1 usi n g t h e n o v el
a p pr o a c h of vi e wi n g t h e p - bl o c k v ersi o n of t h e pr o c ess as a
M ar k o v c h ai n.  T h e pr o bl e m b e c o m es si g ni fi c a ntl y  m or e c h al-
l e n gi n g  w h e n g oi n g fr o m p = 1 t o e v e n p = 2.  T h e dif fi c ult y
wit h t his hi g h er- or d er M ar k o v c h ai n is t h at its D o br us hi n c o n-
tr a cti o n c o ef fi ci e nt is tri vi all y 1.  We d e v el o p t e c h ni q u es t o
g et ar o u n d t his iss u e  w hi c h c o ul d b e of i n d e p e n d e nt i nt er est
(s e e S e cti o n  VII).  O ur t e c h ni q u es h ol d f or all p ≥ 1.

M u c h of t h e pr e vi o us  w or k t o w ar ds pr o vi n g t h e  R S C c o n-
diti o n h as eit h er f o c us e d o n t h e i n d e p e n d e nt s u b- G a ussi a n
c as e [ 7], [ 8] or t h e d e p e n d e nt  G a ussi a n c as e [ 9], [ 1 0] f or  w hi c h
p o w erf ul  G a ussi a n c o n c e ntr ati o n r es ults s u c h as t h e  H a ns o n –
Wri g ht i n e q u alit y [ 1 1] ar e still a v ail a bl e.  O ur a p pr o a c h is t o
us e c o n c e ntr ati o n r es ults f or  Li ps c hit z f u n cti o ns of  M ar k o v
c h ai ns o v er c o u nt a bl e s p a c es, a n d str e n gt h e n t h e m t o u ni-
f or m r es ults usi n g  m etri c e ntr o p y ar g u m e nts. I n d oi n g s o,
w e cir c u m v e nt t h e us e of e m piri c al pr o c ess es  w hi c h r e q uir e
a d diti o n al ass u m pti o ns f or esti m ati o n [ 1 2].  M or e o v er, o ur
a p pr o a c h all o ws us t o i d e ntif y k e y pr o p erti es of t h e  m o d el
t h at all o w f or s a m pl e- ef fi ci e nt esti m ati o n.

Alt h o u g h dis cr et e ti m e s eri es ar e oft e n  m o d el e d usi n g t h e
s p e ci fi c li n k f u n cti o ns s u c h as l o g i t or s o f t m a x , o ur r es ult
all o ws  m or e fl e xi bilit y t o c h o os e t h e li n k f u n cti o ns. F or e x a m-
pl e i n t h e  B er n o ulli  A R( p ) a n d  Tr u n c at e d- P oiss o n  A R(p ) c as es
dis c uss e d i n S e cti o n III- B, a n y  Li ps c hit z c o nti n u o us, l o g-
c o n v e x li n k f u n cti o n c a n b e us e d.  T h e a n al ysis als o bri n gs o ut
cr u ci al pr o p erti es of t h e li n k f u n cti o n, a n d t h e r ol e it pl a ys i n
d et er mi ni n g t h e esti m ati o n err or a n d s a m pl e c o m pl e xit y.

O ur  m o d el als o all o ws f or e a c h i n di vi d u al ti m e s eri es x t
i

t o li e i n disti n ct s p a c es X i w hi c h is d esir a bl e i n pr a cti c al
a p pli c ati o ns  wit h h et er o g e n e o us t y p es of d at a.

B.  Pr e vi o us  W or k

T h er e is a v ast lit er at ur e o n r e c o v eri n g s p ars e v e ct ors i n
u n d er-s a m pl e d s etti n gs [ 1 3], [ 1 4], [ 1 5], [ 1 6].  T h e g e n eri c
r es ults s h o w t h at if a v e ct or θ is s-s p ars e i n a p - di m e nsi o ns, it
c a n b e esti m at e d i n n = (s l o g(p )) m e as ur e m e nts.  H o w e v er,
t h es e r es ults t y pi c all y d o n ot h a v e f e e d b a c k as i n t h e  A R
pr o c ess c o nsi d er e d h er e.

T h e esti m ati o n of s p ars e  G a ussi a n  V A R( p ) pr o c ess es  wit h
li n e ar f e e d b a c k h as b e e n c o nsi d er e d o nl y  m or e r e c e ntl y [ 9],
[ 1 7], [ 1 8], [ 1 9], [ 2 0]. F or t h es e  m o d els, a r estri ct e d ei g e n v al u e

c o n diti o n c a n b e est a blis h e d f airl y e asil y, b y r e d u ci n g t h e
pr o bl e m, e v e n i n t h e ti m e- c orr el at e d s etti n g, t o t h e c o n c e n-
tr ati o n of q u a dr ati c f u n cti o n als of  G a ussi a n v e ct ors f or  w hi c h
p o w erf ul i n e q u aliti es e xist [ 1 1].  T h es e t e c h ni q u es d o n ot
e xt e n d t o n o n- G a ussi a n s et u ps.

I n t h e n o n- G a ussi a n s etti n g,  H all et al. [ 2 1] a n d  Z h o u a n d
R as k utti [ 2 2] r e c e ntl y c o nsi d er e d a  m ulti v ari at e ti m e s eri es
e v ol vi n g as a  G L M dri v e n b y t h e hist or y of t h e pr o c ess si m-
il ar t o o ur  m o d el.  T h e  B er n o ulli  A R( 1) a n d P oiss o n  A R( 1)
wit h p = 1 l a gs  w er e c o nsi d er e d as s p e ci al c as es of t his
m o d el.  T h e y pr o vi d e st atisti c al g u ar a nt e es o n t h e err or r at e f or
t h e 1 r e g ul ari z e d esti m at or.  M or e i m p ort a ntl y, t h eir r es ults
ar e r estri ct e d t o t h e c as e p = 1  w hi c h d o es n ot all o w t h e
e x pli cit e n c o di n g of l o n g-t er m d e p e n d e n ci es.  M or e r e c e ntl y,
M ar k et al. [ 2 3], [ 2 4] c o nsi d er e d a  m o d el cl os er t o o urs f or
m ulti v ari at e  A R( p) pr o c ess es  wit h l a gs p = 1 or p = 2.

A k e y c o ntri b uti o n of o urs is t o bri n g o ut t h e e x pli cit d e p e n-
d e n c e o n p i n t h e  A R(p )  m o d els, all o wi n g f or a g e n er al p ≥ 1.
I n t h e s p e ci al c as es  w e c o nsi d er: t h e  B er n o ulli  A R(p ) a n d t h e
Tr u n c at e d- P oiss o n  A R( p ),  w e s h o w h o w t h e s c ali n g of t h e
s a m pl e c o m pl e xit y a n d t h e err or r at e  wit h p c a n b e c o ntr oll e d
b y t h e pr o p erti es of t h e li n k f u n cti o n fi a n d a c ert ai n n or m of
t h e p ar a m et er t e ns or.

O ur r es ults i m pr o v e u p o n t h os e i n [ 2 1], [ 2 3]  w h e n a p pli e d
t o t h e  B er n o ulli  A R(p ) a n d  Tr u n c at e d- P oiss o n  A R(p ).  D u e
t o t h e k e y o bs er v ati o n t h at a n  A R(p ) o v er a c o u nt a bl e s p a c e
c a n b e vi e w e d as a hi g h er or d er  M ar k o v c h ai n, o ur a n al ysis
r el a x es s e v er al ass u m pti o ns  m a d e b y [ 2 1], [ 2 3]. I n d oi n g s o,
w e a c hi e v e b ett er s a m pl e c o m pl e xiti es  wit h e x pli cit d e p e n-
d e n c e o n p .  O ur a n al ysis b orr o ws fr o m  m arti n g al e- b as e d
c o n c e ntr ati o n i n e q u aliti es f or  Li ps c hit z f u n cti o ns of  M ar k o v
c h ai ns [ 2 5].

T h e u ni v ari at e  B er n o ulli  A R( p ) pr o c ess f or p ≥ 1  w as c o n-
si d er e d b y  K a z e mi p o ur et al. [ 2 6], [ 2 7]  w h er e t h e y a n al y z e d a
m ultil a g  B er n o ulli pr o c ess f or a si n gl e n e ur o n.  T h eir a n al ysis
d o es n ot e xt e n d t o t h e N > 1 c as e.  E v e n f or N = 1, t h eir a n al y-
sis is r estri ct e d t o t h e bi as e d pr o c ess  wit h P (x t

1 = 1 |X t− 1 ) < 1
2

f or all t.  Mi xi n g ti m es of t h e  B er n o ulli  A R( 1) h a v e b e e n c o n-
si d er e d i n [ 2 8].  H o w e v er, t h eir dis c ussi o n is a g ai n li mit e d t o
p = 1.

T h e r est of t h e p a p er is or g a ni z e d as f oll o ws. I n S e cti o n II,
w e i ntr o d u c e t h e g e n er ali z e d dis cr et e  V A R( p )  m o d el a n d
t h e ass o ci at e d cl ass of r e g ul ari z e d  M- esti m at ors. S e cti o n III
pr es e nts o ur  m ai n r es ult,  T h e or e m 1, o n t h e c o nsist e n c y of
t h e r e g ul ari z e d  M- esti m at or a n d dis c uss es its ass u m pti o ns a n d
i m pli c ati o ns.  A p pli c ati o ns of  T h e or e m 1 t o t h e s p e ci al c as es
of  Bi n o mi al a n d  Tr u n c at e d- P oiss o n pr o c ess es ar e d et ail e d i n
S e cti o n III- B. I n S e cti o n I V,  w e pr o vi d e si m ul ati o n r es ults
c orr o b or ati n g o ur t h e or eti c al pr e di cti o ns. S e cti o n  V pr o vi d es
a n o v er vi e w of t h e pr o of of  T h e or e m 1. I n S e cti o n  VII,  w e
pr es e nt n e w t e c h ni q u es f or d eri vi n g c o n c e ntr ati o n i n e q u aliti es
f or d e p e n d e nt  m ulti v ari at e pr o c ess es.  We c o n cl u d e  wit h a dis-
c ussi o n a n d p oi nt t o s o m e o p e n pr o bl e ms a n d dir e cti o ns f or
s ol vi n g t h e m i n S e cti o n  VIII.

N ot ati o n: F or t w o s e q u e n c e {a n } a n d {b n },  w e  writ e eit h er
of a n b n or b n a n or b n = O (a n ) or a n = (a n ) t o  m e a n
t h at t h er e is a c o nst a nt C > 0 s u c h t h at a n ≥ C b n f or all n . We
writ e a n b n if b ot h a n b n a n d b n a n .  We  writ e a n b n
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or b n a n or b n = o (a n ) if b n / a n → 0 as n → ∞ . We us e
[N ] t o d e n ot e t h e s et {1 , 2 , . . . , N }. F or a s u bs et X of a v e ct or
s p a c e,  w e  writ e X × p f or t h e s et of  m atri c es  wit h p c ol u m ns
fr o m X . F or m all y X × p := { (x 1 , x 2 , . . . , x p ) | x i ∈ X , i ∈ [p ]}.
F or e x a m pl e, (R N )× p i s t h e s a m e as t h e s et of r e al- v al u e d N × p
m atri c es. I n a d diti o n,  Ta bl e I i n t h e s u p pl e m e nt ar y  m at eri al
pr o vi d es a list of all n ot ati o ns us e d i n t h e p a p er.

II.  M O D E L S  A N D M E T H O D S

T o st at e o ur r es ults i n t h eir f ull g e n er alit y,  w e c o nsi d er a
sli g htl y  m or e g e n er al  m o d el t h a n ( 1).  We ass u m e t h at t h e
m ulti v ari at e ti m e s eri es x t = (x t

i) ∈ X ⊂ R N e v ol v es as,

x t
i | z t

i ∼ Q i · | z t
i ( 3 a)

z t
i = fi

∗
i , X t− 1 D

R N × L
( 3 b)

x t
i ⊥⊥ x t

j | x t− 1 , x t− 2 , . . . ( 3 c)

f or t = 1 , 2 , . . . a n d i = 1 , 2 , . . . , N .  T h e k e y diff er e n c e h er e
is t h at  w e h a v e a d d e d a  m atri x D = [d 1 d 2 . . . d L ] ∈ R p × L ,
a k n o w n di cti o n ar y of filt ers {d }L

= 1 .  W h e n D = Ip × p ,
w e o bt ai n t h e s p e ci al c as e ( 1).  T h e r ol e of t his di cti o n ar y
will b e e x pl ai n e d b el o w.  T o  m o d el t h e dis cr et e- v al u e d n at ur e
of t h e st at es,  w e ass u m e t h at x t ∈ X := N

i= 1 X i w h er e
e a c h X i i s a b o u n d e d c o u nt a bl e s u bs et of R .  T h e  m atri x
X t− 1 = [x t− 1 x t− 2 . . . x t− p ] ∈ R N × p i s t h e p -l a g hist or y
of t h e pr o c ess u p t o ti m e t − 1, a n d Q i( · | z) is a distri b uti o n
o n X i p ar a m et eri z e d b y z. F or e x a m pl e a n e x p o n e nti al f a mil y
distri b uti o n  wit h  m e a n p ar a m et er z.  T h e  m atri c es ∗

i ∈ R N × L ,
i ∈ [N ] ar e t h e ( u n k n o w n)  m o d el p ar a m et ers a n d ·, · R N × L

i s t h e i n n er pr o d u ct.  A pr o c ess of t his f or m  will b e d e n ot e d
G V A R (p ).

T h e distri b uti o n Q i( · | z t
i) r e pr es e nts t h e c o n diti o n al distri-

b uti o n of x t
i gi v e n t h e p ast x t− 1 , x t− 2 , . . .. F u n cti o ns fi : R → R

ar e si mil ar t o t h e i n v ers e-li n k f u n cti o ns i n  G L Ms, a n d c a n b e
n o nli n e ar i n g e n er al. It is  w ort h n oti n g t h at X i a n d Q i c a n
v ar y f or e v er y v ari a bl e i ∈ [N ]  m a ki n g t h e  m o d el e xtr e m el y
fl e xi bl e t o i n cl u d e h et er o g e n e o us t y p es of dis cr et e d at a.

T h e i n n er pr o d u ct ·, · R N × L i n ( 3) is t h e  Hil b ert- S c h mi dt
i n n er pr o d u ct o n R N × L , a n d c a n b e e x p a n d e d as:

∗
i , X t− 1 D

R N × L
=

N

j= 1

L

= 1

∗
ij x t− ∗

j , d
R p

( 4)

w h er e x t− ∗
j := [x t− 1

j x t− 2
j · · · x

t− p
j ] i s t h e p -l a g hist or y of

v ari a bl e j u p t o ti m e t − 1, i. e., t h e jt h r o w of X t− 1 .  N ot e t h at

(X t− 1 D )j = x t− ∗
j , d

R p
.  T h e p ar a m et er ( ∗

i )j = ∗
ij ∈ R

c a pt ur es t h e d e p e n d e n c e of v ari a bl e x t
i o n t h e p ast a cti vit y of

v ari a bl e j, vi a x t− ∗
j .  T h e v e ct ors d ∈ R p a ct as filt ers t h at

m o d ul at e t h e  m e a n of v ari a bl e x t
i b a s e d o n t h e p ast a cti vit y of

all t h e v ari a bl es, t h at is, x k
j f or j ∈ [N ], a n d t − p ≤ k < t.

A.  Di cti o n ar y a n d  N et w or k I nt er pr et ati o ns

T h e filt ers {d } s er v e t w o  m ai n p ur p os es: (i) i nt er pr et a bilit y
a n d (ii) di m e nsi o n r e d u cti o n. F or e x a m pl e, i n n e ur os ci e n c e
a p pli c ati o ns  w h er e t h e t y p es of s pi ki n g b e h a vi ors ar e li m-
it e d, t h e pr es e n c e of a di cti o n ar y c a us es t h e  m o d el t o f a v or

s p e ci fi c f or ms of i nt er a cti o ns b et w e e n t h e s pi ki n g a cti viti es
of t w o n e ur o ns.  We r ef er t o [ 2 9]  w hi c h e x pl or es t h es e fil-
t ers f or v ari o us i nt er a cti v e b e h a vi ors a m o n g n e ur o ns s u c h
as b ursti n g, t o ni c s pi ki n g, p h asi c s pi ki n g, et c.  T h e di cti o-
n ar y i n cr e as es t h e i nt er pr et a bilit y of t h e p ar a m et er ∗

i — o n e
i nt er pr ets ( ∗

i )j a s  m e as uri n g t h e eff e ct of t h e a cti vit y of
n e ur o n i o n n e ur o n j, as e x pl ai n e d b y i nt er a cti o n t y p e .
T h us, t h e s p arsit y of ∗

i i s  m or e  m e a ni n gf ul i n t h e pr es e n c e
of a di cti o n ar y.  A n e arli er v ersi o n of t his arti cl e [ 1] c o n-
si d er e d  m o d eli n g t h e i nt er a cti o n  wit h t h e p ast as ∗

i , X t− 1

w h er e ∗
i li es i n R N × p , c orr es p o n di n g t o t a ki n g D = Ip × p ,

t h e i d e ntit y  m atri x, i n ( 4 c).  T h e f or m ul ati o n  wit h a g e n er al
di cti o n ar y D h as t h e a d d e d a d v a nt a g e of p ot e nti all y r e d u c-
i n g t h e n u m b er of fr e e p ar a m et ers fr o m N p t o N L .  W h e n
L p , t his l e a ds t o a  m assi v e di m e nsi o n r e d u cti o n.  T h e
bili n e ar t er m ∗

i , X t− 1 D
R N × L = ∗

i D , X t− 1
R N × p c a n als o

b e t h o u g ht of as a l o w-r a n k a p pr o xi m ati o n t o t h e p ar a m et er,
f or ci n g o n e f a ct or t o b e fi x e d b y D . B y a d di n g pr e- e xisti n g
k n o wl e d g e of t e m p or al i nt er a cti o ns b et w e e n v ari a bl es, t h e di c-
ti o n ar y all o ws f or a ri c h  m o d el  wit h f e w er p ar a m et ers, l e a di n g
t o  m or e (s a m pl e) ef fi ci e nt esti m at ors f or ∗ .

T h e p ar a m et er ∗ c a n b e i nt er pr et e d as r e pr es e nti n g a
n et w or k a m o n g v ari a bl es x t

i, i ∈ [N ].  A sli c e ∗ ∗ c a n
b e t h o u g ht of as a n a dj a c e n c y  m atri x f or t h e i n fl u e n c e
n et w or k e x pl ai n e d b y c o u pli n g b e h a vi or . If n e ur o ns i
a n d j ar e n ot c o n n e ct e d, t h e n ij = 0 f or all ∈ [L ].
F or e x a m pl e, i n t h e n e ur al s pi k e tr ai n a p pli c ati o n, o n e c a n
r e v e al a l at e nt n et w or k a m o n g t h e n e ur o ns (i. e.,  w h o i n fl u-
e n c es  w h os e firi n g) j ust fr o m t h e o bs er v ati o ns of p att er ns
of n e ur al a cti vit y, a t as k  w hi c h is of si g ni fi c a nt i nt er est
i n n e ur os ci e n c e [ 3 0], [ 3 1], [ 3 2]. Si mil arl y, i n t h e c o nt e xt of
s o ci al n et w or ks, o n e  mi g ht b e i nt er est e d i n  w h o is i n fl u e n ci n g
w h o m [ 3 3].

B.  E x a m pl es

T h e  G V A R( p ) pr o c ess of t h e f or m ( 3) c a n b e a p pli e d i n a
wi d e r a n g e of a p pli c ati o ns. F or e x a m pl e, l etti n g Q i( · | z) =
B er (z) a n d fi(u ) = (1 + e − u )− 1 r e c o v ers t h e  B er n o ulli a ut or e-
gr essi v e pr o c ess i n [ 1]. Si mil arl y, Q i( · | z) = Bi n o mi al (K i, z )
a n d fi(u ) = (1 + e − u )− 1 m o d els a  Bi n o mi al pr o c ess  wit h
K i tri als (f or c o or di n at e i) a n d s u c c ess pr o b a bilit y z. S u c h a
m o d el c a n b e s uit a bl e f or  m o d eli n g c o u nt d at a.  A n ot h er c o m-
m o n  m o d el f or p oi nt pr o c ess es i n n e ur os ci e n c e [ 3 1] is t h e
Tr u n c at e d- P oiss o n a ut or e gr essi v e pr o c ess gi v e n b y Q i( · | z) =
P (mi n (M i, Z ) ∈ · ) w h er e Z ∼ P oi (z), a n d fi(u ) = e x p (u ) or
fi(u ) = l o g(1 + e u ) f or s o m e i nt e g er M i [ 2 1], [ 2 3].  Alt h o u g h  w e
f o c us o n si n gl e- p ar a m et er dis cr et e distri b uti o ns i n t his arti cl e,
t h e i d e as c a n b e e asil y e xt e n d e d t o distri b uti o ns  wit h  m ulti pl e
p ar a m et ers. F or e x a m pl e, o n e c a n c o nstr u ct a c at e g ori c al or
m ulti n o mi al pr o c ess, b y all o wi n g z t

i t o b e v e ct or- v al u e d a n d
t a ki n g fi t o b e t h e s o f t m a x f u n cti o n.

C.  R e g ul ariz e d  M- Esti m ati o n

We ar e pri m aril y i nt er est e d i n p ar a m et er esti m ati o n i n t h e
hi g h- di m e nsi o n al r e gi m e  w h er e n N .  T o  m a k e t h e esti-
m ati o n f e asi bl e,  w e ass u m e t h at t h e a cti vit y of e a c h v ari a bl e i
d e p e n ds o n t h e p ast a cti vit y of o nl y a f e w n u m b er of v ari a bl es,
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s i N . We r ef er t o s i a s t h e i n- d e gr e e of v ari a bl e i. O ur
m ai n r es ult pr o vi d es s uf fi ci e nt c o n diti o ns u n d er  w hi c h p ar a m-
et er ∗ c a n b e esti m at e d i n t h e hi g h- di m e nsi o n al s etti n g  w h er e
n = p ol y ({s i}

N
i= 1 , l o g(N L p )).

Gi v e n a c oll e cti o n of l oss f u n cti o ns L it:X i × R → R , f or
i ∈ [N ] a n d t ∈ Z ,  w e c o nsi d er t h e f oll o wi n g 1 -r e g ul ari z e d
M- esti m at or

:= ar g mi n
∈ R N × N × L

N

i= 1

L i( i) + λ n 1 ,1 ,1 .

L i( i) := 1
n

n

t= 1

L it x t
i ; i, X t− 1 D ( 5)

w h er e  w e us e t h e n ot ati o n

M p ,q ,r :=

⎛

⎜
⎜
⎝

a

i= 1

⎧
⎪⎨

⎪⎩

b

j= 1

c

k = 1

M ij k
r

q
r

⎫
⎪⎬

⎪⎭

p
q
⎞

⎟
⎟
⎠

1
p

( 6)

t o d e n ot e a n or m of a a × b × c t e ns or M ( w h e n p , q , r > 1).
We als o us e a si mil ar n or m n ot ati o n f or  m atri c es M p ,q :=

a
i= 1 (

b
j= 1 |M ij|

q )
p
q . F or p = q = r = 2,  w e d e n ot e t h e n or m

s u bs cri pt b y F .
Si n c e b ot h t h e l oss f u n cti o n a n d t h e 1 p e n alt y ar e d e c o m-

p os a bl e,  w e c a n s ol v e e a c h of t h e N pr o bl e ms i n ( 5) i n d e x e d
b y i s e p ar at el y,

i := ar g mi n
i∈ R N × L

L i( i) + λ n i 1 ,1 ∀ i ∈ [N ]. ( 7)

T h e p ossi bl e d e p e n d e n c e of L it o n t i n t h e M - esti m at or ( 5)
all o ws f or t h e i n c or p or ati o n of ti m e- dis c o u nti n g f a ct ors s u c h
as γ t f or s o m e γ < 1.  We c o nsi d er a l ar g e cl ass of l oss f u n c-
ti o ns l at er st at e d e x pli citl y i n  Ass u m pti o ns ( A 2) a n d ( A 3).  T his
cl ass al w a ys i n cl u d es t h e n e g ati v e-l o g li k eli h o o d f u n cti o n f or
e x p o n e nti al f a mil y distri b uti o ns Q i( · | fi(v )) wit h l o g- c o n c a v e
li n k fi, a n d ps e u d o-li k eli h o o d f u n cti o ns i n s o m e c as es.  W h e n
L it ar e c h os e n t o b e c o n v e x, t h e  w h ol e pr o bl e m ( 5) is u n c o n-
str ai n e d, c o n v e x,  wit h a c o er ci v e o bj e cti v e f u n cti o n,  w h er e b y
t h e s ol uti o n is u ni q u e. F urt h er m or e, t h e esti m at or ( 5) c a n b e
s ol v e d ef fi ci e ntl y usi n g a n y n o n-s m o ot h c o n v e x o pti mi z ati o n
s ol v er, s u c h as t h e s u b gr a di e nt  m et h o ds or pr o xi m al gr a di-
e nt d es c e nt  m et h o ds [ 3 4].  A n i m pl e m e nt ati o n f or t h e g e n er al
pr o bl e m i n ( 5) is a v ail a bl e at [ 2]  w hi c h i m pl e m e nts b ot h t h e
s u b gr a di e nt  m et h o d as  w ell as t h e pr o xi m al gr a di e nt  m et h o d.

E a c h it er ati o n of b ot h of t h es e  m et h o ds i n v ol v e c o m p ut a-
ti o n of t h e gr a di e nt of t h e l oss f u n cti o n f oll o w e d b y fi n di n g
t h e s u b- gr a di e nt or pr o xi m al  m a p pi n g f or t h e r e g ul ari z ati o n.
C o m p uti n g t h e gr a di e nt of t h e l oss is t h e  m ost e x p e nsi v e st e p.
T h e gr a di e nt of t h e l oss is

∇ L ( i) =
1

n

n

t= 1

L it x t
i; i, X t− 1 D X t− 1 D , ( 8)

w h er e i n L it(· ; ·) t h e d eri v ati v e is  wit h r es p e ct t o t h e s e c o n d
ar g u m e nt.  T o c o m p ut e t h e gr a di e nt, X t− 1 D c a n b e pr e c o m-
p ut e d o n c e b y  m ulti pl yi n g X := { x t}n

t= − p + 1 a n d D .  H e n c e, t h e
c o m pl e xit y of o bt ai ni n g t h e gr a di e nt ∇ L ( i) at e a c h it er ati o n
is d o mi n at e d b y t h at of c o m p uti n g i, X t− 1 D f or all i, t h at is,
O (n N L ).  T o s ol v e t h e o pti mi z ati o n pr o bl e m, o n e c a n t h e n us e

t h e s u b gr a di e nt  m et h o d  wit h a pr o v a bl e c o n v er g e n c e r at e of
1 /

√
k aft er k st e ps.  T his r el ati v el y sl o w r at e is d u e t o t h e n o n-

s m o ot h n ess of t h e o bj e cti v e f u n cti o n.  Alt er n ati v el y,  w e c a n
us e t h e pr o xi m al gr a di e nt  m et h o d t h at c o n v er g es at a r at e of
1 / k .  T h e n, t h e o v er all c o m p ut ati o n al c o m pl e xit y of o bt ai ni n g
a n ε - o pti m al s ol uti o n is O (n N L / ε ) .  T h e p ar all el i m pl e m e nt a-
ti o n i n ( 7) all o ws f or  m assi v e s p e e d- u ps i n c o m p ut ati o n  w h e n
usi n g  G P Us.  T h e  m ai n r es ult of t his arti cl e c o n c er ns t h e st atis-
ti c al c o m pl e xit y of t h e esti m at or a n d is a g n osti c t o t h e c h oi c e
of t h e o pti mi z ati o n s ol v er.

O ur  m ai n r es ult est a blis h es t h e st atisti c al pr o p erti es of esti-
m at or ( 5) s u c h as c o nsist e n c y, s a m pl e c o m pl e xit y a n d err or
r at e.  O ur a n al ysis als o hi g hli g hts d esir a bl e pr o p erti es of t h e
l oss f u n cti o ns L it a n d t h e n o nli n e ariti es fi f or a c hi e vi n g c o n-
sist e n c y.  T h e r es ult als o s h o ws t h e eff e ct of t h e di cti o n ar y D
i n i n cr e asi n g t h e s a m pl e- ef fi ci e n c y of t h e esti m at or.

III.  M AI N R E S U L T S

O ur  m ai n r es ult c o n c er ns t h e esti m ati o n err or of t h e p ar a m-
et ers { i}

N
i= 1 , o bt ai n e d b y s ol vi n g ( 7).  We i m pli citl y ass u m e

∗
i t o b e a p pr o xi m at el y s i- s p ars e.  T his ass u m pti o n is e n c o d e d

vi a t h e 1 - a p pr o xi m ati o n err ors

ω i := mi n
β ∈ R N × L

β − ∗
i 1 | β 0 ,0 ≤ s i . ( 9)

We als o i m p os e t h e f oll o wi n g ass u m pti o ns:
( A 1)  T h e pr o c ess is  wi d e-s e ns e st ati o n ar y a n d st a bl e, i. e.,

t h e p o w er s p e ctr al d e nsit y  m atri x e xists:

X ( ω ) :=

∞

= − ∞

C o v x t, x t− e − jω

∈ C N × N ,

mi n
ω ∈ [− π, π )

λ mi n (X ( ω )) ≥ C 2
X > 0 .

( A 2)  T h e l oss f u n cti o n v → L it(u , v ) is t wi c e diff er e n-
ti a bl e a n d str o n gl y c o n v e x f or all u ,  wit h c ur v at ur e
κ i > 0, i. e., ∂ 2

v L it(u ; v ) ≥ κ i f or all u ∈ X i, v ∈ R , i ∈
[N ], t ∈ N + .

( A 3) |∂ v L it(u , v )| ≤ C L , a n d f or all v ∈ R , i ∈ [N ], t ∈ N +

w e h a v e

U ∼ Q i( · | fi(v )) = ⇒ E [∂ v L it(U ; v )] = 0 .

Ass u m pti o n ( A 3) g u ar a nt e es t h at ∗ i s t h e  mi ni mi z er of t h e
p o p ul ati o n l oss, a n d is n e c ess ar y f or t h e c o nsist e n c y of t h e
M - esti m at or.  T h e s e c o n d h alf of t h e ass u m pti o n is g e n er all y
s atis fi e d if t h e l oss is t a k e n t o b e t h e l o g-li k eli h o o d f u n cti o n.
T h e n e xt e x a m pl e v eri fi es t his f or si n gl e- p ar a m et er e x p o n e nti al
f a mili es.

E x a m pl e 1: Ass u m e t h at Q i(· | z) is a n e x p o n e nti al f a mil y
wit h d e nsit y x → e x p (xz − φ ( z)), f or all i.  H er e, z is t h e s o-
c all e d n at ur al p ar a m et er of t h e f a mil y a n d φ is t h e l o g- p arti o n
f u n cti o n.  L et U ∼ Q ( · | fi(v )) a n d t a k e L it(x , v ) t o b e t h e
l o g-li k eli h o o d of t his  m o d el, t h at is,

L it(x ; v ) = − xf i(v ) + φ (fi(v )).

T his cl ass i n cl u d es  B er n o ulli, P oiss o n, a n d  G a ussi a n ( wit h
k n o w n v ari a n c e)  A R pr o c ess es a m o n g ot h ers.  We h a v e

∂ v L it(U ; v ) = − Uf i (v ) + φ (fi(v ))fi (v ).
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B y a st a n d ar d pr o p ert y of t h e e x p o n e nti al f a mil y E [U ] =
φ (fi(v )), h e n c e E [∂ v L it(U ; v )] = 0 v erif yi n g t h e s e c o n d
h alf of ( A 3). If, i n a d diti o n, t h e f a mil y h as b o u n d e d s u p p ort
a n d b ot h φ a n d fi ar e  Li ps c hit z, t h e n t h e e ntir e ( A 3) h ol ds.
Distri b uti o ns s u c h as P oiss o n a n d  G a ussi a n vi ol at e t h e b o u n d-
e d n ess ass u m pti o n.  H o w e v er, t h e tr u n c at e d v ersi o n of t h es e
distri b uti o ns b el o n g t o t h e e x p o n e nti al f a mil y a n d s atisf y t h e
b o u n d e d n ess c o n diti o n.

E x a m pl e 2: U n d er t h e s a m e e x p o n e nti al f a mil y distri b uti o n
as i n  E x a m pl e 1, t h e s e c o n d h alf of ( A 3) als o h ol ds f or t h e
s q u ar e d err or l oss

L it(x ; v ) = x − φ (fi(v ))
2
.

T o v erif y t his, it is e n o u g h t o o bs er v e t h at

∂ L it(U ; v ) = 2 U − φ (fi(v )) · φ (fi(v ))fi (v ),

a n d us e E [U ] = φ (fi(v )).
T h es e t w o e x a m pl es s h o w t h at ( A 3) is s atis fi e d f or c o m-

m o nl y us e d l oss f u n cti o ns.  As f or ( A 2),  w e r e c all t h at i n a n
e x p o n e nti al f a mil y  wit h t h e n at ur al p ar a m et eri z ati o n, t h e l o g-
p artiti o n f u n cti o n φ ( ·) is c o n v e x.  Ass u m pti o n ( A 2), h o w e v er,
r e q uir es t h e  m a p v → L it(u , v ) t o b e str o n gl y c o n v e x.  E xtr a
c ar e s h o ul d b e t a k e n i n c h o osi n g t h e l oss a n d fi(·) t o e ns ur e
t h at t his ass u m pti o n is s atis fi e d.  T h e st a bilit y  Ass u m pti o n ( A 1)
is f urt h er dis c uss e d i n t h e r e m ar ks f oll o wi n g t h e  m ai n r es ult.

L et us n o w d e fi n e a f e w c o nst a nts n e c ess ar y t o st at e o ur
m ai n r es ult.  L et

C D := m a x d 1 ,

G = G f (
∗ ) := 6 4 C 4

D B 4 1 + p 2 ψ τ 1
∗ , ( 1 0)

w h er e ψ ( x ) = (1 − x − 1 )− 2 a n d

τ 1
∗ := s u p

z,y ∈ X × p
P z − P y T V

< 1 ,

P z := P X t+ p = · | X t = z , z ∈ X × p . ( 1 1)

H er e, X × p ⊂ R N × p d e n ot es t h e s et of  m atri c es c o nsisti n g
of p c ol u m ns, e a c h fr o m X .  N ot e t h at P z i s t-i n v ari a nt. Fi x
U ⊂ [N ] a n d l et us  writ e

s m a x := m a x
i∈ U

s i, s + :=

i∈ U

s i, κ := m a x
i∈ U

κ i

κ :=
C 2

X

8
mi n
i∈ U

κ i, a n d ω + :=

i∈ U

κ
ω 2

i

s i
+ 4 ω i, ( 1 2)

w h er e κ i a n d C X ar e s p e ci fi e d i n ( A 2) a n d ( A 1).  We ar e n o w
r e a d y t o st at e t h e  m ai n r es ult:

T h e or e m 1: S u p p os e t h at {x t}n
t= − p + 1 ar e s a m pl es fr o m pr o-

c ess ( 3),  wit h e a c h X i b ei n g a c o u nt a bl e s u bs ets of [ − B , B ]
f or s o m e B > 0, a n d s atisf yi n g ( A 1). Fi x a s u bs et U ⊆ [N ]
a n d l et { i}i∈ U b e t h e s ol uti o ns of ( 7)  wit h l oss f u n cti o ns L it

s atisf yi n g ( A 2)-( A 3). Fi x c 1 > 2 a n d l et c = c 1 / 2 − 1. If

λ n = 2 B C L C D c 1 l o g(|U |N L ) /n , a n d

n
G

C 6
X

s 3
m a x l o g(N L ),

t h e n,  wit h pr o b a bilit y at l e ast 1 − (N L )− Cs m a x − (|U |N L )− c ,

i∈ U

i − ∗
i

2

F
≤

9

κ 2
s + λ 2

n +
ω +

κ
λ n . ( 1 3)

w h er e C = O C − 2
X o nl y d e p e n ds o n C X .

T h e err or b o u n d i n ( 1 3) c a n b e  writt e n, u p t o c o nst a nts, as:

i∈ U

i − ∗
i

2

F

s + l o g(N L )

n
+ ω +

l o g(N L )

n
. ( 1 4)

T h e t w o t er ms i n t h e b o u n d c orr es p o n d t o t h e esti m ati o n a n d
a p pr o xi m ati o n err ors, r es p e cti v el y.  T h e esti m ati o n err or s c al es
at t h e s o- c all e d f ast r at e l o g(N L ) /n ,  w hil e t h e a p pr o xi m ati o n
err or s c al es at t h e sl o w er r at e l o g(N L ) /n . F or t h e e x a ct s p ar-
sit y  m o d el,  w h er e ω i = 0 f or all i, t h e a p pr o xi m ati o n err or
v a nis h es a n d t h e esti m at or a c hi e v es t h e f ast r at e. F or si m pli c-
it y, ass u m e t h at C L , C D 1 C X .  T h e n, t h e o v er all ( e x c ess)
s a m pl e c o m pl e xit y f or c o nsist e nt esti m ati o n is

n m a x Gs 3
m a x , s + , (ω + )2 l o g(N L ). ( 1 5)

B y c o nsist e n c y,  w e  m e a n t h at t h e esti m at or c o n v er g es t o t h e
tr u e p ar a m et er  w h e n n gr o ws t o i n fi nit y, as l o n g as t h e a b o v e
c o n diti o n h ol ds, e v e n  w h e n t h e r est of t h e p ar a m et ers s, p , L
a n d N gr o w t o i n fi nit y al o n gsi d e n .  We dis c uss t h e  m e a ni n g
of t h e “ e x c ess ” q u ali fi c ati o n f or t h e s a m pl e c o m pl e xit y i n t h e
r e m ar ks b el o w.

B o u n d ( 1 4) h as a l o g arit h mi c d e p e n d e n c e o n N , t h e n u m-
b er of v ari a bl es i n t h e pr o c ess,  w hi c h is a n ot a bl e f e at ur e
of o ur  w or k.  C o m p ar e d t o s o m e of t h e pr e vi o us  w or k [ 2 7],
w e o v er c o m e t h e N > 1 b arri er f or t h e  B A R  m o d el  w hil e
all o wi n g f or p > 1 d e p e n d e n c e o n t h e p ast.  T h e b o u n d als o
d e p e n ds l o g arit h mi c all y o n L .  T his  m e a ns t h at di cti o n ar y D
c a n b e o v er c o m pl et e, all o wi n g f or ∗ t o b e s p ars e, f or n e arl y
n o a d diti o n al c ost.

A.  R e m ar ks o n T h e or e m 1

L et us  m a k e a f e w c o m m e nts o n t h e v ari o us c h oi c es i n
T h e or e m 1:

a) C h oi c e of t h e L oss L : T h e or e m 1 h ol ds f or a n y l oss f u n c-
ti o n s atisf yi n g c o n diti o ns ( A 2) a n d ( A 3). F or t h e  B er n o ulli  A R
pr o c ess, t h e n e g ati v e l o g-li k eli h o o d L i,t(u , v ) = − u l o g fi(v ) −
(1 − u ) l o g(1 − fi(v )) s atis fi es t h es e ass u m pti o ns f or a n y
l o g- c o n c a v e fi; s e e [ 1]. F or t h e  Tr u n c at e d- P oiss o n  A R pr o-
c ess, t h e n e g ati v e l o g-li k eli h o o d t a k es t h e f or m L it(u , v ) =
fi(v ) − u l o g fi(v ) + l o g(u !) a n d s atis fi es t h e ass u m pti o ns f or
fi(v ) = e x p (v ) or fi(v ) = l o g(1 + e v ).

b) C h oi c e of U : T h e r es ult i n  T h e or e m 1 h as b e e n st at e d
f or a g e n er al U ⊆ [N ].  Ta ki n g U = [N ], gi v es a b o u n d o n t h e
Fr o b e ni us n or m of t h e e ntir e t e ns or − ∗ 2

F .  O n t h e ot h er
e xtr e m e,  w e c a n t a k e U = { i} t o o bt ai n b o u n ds o n e a c h sli c e of
t h e t e ns or  wit h b ett er s c ali n g  wit h s p arsit y. F or e x a m pl e, i n t h e
e x a ct s p arsit y s etti n g,  w e o bt ai n i − ∗

i
2 s i l o g(N L ) /n ,

a v oi di n g t h e e xtr a pri c e of ( j= i s j) l o g(N L ) /n t h at  w e p a y
f or t h e e ntir e t e ns or.

c) S c ali n g  Wit h S p arsit y: C o nsi d eri n g t h e e x a ct s p arsit y s et-
ti n g, t h e s c ali n g of t h e s a m pl e c o m pl e xit y ( 1 5)  wit h s p arsit y
is n = (s + ∨ s 3

m a x ). I n t h e  w orst c as e, s + = s m a x a n d  w e g et
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a c u bi c d e p e n d e n c e o n s p arsit y  w hi c h is n ot i d e al.  H o w e v er,
w h e n s + s 3

m a x ,  T h e or e m 1 r e q uir es n = (s + ) w hi c h is t h e
o pti m al s c ali n g  wit h s p arsit y. ( T his c a n b e s e e n b y n oti n g t h at
i n t h e li n e ar i n d e p e n d e nt s etti n g, o n e c a n n ot d o b ett er t h a n
n = (s + ).)  O ur r es ult als o h ol ds f or t h e  m or e g e n er al c as e
of ω i = 0. F or e x a m pl e, f or t h e q b all s p arsit y  wit h q ∈ (0 , 1 ),

w e h a v e ω i = O (s
1 − 1 / q
i ) h e n c e ω 2

i / s i + w i = O (ω i) = O (s i)
a n d ω + = O (s + ) a n d t h e s a m e s a m pl e c o m pl e xit y as t h e e x a ct
s p arsit y c as e h ol ds.

It is n ot cl e ar if t h e  w orst- c as e c u bi c d e p e n d e n c e o n t h e
s p arsit y c a n b e i m pr o v e d  wit h o ut i m p osi n g r estri cti v e ass u m p-
ti o ns. It is  w ort h n oti n g t h at i n o ur pr o of, t h e a d diti o n al s 2

i
f a ct or c o m es fr o m c o n c e ntr ati o n i n e q u alit y ( 3 3) i n  L e m m a 5.
T his a d diti o n al f a ct or c a n b e r e m o v e d if o n e  w er e a bl e t o s h o w
s u b- G a ussi a n c o n c e ntr ati o n f or d e vi ati o ns of t h e or d er of β 2

F
i n st e a d of β 2

1 ,1 , i n  L e m m a 5. It r e m ai ns o p e n  w h et h er s u c h
c o n c e ntr ati o n is p ossi bl e a n d u n d er  w h at a d diti o n al ass u m p-
ti o ns. S e cti o n  VII pr o vi d es a  m or e d et ail e d dis c ussi o n o n t his
c o n c e ntr ati o n i n e q u alit y. Fi g ur e 4( a) i n S e cti o n I V s u g g ests
a s u p erli n e ar d e p e n d e n c e o n s, hi nti n g t h at t h e sit u ati o n  m a y
n ot b e as si m pl e as t h e i.i. d. c as e.

F or p = 1, a s a m pl e c o m pl e xit y of ρ 3 l o g(N ) w as r e p ort e d
i n [ 2 1,  C or oll ar y 1].  O n e c a n v erif y t h at ρ i n t h eir  m o d el
is e q u al t o s m a x i n o urs, h e n c e t h e y o bt ai n t h e s a m e s 3

m a x
d e p e n d e n c e o n s p arsit y. Si mil arl y f or p = 2, t h e r es ult i n
[ 2 3,  T h. 4. 4] r e q uir es (s/ r 2

ρ ) l o g(N ) s a m pl es  w h er e s a n d r ρ

ar e s p arsit y p ar a m et ers d e fi n e d t h er ei n a n d r ρ i s i n v ers el y
r el at e d t o s m a x i n t h e  w orst c as e, yi el di n g a si mil ar c u bi c
d e p e n d e n c e o n s p arsit y as o urs. F urt h er m or e, it a p p e ars t h at
t h eir a n al ysis o nl y h ol ds f or s m a x = O (1 ),  w h er e as  w e  m a k e
n o s u c h ass u m pti o n. I n s h ort, t o o ur k n o wl e d g e, n o pri or  w or k
h as br o k e n t h e s 3

m a x b arri er i n t h e n o n- G a ussi a n  A R s etti n g.
d) S c ali n g  Wit h L a g p: O ur r es ult is t h e first t o pr o vi d e

s uf fi ci e nt c o n diti o ns f or a s a m pl e c o m pl e xit y l o g arit h mi c i n
p i n t h e c as e of t h e i d e ntit y di cti o n ar y, f or a n y v al u e of N .
As  will b e dis c uss e d i n S e cti o n III- B, t h e d e p e n d e n c e of t h e
( e x c ess) s a m pl e si z e n o n p c o ul d b e as g o o d as O (l o g L ) f or
a g e n er al di cti o n ar y, u n d er c ert ai n t ail a n d n or m ali z ati o n c o n-
diti o ns. I n t h es e c as es, o n e c o ul d o bt ai n a n O (1 ) gr o wt h of
n as f u n cti o n of p i n t h e b est c as e ( w h e n L = O (1 )) a n d
a n O (l o g p ) gr o wt h i n t h e  w ors e c as e (t h e i d e ntit y di cti o-
n ar y). I n c o ntr ast, [ 2 7,  T h. 1] r e q uir es s 2 / 3 p 2 / 3 l o g(p ) s a m pl es,
f or t h e i d e ntit y di cti o n ar y, a n d t h eir pr o of r eli es h e a vil y
o n N = 1.

O ur b o u n d s c al es  wit h p t hr o u g h G w hi c h is d e fi n e d i n
t er ms of t h e c o ntr a cti o n c o ef fi ci e nt τ 1 (

∗ ) i n ( 1 1).  T h e c o n-

tr a cti o n c o ef fi ci e nt o nl y d e p e n ds o n ∗ a n d is al w a ys l ess t h a n

1. I nt uiti v el y, if ∗ i s t o o l ar g e, t h e n f or t w o diff er e nt i niti al-
i z ati o ns z a n d y , t h e distri b uti o ns P (X t+ p = · | X t = y ) a n d

P (X t+ p = · | X t = z ) m a y si g ni fi c a ntl y diff er.  A cl e ar s uf fi-

ci e nt c o n diti o n f or G = O (1 ) is t o h a v e τ 1 (
∗ ) = O p − 1 a s

w ell as C D 1.  T h e c h all e n g e is t o c o ntr ol τ 1 (
∗ ) i n t er ms of

t h e si z e of ∗ . S e cti o n III- B f urt h er dis c uss es s uf fi ci e nt c o n di-
ti o ns u n d er  w hi c h G = O (1 ).  T h er e,  w e s h o w t h at f or c ert ai n

e x p o n e nti al f a mili es, t h e s c ali n g d e p e n ds o n t h e b e h a vi or of
t h e t ail of k → | (d )k |, t h at is, h o w f ast t h e i n fl u e n c e fr o m t h e
p ast di es d o w n i n t h e filt ers {d }.

A s u btl e p oi nt  w ort h n oti n g h er e,  w hi c h d o es n ot aris e i n
or di n ar y M - esti m ati o n  wit h i.i. d.  m e as ur e m e nts, is t h at n is
i n f a ct t h e e x c ess s a m pl e-si z e o n e n e e ds b e y o n d t h e p i ni-
ti al s a m pl es. It is cl e ar t h at at l e ast p i niti al s a m pl es ar e
n e e d e d f or esti m ati n g a p -l a g pr o c ess.  E x a m pl es dis c uss e d i n
S e cti o n III- B pr o vi d e c o n diti o ns t h at g u ar a nt e e t h at t h e e x c ess
s a m pl e si z e, n , n e e d e d f or c o nsist e nt esti m ati o n is O (l o g L ) as
p gr o ws, t h e s m all est or d er o n e c o ul d h o p e f or.

e) St a bilit y  Ass u m pti o n ( A 1): We us e  Ass u m pti o n ( A 1) t o
g u ar a nt e e t h at t h e str o n g c o n v e xit y h ol ds f or t h e p o p ul ati o n
l oss → E L ( ).  T his is k e y i n g u ar a nt e ei n g t h at a n y p ar a m-
et er t e ns or t h at  m a xi mi z es t h e r e g ul ari z e d l oss f u n cti o n
i n ( 5) d o es n ot d e vi at e f ar fr o m t h e tr u e p ar a m et er ∗ .

Ass u m pti o n ( A 1) is b y n o w st a n d ar d i n ti m e-s eri es esti m a-
ti o n lit er at ur e [ 9], [ 1 0], [ 3 5].  T h e q u a ntit y C X i s f u n d a m e nt al
t o  m ulti v ari at e ti m e-s eri es a n al ysis, h o w e v er, its b e h a vi or as a
f u n cti o n of t h e p ar a m et ers of t h e  m o d el is n ot y et f ull y u n d er-
st o o d. I nt uiti v el y, C X i s r el at e d t o t h e fl at n ess of t h e p o w er
s p e ctr al d e nsit y ( P S D) X , a n d t h e st a bilit y of t h e pr o c ess. F or
t h e N = 1 c as e, C X > 0 i m pli es t h at t h e pr o c ess d o es n ot
h a v e z er os o n t h e u nit cir cl e i n t h e s p e ctr al d o m ai n.

I n g e n er al, C X c o ul d p ot e nti all y d e p e n d o n N , i n dir e ctl y
vi a ∗ . I n s u bs e q u e nt dis c ussi o ns of  T h e or e m 1,  w e h a v e
ass u m e d t h at C X st a ys u nif or ml y b o u n d e d a w a y fr o m z er o as
N gr o ws.  T his ass u m pti o n is e x pli citl y st at e d as C X 1.  O ur
m ai n r es ult ( T h e or e m 1), h o w e v er, h ol ds f or all p ositi v e v al u es
of C X , r e g ar dl ess of its gr o wt h r at e.  E v e n if C X = o (1 ) wit h
r es p e ct t o N ,  T h e or e m 1 still gi v es a c o nsist e n c y r es ult, al b eit
wit h a  w ors e d e p e n d e n c e o n N .

T h e d e p e n d e n c e of C X o n N o c c urs t hr o u g h t h e s c ali n g
of t h e tr u e p ar a m et er ∗ .  T h at C X i s i n g e n er al b o u n d e d
b el o w b y a c o nst a nt ( or h as a sl o w d e c a y as a f u n cti o n of
N ) is p art of t h e f ol kl or e of t h e ti m e s eri es lit er at ur e. It is
r e as o n a bl e t o ass u m e t h at t his h ol ds f or c ert ai n str u ct ur e d ∗ .
H o w e v er, o bt ai ni n g e x a ct c o n diti o ns o n ∗ f or C X 1 t o h ol d
is, i n g e n er al, a n o n-tri vi al o p e n pr o bl e m, e v e n f or u ni v ari at e
G a ussi a n  A R( p ) pr o c ess es.  T h e  m ai n dif fi c ult y is t h at t h e r el a-
ti o n b et w e e n t h e p o w er s p e ctr al d e nsit y of t h e pr o c ess a n d its
p ar a m et er is i n dir e ct a n d vi a t h e  Z-tr a nsf or m.  N e v ert h el ess,
c o n diti o ns ar e k n o w n i n s p e ci al c as es. S e e f or e x a m pl e t h e
dis c ussi o n s urr o u n di n g i n [ 9, Pr o p ositi o n 2. 2],  w h er e e x pli cit
c o n diti o ns ar e gi v e n o n t h e p ar a m et er  m atri x of a  V A R( 1)
G a ussi a n pr o c ess, f or C X t o st a y b o u n d e d a w a y fr o m z er o.

B. S p e ci al  C as es

L et us n o w l o o k at t h e a p pli c ati o ns of  T h e or e m 1 t o t w o
s p e ci al c as es oft e n c o nsi d er e d i n dis cr et e- v al u e d ti m e s eri es
m o d eli n g  —  Bi n o mi al a n d P oiss o n  A R pr o c ess es.  We t a k e
U = [N ] t hr o u g h o ut t his s e cti o n.  T o a p pl y t h e t h e or e m,  w e
n e e d t o u p p er- b o u n d G f (

∗ ) i n e a c h c as e. Si n c e t h e ψ f u n c-
ti o n i n ( 1 0) is n o n- d e cr e asi n g o n [ 0, 1 ), it is e n o u g h t o c o ntr ol
τ 1 (

∗ ). I n f a ct, a s uf fi ci e nt c o n diti o n f or G f (
∗ ) = O (1 ) is

t o h a v e τ 1 (
∗ ) = O ( 1

p ) a n d C D = O (1 ).
T h e q u a ntit y τ 1 (

∗ ) is t h e  m a xi m u m t ot al v ari ati o n dist a n c e
b et w e e n t h e p -st e p c o n diti o n al distri b uti o ns of t h e pr o c ess,
st arti n g fr o m t w o i niti al st at es y a n d z.  T h e Pi ns k er’s i n e q u al-
it y [ 3 6, p. 4 4] c a n b e us e d t o f urt h er c o ntr ol t h e t ot al
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v ari ati o n dist a n c e b y t h e  K L di v er g e n c e,  w hi c h is t h e n at ur al
c h oi c e f or c o m p ari n g t w o e x p o n e nti al f a mil y distri b uti o ns  wit h
i n d e p e n d e nt c o or di n at es.

R e c all X = N
i= 1 X i ⊂ [ − B , B ]N a n d t h e n ot ati o n P z

fr o m ( 1 1). Pi ns k er’s i n e q u alit y yi el ds

τ 2
1

∗ ≤ s u p
z,y ∈ X × p

1
2 D K L P z P y , ( 1 6)

w h er e D K L (· ·) is t h e  K L- di v er g e n c e.  We n o w st at e u p p er
b o u n ds o n D K L (P z P y ) f or t h e t w o c as es of t h e  Bi n o mi al a n d
P oiss o n pr o c ess es.  A q u a ntit y of i nt er est is t h e t ail d e c a y of
t h e di cti o n ar y el e m e nts {d }L

= 1 ,  m e as ur e d b y

γ t :=

p

m = t

(d )m . ( 1 7)

L et us d e fi n e t h e f oll o wi n g n or m o n ,

:=

⎛

⎜
⎝

i,t

L 2
i

⎡

⎣

j,

γ t ij

⎤

⎦

2
⎞

⎟
⎠

1 / 2

w h er e L i i s t h e  Li ps c hit z c o nst a nt of t h e li n k f u n cti o n fi, a n d
t h e s u m m ati o ns r u n o v er (i, t, j, ) ∈ [N ] × [p ] × [N ] × [L ].
O n e c a n oft e n est a blis h a b o u n d of t h e f or m

D K L P z P y ≤ C f B
2 ∗ 2 ( 1 8)

w h er e C f d e p e n ds o n {fi} a n d ∗ i s t h e tr u e p ar a m et er
g e n er ati n g t h e s a m pl es.

L e m m a 1: C o nsi d er a  Bi n o mi al  A R pr o c ess gi v e n b y ( 3)
wit h X i = { 0 , 1 , . . . , K i},  w h er e K i ≤ B , a n d Q i( · | z) =
Bi n (K i, z ).  Ass u m e t h at fi i s L i- Li ps c hit z, a n d f or s o m e
ε ∈ (0 , 1

2 ), fi : R → [ε, 1 − ε ] f or all i.  T h e n, ( 1 8) h ol ds
wit h C f = 6 / ε .

T h e c as e of B = 1 r e c o v ers t h e r es ult f or t h e  B er n o ulli
A ut or e gr essi v e Pr o c ess i n [ 1].

L e m m a 2: C o nsi d er a  Tr u n c at e d P oiss o n  A R pr o c ess gi v e n
b y ( 3)  wit h X i = { 0 , 1 , . . . , K i} a n d Q i( · | z) = P (mi n (K i, Z ) ∈
·) w h er e Z ∼ P oi (z) a n d K i ≤ B .  Ass u m e t h at fi i s L i- Li ps c hit z,
a n d f or s o m e ε > 0, fi : R → [ε, ∞ ) f or all i.  T h e n, ( 1 8) h ol ds
wit h C f = 4 / ε .

C o m bi ni n g  wit h ( 1 6),  w e h a v e t h e f oll o wi n g c or oll ar y.
C or oll ar y 1: U n d er t h e ass u m pti o ns of  L e m m a 1 or 2,

τ 1
∗ B

√
ε

∗ .

I n p arti c ul ar, if C L , C D 1 C X a n d ∗ = O (1 / p ), t h e n
G = O (1 ) a n d t h e f oll o wi n g is s uf fi ci e nt f or c o nsist e n c y:

n m a x s 3
m a x , s + , (ω + )2 l o g(N L ).

I n ot h er  w or ds,  C or oll ar y 1 pr o vi d es c o n diti o ns u n d er  w hi c h
c o nsist e nt esti m ati o n is p ossi bl e  wit h ( e x c ess) s a m pl e c o m-
pl e xit y t h at gr o ws at  m ost l o g arit h mi c all y i n L .

L et us c o nsi d er s o m e e x a m pl es f or  w hi c h ∗ = O (1 / p ).
F or t h e p ur p os e of ill ustr ati o n, l et us s e p ar at e t h e t ail d e c a y
of ∗ , al o n g t h e l a g di m e nsi o n, b y ass u mi n g t h at

∗
ij ≤ R ijh , ∀ (i, j, ) ∈ [N ] × [N ] × [L ].

f or s o m e s e q u e n c e {h }∞
= 1 s u c h t h at ∞

= 1 h < ∞ a n d a
m atri x R = (R ij).  Ass u m e t h at ∗

ij i s n or m ali z e d s o t h at
R 2 ,1 = O (1 ).  M or e o v er, ass u m e t h at  m a xi L i = O (1 / p ).

Si n c e i n  m o d el ( 3), t h e i n p ut t o e a c h fi i n v ol v es t er ms
x t− ∗

j , d R p , e a c h of  w hi c h is ess e nti all y a s u m of p t er ms
(s e e ( 4)), t h e af or e m e nti o n e d ass u m pti o n o n t h e  Li ps c hit z c o n-
st a nt is a n at ur al n or m ali z ati o n t h at pr e v e nts t h e s at ur ati o n of
t h e n o nli n e ariti es fi a s p gr o ws.  E q ui v al e ntl y,  w e c a n  m a k e
t his c o n diti o n  m or e e x pli cit b y r e pl a ci n g fi(·) i n t h e d e fi niti o n
of  m o d el ( 3)  wit h f̃i(

1
p ·) a n d ass u mi n g t h at f̃i h a v e  Li ps c hit z

c o nst a nts u nif or ml y b o u n d e d b y a c o nst a nt.
U n d er t h e a b o v e  m o d eli n g ass u m pti o ns, c o nsi d er t h e f ol-

l o wi n g t w o di cti o n ari es:
C as e ( a): T h e i d e ntit y di cti o n ar y,  w h er e L = p a n d (d )m =

1 {m = }. I n t his c as e, γ t = 1 {t ≤ }.  T h e n,

1

p
R 2 ,1

⎡

⎣
p

t= 1

p

= t

h

2
⎤

⎦

1 / 2

= O
1

p

ass u mi n g t h at ∞
t= 1 (

∞
= t h )2 < ∞ w hi c h h ol ds, f or e x a m-

pl e, if h d e c a ys at l e ast as f ast as − 1 − α / 2 f or s o m e α > 1.
N ot e t h at i n t his c as e C D 1 is tri vi all y s atis fi e d.

C as e ( b): A g e n er al di cti o n ar y,  wit h filt ers s atisf yi n g t h e
d e c a y r at e  m a x |(d )m | m − α − 1 f or s o m e α > 1.  T h e n,
m a x γ t t− α a n d

1

p
R 2 ,1

p

t= 1

t− 2 α

1 / 2 p

= 1

h = O
1

p

usi n g ∞
t= 1 t− 2 α < ∞ a n d ∞

= 1 h < ∞ .  M or e o v er, si n c e
w e h a v e C D

p
m = 1 m − α − 1 , it f oll o ws t h at C D = O (1 ) as p

gr o ws.
T h us i n b ot h c as es,  C or oll ar y 1 g u ar a nt e es t h at t h e e x c ess

s a m pl e si z e n n e e d e d f or c o nsist e n c y gr o ws at  m ost l o g arit h-
mi c all y i n L .  T his tr a nsl at es t o a n O (l o g p ) gr o wt h i n t h e c as e
t h e i d e ntit y di cti o n ar y b ut c o ul d b e as l o w as O (1 ) f or a di c-
ti o n ar y  wit h t h e n u m b er of filt ers L n ot gr o wi n g  wit h p . N ot e
t h at t h e s u m m a bilit y c o n diti o n o n h i n c as e ( b) is  mil d er t h a n
t h at i n c as e ( a), s h o wi n g t h e tr a d e- off b et w e e n t h e t ail d e c a y
of ( al o n g t h e l a g di m e nsi o n) a n d t h e t ail d e c a y of t h e di c-
ti o n ar y filt ers.  H a vi n g f ast d e c a yi n g filt ers r el a x es t h e d e c a y
r e q uir e m e nt o n t h e t ails of .

I V.  S I M U L A T I O N S

I n t his s e cti o n,  w e e v al u at e t h e p erf or m a n c e of t h e esti m at or
i n ( 5) usi n g si m ul at e d d at a.  We g e n er at e t h e d at a usi n g t h e
m o d el i n ( 3). I n all t h e e x a m pl es,  w e first r a n d o ml y g e n er at e

∗ a n d D .  T o g e n er at e ∗ ,  w e s el e ct t h e s u p p ort of ∗
i f or

e a c h i u nif or ml y at r a n d o m b as e d o n t h e s p arsit y s i.  We t h e n
fill t h e s u p p ort  wit h i.i. d. dr a ws of t h e n or m al distri b uti o n, a n d
fi n all y n or m ali z e s u c h t h at ∗

i 1 ,1 i s a c o nst a nt.
T o r e p ort t h e p erf or m a n c e of ( 5),  w e us e t h e  m etri c

n or m ali z e d s q u ar e d err or ( N S E) d e fi n e d as:

N S E ∗ , =
∗ −

2

F
∗ 2

F

. ( 1 9)
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Fi g. 1. P oiss o n  A R( p ) pr o c ess  wit h o ut a di cti o n ar y (i. e., D = I p ).

Fi g. 2. P oiss o n  A R( p ) pr o c ess  wit h di cti o n ar y of si z e L = 2 0.

t o n or m ali z e v ari ati o ns i n t h e si z e of t h e p ar a m et er a cr oss
i n d e p e n d e nt i nst a n c es of ∗ .  A n i m pl e m e nt ati o n is pr o vi d e d
at [ 2].  We c o nsi d er t h e f oll o wi n g 3 pr o c ess es.

A.  P oiss o n  A R( p)  Pr o c ess  Wit h o ut  Di cti o n ar y

We e v al u at e t h e p erf or m a n c e of t h e r e g ul ari z e d  m a xi m u m
li k eli h o o d a n d t h e r e g ul ari z e d l e ast-s q u ar es esti m at ors o n a
P oiss o n pr o c ess  wit h n o di cti o n ar y, i. e., D = I p . F or t h e
P oiss o n pr o c ess,  w e us e t h e i n v ers e li n k f u n cti o n fi(z ) =
l o g(1 + e z ).  T h e n, t h es e esti m at ors h a v e t h e f or m of ( 5)  wit h

L M L
it x t

i; z t
i = z t

i − x t
i l o g z t

i , ( 2 0 a)

L L S
it x t

i; z t
i = x t

i − z t
i

2
, ( 2 0 b)

w h er e z t
i = f ( ∗

i , X t− 1 ), si n c e D = I p .  N ot e t h at t h e  M-
esti m ati o n pr o bl e m i n ( 5) c orr es p o n di n g t o ( 2 0 a) is c o n v e x,
w h er e as it is n o n- c o n v e x f or ( 2 0 b) ( w e r e p ort a l o c al  mi n-
i m u m).  H er e,  w e g e n er at e t h e gr o u n d tr ut h p ar a m et ers as

m e nti o n e d b ef or e  wit h N = 5 0 a n d p = 2 0 a n d  w e us e
λ n = 0 .0 5 /

√
n .  W h e n c o m p ari n g N S E v/s n , e a c h i h as

s p arsit y 2 0.  T h e r es ults ar e s h o w n i n Fi g ur e 1.  T h e err or
s h a d es c orr es p o n d t o o n e st a n d ar d d e vi ati o n o v er 5 i n d e-
p e n d e nt i nst a n c es of ( ∗ , ).  Wit h t h e  N S E  m etri c, t h e
r e g ul ari z e d  m a xi m u m li k eli h o o d esti m at or a p p e ars t o p erf or m
b ett er f or t h e P oiss o n  A R( p ) pr o c ess, f or t h e r a n d o m e ns e m bl e
of pr o bl e ms g e n er at e d i n t h es e e x a m pl es.

B.  P oiss o n  A R( p)  Pr o c ess  Wit h  Di cti o n ar y

We c h o os e D t o b e e ntr y wis e i.i. d.  G a ussi a n  wit h st a n d ar d
d e vi ati o n σ / p f or a c o nst a nt σ , s o t h at t h e 1 - n or m of all
c ol u m ns of D ar e cl os e t o a c o nst a nt f or l ar g e p (t h e c o n-
st a nt b ei n g t h e  m e a n of a f ol d e d n or m al distri b uti o n).  T h e
pr o c ess is g e n er at e d as i n t h e pr e vi o us e x a m pl e usi n g ( 3).  We
t a k e N = 5 0 , p = 2 0 0 , a n d L = 2 0 s u c h t h at t h e pr o c ess
h as v er y l o n g r a n g e d e p e n d e n ci es.  We a g ai n c o nsi d er t h e t w o
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Fi g. 3.  B er n o ulli  A R( p ) pr o c ess  wit h o ut di cti o n ar y.

r e g ul ari z e d  M- esti m at ors: t h e r e g ul ari z e d  m a xi m u m li k eli h o o d
a n d t h e r e g ul ari z e d l e ast-s q u ar es  wit h t h e i n v ers e li n k f u n c-
ti o n f (z) = l o g(1 + e z ).  T h es e esti m at ors ar e i d e nti c al t o t h e
o n es i n ( 2 0 a) a n d ( 2 0 b), e x c e pt t h at z t

i = f ( i, X t− 1 D ) wit h
D = I p .

T h e r es ults ar e s h o w n i n Fi g ur e 2.  T h e y ar e v er y si mi-
l ar t o Fi g ur e 1. I n a c c or d a n c e  wit h o ur t h e or eti c al r es ults,
t h es e fi g ur es s u g g est t h at f or a n  A R pr o c ess es  wit h v er y l o n g
r a n g e d e p e n d e n ci es, esti m ati n g t h e p ar a m et er is e asi er i n t h e
pr es e n c e of a di cti o n ar y.

C.  B er n o ulli  A R( p)  Pr o c ess  Wit h o ut  Di cti o n ar y

Fi n all y,  w e l o o k at a  B er n o ulli a ut or e gr essi v e pr o c ess.  We
us e t h e si g m oi d f u n cti o n, f (z) = 1 /( 1 + e − z ), as t h e i n v ers e

li n k f u n cti o n.  We c o m p ar e t h e p erf or m a n c e of r e g ul ari z e d
m a xi m u m li k eli h o o d esti m at or t o r e g ul ari z e d l e ast-s q u ar es
esti m at or.  B ot h of t h es e esti m at ors h a v e t h e f or m of ( 5)  wit h

L M L
it x t

i; z t
i = − z t

i l o g x t
i − 1 − x t

i l o g 1 − z t
i ( 2 1 a)

L L S
it x t

i; z t
i = x t

i − z t
i

2
, ( 2 1 b)

w h er e z t
i = f ( i, X t− 1 ) i s t h e  m e a n p ar a m et er of t h e di m e n-

si o n i of t h e  B er n o ulli pr o c ess at ti m e t.  N ot e t h at d u e t o
i n v ers e li n k f u n cti o n, d es pit e c o n v e xit y of s q u ar e l oss  wit h
r es p e ct t o z t

i, t h e o pti mi z ati o n pr o bl e m c orr es p o n di n g t o l e ast
s q u ar e esti m at or is n o n- c o n v e x a n d o ur r es ults d o n ot a p pl y
t o it.  N e v ert h el ess,  w e o bs er v e t h at its p erf or m a n c e is si mil ar
t o  m a xi m u m li k eli h o o d esti m at or.
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Fi g. 4. Si m ul ati o n r es ults f or  B er n o ulli  A R( p ) pr o c ess.

Fi g ur e 3 s h o ws diff er e nt  m e as ur es of p erf or m a n c e of t h e
r e g ul ari z e d  m a xi m u m li k eli h o o d esti m at or.  We h a v e s et N =
5 0 , p = 2 0 a n d λ n = 0 .0 5 /

√
n as r e c o m m e n d e d b y  T h e or e m 1,

i n t h es e e x a m pl es. Fi g ur e 3( a) s h o ws h o w t h e n or m ali z e d esti-
m ati o n err or c h a n g es  wit h r es p e ct t o t h e n u m b er of tr ai ni n g
s a m pl es.

T h e s p arsit y is 2 0 f or e a c h i.  N ot e t h at  w e ar e usi n g t h e
s a m e r e g ul ari z ati o n p ar a m et er f or b ot h esti m at ors a n d n ot t h e
o pti m al λ n , i. e.,  wit h o ut a n y cr oss- v ali d ati o n.  T h e err or s h a d es
c orr es p o n d t o o n e st a n d ar d d e vi ati o n. Fi g ur e 3( b) s h o ws t h e
n or m ali z e d s q u ar e err or f or diff er e nt s p arsit y l e v els. F or s m all
v al u es of s p arsit y, t h e d e n o mi n at or ∗ h as a s m all n or m  w hi c h
c a us es hi g h n or m ali z e d err or, h o w e v er f or hi g h er v al u es of
s p arsit y,  w e s e e t h e li n e ar d e p e n d e n c e o n s p arsit y as pr e di ct e d
b y  T h e or e m 1.

T h e n e xt t w o fi g ur es c orr es p o n d t o g e n er ali z ati o n err or as
o p p os e d t o esti m ati o n err or i n t h e first t w o fi g ur es.  H er e,
w e us e t h e esti m at e d p ar a m et ers t o pr e di ct t h e pr o c ess i n
t h e f ut ur e a n d c al c ul at e t h e a c c ur a c y of pr e di cti o n.  We us e
5  M C M C r u ns of t h e pr o c ess t o esti m at e t h e a c c ur a c y.  T h e
pl ot s h o ws a v er a g e a c c ur a c y o v er all N v ari a bl es of t h e pr o-
c ess. Fi g ur e 3( c) s h o ws t h e a c c ur a c y vs. st e ps i n t h e f ut ur e f or
diff er e nt tr ai ni n g s a m pl e si z es a n d Fi g ur e 3( d) s h o ws it f or dif-
f er e nt l e v els of s p arsit y.  T h er e is a pr o mi n e nt c h a n g e i n t h e
a c c ur a c y pl ots at 2 1 st e ps.  T his c orr es p o n ds t o p = 2 0  w h er e
t h e f ut ur e of t h e pr o c ess is b ei n g esti m at e d p ur el y b as e d o n
si m ul at e d s a m pl es usi n g t h e esti m at e d p ar a m et er. Pri or t o t his
p oi nt, p arts of t h e s a m pl es b ei n g us e d t o  m a k e t h e pr e di cti o ns
ar e  Tr u e v al u es a n d n ot esti m at e d o n es.  As e x p e ct e d, t h e a c c u-
r a ci es i m pr o v e as t h e n u m b er of tr ai ni n g s a m pl es i n cr e as e  wit h
s p arsit y fi x e d, a n d t h e y d e cr e as e as s p arsit y l e v el i n cr e as es
wit h n u m b er of tr ai ni n g s a m pl es fi x e d. Fi g ur e 4( a) s h o ws t h e
esti m ati o n err or f or diff er e nt s a m pl e si z es a n d s p arsit y l e v els.

Fi n all y,  w e als o us e t h e r e g ul ari z e d  m a xi m u m li k eli h o o d
esti m at or t o p erf or m s u p p ort r e c o v er y, i. e., ass u mi n g t h at t h e
tr u e p ar a m et er t e ns or is e x a ctl y s-s p ars e, h o w d o es t h e s u p-
p ort esti m at e d fr o m c o m p ar e t o t h e s u p p ort of ∗ ? T o d o

s o,  w e n e e d t o esti m at e t h e s u p p ort fr o m . If  w e k n o w t h e
s p arsit y s,  w e c a n esti m at e t h e s u p p ort b y t a ki n g t h e i n di c es
c orr es p o n di n g t o t h e s l ar g est e ntri es of i n  m a g nit u d e. If  w e
d o n ot k n o w t h e s p arsit y i n a d v a n c e,  w e c a n esti m at e t h e s u p-
p ort b as e d o n a t hr es h ol d c h os e n b y cr oss- v ali d ati o n.  Gi v e n a
t hr es h ol d γ , t h e esti m at e d s u p p ort  w o ul d b e

s u p p ( ) := (j, k , ) : j k ≥ γ .

N ot e t h at o ur t h e or eti c al r es ults d o n ot gi v e a n y g u ar a nt e es
f or s u p p ort r e c o v er y. I n or d er t o g u ar a nt e e s u p p ort r e c o v er y, a
str o n g er r es ult b o u n di n g t h e err or u nif or ml y f or e a c h e ntr y of

is r e q uir e d, i. e.,  w e n e e d t o c o ntr ol − ∗
∞ ,∞ ,∞ wit h

hi g h pr o b a bilit y.  T h er ef or e,  m or e  w or k is n e e d e d t o o bt ai n
t h e or eti c al g u ar a nt e es f or s u p p ort r e c o v er y.  N e v ert h el ess, o ur
si m ul ati o ns s h o w t h at t h e esti m at or is a bl e t o r e c o v er t h e s u p-
p ort v er y  w ell. Fi g ur e 4( b) s h o ws t h e r es ults f or a pr o c ess  wit h
p = 1 , N = 1 0 0 a n d t hr e e diff er e nt s p arsiti es. F or r e c o v eri n g
t h e s u p p ort,  w e ass u m e d t h at t h e s p arsit y s is k n o w n, a n d
t o o k t h e i n di c es c orr es p o n di n g t o t h e s l ar g est e ntri es of as
t h e r e c o v er e d s u p p ort.  T h e fr a cti o n of t h e c orr e ctl y r e c o v er e d
i n di c es is pl ott e d a g ai nst t h e s a m pl e si z e. Fi g ur e 4( b) s h o ws
t h at if t h e s a m pl e si z e is b el o w s o m e t hr es h ol d, n o e ntri es
of t h e s u p p ort ar e r e c o v er e d,  w hil e a b o v e t h e t hr es h ol d, t h e
r e c o v er e d fr a cti o n gr a d u all y i n cr e as es t o 1.

V. P R O O F S K E T C H  F O R T H E O R E M 1

We n o w o utli n e t h e pr o of of  T h e or e m 1.  O ur a n al ysis
a p pli es t h e fr a m e w or k of  N e g a h b a n et al. [ 6].  L et

L i(β ) :=
1

n

n

t= 1

L it, x t
i; β , X t− 1 D , β ∈ R N × L .

Fi x U ⊆ [N ] a n d s et U := ( i)i∈ U a n d si mil arl y ∗
U :=

( ∗
i )i∈ U a n d U := ( i)i∈ U , all t e ns ors i n R |U | ×N × L . We

als o  writ e L U ( U ) = i∈ U L i( i). We h a v e

U = ar g mi n
U ∈ R |U | ×N × L

L U ( U ) + U 1 ,1 ,1 . ( 2 2)
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I n t h e s e q u el, ∇ L U a n d ∇ 2 L U ar e t h e gr a di e nt a n d  H essi a n of
L U wit h r es p e ct t o v ari a bl e U .  W h e n n |U |N L , t h e e m pir-
i c al  H essi a n, ∇ 2 L U ( ∗

U ), is r a n k- d e fi ci e nt, h e n c e t h e l oss
f u n cti o n is fl at i n  m a n y dir e cti o ns ar o u n d ∗

U .  T h e a p pr o a c h
of  N e g a h b a n et al. [ 6] is t o g u ar a nt e e t h at L U i s p ositi v el y
c ur v e d i n c ert ai n dir e cti o ns, i n cl u di n g U := U − ∗

U .
I n p arti c ul ar, if t h e r e g ul ari z ati o n p ar a m et er λ n i s l ar g e

e n o u g h, s p e ci fi c all y

λ n ≥ 2 ∇ L U
∗
U ∞ ,∞ ,∞ , ( 2 3)

t h e n, t h e err or t e ns or U li es i n a s m all c o n e-li k e s u b-
s et C (S ; ∗

U )—t o b e d e fi n e d b el o w — a n d o n t his s et, L U

i s “ n e arl y ” str o n gl y c o n v e x, i. e., ∇ 2 L U ( ∗
U ) is u nif or ml y

q u a dr ati c all y b o u n d e d b el o w.
F or a s et S ⊆ [N ] × [L ], l et β S d e n ot e t h e pr oj e cti o n of β

o n t h e s u bs p a c e of  m atri c es  wit h s u p p ort S . F or β ∗ d e fi n e:

C S ; β ∗ := β : β 1 ,1 ≤ 3 β S 1 ,1 + 4 β ∗
S c 1 ,1

. ( 2 4)

N ot e t h at t his is a c o n e-li k e s u bs et of R N × L ar o u n d β ∗ . S e e [ 6]
f or a vis u ali z ati o n.  L et S := i∈ U {i} × S i w h er e S i ⊆ [N ] × [L ]
f or i ∈ U .  E q ui v al e ntl y, S = i∈ U S i u si n g t h e n ot ati o n of
disj oi nt u ni o n .  Wit h s o m e a b us e of n ot ati o n,  w e  writ e S c :=

i∈ U {i} × S c
i .  T h e c o n e-li k e s et C (S ; ∗

U ) is d e fi n e d as f oll o ws:

C S ; ∗
U := ( i)i∈ U : i ∈ C S i;

∗
i , ∀ i ∈ U . ( 2 5)

F or l oss f u n cti o ns L i, i ∈ U , a n d f or δ ,  β ∗ ∈ R N × L , l et

R L i δ ; β ∗ := L i β ∗ + δ − L i β ∗ − ∇ L i β ∗ , δ , ( 2 6)

b e t h e r e m ai n d er of t h e first- or d er  Ta yl or e x p a nsi o n of L i

ar o u n d β ∗ . F oll o wi n g [ 6],  w e s a y t h at L U s atis fi es r estri ct e d
str o n g c o n v e xit y ( R S C) at ∗

U wit h c ur v at ur e κ > 0 a n d
t ol er a n c e τ 2 if f or all ∈ C (S ; ∗

U ), w e h a v e,

i∈ U

R L i i;
∗
i ≥ κ

i∈ U

i
2
F − τ 2 . ( 2 7)

T h e l eft- h a n d si d e is t h e r e m ai n d er of t h e first- or d er  Ta yl or
e x p a nsi o n of L U ar o u n d ∗

U , t h at is, R L U ( U ; ∗
U )— d e fi n e d

si mil ar t o ( 2 6).
N o w, ass u m e t h at ( 2 3) a n d ( 2 7) h ol d.  T h e n, [ 6,  T h. 1]

i m pli es t h at U − ∗
U ∈ C (S ; ∗

U ), a n d t h at

U − ∗
U

2

F
≤

9 λ 2
n

κ 2 |S | + λ n
κ 2 τ 2 + 4 ∗

U S c 1 ,1 ,1 .

( 2 8)

T h e a b o v e i n e q u alit y pr o vi d es a f a mil y of b o u n ds, o n e f or
e a c h c h oi c e of S = i∈ U S i.  D e cr e asi n g |S | r e d u c es t h e first
t er m, b ut p ot e nti all y i n cr e as es ( ∗

U )S c 1 ,1 ,1 .  We c h o os e S
t o b al a n c e t h e t w o.  L et S ∗

i ⊂ [N ] × [L ] b e t h e s u p p ort of t h e
mi ni mi z er i n ( 9), s o t h at |S ∗

i | = s i. We t a k e S = S ∗ = i∈ U S ∗
i .

C o ns e q u e ntl y, |S ∗ | = i∈ U s i a n d ( ∗
U )S ∗ c 1 ,1 ,1 = i∈ U ω i.

F or t his c h oi c e of S , Pr o p ositi o n 1 b el o w s h o ws t h at ( 2 7) h ol ds,
wit h hi g h pr o b a bilit y.  T o st at e t h e c o n c e ntr ati o n i n e q u alit y,
r e c all t h e d e fi niti o ns ( 1 2).

Pr o p ositi o n 1: U n d er  Ass u m pti o ns ( A 1) a n d ( A 2), if  w e
h a v e,

n
G

C 6
X

s 3
m a x l o g(N L ) ( 2 9)

t h e n, t h e  R S C pr o p ert y ( 2 7) f or S = S ∗ h ol ds  wit h c ur v at ur e
κ = κ a n d t ol er a n c e τ 2 = κ

2 i∈ U ω 2
i / s i,  wit h pr o b a bilit y at

l e ast 1 − (N L )− Cs m a x w h er e C = O (C − 2
X ).

L e m m a 1 2 i n  A p p e n di x  A i n t h e s u p pl e m e nt ar y  m at eri al
s h o ws t h at ∗

U i s i n f a ct t h e  mi ni mi z er of t h e e x p e ct e d l oss
E L U (·).  L e m m a 1 3 i n  A p p e n di x  A i n t h e s u p pl e m e nt ar y  m at e-
ri al s h o ws t h at t a ki n g λ n = O ( l o g(|U |N L ) /n ) is e n o u g h
f or ( 2 3) t o h ol d  wit h hi g h pr o b a bilit y. P utti n g t h e pi e c es
t o g et h er pr o v es  T h e or e m 1.  T h e n e xt s e cti o n s k et c h es a pr o of
of Pr o p ositi o n 1.

VI.  R E S T R I C T E D S T R O N G C O N V E X I T Y :
P R O O F  O F P R O P O S I T I O N 1

S h o wi n g t h e  R S C pr o p ert y ( 2 7) f or a p arti c ul ar c h oi c e
of S is a  m aj or c o ntri b uti o n of o ur  w or k.  T his is a n o n-
tri vi al t as k si n c e it i n v ol v es u nif or ml y c o ntr olli n g a d e p e n-
d e nt n o n- G a ussi a n e m piri c al pr o c ess.  E v e n f or i.i. d. s a m pl es,
t h e t as k is c h all e n gi n g si n c e t h e q u a ntit y t o b e c o ntr oll e d,

→ R L ( ; ∗ ), is a r a n d o m f u n cti o n t h at n e e ds t o b e u ni-
f or ml y b o u n d e d b el o w.  C o ntr olli n g t h e b e h a vi or of t his f u n c-
ti o n b e c o m es si g ni fi c a ntl y h ar d er  wit h o ut t h e i n d e p e n d e n c e
ass u m pti o n.

We pr o c e e d b y a est a blis hi n g a s eri es of i nt er m e di at e
l e m m as  w hi c h ar e pr o v e d i n  A p p e n di x  A i n t h e s u p pl e-
m e nt ar y  m at eri al. First,  w e s h o w t h at β → R L i(β ; ∗

i ) i s
l o w er- b o u n d e d b y t h e f oll o wi n g q u a dr ati c f or m:

E (β ; X ) :=
1

n

n

t= 1

β , X t− 1 D
2
, ( 3 0)

w h er e X := { x t}n
t= − p + 1 .

L e m m a 3 ( Q u a dr ati c L o w er  B o u n d): U n d er
Ass u m pti o n ( A 2),

R L i β ; ∗
i ≥

κ i

2
E (β ; X ) ( 3 1)

f or all β ∈ R N × L a n d i ∈ [N ].
N oti c e t h at β → E (β ; X ) is a r a n d o m f u n cti o n d u e t o t h e

r a n d o m n ess i n X . I m p ort a ntl y, E ( · ; X ) d o es n ot d e p e n d o n
t h e c h oi c e of i. T h e f oll o wi n g s et of r es ults est a blis h s o m e
i m p ort a nt pr o p erti es of t h e r a n d o m f u n cti o n E ( · ; X ).

L e m m a 4 ( Str o n g  C o n v e xit y at t h e  P o p ul ati o n L e v el):
U n d er  Ass u m pti o n ( A 1),

E E (β ; X ) ≥ C 2
X β 2

F , f or all β ∈ R N × L . ( 3 2)

N e xt,  w e s h o w t h at f or a fi x e d β , t h e q u a ntit y E (β ; X ) c o n-
c e ntr at es ar o u n d its  m e a n. S e cti o n  VII pr o vi d es a s k et c h of
t h e pr o of of t h e f oll o wi n g c o n c e ntr ati o n i n e q u alit y:

L e m m a 5 ( C o n c e ntr ati o n I n e q u alit y): F or a n y β ∈ R N × L ,
if X is g e n er at e d as ( 3), t h e n  wit h pr o b a bilit y at l e ast
1 − 2 e x p (− nt 2 / G ), w e h a v e

E (β ; X ) > E E (β ; X ) − t β 2
1 ,1 . ( 3 3)

Fi n all y, f or a fi x e d i ∈ [N ]  w e us e t h e str u ct ur al pr o p er-
ti es of s et C (S ∗

i ; ∗
i ) al o n g  wit h  L e m m as 4 a n d 5 t o gi v e a

u nif or m q u a dr ati c l o w er b o u n d o n E (β ; X ),  w hi c h h ol ds  wit h
hi g h pr o b a bilit y:
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L e m m a 6: Fi x i ∈ U . F or c o nst a nts C 1 , C 2 > 0, if s i ≥
C 2

X
C 1

,

t h e n  wit h pr o b a bilit y ≥ 1 − e x p ( C 2

C 2
X

s i l o g(N L ) −
n C 4

X

1 6 Gs 2
i

),

E (β ; X ) ≥
C 2

X
4 β 2

F − ω 2
i / s i, ∀ β ∈ C S ∗

i ; ∗
i .

T h e pr o of of  L e m m a 9 (s e e  A p p e n di x  B) i n t h e s u p pl e m e n-
t ar y  m at eri al  m a k es us e of a dis cr eti z ati o n ar g u m e nt. Pr o vi n g
u nif or m l a ws ar e c h all e n gi n g  w h e n t h e p ar a m et er s p a c e is n ot
fi nit e.  T h e dis cr eti z ati o n of t h e s et C (S ∗ ; ∗ ) us es esti m at es of
t h e e ntr o p y n u m b ers f or a bs ol ut e c o n v e x h ulls of c oll e cti o ns
of p oi nts ( L e m m a 1 4 i n t h e s u p pl e m e nt ar y  m at eri al).  T h es e
esti m at es ar e  w ell- k n o w n i n a p pr o xi m ati o n t h e or y a n d h a v e
b e e n pr e vi o usl y a d a pt e d t o t h e a n al ysis of r e gr essi o n pr o b-
l e ms i n [ 7].  T h e f oll o wi n g t e c h ni c al l e m m a all o ws us t o p ut
t h e a b o v e r es ults t o g et h er:

L e m m a 7: F or all i ∈ U , l et a i, b i, d i, p i b e p ositi v e c o n-
st a nts, a n d c o nsi d er r a n d o m v ari a bl es X i, Y i ∈ R w hi c h s atisf y
Y i ≥ a iX i, a n d P (X i < b i − d i) ≤ p i f or all i ∈ U .  T h e n  wit h
pr o b a bilit y at l e ast 1 − | U |m a x

i∈ U
p i, w e h a v e,

i∈ U

Y i > mi n
i∈ U

a i

i∈ U

b i − m a x
i∈ U

a i

i∈ U

d i

Pr o p ositi o n 1 f oll o ws b y t a ki n g Y i = R L i( i;
∗
i ), X i =

E ( i, X ), a i = κ i
2 , b i =

C 2
X
4 i

2
F , a n d d i = ω 2

i / s i.

VII.  C O N C E N T R A T I O N U N D E R D E P E N D E N C E : PR O O F  O F

L E M M A 5

I n t his s e cti o n,  w e s k et c h t h e pr o of of  L e m m a 5  w hi c h
is a c o n c e ntr ati o n i n e q u alit y f or β → E (β ; X ), a q u a dr ati c
e m piri c al pr o c ess b as e d o n d e p e n d e nt n o n- G a ussi a n v ari a bl es
wit h l o n g-t er m d e p e n d e n c e. F or i n d e p e n d e nt s u b- G a ussi a n
v ari a bl es {X t− 1 }, s u c h a c o n c e ntr ati o n r es ult is oft e n c all e d
t h e  H a ns o n – Wri g ht i n e q u alit y [ 1 1,  T h. 1]. Pr o vi di n g si m-
il ar i n e q u aliti es f or d e p e n d e nt r a n d o m v ari a bl es is si g ni fi-
c a ntl y  m or e c h all e n gi n g. F or d e p e n d e nt  G a ussi a n v ari a bl es,
t h e  m a c hi n er y of t h e  H a ns o n – Wri g ht i n e q u alit y c a n still b e
a d a pt e d t o d eri v e t h e d esir e d r es ult [ 9, Pr o p ositi o n 2. 4].
H o w e v er, t h es e ar g u m e nts d o n ot e xt e n d e asil y t o n o n-
G a ussi a n d e p e n d e nt v ari a bl es a n d h e n c e ot h er t e c h ni q u es ar e
n e e d e d t o pr o vi d e s u c h c o n c e ntr ati o n i n e q u aliti es.

R e c e nt r es ults [ 3 7], [ 3 8] o n t h e c o n c e ntr ati o n of e m piri c al
pr o c ess es d eri v e d fr o m  M ar k o v c h ai ns c o ul d pr o vi d e i m pr o v e-
m e nts o n t h e r es ults  w e pr es e nt h er e.  H o w e v er, si n c e  w e
ar e d e ali n g  wit h a n o n- M ar k o vi a n pr o c ess ( w h e n p > 1),
s u c h r es ults ar e n ot dir e ctl y a p pli c a bl e.  A k e y o bs er v ati o n,
dis c uss e d i n S e cti o n I- B, is t h at pr o c ess ( 3) c a n b e r e pr e-
s e nt e d as a dis cr et e-s p a c e p- M ar k o v c h ai n .  T his all o ws us t o
us e c o n c e ntr ati o n r es ults f or d e p e n d e nt pr o c ess es i n c o u nt a bl e
m etri c s p a c es.  T h er e ar e s e v er al r es ults f or s u c h pr o c ess es;
s e e [ 2 5], [ 3 9], [ 4 0], a n d [ 4 1] f or a r e vi e w.  H er e,  w e a p pl y
t h at of  K o nt or o vi c h a n d  R a m a n a n [ 2 5].  T h es e c o n c e ntr ati o n
i n e q u aliti es ar e st at e d i n t er ms of v ari o us  mi xi n g a n d c o n-
tr a cti o n c o ef fi ci e nts of t h e u n d erl yi n g pr o c ess.  T h e c h all e n g e
is t o c o ntr ol t h e c o ntr a cti o n c o ef fi ci e nts i n t er ms of t h e pr o-
c ess p ar a m et er ∗ ,  w hi c h i n o ur c as e is d o n e usi n g q u a ntiti es
τ 1 (

∗ ) a n d G f (
∗ ). S o m e r es ults d e v el o p e d i n t his s e cti o n

h ol d  m or e g e n er all y f or a n y p − M ar k o v pr o c ess, e v e n t h os e
o utsi d e t h e c urr e nt a ut or e gr essi v e fr a m e w or k.

We st art b y st ati n g t h e r es ult of
K o nt or o vi c h a n d  R a m a n a n [ 2 5] f or a pr o c ess {X t}t∈ [n ]

c o nsisti n g of ( p ossi bl y d e p e n d e nt) r a n d o m v ari a bl es t a ki n g
v al u es i n a c o u nt a bl e s p a c e X . F or a n y ≥ k ≥ 1, d e fi n e t h e
mi xi n g c o ef fi ci e nt

η k = s u p
w ,w ,y

P X n = · | X k = w , X k − 1
1 = y

− P X n = · | X k = w , X k − 1
1 = y

T V
, ( 3 4)

w h er e t h e s u pr e m u m is o v er w , w ∈ X a n d y ∈ X k − 1 .  H er e,
X v

u := (X t, u ≤ t ≤ v ) is vi e w e d eit h er as a  m e m b er of
X × (v − u + 1 ) (t h e s et of a  m atri c es  wit h v − u + 1 c ol u m ns fr o m
X ) or si m pl y as a v e ct or i n X v − u + 1 . L et H ∈ R n × n b e a n
u p p er tri a n g ul ar  m atri x  wit h e ntri es η k f or ≥ k a n d z er o
ot h er wis e.  L et H ∞ := m a x k ≥ k η k b e t h e ∞ o p er at or
n or m of H .

Pr o p ositi o n 2 [ 2 5, T h. 1. 1]: L et φ : X n → R b e a n L φ -
Li ps c hit z f u n cti o n of {X t}n

t= 1 wit h r es p e ct t o t h e  H a m mi n g
n or m, t h e n f or all ε > 0,  wit h pr o b a bilit y at l e ast 1 −

2 e x p (− ε 2

2 n L 2
φ H 2

∞
), w e h a v e

φ X t n
t= 1

− E φ X t n
t= 1

< ε. ( 3 5)

We a p pl y t h e a b o v e r es ult t o φ = E (β ; X ) b y fi n di n g
a n u p p er b o u n d f or t h e  Li ps c hit z c o nst a nt L φ of t h e  m a p
X → E (β , X ) wit h r es p e ct t o t h e  H a m mi n g dist a n c e o v er
X × (n + p − 1 ) = ( N

i= 1 X i)
× (n + p − 1 ) .  L e m m a 1 6 i n  A p p e n di x  C

s h o ws t h at L φ ≤ (4 B 2 C 2
D / n ) β 2

1 ,1 , w h er e as  L e m m a 1 7 i n

A p p e n di x  C s h o ws t h at H 2
∞ ≤ 2 (1 + p 2 ψ 1 (

∗ )),  w h er e t h e
q u a ntit y ψ 1 (

∗ ) is d e fi n e d b el o w e q u ati o n ( 1 0).  L e m m a 1 7
is a g e n er al r es ult t h at a p pli es t o a n y p -l a g  M ar k o v c h ai n,
i n cl u di n g t h e  G V A R(p ) pr o c ess es c o nsi d er e d i n t his arti cl e.
I n  A p p e n di x  C  w e als o d e v el o p s o m e t o ols f or c o ntr olli n g
H ∞ i n t er ms of t h e c o ntr a cti o n c o ef fi ci e nt of a n ot h er r el at e d

M ar k o v c h ai n o bt ai n e d vi a a n o n-st a n d ar d st at e a u g m e nt ati o n.
A p pl yi n g Pr o p ositi o n 2  wit h ε = t β 2

1 ,1 , a n d usi n g t h e

u p p er b o u n ds f or L a n d H 2
∞ c o n cl u d es t h e pr o of.

VIII.  D I S C U S S I O N

Fitti n g a ut or e gr essi v e  A R( p )  m o d els  wit h  m ulti pl e l a gs is of
br o a d i nt er est i n  m ulti v ari at e ti m e s eri es a n al ysis.  We c o nsi d er
a l ar g e cl ass of  m ulti v ari at e dis cr et e- v al u e d  A R( p ) pr o c ess es
wit h n o nli n e ar f e e d b a c k.  We st u d y st atisti c al pr o p erti es of a
g e n er al 1 r e g ul ari z e d  M- esti m at or f or t his  m o d el, a n d pr o-
vi d e s uf fi ci e nt c o n diti o ns o n t h e  m o d el h y p er p ar a m et ers u n d er
w hi c h c o nsist e nt esti m ati o n is p ossi bl e.  U n d er ass u m pti o ns of
a p pr o xi m at e s p arsit y, o ur r es ult s h o ws t h at a s a m pl e c o m-
pl e xit y (p ol y (s), l o g(N p )) is a c hi e v a bl e.  O ur e x p eri m e nts
v ali d at e t h e t h e or eti c al r es ults o n si m ul at e d d at a.  C o m m o nl y
o c c urri n g s p e ci al c as es of dis cr et e- v al u e d pr o c ess es s u c h as
B er n o ulli  A R( p ) a n d  Tr u n c at e d- P oiss o n  A R(p ) ar e e x pl or e d
i n d et ail.  T h e pr o of t e c h ni q u e d e v el o ps c o n c e ntr ati o n i n e q u al-
iti es a n d i d e nti fi es  mi xi n g pr o p erti es of hi g h er or d er  M ar k o v
c h ai ns  w hi c h  m a y b e of i n d e p e n d e nt i nt er est.  T h es e t e c h ni q u es
w er e pr e vi o usl y u n k n o w n t o t h e b est of o ur k n o wl e d g e.

A ut h ori z e d li c e n s e d u s e li mit e d t o: N e w Y or k U ni v er sit y. D o w nl o a d e d o n J ul y 2 5, 2 0 2 1 at 1 7: 3 7: 3 1 U T C fr o m I E E E X pl or e.  R e stri cti o n s a p pl y.  
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S e v er al o p e n q u esti o ns r e m ai n t o b e u n c o v er e d f or t h e g e n-
er al  A R( p )  m o d el. F or e x a m pl e, t h e c urr e nt  m o d el e x pl or es
t h e c as e of b o u n d e d, dis cr et e v al u e d d at a.  G etti n g ar o u n d t his
ass u m pti o n r e q uir es fi n di n g c o n c e ntr ati o n i n e q u aliti es f or r a n-
d o m a v er a g es of t h e f or m i n  L e m m a 5 f or r e al- v al u e d r a n d o m
pr o c ess es.  Als o, it r e m ai ns u n k n o w n  w h et h er t h e d e p e n d e n c e
o n t h e s p arsit y h y p er p ar a m et er s is o pti m al, si n c e t h er e is a
s m all g a p b et w e e n o ur u p p er b o u n d a n d t h e n ai v e l o w er b o u n d.
Fi n all y, it  w o ul d b e i nt er esti n g t o st u d y p ar a m et er esti m ati o n,
a n d p ot e nti all y e v e n c o ntr ols, f or t h e c as e of p arti al o bs er v-
a bilit y, i. e.,  w h e n  w e o bs er v e g (x t) a n d n ot x t f ull y, a ki n t o
p arti all y- o bs er v e d  M ar k o v d e cisi o n pr o c ess es ( P O M D Ps).
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