IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, YOL. 1, NO. 3, NOVEMBER 2020

Generalized Autoregressive Linear Models for
Discrete High-Dimensional Data

Parthe Pandit~ , Student Member, IEEE, Mojtaba Sahrace-Ardakan, Student Member, IEEE, Arash A. Amini,
Sundeep Rangan , Fellow, IEEE, and Alyson K. Fletcher~ . Member, IEEE

Abstract—Fitting multivariate autoregressive (AR) models is
fundamental for time-series data analysis in a wide range of
applications. This article considers the problem of learning a
p-lag multivariate AR model where each time step involves a lin-
ear combination of the past p states followed by a probabilistic,
possibly nonlinear, mapping to the next state. The problem is
to learn the linear connectivity tensor from observations of the
states. We focus on the sparse setting, which arises in applications
with a limited number of direct connections between variables.
For such problems, £;-regularized maximum likelihood estima-
tion (or M-estimation more generally) is often straightforward to
apply and works well in practice. However, the analysis of such
methods is difficult due to the feedback in the state dynamic and
the presence of nonlinearities, especially when the onderlying
process is non-Gaussian. QOur main result provides a bound on
the mean-squared error of the estimated connectivity tensor as a
function of the sparsity and the number of samples, for a class of
discrete multivariate AR models, in the high-dimensional regime.
Importantly, the bound indicates that, with sufficient sparsity,
consistent estimation is possible in cases where the number of
samples is significantly less than the total number of parameters.

Index Terms—Autoregressive processes, compressed sensing,
high-dimensional time series analysis, long-termmemory, nonlin-
ear dynamical systems, maximum likelihood estimation.

I. INTRODUCTION

E CONSIDER the problem of learning a p-lag autore-
gressive (AR) peneralized linear model (GLM) for a
multivariate time series involving N-variables: x' = (x{) € RV,
whﬂrex:fex,-g]]lforallie[N],tEE.hpm'ticularcase of
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the model we consider is of the form,
d1d~a(1d), Z=f(lerx1),

where the inner product corresponds to RV*?, fort=1,2, ...
and i = 1,2,... . N where X! = [#~! "2 ... Pl e
RV*P is the p-lag history of the process up to time ¢ — 1, and
Qi( - | z}) is a probabilistic link function. The problem is to esti-
mate the unknown parameters 87 BV fori=1,2,....N,
given observations of n time samples x', t = 1,....n. The
conditional distributions Qi(-|z;) and link functions f; are
assumed to be known.

Modeling problems of this form appear in a wide-range
of applications with time-series data. For example, in neural
modeling, x' can represent a vector of spike counts or some
other measure of activity from N neurons or brain regions.
In this case, estimation of the tensor ©* in (1) can provide
insight into the neural connectivity. Other applications include
genomics, econometrics [3], data science, sociology, business
management, financial markets [4], [5] and natural language
processing.

A key challenge in estimating the multivariate AR(p) mod-
els is the large number of unknown parameters to estimate,
particularly as the dimension of the process, N, and num-
ber of time lags, p, prows. However, in many cases, one can
asslMme Some sparsity constraint in the connectivity tensor 8.
For example, in neural modeling, there are physically limited
numbers of direct connections between brain regions. Under
a sparsity assumption, it is common to estimate &* via an
£1-regularized M-estimator of the form,

8= wgmin 133 cu(t:(0.X"))

=

+ Aall®ll1.1.1, (2)

where £ @ A x B — R are loss functions and 3, ||&] 1.1
is an £, regularizer (precise definitions will be given in the
Section II below). The broad goal of this article is to analyze
the sample complexity of such £;-regularized M-estimators.
That is, given a sparsity constraint on &*, and the number of
measurements, n, how well can we estimate &*7

A. Key Contributions

We consider the case where {.l’.-]f'r: ; are bounded countable
subsets of . We analyze the £,-regularized M-estimator (2)
when the loss functions v + Lyiu; v) are strongly convex,
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for all ¥ = A;. We assume that the connectivity tensor can
be approximated by a sparse tensor with at most Spa, non-
zero values in each slice ©7. Under these assumptions, our
main result in Theorem | establishes the consistency of the
regularized M-estimator (2) in the high-dimensional regime
of 1 = pOlY(Smax log(Np)) under some regularity conditions.

In proving our main result, we establish the so-called
restricted strong convexity (RSC) [6] for a larpe class of
loss functions, for a dependent non-Gaussian discrete-valued
multivariate process. Our proof of the RSC property requires
showing a restricted eigenvalue condition, which is nontrivial
due to the non-Gaussian and highly-correlated nature of the
design matrix. What makes the problem more challenging is
the existence of feedback from more than just the immediate
past (the case p = 1).

We establish the RSC for general p = 1 using the novel
approach of viewing the p-block version of the process as a
Markov chain. The problem becomes significantly more chal-
lenging when going from p = 1 to even p = 2. The difficulty
with this higher-order Markov chain is that its Dobrushin con-
fraction coefficient is trivially 1. We develop technigues to
get around this issue which could be of independent interest
(see Section VII). Our techniques hold for all p = 1.

Much of the previous work towards proving the RSC con-
dition has either focused on the independent sub-Gaussian
case [T], [8] or the dependent Gaussian case [9], [10] for which
powerful Gaussian concentration results such as the Hanson—
Wright inequality [11] are still available. Our approach is to
use concentration results for Lipschitz functions of Markov
chains over countable spaces, and strengthen them to uni-
form resulis using metric entropy argpuments. In doing so,
we circumvent the use of empirical processes which require
additional assumptions for estimation [12]. Moreover, our
approach allows us to identify key properties of the model
that allow for sample-efficient estimation.

Although discrete time series are often modeled using the
specific link functions such as 1ogit or softmax, our result
allows more flexibility to choose the link functions. For exam-
ple in the Bernoulli AR(p) and Truncated-Poisson AR(p) cases
discussed in Section III-B, any Lipschitz continuous, log-
convex link function can be used. The analysis also brings out
crucial properties of the link function, and the role it plays in
determining the estimation error and sample complexity.

Our model also allows for each individual time series x;
to lie in distinct spaces A; which is desirable in practical
applications with heterogeneous types of data.

B. Previous Work

There is a vast literature on recovering sparse vectors in
under-sampled settings [13], [14], [15], [16]. The generic
results show that if a vector £ is s-sparse in a p-dimensions, it
can be estimated in n = £2(s log(p)) measurements. However,
these results typically do not have feedback as in the AR
process considered here.

The estimation of sparse Gaussian VAR(p) processes with
linear feedback has been considered only more recently [9],
[17]. [18], [19]. [20]. For these models, a restricted eigenvalue

condition can be established fairly easily, by reducing the
problem, even in the time-correlated setting, to the concen-
tration of quadratic functionals of Gaussian vectors for which
powerful inequalities exist [11]. These techniques do not
extend to non-Gaussian setups.

In the non-Gaussian setting, Hall et al. [21] and Zhou and
Raskutti [22] recently considered a multivariate time series
evolving as a GLM driven by the history of the process sim-
ilar to our model. The Bernoulli AR(1) and Poisson AR(1)
with p = 1 lapgs were considered as special cases of this
model. They provide statistical puarantees on the error rate for
the £, regularized estimator. More importantly, their results
are resiricted to the case p = 1 which does not allow the
explicit encoding of long-term dependencies. More recently,
Mark ef al [23], [24] considered a model closer to ours for
multivariate AR(p) processes with lags p=1orp=2

A key contribution of ours is to bring out the explicit depen-
dence on p in the AR(p) models, allowing for a general p = 1.
In the special cases we consider: the Bernoulli AR(p) and the
Truncated-Poisson AR(p), we show how the scaling of the
sample complexity and the error rate with p can be controlled
by the properties of the link function f; and a certain norm of
the parameter tensor.

Our results improve upon those in [21], [23] when applied
to the Bernoulli AR{p) and Truncated-Poisson AR(p). Due
to the key observation that an AR(p) over a countable space
can be viewed as a higher order Markov chain, our analysis
relaxes several assumptions made by [21], [23]. In doing so,
we achieve better sample complexities with explicit depen-
dence on p. Our analysis bomrows from martingale-based
concentration inequalities for Lipschitz functions of Markov
chains [25].

The univariate Bernoulli AR(p) process for p = 1 was con-
sidered by Kazemipour et al. [26], [27] where they analyzed a
multilap Bernoulli process for a single neuron. Their analysis
does not extend to the N > 1 case. Even for N = 1, their analy-
sis is restricted to the biased process with P(x{ = 1|1X"~!) < £
for all f. Mixing times of the Bernoulli AR(1) have been con-
sidered in [28]. However, their discussion is again limited to
P= l.

The rest of the paper is organized as follows. In Section 1L,
we introduce the generalized discrete VAR(p) model and
the associated class of regularized M-estimators. Section II1
presents our main result, Theorem 1, on the consistency of
the repularized M-estimator and discusses its assumptions and
implications. Applications of Theorem 1 to the special cases
of Binomial and Truncated-Poisson processes are detailed in
Section III-B. In Section IV, we provide simulation results
corroborating our theoretical predictions. Section V provides
an overview of the proof of Theorem 1. In Section VI, we
present new techniques for deriving concentration inequalities
for dependent multivariate processes. We conclude with a dis-
cussion and point to some open problems and directions for
solving them in Section VIIL

Notation: For two sequence {a,} and {b,}, we write either
of ay = by or by = a, or by = Oa,) or a, = 2(a,) to mean
that there is a constant C = 0 such that a, = Cb, for all n. We
write a, = by, if both a, = b, and b, = a,. We write a, 3 by

Pt
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or b, <« a, or b, = ola,) if b,fa, — 0 as n — oo. We use
[N] to denote the set {1, 2, ..., N}. For a subset A" of a vector
space, we write X' *F for the set of matrices with p columns
from X. Formally X*7 := {(x;,X2,.... %) | i € X, i € [p]}.
For example, (RY)*F is the same as the set of real-valued N = p
matrices. In addition, Table 1 in the supplementary material
provides a list of all notations used in the paper.

II. MoODELS AND METHODS

To state our results in their full generality, we consider a
slightly more general model than (1). We assume that the
multivariate time series x' = (x}) € X B evolves as,

x )z~ Qi -12) (3a)
d=i(erx),)  ow
x| xR (3c)

fort=1,2,...and i =1,2,...,N. The key difference here
is that we have added a matrix D = [d, d, ... d;] € RP*L,
a known dictionary of filters {d¢};_,. When D = Iy,
we obtain the special case (1). The role of this dictionary
will be explained below. To model the discrete-valued nature
of the states, we assume that x' € X = [[¥, A; where
each A; is a bounded countable subset of B. The matrix
X1 = [ 22 L x*P] € RV*P is the p-lag history
of the process up to time f — 1, and {J;(- | z) is a distribution
on A; parameterized by z. For example an exponential family
distribution with mean parameter z. The matrices 8 e RV,
i & [N] are the (unknown) model parameters and (-, -)pwa
is the inner product. A process of this form will be denoted
GVAR(p).

The distribution ;( - | z:} represents the conditional distri-
bution of x! given the pastx'~!, x'~2, .. .. Functionsf; : R — R
are similar to the inverse-link functions in GLMs, and can be
nonlinear in general. It is worth noting that A; and (}; can
vary for every variable i € [N] making the model extremely
flexible to include heterogeneous types of discrete data.

The inner product (-, -)gpwa in (3) is the Hilbert-Schmidt
inner product on B™Z, and can be expanded as:

N L
(9?* X! D}nﬁrﬂ, = E E QE!(X;_* ' d!}np

j=1 =1

where x;* = [.lj-l_l .1::-'_2 x;_p] is the p-lag history of
variable j up to time ¢ — 1, i.e., the /" row of X'~!. Note that
(X'~'D)e = (x/*.d)_ . The parameter (8]); = O}, € R
captures the dependence of variable x] on the past activity of
variable j, via x_::_"‘. The vectors d; € BF act as filters that
modulate the mean of variable x; based on the past activity of
all the variables, that is,x_{-‘ forje[N,andt—p=<k <t

4)

A. Dictionary and Network Interpretations

The filters {d;} serve two main purposes: (i) interpretability
and (ii) dimension reduction. For example, in neuroscience
applications where the types of spiking behaviors are lim-
ited, the presence of a dictionary causes the model to favor
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specific forms of interactions between the spiking activities
of two neurons. We refer to [29] which explores these fil-
ters for various interactive behaviors among neurons such
as bursting, tonic spiking, phasic spiking, etc. The dictio-
nary increases the interpretability of the parameter &7 —one
interprets (©7);; as measuring the effect of the activity of
neuron i on neuron j, as explained by interaction type £.
Thus, the sparsity of ©F is more meaningful in the presence
of a dictionary. An earlier version of this article [1] con-
sidered modeling the interaction with the past as (07, X'~')
where €7 lies in RV*P, corresponding to taking D = Ip.p,
the identity matrix, in (4c). The formulation with a general
dictionary I} has the added advantage of potentially reduc-
ing the number of free parameters from Np to NL. When
L <« p, this leads to a massive dimension reduction. The
bilinear term (6, X'~'D)gya = (@DT, X" 1),y,, can also
be thought of as a low-rank approximation to the parameter,
forcing one factor to be fixed by D. By adding pre-existing
knowledge of temporal interactions between variables, the dic-
tionary allows for a rich model with fewer parameters, leading
to more (sample) efficient estimators for 8*.

The parameter &* can be interpreted as representing a
network among variables xi, i € [N]. A slice O, can
be thought of as an adjacency matrix for the influence
network explained by coupling behavior £. If neurons i
and j are not connected, then By = 0 for all £ = [L].
For example, in the neural spike train application, one can
reveal a latent network among the neurons (i.e., who influ-
ences whose firing) just from the observations of patterns
of neural activity, a task which is of significant interest
in neuroscience [30], [31], [32]. Similarly, in the context of
social networks, one might be interested in who is influencing
whom [33].

B. Examples

The GVAR(p) process of the form (3) can be applied in a
wide range of applications. For example, letting Qy(-|2) =
Ber(z) and f;(u) = (14 & )" recovers the Bernoulli autore-
gressive process in [1]. Similarly, (- | z) = Binomial(Kj;, z)
and fi(u) = (1 + ¢ *)~! models a Binomial process with
K; trials (for coordinate §) and success probability z. Such a
model can be suitable for modeling count data. Another com-
mon model for point processes in neuroscience [31] is the
Truncated-Poisson autoregressive process given by (- |z) =
P{min(M;, Z) € -) where Z ~ Poi(z), and fi{u) = exp(u) or
fitw) = log(1+¢") for some integer M; [21], [23]. Although we
focus on single-parameter discrete distributions in this article,
the ideas can be easily extended to distributions with multiple
parameters. For example, one can construct a categorical or
multinomial process, by allowing z{ to be vector-valued and
taking f; to be the softmax function.

C. Regularized M-Estimation

We are primarily interested in parameter estimation in the
high-dimensional regime where n < N. To make the esti-
mation feasible, we assume that the activity of each variable i
depends on the past activity of only a few number of variables,
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5; <« N. We refer to s; as the in-degree of variable i. Our
main result provides sufficient conditions under which param-
eter 8* can be estimated in the high-dimensional setting where
n = poly({s;}Y_,, log(NLp)).

Given a collection of loss functions Ly Y; = B — R, for
i £ [N] and f € &, we consider the following £,-regularized
M-estimator

N
0= ﬂrg:’uh:izﬁ {09 + Aall®]1,1.1.
£a®) = 1Y La(: (e:.x1p)) ®)
=1

where we use the notation
P 1
S\ P

a b cC "E
IM|p.q.r = EIZ Zluml’) (6)
i=1 | j=I1 =1

to denote a norm of a a x b x ¢ tensor M (when p, g, r = 1).
We also use a similar norm notation for matrices |M||p 4 =

I-=1{Zf=| |M,;,-|‘T}E. For p = g = r = 2, we denote the norm
subscript by F.

Since both the loss function and the £, penalty are decom-
posable, we can solve each of the N problems in (5) indexed
by i separately,

0; = argmin  L;(6;) + 4,194l
B RNL

The possible dependence of £; on ¢ in the M-estimator (5)
allows for the incorporation of time-discounting factors such
as y' for some y = 1. We consider a large class of loss func-
tions later stated explicitly in Assumptions (A2) and (A3). This
class always includes the negative-log likelihood function for
exponential family distributions (- | f;(v)) with log-concave
link f;, and pseudo-likelihood functions in some cases. When
L are chosen to be convex, the whole problem (5) is uncon-
strained, convex, with a coercive objective function, whereby
the solution © is unique. Furthermore, the estimator (5) can be
solved efficiently using any non-smooth convex optimization
solver, such as the subgradient methods or proximal pradi-
ent descent methods [34]. An implementation for the general
problem in (5) is available at [2] which implements both the
subgradient method as well as the proximal gradient method.

Each iteration of both of these methods involve computa-
tion of the gradient of the loss function followed by finding
the sub-gradient or proximal mapping for the regularization.
Computing the gradient of the loss is the most expensive step.
The gradient of the loss is

Vie[NlL. (D

VL©)) = % i (%% (e.-f x‘—ln)) XD, (8)
=1

where in £(-; -) the derivative is with respect to the second
argument. To compute the grﬂdimt X~'D can be precom-
puted once by multiplying X = and D. Hence, the
complexity of obtaining the gtadlent ‘FE{B ;) at each iteration
is dominated by that of computing (8;, X*~'D) for all i, that is,
({nNL). To solve the optimization problem, one can then use

the subgradient method with a provable convergence rate of
1//k after k steps. This relatively slow rate is due to the non-
smoothness of the objective function. Alternatively, we can
use the proximal gradient method that converges at a rate of
1/k. Then, the overall computational complexity of obtaining
an e-optimal solution is O{nNL/e). The parallel implementa-
tion in (7) allows for massive speed-ups in computation when
using GPUs. The main result of this article concerns the statis-
tical complexity of the estimator and is agnostic to the choice
of the optimization solver.

Our main result establishes the statistical properties of esti-
mator (5) such as consistency, sample complexity and error
rate. Our analysis also highlights desirable properties of the
loss functions £ and the nonlinearities f; for achieving con-
sistency. The result also shows the effect of the dictionary D
in increasing the sample-efficiency of the estimator.

ITI. MAIN RESULTS
Our main result concerns the estimation error of the param-
eters [El }¥ . obtained by solving (7). We implicitly assume
67 to be approximately s;-sparse. This assumption is encoded
via the £,-approximation errors

min {18 —&Fl1 | [Blloo < si}-

o= min, ©)
We also impose the following assumptions:
{Al) The process is wide-sense stationary and stable, i.e.,

the power spectral density matrix exists:

i Cov (x‘f.t’ —f) gt
f=—0o0
CNXN

L) =

min  Amin(Xiw)) = ‘CI = 0.
we[—m. )

{A2) The loss function v — Lilu,v) is twice differen-
tiable and strongly convex for all i, with curvature
ki = 0,ie, B2La(u;v) =i forallue X, veR,ie
[N, reB,.

|8 Ly(u, v)| = Cp,and forallve R, i e [N],t e F,
we have

U~Qi(-fi(v)) = E[&La(U; 0] =0.

Assumption (A3) puarantees that ©* is the minimizer of the
population loss, and is necessary for the consistency of the
M-estimator. The second half of the assumption is generally
satisfied if the loss is taken to be the log-likelihood function.
The next example verifies this for single-parameter exponential
families.

Example I: Assume that (- | z) is an exponential family
with density x — exp{xz — ¢(z)), for all i. Here, z is the so-
called natural parameter of the family and ¢ is the log-partion
function. Let I' ~ Q(- | fi{tv)) and take Cj(x,v) to be the
log-likelihood of this model, that is,

—xfi(v) + ¢ (fi(v)).

This class includes Bernoulli, Poisson, and Gaussian (with
known variance) AR processes among others. We have

A Liy(U; v) = —Uf; (v) + ¢" (v (v).

(A3)

Ly(xsv) =
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By a standard property of the exponential family E[U] =
@' (fi(v)), hence E[3,.Cyu(l/;v)] = 0 verifying the second
half of (A3). If, in addition, the family has bounded support
and both ¢ and f; are Lipschitz, then the entire (A3) holds.
Distributions such as Poisson and Gaussian violate the bound-
edness assumption. However, the truncated version of these
distributions belong to the exponential family and satisfy the
boundedness condition.

Example 2: Under the same exponential family distribution
as in Example 1, the second half of (A3) also holds for the
squared error loss

Ly(xv) = [x— ¢ (fivn]”.
To verify this, it is enough to observe that
ALa(U;v) =2[U — ¢'(fi(v))] - " (fiv)f, (),

and use E[U] = ¢'(f;(v)).

These two examples show that (A3) is satisfied for com-
monly used loss functions. As for (A2), we recall that in an
exponential family with the natural parameterization, the log-
partition function ¢(-) is convex. Assumption (A2), however,
requires the map v — L£y(u, v) to be strongly convex. Extra
care should be taken in choosing the loss and fi(-) to ensure
that this assumption is satisfied. The stability Assumption (A1)
is further discussed in the remarks following the main result.

Let us now define a few constanis necessary to state our
main result. Let

Cp = max el
G = G(0") = 64CH* (14 ¥ (n(67))).  (10)
where ¥r(x) = (1 —x')~% and
n(0%) = sup [P, —PBy, <1,

.y =P
]P': _ ]P'(XI-H'T == | X' = 1],

e, (11)

Here, X*P c RN*P denotes the set of matrices consisting
of p columns, each from A. Note that [P, is f-invariant. Fix
I — [N] and let us write

Smax = MAxX 55, 54 = E 5, K = Max kj
e Tt L ield
icld
Cz %
X

ci=—Eming, ad B, = ZE?—:+4M—+ (12)
ield

where x; and Cy are specified in (A2) and (Al). We are now

ready to state the main result:

Theorem I: Suppose that {x'}i__ ., are samples from pro-
cess (3), with each A} being a countable subsets of [ — B, B]
for some B > 0, and satisfying (Al). Fix a subset I{f < [N]
and let {@,-},—Eu be the solutions of (7) with loss functions £
satisfying (A2HA3). Fixcy > 2and let c = /2 — 1. If

Ap = 2BCpCpy/cy logiL{|NL)/n, and
G
n > — 5. lop(NL),
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then, with probability at least 1 — (NL)™“m= — (JL{|NL)~*,

(13)

- 9 ]
;pa,- — 0|} = 55520 + =i
, x x

where C =0 C‘D‘E2 only depends on Ce.
The error bound in (13) can be written, up to constants, as:

38— e < —2— lnﬁw” +5+,J_I“EL”L}. (14)

isld

The two terms in the bound correspond to the estimation and
approximation errors, respectively. The estimation error scales
at the so-called fasf rafe log(NL)/n, while the approximation
error scales at the slower rate ,/log{NL)/n. For the exact spar-
sity model, where «; = 0 for all i, the approximation error
vanishes and the estimator achieves the fast rate. For simplic-
ity, assume that Cr, Cp = | = Cy. Then, the overall (excess)
sample complexity for consistent estimation is

(15)

By consistency, we mean that the estimator converges to the
true parameter when n grows to infinity, as long as the above
condition holds, even when the rest of the parameters 5, p, L
and N grow to infinity alongside n. We discuss the meaning
of the “excess™ qualification for the sample complexity in the
remarks below.

Bound (14) has a logarithmic dependence on N, the num-
ber of variables in the process, which is a notable feature
of our work. Compared to some of the previous work [27],
we overcome the N = | barrier for the BAR model while
allowing for p > 1 dependence on the past. The bound also
depends logarithmically on L. This means that dictionary I
can be overcomplete, allowing for ©* to be sparse, for nearly
no additional cost.

n mﬂ[Gﬁm, 54, {5_,_}2] log(NL).

A. Remarks on Theorem 1

Let us make a few comments on the various choices in
Theorem 1:

a) Choice of the Loss £: Theorem 1 holds for any loss func-
tion satisfying conditions (A2) and {A3). For the Bernoulli AR
process, the negative log-likelihood £; ;(u, v) = —ulogfiiv) —
(1 — wylog(l — fi(v)) satisfies these assumptions for any
log-concave f;; see [1]. For the Truncated-Poisson AR pro-
cess, the negative log-likelihood takes the form Lyiu, v) =
fitv) — ulogfi(v) + log(u!) and satisfies the assumptions for
fitv) = exp(v) or f;(v) = log(1 + &").

b) Choice of I{: The result in Theorem 1 has been stated
for a peneral I{ < [N]. Taking I{ = [N], gives a bound on the
Frobenius norm of the entire tensor |& — ©*||7. On the other
extreme, we can take I{ = {i} to obtain bounds on each slice of
the tensor with better scaling with sparsity. For example, in the
exact sparsity setting, we obtain ||&; — ©7 I* < s;log(NL)/n,
avoiding the extra price of {Zj—# 5i) log(NL)/n that we pay
for the entire tensor.

c) Scaling With Sparsity: Considering the exact sparsity set-
ting, the scaling of the sample complexity (15) with sparsity
isn=85, vsﬁm}l. In the worst case, 5, = Squx and we get
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a cubic dependence on sparsity which is not ideal. However,
when 5, = 53, Theorem 1 requires n = Q(s) which is the
optimal scaling with sparsity. (This can be seen by noting that
in the linear independent setting, one cannot do better than
n = £2(54).) Our result also holds for the more general case
of a; # 0. For example, for the £; ball sparsity with g = (0, 1),
we have w; = G{sl-'_l"r'?} hence w? [5; +w; = O(w;) = O(s:)
and @, = (5, ) and the same sample complexity as the exact
sparsity case holds.

It is not clear if the worst-case cubic dependence on the
sparsity can be improved without imposing restrictive assump-
tions. It is worth noting that in our proof, the additional 57
factor comes from concentration inequality (33) in Lemma 5.
This additional factor can be removed if one were able to show
sub-Gaussian concentration for deviations of the order of IIﬁIIi
instead of ||ﬁ||f1|, in Lemma 5. It remains open whether such
concentration is possible and under what additional assump-
tions. Section VII provides a more detailed discussion on this
concentration inequality. Figure 4{a) in Section IV suggests
a superlinear dependence on 5, hinting that the situation may
not be as simple as the i.i.d. case.

For p = 1, a sample complexity of p* log(N) was reported
in [21, Corollary 1]. One can verify that ¢ in their model
is equal 10 Smax in ours, hence they obtain the same 53
dependence on sparsity. Similarly for p = 2, the result in
[23, Th. 4.4] requires {s,.l’rf,}lug{h’} samples where 5 and r,
are sparsity parameters defined therein and r, is inversely
related to sguc in the worst case, yielding a similar cubic
dependence on sparsity as ours. Furthermore, it appears that
their analysis only holds for spa = (1), whereas we make
no such assumption. In short, to our knowledge, no prior work
has broken the 52 __ barrier in the non-Gaussian AR setting.

d) Scaling With Lag p: Our result is the first to provide
sufficient conditions for a sample complexity logarithmic in
p in the case of the identity dictionary, for any value of N.
As will be discussed in Section III-B, the dependence of the
{excess) sample size n on p could be as good as O{log L) for
a general dictionary, under certain tail and normalization con-
ditions. In these cases, one could obtain an (1) growth of
n as function of p in the best case (when L = (1)) and
an (logp) growth in the worse case (the identity dictio-
nary). In contrast, [27, Th. 1] requires s/*p*/ log(p) samples,
for the identity dictionary, and their proof relies heavily
on N=1

Our bound scales with p through & which is defined in
terms of the contraction coefficient ©;(®*) in (11). The con-
traction coefficient only depends on ©* and is always less than
1. Intuitively, if ©* is too large, then for two different initial-
izations z and y, the distributions P(X™? = . | X' = ¥) and
B(X"P = . | X' = z) may significantly differ. A clear suffi-
cient condition for G = O(1) is to have 7,(€*) = Op~!) as
well as Cp = 1. The challenge is to control ) (8*) in terms of
the size of &*. Section I1I-B further discusses sufficient condi-
tions under which & = @(1). There, we show that for certain
exponential families, the scaling depends on the behavior of
the tail of k — |id¢)g|, that is, how fast the influence from the
past dies down in the filters {d;}.

A subtle point worth noting here, which does not arise in
ordinary M-estimation with iid. measurements, is that n is
in fact the excess sample-size one needs beyond the p ini-
tial samples. It is clear that at least p initial samples are
needed for estimating a p-lap process. Examples discussed in
Section I1I-B provide conditions that puarantee that the excess
sample size, n, needed for consistent estimation is {log L) as
p grows, the smallest order one could hope for.

e) Stability Assumption (Al): We use Assumption (Al) to
guarantee that the strong convexity holds for the population
loss & — E £{8). This is key in guaranteeing that any param-
eter tensor © that maximizes the regularized loss function
in (5) does not deviate far from the true parameter &*.

Assumption (Al) is by now standard in time-series estima-
tion literature [9], [10], [35]. The quantity C+ is fundamental
to multivariate time-series analysis, however, its behavior as a
function of the parameters of the model is not yet fully under-
stood. Intuitively, C« is related to the flatness of the power
spectral density (PSD) X, and the stability of the process. For
the N = 1 case, Cy > 0 implies that the process does not
have zeros on the unit circle in the spectral domain.

In general, Cy could potentially depend on N, indirectly
via 8*. In subsequent discussions of Theorem 1, we have
assumed that O+ stays uniformly bounded away from zero as
N grows. This assumption is explicitly stated as C = 1. Our
main result (Theorem 1), however, holds for all positive values
of Cw, regardless of its growth rate. Even if Cy = o(1) with
respect to N, Theorem 1 still gives a consistency result, albeit
with a worse dependence on M.

The dependence of Cy on N occurs through the scaling
of the true parameter &*. That Cy is in peneral bounded
below by a constant (or has a slow decay as a function of
N) is part of the folklore of the time series literature. It is
reasonable to assume that this holds for certain structured &*.
However, obtaining exact conditions on &* for Cy = 1 to hold
is, in general, a non-trivial open problem, even for univariate
Gaussian AR(p) processes. The main difficulty is that the rela-
tion between the power spectral density of the process and its
parameter is indirect and via the Z-transform. Nevertheless,
conditions are known in special cases. See for example the
discussion surrounding in [9, Proposition 2.2], where explicit
conditions are given on the parameter matrix of a VAR(1)
Gaussian process, for Cy to stay bounded away from zero.

B. Special Cases

Let us now look at the applications of Theorem 1 to two
special cases often considered in discrete-valued time series
modeling — Binomial and Poisson AR processes. We take
I{ = [N] throughout this section. To apply the theorem, we
need to upper-bound Gy(E*) in each case. Since the y func-
tion in (10) is non-decreasing on [0, 1), it is enough to control
1(B8*). In fact, a sufficient condition for Gf(B*) = O(1) is
to have 7(6*) = O(3) and Cp = O(1).

The quantity )(8*) is the maximum total variation distance
between the p-step conditional distributions of the process,
starting from two initial states y and z. The Pinsker's inequal-
ity [36, p. 44] can be used to further control the total
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variation distance by the KL divergence, which is the natural
choice for comparing two exponential family distributions with
independent coordinates.

Recall X = [T¥, & c [ — B,B]" and the notation P,
from (11). Pinsker's inequality yields

F(0%) < sup 1Dk (B:IPy), (16)
zyeXEP

where Dy (-||-) is the KL-divergence. We now state upper

bounds on Dy (F;||Fy) for the two cases of the Binomial and

Poisson processes. A quantity of interest is the tail decay of

the dictionary elements {d; }!_I, measured by
P
ve =Y |@o)l- an
m=[

Let us define the following norm on &,
12

2
Iel, = ZL?[Zml%el]
it .k

where [; is the Lipschitz constant of the link function f;, and
the summations run over (i, ,J, £) € [N] = [p] = [N] = [L].
(One can often establish a bound of the form

Dy (F;IFy) < GBI©°; (18)

where Cr depends on {ff} and ©* is the true parameter
generating the samples.

Lemma [: Consider a Binomial AR process given by (3)
with A; = {0,1,....K;}, where K; < B, and (¢ -|2) =
Bin(K;, z). Assume that f; is [;-Lipschitz, and for some
g € (0, %}, fi: B — [e,1 —¢] for all i. Then, (18) holds
with C_f = fl,l"é.‘.

The case of B = 1 recovers the result for the Bernoulli
Autoregressive Process in [1].

Lemma 2: Consider a Truncated Poisson AR process given
by (3) with X; = {0, 1, ..., K;} and Qi( - | 2) = P(min(K;, Z) €
-) where Z ~ Poi(z) and K; = B. Assume that f; is L;-Lipschitz,
and for some & = 0, f; : B — [&, oo) for all i. Then, (18) holds
with C_f = 4,!"&.‘.

Combining with (16), we have the following corollary.

Corollary I: Under the assuml:ltiuns of Lemma 1 or 2,

0(@%) < 2o

,_,-'"
In particular, if Cpg, Cp = 1 = Co and ||&*|, = O(1/p), then
& = O(1) and the following is sufficient for consistency:

n max[ maxs 54 {E_,_}zllug{h’.{,}.

In other words, Corollary 1 provides conditions under which
consistent estimation is possible with (excess) sample com-
plexity that prows at most logarithmically in L.

Let us consider some examples for which ||&*|, = O(1/p).
For the purpose of illustration, let us separate the tail decay
of &*, along the lag dimension, by assuming that

O] < Ryhe, V(0.1 ) € IN] < INT x [L1
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for some sequence {h,}7°, such that 3732 h, < oo and a
matrix B = (Ry). Assume that B:.;.! is normalized so that
[[R||2,y = O(l). Moreover, assume that max; l; = O(1/p).
Since in model (3), the input to each f; involves terms
{X_;_*,dg}]au, each of which is essentially a sum of p terms
(see (4)), the aforementioned assumption on the Lipschitz con-
stant is a natural normalization that prevents the saturation of
the nonlinearities f; as p grows. Equivalently, we can make
this condition more explmlt by replacing fi(-) in the definition
of model (3) with fi( . (5) and assuming that f; have Lipschitz
constants uniformly bnunded by a constant.

Under the above modeling assumptions, consider the fol-
lowing two dictionaries:

Case (a): The identity dictionary, where L = p and (ds )y =
1{m = £}. In this case, yy¢ = 1{t = £}. Then,

16l < IRl [Z;j (il ’*f)z] - (;)

assuming that 377 (377 h¢)* < oo which holds, for exam-
ple, if h; decays at least as fast as £~'~%/2 for some o = 1.
Note that in this case Cp = | is trivially satisfied.

Case (b): A general dictionary, with filters satisfying the
decay rate max; |(d¢)m| < m ="' for some & = 1. Then,
maxe ye = 17 and

12
1 il P 1

1ol < —||R||2.1(E :rh) 3 he= o(—)
P £=1 p

=1

using 00, 2 = oo and Y37, h; < oo. Moreover, since
we have Cp < 37 _ m—=~', it follows that Cp = O(1) as p
ETOWS.

Thus in both cases, Corollary | guarantees that the excess
sample size n needed for consistency grows at most logarith-
mically in L. This translates to an O(logp) growth in the case
the identity dictionary but could be as low as (1) for a dic-
tionary with the number of filters I. not growing with p. Note
that the summability condition on ki in case (b) is milder than
that in case (a), showing the trade-off between the tail decay
of B (along the lag dimension) and the tail decay of the dic-
tionary filters. Having fast decaying filters relaxes the decay
requirement on the tails of 8.

IV. SIMULATIONS

In this section, we evaluate the performance of the estimator
in (5) using simulated data. We generate the data using the
model in (3). In all the examples, we first randomly generate
©* and D. To generate ©*, we select the support of 87 for
each { uniformly at random based on the sparsity 5;. We then
fill the support with i.i.d. draws of the normal distribution, and
finally normalize such that [|&7 ||, is a constant.

To report the performance of (5), we use the metric
normalized squared error (NSE) defined as:

e —8|;
NSE(©*,8) = %. (19)
F
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(a) NSE vs. sample size for a Poisson process without dictionary.
Fig. |. Poisson AR(p) process without a dictionary (i.e., I = Ip).
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(a) NSE vs. sample size for a Poisson process with dictionary.

Fig. 2. Poisson AR(p) process with dictionary of size L = 20.

to normalize variations in the size of the parameter across
independent instances of &*. An implementation is provided
at [2]. We consider the following 3 processes.

A. Poisson AR(p) Process Without Dictionary

We evaluate the performance of the repularized maximum
likelihood and the regularized least-squares estimators on a
Poisson process with no dictionary, i.e., D = I, For the
Poisson process, we use the inverse link function fi(z) =
logi1 + €%). Then, these estimators have the form of (5) with

L (xt: 2) = 7 — xtlog(z), (20a)
L () = (- 2)% (20b)
where zf = f({©F, X)), since D = I,. Note that the M-
estimation problem in (5) corresponding to (20a) is convex,

whereas it is non-convex for (20b) (we report a local min-
imum). Here, we generate the ground truth parameters as

N=50; p=20; samples=8000

— maximum likelihood
—— least squares

w
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() NSE vs. sparsity for a Poisson process without dictionary.
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(b) NSE vs. sparsity for a Poisson process with dictionary.

mentioned before with N = 50 and p = 20 and we use
An = 0.05/,/n. When comparing NSE v/s n, each ©; has
sparsity 20. The results are shown in Figure 1. The error
shades correspond to one standard deviation over 5 inde-
pendent instances of (©*, ). With the NSE metric, the
regularized maximum likelihood estimator appears to perform
better for the Poisson AR(p) process, for the random ensemble
of problems generated in these examples.

B. Poisson AR(p) Process With Dictionary

We choose D to be entrywise i.i.d. Gaussian with standard
deviation o/p for a constant o, so that the £;-norm of all
columns of I} are close to a constant for large p (the con-
stant being the mean of a folded normal distribution). The
process is penerated as in the previous example using (3). We
take N = 50,p = 200, and L = 20 such that the process
has very long range dependencies. We again consider the two
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Fig. 3. Bemoulli AR(p) process without dictionary.

regularized M-estimators: the regularized maximum likelihood
and the regularized least-squares with the inverse link func-
tion fiz) = log(l + £%). These estimators are identical to the
ones in (20a) and (20b), except that z{ = f{{@h X"ID}} with
D £ Ip.

The results are shown in Figure 2. They are very simi-
lar to Figure 1. In accordance with our theoretical results,
these figures suggest that for an AR processes with very long
range dependencies, estimating the parameter is easier in the
presence of a dictionary.

C. Bernoulli AR(p) Process Without Dictionary

Finally, we look at a Bernoulli autoregressive process. We
use the sigmoid function, f(z) = 1/(1 + ¢%), as the inverse

N=50; p=20; samples=10000
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(d) Accuracy vs. steps predicted in the future for different =

link function. We compare the performance of regularized
maximum likelihood estimator to regularized least-squares
estimator. Both of these estimators have the form of (5) with

£ (xf: 27) = —zjlog(x) — (1 - xj) log(1 —2)) (21a)
£ () = (- 2)" 21b)

where z; = ({6, X=!}) is the mean parameter of the dimen-
sion i of the Bernoulli process at time f. Note that due to
inverse link function, despite convexity of square loss with
respect to zi, the optimization problem corresponding to least
square estimator is non-convex and our results do not apply
to it. Nevertheless, we observe that its performance is similar
to maximum likelihood estimator.
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Fig. 4. Simulation results for Bermnoulli AR(p) process.

Figure 3 shows different measures of performance of the
regularized maximum likelihood estimator. We have set N =
50, p = 20 and A, = 0.05/./n as recommended by Theorem 1,
in these examples. Figure 3(a) shows how the normalized esti-
mation error changes with respect to the number of training
samples.

The sparsity is 20 for each ©;. Note that we are using the
same regularization parameter for both estimators and not the
optimal A, i.e., without any cross-validation. The error shades
correspond to one standard deviation. Figure 3(b) shows the
normalized square error for different sparsity levels. For small
values of sparsity, the denominator &* has a small norm which
causes high normalized error, however for higher values of
sparsity, we see the linear dependence on sparsity as predicted
by Theorem 1.

The next two figures correspond to generalization error as
opposed to estimation error in the first two figpures. Here,
we use the estimated parameters 8 to predict the process in
the future and calculate the accuracy of prediction. We use
5 MCMC runs of the process to estimate the accuracy. The
plot shows average accuracy over all N variables of the pro-
cess. Figure 3(c) shows the accuracy vs. steps in the future for
different training sample sizes and Figure 3(d) shows it for dif-
ferent levels of sparsity. There is a prominent change in the
accuracy plots at 21 steps. This corresponds to p = 20 where
the future of the process is being estimated purely based on
simulated samples using the estimated parameter. Prior to this
point, parts of the samples being used to make the predictions
are True values and not estimated ones. As expected, the accu-
racies improve as the number of training samples increase with
sparsity fixed, and they decrease as sparsity level increases
with number of training samples fixed. Figure 4(a) shows the
estimation error for different sample sizes and sparsity levels.

Finally, we also use the repularized maximum likelihood
estimator to perform support recovery, i.e., assuming that the
true parameter tensor is exactly s-sparse, how does the sup-
port estimated from e compare to the support of 8*7 To do

200 A0 800 &0
rescaled samplas (laghi ¥ p)

1000

(b} Fraction of support recovered by taking the largest s entries of
& as the estimator of support. Here NV = 100, p = 1.

s0, we need to estimate the support from @. If we know the
sparsity 5, we can estimate the support by taking the indices
corresponding to the s largest entries of @ in magnitude. If we
do not know the sparsity in advance, we can estimate the sup-
port based on a threshold chosen by cross-validation. Given a
threshold y, the estimated support would be

supp(®) == {(j. k. ) : |@jﬂ| =y).

Note that our theoretical results do not give any guarantees
for support recovery. In order to guarantee support recovery, a
stronger result bounding the error uniformly for each entry of
@ is required, i.e., we need to control ||'B * || a0.00,0c With
high probability. Therefore, more work is needed to obtain
theoretical guarantees for support recovery. Nevertheless, our
simulations show that the estimator is able to recover the sup-
port very well. Figure 4(b) shows the resulis for a process with
p=1.N =100 and three different sparsities. For recovering
the support, we assumed that the sparsity 5 is known, and
took the indices corresponding to the 5 largest entries of © as
the recovered support. The fraction of the correctly recovered
indices is plotted against the sample size. Figure 4(b) shows
that if the sample size is below some threshold, no entries
of the support are recovered, while above the threshold, the
recovered fraction gradually increases to 1.

V. PROOF SKETCH FOR THEOREM 1

We now outline the proof of Theorem 1. Our analysis
applies the framework of Negahban et al. [6]. Let

L) = ,];Zﬁ (xi: (8. X7'D)). BeR™™

Fix I{f < [N] and set E}u (&)izz¢ and similarly BF, =
(%) and By = (8));qy. all tensors in RUIN=L We
also write £24(O) = ¥4, L£i(6;). We have

Oy = argmin  Ly(Ou) + |Bulr11- (22)

QE.J' = EWIMN xl
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In the sequel, V.£y; and V2L, are the gradient and Hessian of
L7 with respect to variable G;;. When n < |I{|NL, the empir-
ical Hessian, ?ZEU{BE}}, is rank-deficient, hence the loss
function is flat in many directions around 8;;. The approach
of Negahban et al. [6] is to guarantee that Cp; is positively
curved in certain directions, including Eu = @u — 95,

In particular, if the regularization parameter 3, is large
enough, specifically

Ag = 2" vﬂu [B?.I'] Ilmmc:m

then, the error tensor Eu lies in a small cone-like sub-
set €(S; B7)—to be defined below—and on this set, Ly
is “nearly” strongly convex, ie., ?zﬂu{@f‘,} is uniformly
quadratically bounded below.

For a set § < [N] = [L], let 85 denote the projection of 8
on the subspace of matrices with support S. For 8* define:

C(s:8) = B - 18111 < 3185001 + 485, .} @2

Mote that this is a cone-like subset of BV* around g*. See [6]
for a visualization. Let 8§ = |_J;;,{i} x 5; where §; € [N]x[L]
for i € I{. Equivalently, § = | |, Si using the notation of
disjoint union. With some abuse of notation, we write & =
Uiz li} x S%. The cone-like set €(S; ©F,) is defined as follows:

E[S; BE}] = {{.ﬁ,—}ieu A e C{S.-; El,-*}, Vie H}. (25)

For loss functions £;, i € I, and for &, 8* € RV*L, let
Rﬁ,—{&; ﬁ*] = ﬁ,-{ﬁ* - J} - ﬁ,-{ﬁ*] — {?ﬁi{ﬁ*]f a}f (26)
be the remainder of the first-order Taylor expansion of £;
around B*. Following [6], we say that £z satisfies restricted

strong convexity (RSC) at ©;, with curvature » = 0 and
tolerance =7 if for all A € €(S; ©},), we have,

> RLi(A; ©F) =k Y NAillG -
ield ield
The left-hand side is the remainder of the first-order Taylor
expansion of £y around 87, that is, RCyy(Agy; B} )—defined
similar to (26).
MNow, assume that (23) and (27) hold. Then, [6, Th. 1]
implies that 8y — ©5, € €(S; ©,). and that

18u — 657 < 2181 + 422 +41(0) 1)

(23)

(27

(28)

The above inequality provides a family of bounds, one for
each choice of § = | |;4; Si. Decreasing || reduces the first
term, but potentially increases |(67;)s<|l1,1.1. We choose 5
to balance the two. Let §7 < [N] = [L] be the support of the
minimizer in (9), so that |57 | = 5;. We take § = &* = LJ,-EH 8.
Consequently, |S*] = 3z, 5; and [|(©])secll1. 11 = ¥ iegs i
For this choice of &, Proposition 1 below shows that (27) holds,
with high probability. To state the concentration inequality,
recall the definitions (12).

Proposifion 1: Under Assumptions (Al) and (A2), if we
have,

520 l0g(NL) (29)

n}£
T Cx
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then, the RSC property (27) for § = 8% holds with curvature
« =k and tolerance % = £, 4, @ /5;, with probability at
least 1 — (NL)~Cm= where C = O(Cy").

Lemma 12 in Appendix A in the supplementary material
shows that &7, is in fact the minimizer of the expected loss
ELy4(-). Lemma 13 in Appendix A in the supplementary mate-
rial shows that taking A, = C}{,,fing{IHINL}fn} is enough
for (23) to hold with high probability. Putting the pieces
together proves Theorem 1. The next section sketches a proof
of Proposition 1.

VI. RESTRICTED STRONG CONVEXITY:
PROOF OF PROPOSITION 1

Showing the RSC property (27) for a particular choice
of 5 is a major contribution of our work. This is a non-
trivial task since it involves uniformly controlling a depen-
dent non-Gaussian empirical process. Even for i.i.d. samples,
the task is challenging since the quantity to be controlled,
A+ RL(A; B%), is a random function that needs to be uni-
formly bounded below. Controlling the behavior of this func-
tion becomes significantly harder without the independence
assumption.

We proceed by a establishing a series of intermediate
lemmas which are proved in Appendix A in the supple-
mentary material. First, we show that 8 + RL;(B; 87) is
lower-bounded by the following quadratic form:

n

1 2
EB: %) =— ) (8.X"'D), (30)
=1
where X = {x'}i___. .
Lemma 3 (Quadratic ~ Lower  Bound):  Under
Assumption (AZ2),
RLi(B: ©]) = SE(B: X) 31)

for all 8 € RV*L and i € [N].

Notice that g + £(8; %) is a random function due to the
randomness in X. Importantly, £(-;X) does not depend on
the choice of i. The following set of resulis establish some
important properties of the random function £(-; X).

Lemma 4 (Strong Convexity at the Population Level):
Under Assumption (A1),

EEB; X) = Cx 18I

Next, we show that for a fixed B, the quantity £(8; X) con-
centrates around its mean. Section VII provides a sketch of
the proof of the following concentration inequality:

Lemma 5 (Concentration Inequality): For any g  RV*L,
if ¥ is penerated as (3), then with probability at least
1 — 2exp(—nt*/G), we have

EB:X) = EEB; X) — 1|81},

Finally, for a fixed { € [N] we use the structural proper-
ties of set C(57; ©7) along with Lemmas 4 and 5 to give a
uniform quadratic lower bound on £(8; X), which holds with
high probability:

forall g e RV*E.  (32)

(33)
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Lemma 6. Fix {  I{. For constants Oy, C; = 0, if 5; = Z

C\I ¥
then with probability = 1 — exp(SFs; log(NL) — %L
T i

2
E(B:X) = KIBIZ - w/si. VB € C(S:: ©]).

The proof of Lemma 9 (see Appendix B) in the supplemen-
tary material makes use of a discretization arpument. Proving
uniform laws are challenging when the parameter space is not
finite. The discretization of the set C(5%; ©*) uses estimates of
the entropy numbers for absolute convex hulls of collections
of points (Lemma 14 in the supplementary material). These
estimates are well-known in approximation theory and have
been previously adapted to the analysis of regression prob-
lems in [7]. The following technical lemma allows us to put
the above resulis together:

Lemma 7: For all { € U, let a;, b;, d;, p; be positive con-
stants, and consider random variables X;, ¥; € R which satisfy
Y; = a;X;, and ®(X; = b; — d;) = p; for all §{ € I{. Then with
probability at least 1 — |I{ |n_13uJIL pi. we have,

1=

; Y; > (ﬂ}m.) ;b:— (ij}a:) ;:ﬂ-

Proposition 1 follows by taking ¥; = RLi(Ag; 87), X; =
: 2
E(Ai X), a; = %, by = =L ||AillF. and d; = o] /5.

VII. CONCENTRATION UNDER DEPENDENCE: PROOF OF
LEMMA 5

In this section, we sketch the proof of Lemma 5 which
is a concenfration inequality for g — £(B; ), a quadratic
empirical process based on dependent non-Gaussian variables
with long-term dependence. For independent sub-Gaussian
variables {X'~!}, such a concentration result is often called
the Hanson—Wright inequality [11, Th. 1]. Providing sim-
ilar inequalities for dependent random variables is signifi-
cantly more challenging. For dependent Gaussian variables,
the machinery of the Hanson—Wright inequality can still be
adapted to derive the desired result [9, Proposition 2.4].
However, these arpuments do not extend easily to non-
Gaussian dependent variables and hence other techniques are
needed to provide such concentration inequalities.

Recent results [37], [38] on the concentration of empirical
processes derived from Markov chains could provide improve-
ments on the results we present here. However, since we
are dealing with a non-Markovian process (when p = 1),
such results are not directly applicable. A key observation,
discussed in Section I-B, is that process (3) can be repre-
sented as a discrete-space p-Markov chain. This allows us to
use concentration results for dependent processes in countable
metric spaces. There are several results for such processes;
see [25], [39], [40], and [41] for a review. Here, we apply
that of Kontorovich and Ramanan [25]. These concentration
inequalities are stated in terms of various mixing and con-
traction coefficients of the underlying process. The challenge
is to control the contraction coefficients in terms of the pro-
cess parameter ©*, which in our case is done using quantities
71(8*) and Gy(B*). Some results developed in this section

hold more generally for any p—Markov process, even those
outside the current autoregressive framework.

We start by stating the result of
Kontorovich and Ramanan [25] for a process {X'}icqq
consisting of (possibly dependent) random variables taking
values in a countable space X. For any £ = k = 1, define the
mixing coefficient

Mie 2 sup NF(Xf =.| X, =w, X1 :},)

w.ow'y I
_ p(xf = | Xg=w, X! =y)Nw, (34)

where the supremum is over w,w’ € X and y € A*~. Here,
X = (X\u =t = v) is viewed either as a member of
A *tv—ut+l) (the set of a matrices with v —u+ 1 columns from
X) or simply as a vector in A+, Let H € BR™" be an
upper triangular matrix with entries ng, for £ = k and zero
otherwise. Let |H|oc == maxi ) ;. nee be the £ operator
norm of H.

Proposition 2 [25, Th. 1.1]: Let ¢ : A" — R be an Ls-
Lipschitz function of {X'}}_, with respect to the Hamming
norm, then for all ¢ = 0, with probability at least 1 —

&
2exp( m}ﬁ we have

(X} =) —ES({X'} )| <& (35)

We apply the above result to ¢ = £(8;X) by finding
an upper bound for the Lipschitz constant Ly of the map
X+ £(B.K) with respect to the Hamming distance over
A xtntp=1) — {]_]‘:";l A;*in+r—l Lemma 16 in Appendix C
shows that Ly < {4BEC%J."1:}||§’II%11, whereas Lemma 17 in
Appendix C shows that [H|]2, < 2(1 +p*y(B*)), where the
quantity r(&*) is defined below equation (10). Lemma 17
is a general result that applies to any p-lag Markov chain,
including the GVAR(p) processes considered in this article.
In Appendix C we also develop some tools for controlling
[[H|| o, in terms of the contraction coefficient of another related
Markov chain obtained via a non-standard state augmentation.

Applying Proposition 2 with £ = | ﬁﬁp and using the
upper bounds for L and |H||2, concludes the proof.

VIII. DiscussIoN

Fitting autoregressive AR(p) models with multiple laps is of
broad interest in multivariate time series analysis. We consider
a large class of multivariate discrete-valued AR(p) processes
with nonlinear feedback. We study statistical properties of a
general £, regularized M-estimator for this model, and pro-
vide sufficient conditions on the model hyperparameters under
which consistent estimation is possible. Under assumptions of
approximate sparsity, our result shows that a sample com-
plexity £2(poly(s), log(Np)) is achievable. Our experiments
validate the theoretical results on simulated data. Commonly
occurring special cases of discrete-valued processes such as
Bernoulli AR(p) and Truncated-Poisson AR(p) are explored
in detail. The proof technique develops concentration inequal-
ities and identifies mixing properties of higher order Markov
chains which may be of independent interest. These techniques
were previously unknown to the best of our knowledge.
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Several open questions remain to be uncovered for the gen-
eral ARi(p) model. For example, the current model explores
the case of bounded, discrete valued data. Getting around this
assumption requires finding concentration inequalities for ran-
dom averages of the form in Lemma 5 for real-valued random
processes. Also, it remains unknown whether the dependence
on the sparsity hyperparameter 5 is optimal, since there is a
small gap between our upper bound and the naive lower bound.
Finally, it would be interesting to study parameter estimation,
and potentially even controls, for the case of partial observ-
ability, i.e., when we observe g(x") and not x' fully, akin to
partially-observed Markov decision processes (POMDPs).
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