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Abstract

We consider the problem of estimating the input and hidden variables of a stochastic
multi-layer neural network from an observation of the output. The hidden variables
in each layer are represented as matrices with statistical interactions along both
rows as well as columns. This problem applies to matrix imputation, signal recovery
via deep generative prior models, multi-task and mixed regression, and learning
certain classes of two-layer neural networks. We extend a recently-developed
algorithm — Multi-Layer Vector Approximate Message Passing (ML-VAMP), for
this matrix-valued inference problem. It is shown that the performance of the
proposed Multi-Layer Matrix VAMP (ML-Mat-VAMP) algorithm can be exactly
predicted in a certain random large-system limit, where the dimensions N x d of the
unknown quantities grow as N — oo with d fixed. In the two-layer neural-network
learning problem, this scaling corresponds to the case where the number of input
features as well as training samples grow to infinity but the number of hidden nodes
stays fixed. The analysis enables a precise prediction of the parameter and test
error of the learning.

1 Introduction

Consider an L-layer stochastic neural network given by

70 =W,Z), + B, + =Y, ¢=1,3,...,L—1, (1a)
70 = ¢u(Z9,, =), 0=2.4,... L, (1b)
where, for £ = 0,1, ..., L, we have true activations Z) € R"*?, weights W, € R™*"1_ bias

matrices By, € R™*4 and true noise realizations 82. The activation functions ¢y : Rreaxd

R™*4 are known non-linear functions acting row-wise on their inputs. See Fig. | (TOP). We use
the superscript © in ZY to indicate the true values of the variables, in contrast to estimated values

denoted by Z, discussed later. We model the true values Z8 as a realization of random Z, where the
rows z{ ;. of Z are i.i.d. with distribution po: p(Zo) = [[}°, po(Zo.:.). Similarly, we also assume
that Eg are realizations of random =, with i.i.d. rows 5; ;.- For odd /, the rows & ;. are zero-mean

multivariate Gaussian with covariance matrix Nzl € R¥*4_ whereas for even ¢, the rows & ¢,i: can be
arbitrarily distributed but i.i.d.

*Code available at https://github.com/parthe/ML-Mat-VAMP.
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Figure 1: (TOP) The signal flow graph for true values of matrix variables {Z9}3_,, given in eqn.
(1) where Z{ € R™*4 (BOTTOM) Signal flow graph of the ML-MVAMP procedure in Algo. 1.
The variables with superscript + and - are updated in the forward and backward pass respectively.
ML-MVAMP (Algorithm 1) solves (2) by solving a sequence of simpler estimation problems over
consecutive pairs (Zg, Z¢ ).

Denoting by Y := Z9 € R"£*? the output of the network, we consider the following matrix
inference problem:

Estimate Z := {Z/}/—p given Y := Z9 and {Woy,_1,Bog_1, ¢2k}£f1 (2

A key feature of the problem we consider here is that the unknowns, Z,, are matrix-valued with
d columns with statistical dependencies between the columns. As we will see in Section 2, the
matrix-valued case applies to several problems of broad interest such as matrix imputation, multi-task
and mixed regression problems, sketched clustering. We also show that via this formulation we can
analyze the learning in two layer neural networks under some architectural assumptions.

In many applications, the inference problem can be performed via minimization of an appropriate
cost function. For example, suppose the network (1) has no noise =, for all layers except the final
measurement layer, £ = L. In this case, the Z9 | = g(ZJ) for some deterministic function g(-)
representing the action of the first L —1 layers. Inference can then be conducted via a minimization
of the form,

ZL_l =g <argmin Hy(Y,Z1 1)+ Ho(Zy), subjecttoZp = g(ZO)) 3)
Zo

where the term H, (Y, Z; ) penalizes the prediction error and Hy(Z) is an (optional) regularizer
on the network input. For maximum a posteriori (MAP) estimation one takes, Hy,(Y,Z; 1) =
—logp(Y|Z11), and Hy(Zy) = — log p(Zy), where the output probability p(Y|Z;;) is defined
from the last layer of model (1b): Y = Z; = ¢1(Zr4,EL). The minimization (3) can then
be solved using a gradient-based method. Encouraging results in image reconstruction have been
demonstrated in [46, 4, 15, , 42, 29]. Markov-chain Monte Carlo (MCMC) algorithms and
Langevin diffusion [7, 45] could also be employed for more complex inference tasks.

However, rigorous analysis of these methods is difficult due to the non-convex nature of the optimiza-
tion problem. To address this issue, recent works [25, 12, 35] have extended Approximate Message
Passing (AMP) methods to provide inference algorithms for the multi-layer networks. AMP was
originally developed in [9, 10, 3, 17] for compressed sensing. Similar to other AMP-type results,
the performance of multi-layer AMP-based inference can be precisely characterized in certain high-
dimensional random instances. In addition, the mean-squared error for inference of the algorithms
match predictions for the Bayes-optimal inference predicted by various techniques from statistical
physics [37, 14, 2]. Thus, AMP-based multi-layer inference provides a computationally tractable
estimation framework with precise performance guarantees and testable conditions for optimality in
certain high-dimensional random settings.

Prior multi-layer AMP works [16, 26, 12, 35] have considered the case of vector-valued quantities
with d = 1. The main contribution of this paper is to consider the matrix-valued case when d > 1.
To handle the case when d > 1, we extend the Multi-Layer Vector Approximate Message Passing
(ML-VAMP) algorithm of [12, 35] to the matrix case. The ML-VAMP method is based on VAMP
method of [36], which is closely related to expectation propagation (EP) [28, 39], expectation-



consistent approximate inference (EC) [32, 13], S-AMP [6], and orthogonal AMP [24]. We will use
“ML-Mat-VAMP” when referring to the matrix extension of ML-VAMP.

Contributions: First, similar to the case of ML-VAMP, we analyze ML-Mat-VAMP in a large
system limit, where ny, — oo and d is fixed, under rotationally invariant random weight matrices
W,. In this large system limit, we prove that the mean-squared error (MSE) of the estimates of
ML-Mat-VAMP can be exactly predicted by a deterministic set of equations called the state evolution
(SE). The SE describes how the distribution of the true activations and pre-activations of the network
as well as the estimated values generated by ML-Mat-VAMP evolve jointly from one iteration of the
algorithm to the other. This extension of the SE equations to the matrix case is not trivial and requires
considering correlation across multiple vectors. Indeed, in the case of ML-VAMP, the SE equations
involve scalar quantities and 2 x 2 matrices. For ML-Mat-VAMP, the SE equations involve d x d and
2d x 2d matrices.

Second, we show that the method can offer precise predictions in important estimation problems
that are difficult to analyze via other means. The ML-VAMP was focused on deep reconstruction
problems [46, 4]. The matrix version here can be applied to other classes of problems such as
multi-task regression, matrix completion and learning the input layer of a neural network. Even
though these networks are typically shallow (just L = 2 layers), there are no existing methods that
can provide the same types of precise results. For example, in the case of learning the input layer
of a neural network, our results can exactly predict the test error as a function of the noise statistics,
activations, number of training sample and other key modeling parameters.

Notation: Boldface uppercase letters X denote matrices. X,,. refers to the n'® row of X. Random
vectors are row-vectors. For a function f : R1*™ — RIXF, its row-wise extension is represented
by £ : RVX™ — RN*K e [f(X)]n: = f(Xn:). We denote the Jacobian matrix of f by 2% (z) €
R™*k 5o that [ﬂ( )]ij = gfi_ (z). For its row-wise extension f, we denote by (2% (X)) the

X

average Jacobian, i.e., Zn 1 (rg(f (X,.) € Rmxk

2 Example Applications

As we describe next, the matrix estimation problem 2 is of broad interest and several interesting
applications can be formulated under this framework. We share a few examples below.

2.1 Multi-task and Mixed Regression Problems

A simple application of the matrix-valued multi-layer inference problem (2) is for multi-task regres-
sion [31]. Consider a generalized linear model of the form,

Y = ¢(XF; E), “4)

where Y € RNV*4 jg a matrix of measured responses, X &€ RN*P is a known design matrix,
F c RP*9 are a set regression coefficients to be estimated, and Z is noise. The problem can be
considered as d separate regression problems — one for each column. However, in some applications,
these design “tasks” are related in such a way that it benefits to jointly estimate the predictors. To do
this, it is common to solve an optimization problem of the form

argmm{ZZL Yijs [XF)ij) +)\Zp F}. } (5)

j=11:=1

where L(-) is a loss function, and p(-) is a regularizer that acts on the rows Fy. of F to couple the
prediction coefficients across tasks. For example, the multi-task LASSO [31] uses loss L(y, ) =
(y — 2)? and regularization p(Fy.) = ||F;C ||l2 to enforce row-sparsity in F. In the compressive-
sensing context, multi-task regression is known as the “multiple measurement vector” (MMYV)
problem, with applications in MEG reconstruction [8], DoA estimation [43], and parallel MRI [22].
An AMP approach to the MMV problem was developed in [48]. The multi-task model (4) can be
immediately written as a multi-layer network (1) by setting: Zg := F, W := X, Z; := WyZy =
XF,Y = Zs := ¢(Z1,E). Also, by appropriately setting the prior p(Zg), the multi-layer matrix
MAP inference (3) will match the multi-task optimization (5).



In (5), the regularization couples the columns of F but the loss term couples its rows. In mixed
regression problems, the loss couples the columns of F. For example, consider designing predictors
F = [f1, £5] for mixed linear regression [47], i.e.,

yi = qix f1 + (1 — q)x[f2 +vi, ¢; € {0,1}, (6)

where ¢ = 1,..., N and the ith response comes from one of two linear models, but which model
is not known. This setting can be modeled by a different output mapping: As before, set Zy := F,
Z, = XF and let the noise in the output layer be E; = [q, v] which includes the additive noise
v; in (6) and the random selection variable ¢;. Then, we can write (6) via an appropriate function,

y = ¢1(Z1,Ey).

2.2 Sketched Clustering

A related problem arises in sketched clustering [19], where a massive dataset is nonlinearly
compressed down to a short vector y € R”, from which cluster centroids f, € RP, for

k = 1,...,d, are then extracted. This problem can be approached via the optimization [20]
2

. . d —TxTf, . .
ming>o ming Y, ‘yl == eV =Ix fﬂ‘ where x; € RP are known i.i.d. Gaussian vectors.

An AMP approach to sketched clustering was developed in [5]. For known «, the minimization
corresponds to MAP estimation with the multi-layer matrix model with Zg = F, W; = X Z; = XF

and using the output mapping, ¢1(Z;,=E) := Z?Zl ajeV~121: 4 =B where the exponential is

applied elementwise and = is i.i.d. Gaussian. The mapping ¢; operates row-wise on Z; and =.

2.3 Learning the Input Layer of a Two-Layer Neural Network

The matrix inference problem (2) can also be applied to learning the input layer weights in a two-layer
neural network (NN). Let X € RV *Nin and Y € RV *Nout be training data corresponding to N data
samples. Consider the two-layer NN model,

Y = o(XF))F, + E, 7)

with weight matrices (Fy, Fy), componentwise activation function o (-), and noise Z. In (7), the bias
terms are omitted for simplicity. We used the notation “F}” for the weights, instead of the standard
notation “W,,” to avoid confusion when (7) is mapped to the multi-layer inference network (2). Now,
our critical assumption is that the weights in the second layer, F5, are known. The goal is to learn
only the weights of the first layer, F; € R¥n>*Nnia_ from a dataset of N samples (X, Y).

If the activation is ReLU, i.e., o (H) = max{H,0} and Y has a single column (i.e. scalar output
per sample), and F5 has all positive entries, we can, without loss of generality, treat the weights F5
as fixed, since they can always be absorbed into the weights F;. In this case, y and F5 are vectors
and we can write the ith entry of y as

d d
Yi = ZszfT([XFﬂz’j) +& = ZU([XFl]ijF%) +&i ()
j=1 j=1

Thus, we can assume, without loss of generality, that F'5 is all ones. The parameterization (8) is
sometimes referred to as the committee machine [41]. The committee machine has been recently
studied by AMP methods [!] and mean-field methods [27] as a way to understand the dynamics of
learning.

To pose the two-layer learning problem as multi-layer inference, define Z, = F;, W; :=
X, Z;:=XF, Ey:=E thenY = Z,, where Z5 is the output of a 2-layer inference network
of the form in (1):

Y =2Z; = $2(Z1,53) :=0(Z,)F, + Zs. 9
Note that W7 is known. Also, since we have assumed that F5 is known, the function ¢5 is known.

Finally, the function ¢ is row-wise separable on both inputs. Thus, the problem of learning the input
weights F is equivalent to learning the input Z of the network (9).



2.4 Model-Based Matrix completion

Consider an observed matrix Y = Z;, € RV %4 with missing entries ¢ € [Ny ] x [d]. The problem
is to impute the missing entries of Y. This is an important problem in several applications ranging
from recommendation systems, genomics, bioinformatics and more broadly analysis of tabular data.
There have been several approaches to solving this data imputation problem, right from 0 imputation
and mean imputation to more sophisticated techniques based on generative models.

Consider a generative model based on a multi-layer perceptron as in (1) such that the output Z
models the uncorrupted data matrix. Then the imputation problem can be posed as the solution of the
MAP optimization problem:

minimize HY - ZL—lH?Z - logIP’(ZL_l, ZL_27 ey ZQ) (10)
{Zf}gzo

where ||Y — Zlﬁ1||?2 =2 peal(Y)i — (Z11)ij)* One can also similarly construct Bayes
estimators such as E[Z},1|Z].

Traditional approaches to matrix completion have looked at regularized convex minimization schemes
just like (10) where —logP(Z 1) = ||Z ||, which is the nuclear norm, or some other structure
inducing convex norms. While the term — log P(...) in (10) can be thought of as a more general
regularization term, this formulation allows for more general application problems with heterogeneous
variables.

For example, in imputation of tabular data, it is often the case that some columns correspond to
continuous valued variables, whereas other variables are discrete valued modeling Yes/No answers
or count data. In such scenarios the —logIP(Z;4,...) allows more flexibility towards modeling
using GLMs and other exponential family distributions for every column separately. One simple
instance of (10) would be a generative model — logP(Z 4, ..., Zg) which is trained on some fully
observed data Z; _; using unsupervised learning methods such as Variational Autoencoders (VAE)
and Generative Adversarial Networks (GAN).

3 Multi-layer Matrix VAMP

3.1 MAP and MMSE inference

Observe that the equations (1) define a Markov chain over these signals and thus the posterior
L-1

p(Z|Z},) factorizes as p(Z|Zy,) x p(Zo) H P(Z¢|Ze) p(Y|Z1,—1). where recall the notation Z
=1

from (2). The transition probabilities p(Z¢|Z,—;) above are implicitly defined in equation (1) and

depend on the statistics of noise terms =,. We consider both maximum a posteriori (MAP) and

minimum mean squared error (MMSE) estimation for this posterior:

~

Zimap = argmax p(Z|Zy)  Zmmse = E[Z|Z1] = /Zp(Z|ZL)dZ (11)
Z

3.2 Algorithm Details

The ML-Mat-VAMP for approximately computing the MAP and MMSE estimates is similar to the
ML-VAMP method in [12, 33]. The specific iterations of ML-Mat-VAMP algorithm are shown in
Algorithm 1. The algorithm produces estimates by a sequence of forward and backward pass updates
denoted by superscripts T and ~ respectively. The estimates Zzt are constructed by solving sequential
problems Z = {Z,} f; é into a sequence of smaller problems each involving estimation of a single
activation or preactivation Z, via estimation functions {G;t () ZL:—11 which are selected depending on
whether one is interested in MAP or MMSE estimation.

To describe the estimation functions, we use the notation that, for a positive definite matrix I', define
the inner product (A, B)r := Tr(ATBT) and let ||A | denote the norm induced by this inner



Algorithm 1 Multilayer Matrix VAMP (ML-Mat-VAMP)
Require: Estimators GJ, G, {GF 11

1: Set Ry, = 0 € R™*? and initialize {Foe e RIS
2 fork=0,1,..., Ny — 1

14: /[ Backward Pass

3: //Forward Pass - +
- - 15: ZkL—l_G (RkL—l’FkL—l)
4 ZE) = Gg (R, ) . . ' -1
+ - CA— + + +
50 Af, = <%(R;O,F;0)> Ly o 16: Ay py = <6R+ (R Tk L—1)> LY Rp
6: on = A$0 Lio 17: Ty pq = Alzlﬁl LV
7. R/Jfro (ZﬁoA;o Ry oLy, 0)(Fk o) 18 Riyra= (ZIZ,LAAJZIA RZ,OFKO)(F;Z,O)”
8 for/{=1,...,L—1do 19: for{=L—1,...,1do
— — . g- G (R- - +
9: Z:e = Ge (Rké’ R;:,Z—l’ Lyps r;e—1) 20 Zyy 0 =Gy (R R;e—lv oo Tie)
. + _ /9G] e _ 0Gy -
10 A, = <6R§ ()> L., 21: Ak+1€ L= <6R;1() [‘;6717
1. Iy, =A{,-T, _ - A i
R (z+ AN RO )(T) 20 Thne =M~ T P
13: end %r kehie = Rielee) (D 230 Ry g = (ZigAyy — Rkerkz>(rk+1 ot
24: end for
25: end for
product. For £ = 1,..., L — 1 define the approximate belief functions
*%HZFRZ||i;*%||Z£71*RLHiL7 (12)

bg(Zz, Zg,1 |I{[_7 RZv I‘é_’ F;—l) X p(Zg|ZZ,1)€

where Zg, Rf € R™*¢ and Ty € R for all £ = 0,1,...L. Define by(Zo|Ry,Ty) and
br(Zy—1 |RJL“_1, I‘j{_l) similarly. The MAP and MMSE estimation functions are then given by the
MAP and MMSE estimates for these belief densities,

G (Z?,Zz 1) = argmax by(Zy, Zp) GF

£,map — £,mmse — (Z?7Z£ 1) E[(Z@,Z@ 1)‘b€] (13)
where the expectation is with respect to the normalized density proportional to b,. Thus, the ML-Mat-
VAMP algorithm reduces the joint estimation of the vectors (Zo, ..., Zy,_1) to a sequence of simpler
estimations on sub-problems with terms (Z, 1, Zy). We refer to these subproblems as denoisers and

denote their solutions by G, so that 2} = G/ and Z, , = G corresponding to lines 9 and 20 of

Algorithm 1. The denoisers G§ and G, which provide updates to 23“ and 2;_1, are defined in a
similar manner via by and by, respectively.

The estimation functions (13) can be easily computed for the multi-layer matrix network. An
important characteristic of these estimators is that they can be computed using maps which are
row-wise separable over their inputs and hence are easily parallelizable. To simplify notation, we
denote the precision parameters for denoisers GF ; in the KM iteration by

ng = (FIZWF;,E—l)v O, = (F;H wl“ie_l)» on =T, O, = F;L—r (14

Non-linear layers: For ¢ even, since the rows of = are i.i.d., the belief density b;(Z¢, Z ¢ |-) from
(12) factors as a product across rows, bg(Zy, Zy1) = [],, be([Z¢]n:, [Ze-1]n:). Thus, the MAP and
MMSE estimates (13) can be performed over d-dimensional variables where d is the number of
entries in each row. There is no joint estimation across the different ny rows.

Linear layers: When ¢ is odd, the density by(Z¢, Z¢1|-) in (12) is a Gaussian. Hence, the MAP
and MMSE estimates agree and can be computed via least squares. Although for linear layers
G/, G, IR, ,R},,©,) is not row-wise separable over (R, , R1), it can be computed using

another row-wise denoiser [é;, ée_] via the SVD of the weight matrix W, = V, diag(S;) Ve as



follows. Note that the SVD is only needed to be performed once.:

(GG (Re, R, ©) = avgmax |2y = WoZey = Belly, + (120 =Ry [, + 1|26 R
0y 41 7

@ argmax HVIZ@ — diag(S¢)VeaZey — V;Bz
Z¢, 2

L [V;éj, Vi éﬂ (VIR ViR, ©y)

I, +IVIZe = VIR |1+ [ VeaZes = ViaRE 1

—

where (a) fvollov~vs froln thg rotational invariance of the norm, and (b) follows from the definition of
denoiser (G}, G, |(R,, R/, ©;) given below

~ ~ ~ ~ ~ 112 ~
(G, G} ] == argmax Hzg ~ diag(Se)Zes — BZHN Zo — R;’
7 7 ¢

Zy,Zo

2 ~ ~
e
FZ

2
15
re 19

—

Note that the optimization problem in (15), is decomposable accross the rows of variables Z, and
Z1, and hence [G;, G, ] operates row-wise on its inputs.

Fixed Points: We note that the fixed points of the ML-Mat-VAMP algorithm can be shown to be
KKT points of the variational formulations of (11), omitted here due to lack of space. This is a direct
extention of results from Section 3 of [35]. In particular, we can show that the ML-Mat-VAMP in the
MAP inference case is a preconditioned Peaceman-Rachford splitting ADMM type algorithm [40].

4 Analysis in the Large System Limit

We follow the analysis framework of the ML-VAMP work [12, 33], which is itself based on the
original AMP analysis in [3]. This analysis is based on considering the asymptotics of certain large
random problem instances. We essentially show that under certain assumptions, as the dimension goes
to infinity the behavior of the ML-Mat-VAMP algorithm can be characterized by a set of equations
that describe how the distribution of rows of hidden matrices evolve at each iteration of the algorithm
for all the layers. Specifically, we consider a sequence of problems (1) indexed by /N such that for
each problem the dimensions n,(/N) are growing so that limy_, 5 = B¢ € (0,00) are scalar
constants. Note that d is finite and does not grow with N.

Distributions of weight matrices: For/ = 1,3,..., L—1, we assume that the weight matrices W
are generated via the singular value decomposition, W, = V, diag(S,) V3 where V, € R™¢*"¢
are Haar distributed over orthonormal matrices and Sy = (s 1,...,s £ min{ne,ney }). We will describe

the distribution of the components S; momentarily.

Assumption on Denoisers: We assume that the non-linear denoisers G, act row-wise on their in-
9G], 090G, 9GI 8GL
OR, " ORj,_,’ ORy’OR{_,
are uniformly Lipschitz continuous, the definition of which is provided in Appendix B.

puts (R;,, R;k_l). Further these operators and their Jacobian matrices

Assumption on initialization, true variables: The distribution of the remaining variables is
described by a weak limit: For a matrix sequence X := X(N) € R¥*4 by the notation

X 2 X we mean that there exists a random variable X in R with E||X||* < oo such that
]th)noo % Zf\; ¥(X;.) = E1p(X) almost surely, for any bounded continuous function ¢ : R — R,

as well as for quadratic functions 2 " Pz for any P € R‘ixod. This is also referred to as Wasserstein-2
convergence [30]. For e.g., this property is satisfied for a random X with i.i.d. rows with bounded
second moments, but is more general, since it applies to deterministic matrix sequences as well. More
details on this weak limit are given in Appendix B.

Let B, := V;Bg, and Sy € R™ be the zero-padded vector of singular values of Wy, and let 7, €
R?%?. Then we assume that the following empirical convergences hold.(Z, Ry, — Z9) 2 (=, Qo)
for even ¢ and (S¢, B, E¢, V, (Ry, — ZY9)) 2 (Se, Be, e, Qyy), for odd £. Here Sy € Ry is
bounded, B, € R? is bounded, 201 ~ N(0,N3,!,), and Qy, ~ N(0,T,), for £ =0,1,...,L—1



S . .\ 2
are all pairwise independent random variables. Additionally, we assume that Z3 = Z° and that the
sequence of initial matrices {I';, } satisfies the following pointwise convergence

Ty (N) =Ty, ¢=0,1,....,L—1 (16)

4.1 Main Result

The main result of this paper concerns the empirical distribution of the rows [2}],11, [Ri,t]n: of the
iterates of Algorithm 1. It characterizes the asymptotic behaviour of these empirical distributions in
terms of d-dimensional random vectors which are either Gaussians or functions of Gaussians. Let G;t

denote maps R'*% — R'*? suchthat (13),1.e., [GF (R, , Ry |, O)]n: = G5 (R ], RS ]y ©).
Having stated the requisite definitions and assumptions, we can now state our main result.

Theorem 1. For a fixed iteration index k > 0, there exist deterministic matrices Kgf IS Ridox 2d, and
_ =+ =
T Lppand Ty, € R‘iﬁd such that for even {:

(Zg—u zy, 21?,4717 2&) = (A, A, G, (C+ A,B+ Aaf;evf;zq)a G/ (C+ A,B+ AT&TZH))

where (A,B) ~ N'(0,K; ), C~ N(0,7,), A = ¢4(A,Z¢) and (A, B), C are independent. For

¢ = 0, the same result holds where the 1°* and 3*Y terms are dropped, whereas for { = L, the 24

and 4™ terms are dropped. Similarly, for odd (:
5 5 2
(VLZ?&, Vi.Zy, ViZy szze) =
(Aa '&, G, (C+ '&, B+ A,fie,ﬁ,z_l), G;(C + /Kw B+ AT&TZ,Z_Q)

where (A, B) ~ N(0,K}, ), C~ N(0,7,), A = Sy A+ By +E;and (A, B), C are independent.
Furthermore for { = 0,1,... L — 1, we have

a.s

8. =%t —=%
(FlfmA?e) — (Des Ae)-

The parameters in the distribution, {Ka, Tres I‘kiz, A,fe} are deterministic and can be computed
via a set of recursive equations called the state evolution or SE. The SE equations are provided in
Appendix A The result is similar to those for ML-VAMP in [12, 35] except that the SE equations for
ML-Mat-VAMP involve d x d and 2d x 2d matrix terms; the ML-VAMP SE only requires scalar
and 2 x 2 matrix terms. The result holds for both MAP inference and MMSE inference, the only
difference is implicit, i.e., the choice of denoiser G(+) from eqn. (13).

The importance of Theorem 1 is that the rows of the iterates of the ML-Mat-VAMP Algorithm
(Z3, 44, Z;:e in Algorithm 1) and the rows of the corresponding true values, Z?ﬁl, Zg, have a simple,

asymptotic random vector description of a typical row. We will call this the “row-wise" model.
According to this model, for even ¢, the rows of Z?q converge to a Gaussian A € R? and the rows of

Z9 converge to the output of the Gaussian through the row-wise function ¢, A= ¢¢(A,Zy). Then
the rows of the estimates Z,_, ,, Z& asymptotically approach the outputs of row-wise estimation

function G~ (-) and G (-) supplied by A and A corrupted with Gaussian noise. A similar convergence
holds for odd 4.

This “row-wise" model enables exact an analysis of the performance of the estimates at each iteration.
For example, to compute a weighted mean squared error (MSE) metric at iteration &, the convergence
shows that,

. 2 L - -
Zi, - 2| S EIGH(C+AB+A O - Al

1
ng

for even £ and any positive semi-definite matrix H € R%*?, The norm on the left-hand above acts
row-wise, ||Z||# := >, ||Z:. ||} Hence, this asymptotic MSE can be evaluated via expectations of
d-dimensional variables from the SE. Similarly, one can obtain exact answers for any other row-wise

performance metric of {(Zfé, Z9)}, for any k.
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Figure 2: Test error in learning the first layer of a 2 layer neural network using ADAM-based gradient
descent, ML-Mat-VAMP and its state evolution prediction.

S Numerical Experiments

We consider the problem of learning the input layer of a two layer neural network as described in
Section 2.3. We learn the weights F} of the first layer of a two-layer network by solving problem (9).
The large system limit analysis in this case corresponds to the input size n;, and number of samples
N going to infinity with the number of hidden units being fixed. Our experiment take d = 4 hidden
units, N;, = 100 input units, Ny, = 1 output unit, sigmoid activations and variable number of
samples IN. The weight vectors F; and F5 are generated as i.i.d. Gaussians with zero mean and unit
variance. The input X is also i.i.d. Gaussians with variance 1/Nj, so that the average pre-activation
has unit variance. Output noise is added at two levels of 10 and 15 dB relative to the mean. We
generate 1000 test samples and a variable number of training samples that ranges from 200 to 4000.
For each trial and number of training samples, we compare three methods: (i) MAP estimation
where the MAP loss function is minimized by the ADAM optimizer [21] in the Keras package of
Tensorflow; (ii) Algorithm 1 run for 20 iterations and (iii) the state evolution prediction. The ADAM
algorithm is run for 100 epochs with a learning rate = 0.01. The expectations in the SE are estimated
via Monte-Carlo sampling (hence there is some variation).

Given an estimate F'; and true value F(l), we can compute the test error as follows: Given a new

sample x, the true and predicted pre-activations will be z; = (F9)Tx and z; = Flx. Thus, if the
new sample x ~ N (0, NLI) the true and predicted pre-activations, (z1,Z1 ), will be jointly Gaussian

with covariance equal to the empirical 2d x 2d covariance matrix of the rows of F{ and f‘l:
Nin n
K= ﬁ S ulug, u, = {Fu@: Fl,k:} )

From this covariance matrix, we can estimate the test error, Ely — 7|? = E[FJ(c(z1) — 0(z1)/?,
where the expectation is taken over the Gaussian (z1,7;) with covariance K. Also, since (17) is a
row-wise operation, it can be predicted from the ML-Mat-VAMP SE. Thus, the SE can also predict
the asymptotic test error. The normalized test error for ADAM-MAP, ML-Mat-VAMP and the
ML-Mat-VAMP SE are plotted in Fig. 2. The normalized test error is defined as the ratio of the MSE
on the test samples to the optimal MSE. Hence, a normalized MSE of one is the minimum value.

Note that since ADAM and ML-Mat-VAMP are solving the same optimization problem, they perform
similarly as expected. The main message of this paper is not to develop an algorithm that outperforms
ADAM, but rather an algorithm that has theoretical guarantees. The key property of ML-Mat-VAMP
is that its asymptotic behavior at all the iterations can be exactly predicted by the state evolution
equations. In this example, Fig. 2 shows that the normalized test MSE predicted via state evolution
(plotted in green) matches the normalized MSE of ML-Mat-VAMP estimates (plotted in orange).

6 Conclusions

We have developed a general framework for analyzing inference in multi-layer networks with matrix
valued quantities in certain high-dimensional random settings. For learning the input layer of a
two layer network, the methods enables precise predictions of the expected test error as a function
of the parameter statistics, numbers of samples and noise level. This analysis can be valuable in
understanding key properties such as generalization error, for example using ML-VAMP, Emami et
al. [1 1] characterizes the generalization error of GLMs under a variety of feature distributions and
train-test mismatch. Future work will look to extend these to more complex networks.



Broader Impact

In statistical physics, systems with a large number of degrees of freedom often admit a simplified
macroscopic description. Modern neural networks have thousands of hidden units and billions of
free parameters; is there an analogous macroscopic description of the dynamics of multi-layer neural
networks? This paper identifies some of these macroscopic descriptions that can be used to analyze
a large class of optimization problems (See Section 2 for examples) arising in Signal Processing,
Data Science, and Machine Learning. The techniques developped in this paper allow analyzing and
understanding the fundamental limits of learning in 1 and 2 layer neural networks which are basic
building blocks in modern machine learning pipelines.
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