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Markov chain Monte Carlo (MCMC) approaches are traditionally used for uncertainty 
quantification in inverse problems where the physics of the underlying sensor modality is 
described by a partial differential equation (PDE). However, the use of MCMC algorithms is 
prohibitively expensive in applications where each log-likelihood evaluation may require 
hundreds to thousands of PDE solves corresponding to multiple sensors; i.e., spatially 
distributed sources and receivers perhaps operating at different frequencies or wavelengths 
depending on the precise application. We show how to mitigate the computational cost of 
each log-likelihood evaluation by using several randomized techniques and embed these 
randomized approximations within MCMC algorithms. The resulting MCMC algorithms 
are computationally efficient methods for quantifying the uncertainty associated with the 
reconstructed parameters. We demonstrate the accuracy and computational benefits of our 
proposed algorithms on a model application from diffuse optical tomography where we 
invert for the spatial distribution of optical absorption.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

Inverse problems arise in many imaging applications; for example, to visualize the subsurface of the earth in geophysical 
applications, to visualize the internal structure of human or animal bodies in biomedical applications, and to detect mate-
rials of interest such as explosive or illegal narcotics in luggage scanning and other security applications. Across all these 
problems, the goal is to generate detailed reconstructions of the spatial distribution of one or more material properties. 
Inverse problems share a common structure: the availability of limited measurements collected on the boundary or outside 
of the medium and a physical, or forward, model mapping the unknown properties of the medium onto the data. Given 
the (often nonlinear) forward model that involves partial differential equations (PDEs), noisy data, and available computing 
resources, there is a need for efficient algorithms for solving the inverse problem and quantifying the uncertainty associated 
with the reconstructed parameters.

To perform uncertainty quantification (UQ), we adopt the Bayesian approach which combines the likelihood of the data 
given the parameters and the prior distribution to produce the posterior distribution. In the applications we consider, the 
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posterior is non-Gaussian and the prevalent approach is to use Markov chain Monte Carlo (MCMC) techniques to produce 
samples from this distribution. These samples can then be used to estimate the conditional mean, conditional covariance, 
and other summary statistics associated with the posterior distribution. There are several computational challenges associ-
ated with inverse problems and UQ: modern imaging devices have the ability to collect a large volume of data using sensors, 
and the underlying physics has to be resolved on finely discretized grids. A dominant cost associated with a typical MCMC 
algorithm is the need to repeatedly evaluate the log-likelihood where each evaluation requires hundreds to thousands of 
expensive PDE solves. This cost can be prohibitive in the context of our applications and, therefore, efficient methods are 
necessary. In this work, we focus on randomized techniques to reduce the computational cost associated with the MCMC 
algorithm.

In recent years, there have been several approaches that use randomization to accelerate the computational cost asso-
ciated with inverse problems. One line of inquiry employs randomization as a computation tool for reducing the effective 
number of partial differential equations (PDEs) to be solved when optimization-based techniques are used to solve inverse 
problems [30,29,49,33,7,6]. These methods use the Monte Carlo trace estimator to approximate the objective function and 
the gradient to reformulate the optimization problem in the stochastic optimization framework. Other papers have used ran-
domized techniques for computing an efficient representation of the posterior covariance matrix as a low-rank perturbation 
of the prior covariance matrix. This efficient representation can then be used for uncertainty quantification [52,13]. How-
ever, these approximations have limitations for non-Gaussian posterior distributions, which we consider in this paper. Recent 
work in [36] developed theoretical results for bounding the distance between the exact and the approximate posterior dis-
tributions, when randomized methods are used to approximate the posterior distributions. However, there are very few 
works that use randomization in the context of MCMC algorithms, which is the focus of the present work. The use of Monte 
Carlo approximations to reduce the computational cost of evaluating the log-likelihood has been explored in [4,9,44,14]. 
Randomization techniques were also used for efficient sampling in hierarchical Bayesian inverse problems [12,51]. Our cur-
rent work differs both in the kind of randomized techniques used and in how they are employed in the context of the 
MCMC algorithms.

An alternative approach to the randomized approaches proposed here is to use surrogate models to mitigate the cost 
of the log-likelihood evaluations. Examples of surrogate approaches that can be used in practice are polynomial chaos [41,
57,32], local polynomial approximations [17], Gaussian process surrogates [55], reduced order models [20], sparse grid 
interpolation [15], active subspaces [18], neural network based surrogates [58], etc. A survey of some of these techniques 
can be found in [45]. An important point here is that the accuracy of the surrogate approaches and the resulting speedups 
obtained depend to an extent on the choice of the parametization and the dimensionality of the parameter spaces, which is 
in contrast to the randomization techniques proposed here.

Overview of contributions and contents. This paper develops efficient MCMC algorithms, powered by randomized approxima-
tions, for quantifying the uncertainty in the reconstruction of the unknown parameters. The cost of the MCMC algorithms is 
dominated (in terms of the number of PDE solves) by repeated expensive evaluations of the log-likelihood. In Section 2, we 
explain the computational costs in terms of a model ill-posed problem, Diffuse Optical Tomography, for which the forward 
model is described by a Helmholtz equation with a purely imaginary wavenumber. Motivated by this fact, our first major 
contribution (Section 4) is developing several computationally efficient randomized approximations to the log-likelihood. 
The first set of approaches use Monte Carlo approximations to the log-likelihood and are geometry independent in that they 
do not depend on the geometric distribution of the sources and receivers. The second set of methods proposed are geometry 
dependent in that they exploit the specific geometric distribution of the sources and receivers. The geometry dependent 
methods are only applicable to a class of imaging problems arising from elliptic PDEs (e.g., diffuse optical tomography, hy-
draulic tomography, electrical resistivity tomography); however, the geometry independent methods are applicable across 
a broad class of imaging applications. Second, we use the randomized algorithms for approximating the log-likelihood to 
accelerate two well-known MCMC algorithms—standard Metropolis Hastings and a two-stage approach based on delayed 
acceptance (Section 3). Using the standard Metropolis Hastings with randomized approximations results in efficient but ap-
proximate Bayesian inference but using the two-stage approach we can draw samples from the posterior distribution with 
the correct statistics. Third, we demonstrate the benefits of our proposed approaches on a synthetic problem from Diffuse 
Optical Tomography (Section 5). The unknown parameters characterized the absorption field, which is assumed to be piece-
wise constant and is represented efficiently using the parametric level set approach. The numerical experiments give insight 
into the accuracy and the computational costs of the randomized algorithms and the performance of the MCMC methods 
accelerated by randomization.

2. Motivating application: diffuse optical tomography

In this section, we consider the basic setup of Diffuse Optical Tomography (DOT). We describe the forward problem, 
the parameterization of the inverse problem and the computational challenges involved in solving the inverse problem. 
While DOT is a prototypical application that we consider, our approach is more general and is applicable to a wide-range 
of inverse problems such as electrical resistivity tomography, electrical impedance tomography, and hydraulic tomogra-
phy.
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2.1. Forward problem

In DOT, the medium of interest is illuminated by several light sources in the near-infrared portion of the electromagnetic 
spectrum (600 nm-1000 nm). Measurement sensors placed on the exterior of the medium measure the optical fluence and 
this information is used to invert for spatial maps of optical quantities such as diffusion and absorption coefficients. For 
a large class of very practical problems, the radiative transport physics associated with the propagation of light through a 
medium (represented by the domain �) can be approximated by the diffusion model [5]

−∇ · D(x)∇φ(x) + νμa(x)φ(x) = νS0δ(x− x j) x ∈�, (1)

φ(x) + 2AnD(x)
∂φ(x)

∂n
= 0 x ∈∂�, (2)

where D(x) is the diffusion coefficient. The diffusion coefficient is related to the reduced scattering coefficient μ′
s through 

the relation D(x) = ν/3μ′
s; here we assume that the scattering coefficient, and therefore diffusion, is constant throughout 

the domain. The coefficient An depends on the refractive index of the interface of the two media. We denote by φ(x) the 
photon fluence, and ν is the electromagnetic propagation velocity within the medium. The quantity S0 is the source power 
strength at wavelength and x j is the position of source location of source numbered j; here j ranges from 1, . . . , Ns , where 
Ns is the number of sources. Following [53], we use the collimated source approach and use sources in the PDE term rather 
than the boundary condition. Following [52] we take S0 = 1. Furthermore, μa(x) is the absorption coefficient, which is 
considered unknown in our problem, and we seek to recover this spatially dependent quantity.

To solve Eq. (1), along with boundary conditions Eq. (2), we use the standard linear Galerkin finite element approach. 
We denote the discretized photon fluence φ . The resulting system of equations can be summarized as

(K+M(p))φ j = s j, j = 1, . . . ,Ns, (3)

where Ns is the number of sources, matrices K and M(·) represent the discretized diffusion and absorption terms, and p
represents the parameters to be recovered. The specific choice of parameterization will be explained in Section 2.2.

Data acquisition. We explain the data used for solving the inverse problem. Let S = [
s1 . . . sNs

]
denote the matrix corre-

sponding to the discretized source terms. Similarly, denote the discretized delta functions r j with the centers at the receiver 
locations y j for j = 1, . . . , Nr and collected in the receiver matrix R = [

r1 . . . rNr

]
. Then the measurement equation takes 

the form

D = X(p) +N Ni j ∼N(0,σ 2), (4)

where σ is the standard deviation of the measurement noise, D ∈ RNr×Ns is the observed data and the forward model can 
be represented as

X(p) ≡ R�A(p)−1S, (5)

where A(p) = K +M(p).
In practice, the measurements from all the source-receiver pairs may not collect because the data collection process is 

either limited by physical or economical constraints or because the process is laborious and time consuming. To model this 
partial observation case, we denote by E ∈ RNr×Ns , the matrix (with entries in {0, 1}) that encodes which source-receiver 
pairs are active. The matrix E has a nonzero entry at index (i, j) if a receiver located at yi records information due to a 
source located at x j . Therefore, using our notation, the measurements that are actually collected are represented by E 	 D, 
where 	 is the elementwise, or Hadamard, product. We briefly comment on the various possibilities for the entries of E. 
If the matrix E is dense, then all the source-receiver pairs are active, i.e., all the receivers record information from all the 
sources. In most applications, E is a sparse matrix; for example, in our previous work [52], E is a sparse matrix with 4
nonzero entries per row, corresponding to four receivers per source location.

2.2. Inverse problem

We are interested in recovering the absorption coefficient which is spatially varying and is represented by the parameters 
p ∈ Rp . In this paper, we adopt the parametric level set approach [2] (PaLS) to represent the absorption coefficient as a 
piecewise constant function. The absorption field is represented as

μa(x) = μ
p
aχD(x) + μb

a(1− χD(x)),

where μp
a and μb

a represents the absorption coefficients of the perturbation and the background respectively, and χD(x) is 
a characteristic function that takes the value 1 when x ∈D and 0 when x ∈ �\D. In the PaLS approach, we express the 
characteristic function χD(x) as the τ -level set of a Lipschitz continuous function ϕ :D →R as follows
3
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χD(x) = H(ϕ(x) − τ ) ϕ(x) =
np∑
k=1

αkψ
(
βk‖x − χk‖†

)
, (6)

where H(·) is the Heaviside function and τ > 0. In practice, we use a smooth approximation Hε of the Heaviside function 
H(·) [2, Equation (5.12)], which we reproduce here

Hε(x) =
⎧⎨
⎩

1 x > ε
0 x < −ε
1
2 + x

2ε + 1
2π sin

(
πx
ε

) |x| ≤ ε.

We represent the function ϕ(x) as weighted combinations of basis functions ψ(·) and we have ‖x‖† =
√

‖x‖22 + ζ 2 and 
ζ > 0 is a small parameter chosen in order to ensure that ϕ is differentiable. We choose ψ(·) as compactly supported radial 
basis functions; however, other choices include polynomials and general radial basis functions. The coefficients {αk} control 
the magnitude of the radial basis functions, {βk} control the width, and {χk} control the centers. While having a large 
number of basis functions will be beneficial in representing and reconstructing fine scale features, it increases the number 
of the parameters to be estimated.

There are several parameters that define the parametric level set approach: the parameters {αk} which control the mag-
nitude of the radial basis functions, {βk} which control the width, and {χk} which control the centers, and the absorption 
coefficients μb

a and μp
a . In principle, we can treat all of them as unknown and infer them as part of the Inverse Prob-

lem. However, in the numerical experiments (Section 5) we assume that {αk} and {βk} are fixed, in addition to absorption 
coefficients μb

a and μp
a , and only treat the centers {χk} as unknown parameters in the inverse problem.

Posterior distribution. We adopt the Bayesian approach for solving the inverse problem. From (4), since the measurement 
noise has a Gaussian distribution, we can write the data-misfit part of the likelihood as

π(d|p) ∝ exp (−�(p)) �(p) ≡ 1

2σ 2
‖E	 (D− X(p))‖2F , (7)

where d = vec(D) and ∝ denotes ‘proportional to.’ The Frobenius norm of a matrix M ∈ Rm×n is defined as ‖M‖2F =
trace(M�M) = ∑m

i=1
∑n

j=1 |mij |2. The form of this likelihood follows the same arguments as [30, Section 4]. The symbol 
�(p) is sometimes called the data-misfit functional, and quantifies the misfit between the measured data D and the for-
ward model X(p). The prior information regarding the parameters of interest is encapsulated in the prior distribution π(p). 
Using Bayes’ rule, we can combine the prior information and the data-misfit likelihood, to produce the posterior distribution

π(p|d) ∝ π(d|p)π(p). (8)

Note that the proportionality constant which depends only on the data d can be omitted since it does not affect the 
inference of the unknown parameters p. Since the forward operator is nonlinear, the posterior distribution is non-Gaussian. 
To quantify the uncertainty in the reconstructed parameters, we use samples from the posterior distribution. For example, 
suppose we want to compute E [h(p)], where h(·) is a quantity of interest and the expectation is computed with respect to 
the posterior distribution. Given samples from the posterior distribution {p j}, and under suitable assumptions on h(·) and 
the samples, the Monte Carlo process converges as

lim
N→∞

1

N

N∑
j=1

h(p j) =
∫

h(p)π(p|d)dp, (9)

almost surely. In order to generate samples from the posterior distribution, we adopt the Markov Chain Monte Carlo (MCMC) 
approach.

Computational cost. A typical MCMC algorithm such as the Metropolis-Hastings algorithm requires repeated evaluation of 
the log-likelihood, which is dominated by the cost of computing X(p). One approach to compute X(p) is to first compute 
Ns forward PDE solves U(p) = A(p)−1S and then compute X(p) = R�U(p). Alternatively, if the number of receivers Nr is 
smaller than the number of source Ns , it may be computationally beneficial to first compute V(p) = A(p)−�R and then 
compute X(p) = V(p)�S, which requires Nr adjoint PDE solves. Note that for DOT the forward operator is self-adjoint, 
but our present discussion of computational costs includes the more general case. Therefore, at each iteration of a typical 
MCMC approach, the dominant cost involves min{Ns, Nr} PDE solves. This computational cost can be overwhelmingly large 
for two reasons. On finely discretized grids, the number of degrees of freedom can be large, therefore, each PDE solve can 
be computationally expensive. Furthermore, for DOT and other related applications, the number of sources and receivers can 
range from hundreds to thousands. A typical MCMC solver can run for 105 − 106 iterations; therefore, assuming the upper 
end of the estimates given above, we need 109 PDE solves. In this paper, we use several randomization methods to reduce 
this computational cost.
4
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3. MCMC algorithms

To quantify the uncertainty associated with the reconstructions, we need samples from the posterior distribution π(p|d); 
the prevalent approach is to use Markov Chain Monte Carlo (MCMC) methods. We review the standard Metropolis-Hastings 
algorithm and the two-stage MCMC algorithm in Sections 3.1 and 3.2 respectively, and discuss the computational efficiency 
in Section 3.3.

3.1. Metropolis-Hastings approach

The main idea is to generate a Markov chain with π(p|d) as its stationary distribution. A key step to this approach is to 
construct the desired transition kernel for the Markov chain. A popular choice of transition kernel is the Metropolis-Hastings 
(MH) approach which is described in Algorithm 1.

Algorithm 1 Metropolis-Hastings algorithm.
Require: A proposal distribution q(·|·), maximum iterations Nchain ≥ 1, burn-in period 1 ≤ Nb < Nchain .
1: for k = 1, . . . , Nchain do
2: Generate p∗ from q(·|pk).
3: Evaluate the acceptance ratio

α(p∗,pk) = min

{
1,

π(p∗|d)q(pk|p∗)
π(pk|d)q(p∗|pk)

}
.

4: Generate a random number u ∼U[0, 1]. If u ≤ α(p∗, pk), accept this proposed iterate so that pk+1 = p∗; else set pk+1 = pk .
5: end for
6: return The chain {pk}Nchain

k=Nb+1.

Starting with an arbitrary initial vector p0, the MCMC algorithm is run for Nchain steps to generate the Markov chain 
{pk}Nchain

k=Nb+1, where Nb is the number of samples discarded in the burn-in stage. At each iteration, the probability of moving 
from state pk to a next state pk+1 is q(p∗|pk)α(p∗, pk), so the transition kernel for the Markov chain is

K (pk,p∗) = q(p∗|pk)α(p∗,pk) + (1− r(pk))δpk (p∗),
where r(pk) =

∫
q(p|pk)α(p, pk)dp. The chain obtained after discarding the iterates in the burn-in stage has the same sta-

tionary distribution as the posterior distribution π(p|d), and therefore can be used as empirical Monte Carlo estimators 
similar to (9), see [47, Section 7.3].

As argued earlier, the standard MH algorithm is computationally expensive because each log-likelihood evaluation is 
expensive, and several such evaluations need to be performed. To tackle this computational challenge, Christen and Fox [16]
proposed a two-stage MCMC algorithm to address the computational cost of sampling from the posterior distribution. We 
briefly review this approach and discuss its computational efficiency.

3.2. Two-stage MCMC algorithm

Assume that we have a surrogate approximation for the true posterior distribution π(p|d) that is accurate and is cheap 
to evaluate. Denote the iterate of the MCMC chain at the current step as pk; the approximation of the likelihood at the 
current step pk is denoted by π̂pk (p|d). At each step of the algorithm, a proposed sample p∗ is generated from q(·|pk); then 
subjected to an accept-reject step based on the approximate likelihood π̂pk (p|d). This results in a new proposal distribution

q∗(p∗|pk) = q(p∗|pk)α(p∗,pk) + (1 − r(pk))δpk (p∗), (10)

where r(pk) =
∫
q(p|pk)α(p, pk)dp, and δp(·) is the Dirac mass at p. If the proposed sample is accepted then it is promoted 

to the next stage, where it is subject to a second round of accept-reject based on the full posterior distribution π(p|d). If 
the proposed sample is, instead, rejected at the first stage, the second stage is skipped entirely and we set pk+1 = pk . The 
details of this algorithm are given in Algorithm 2.

The potential reduction in the computational cost in the two-stage approach occurs because the full, expensive, likelihood 
π(p|d) is only evaluated when the proposed sample promoted to the second stage is “good,” in the sense that is likely to 
be accepted at the second stage. Note that in the two-stage approach, although r(·) appears in the definition of q∗(·|·) there 
is no need to evaluate r(·). To see this, consider the following two cases. If p∗ = pk , then ρ(p∗, pk) = 1 and the algorithm 
does not enter the second stage. On the other hand, if the proposed sample is promoted to the second stage, then

q∗(p∗|pk) = q(p∗|pk)α(p∗,pk).

As in the case of the standard MH algorithm, Algorithm 2 is run for Nchain steps to generate the Markov chain {pk}Nchain
k=Nb+1, 

where Nb is the number of samples discarded in the burn-in stage. Under the assumptions of [16, Theorem 1], which we 
5
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assume to hold for our problem as well, the transition kernel is irreducible and strongly aperiodic. With this assumption, 
Christen and Fox argue that standard ergodic results can be used to prove that Algorithm 2 produces samples from the 
posterior π(p|d) (see Section 1 of [16], in particular Theorem 1 and the surrounding discussion).

Algorithm 2 Two-stage MCMC algorithm.
Require: A proposal distribution q(·|·), maximum iterations Nchain ≥ 1, burn-in period 1 ≤ Nb < Nchain .
1: for k = 1, . . . , Nchain do
2: Generate sample p∗ from the proposal distribution q(·|pk).
3: Evaluate the acceptance ratio

ρ1(p∗,pk) = min

{
1,

π̂pk (p∗|d)q(pk|p∗)
π̂pk (pk|d)q(p∗|pk)

}
.

4: Generate a random number u ∼U[0, 1]. If u < ρ1(p∗, pk) promote sample p∗ to the next stage; else set p∗ = pk .
5: Evaluate the acceptance ratio

ρ2(p∗,pk) = min

{
1,

π(p∗|d)q∗(pk|p∗)
π(pk|d)q∗(p∗|pk)

}
,

where q∗(p∗|pk), is defined in (10).
6: Generate a random number u ∼U[0, 1]. If u < ρ2(p∗, pk), accept this sample so that pk+1 = p∗; else set pk+1 = pk .
7: end for
8: return The chain {pk}Nchain

k=Nb+1.

Note that if a state-independent approximation is used, that is π̂p(p|d) = π̂ (p|d), then this algorithm is related to the 
surrogate transition algorithm proposed in [36, Section 9.4.3]. We provide a simplified representation of the acceptance ratio 
that will be useful in analyzing the computational efficiency of the proposed sampler. At iteration k, the acceptance ratio at 
the second stage is

ρ2(p∗,pk) = min

{
1,

π(p∗|d)π̂ (pk|d)

π(pk|d)π̂ (p∗|d)

}
.

The proof is available in [20]. From this equation it is clear that the acceptance rate at the second stage is high when 
π̂ (p|d) is a good approximation π(p|d). In the extreme case that π̂ (p|d) = π(p|d), the acceptance at the second stage is 1, 
implying that all the promoted iterates are accepted. If a state-dependent approximation is used, then the acceptance ratio 
at the second stage takes the form [32, Equation (A6)]

ρ2(p∗,pk) = min

⎧⎪⎨
⎪⎩1,

π(p∗|d)min
{
1, πp∗ (pk|d)

πp∗ (p∗|d)

}
π(pk|d)min

{
1,

πpk (p∗|d)

πpk (pk|d)

}
⎫⎪⎬
⎪⎭ .

Here, for simplicity, we have assumed that the proposal distribution q(·|·) is symmetric in its arguments, which is the case 
in the proposal distributions we use in the numerical experiments.

3.3. Computational efficiency and choice of proposal distributions

We review the statistical and computational efficiency of Algorithm 2. Let t f be the computational time for the exact 
likelihood and let t1 and t2 denote the computational cost of the first and the second stages of the two-stage algorithm. In 
the first stage of the algorithm, the only cost is in evaluating the approximate likelihood, but if an iterate is accepted at the 
second stage, then it requires a full likelihood evaluation as well as two approximate likelihood evaluations in computing 
the reverse transition q∗(pk|p∗). Let η ∈ [0, 1] be the average acceptance rate of the first stage. The cost of the two-stage 
approach is Nchain (ηt2 + t1), whereas the cost of the standard MH approach is t f Nchain. Then the speedup of the two-stage 
MCMC approach is

Speedupcomp = t f
t1 + ηt2

.

The computational speedup can be substantial if both η, t1/t f � 1. That is, the acceptance rate at the first stage, and the 
ratio of the inexpensive to the expensive model is as close to zero as possible. However, this formula does not account for 
the quality of the samples generated which we now address.

Let τ ≥ 1 be the integrated autocorrelation time (IACT) of the corresponding Markov Chain. It is computed as [47, Section 
12.3.5]

τ ≡ 1+ 2
∞∑

corr(h(p0),h(pk)),

k=1

6
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where h(·) is a quantity of interest, corr represents the correlation, and {pk} is the MCMC chain. Similarly, let τt ≥ 1 be the 
IACT for the two-stage approach. The effective sample size measures the number of statistically independent samples and 
is computed as CES = Nchain/τ . Accounting for the number of statistically independent samples, the speedup is obtained by 
replacing Nchain with CES to obtain (similar to [20, Equation (25)])

Speedupstat = τ f

τt

t f
t1 + ηt2

,

where τ f is the IACT for the standard MH approach. The two-stage approach is efficient since the exact likelihood is only 
evaluated when a good candidate sample is available; but the quality of the sample then depends on the accuracy of 
the approximate distribution π̂pk (p|d) compared to the target distribution π(p|d). Therefore, there is a trade-off between 
computational efficiency on the one hand, and statistical efficiency (measured as CES) on the other. Typically, τ f /τt < 1 so 
that Speedupstat is smaller than Speedupcomp, as is the case in our numerical experiments.

We briefly mention the various choices of the proposal distribution q(·|pk) that we employed. A standard choice uses 
the random-walk proposal N(pk, σ 2

p I), where σ 2
p = 0.12/p and p is the number of unknown parameters. However, in some 

cases, we did not obtain acceptance rates that satisfied the rule of thumb 30 − 40%. A simple variant of this algorithm 
adaptively scales the random-walk variance in the first 20% of the iterations until the acceptance rate was within the desired 
rule of thumb [56, Algorithm 2]; we use this in our numerical experiments. The second adaptive approach that we could 
use is the Adaptive Metropolis approach for generating proposal distribution. In this approach, the proposal distribution 
q(·|p0, . . . , pk−1) is Gaussian with mean pk and the covariance

�k =
{

�0 k ≤ k0
sp

(
�̃k + εI

)
k > k0

,

where �0 is a fixed covariance matrix for the first k0 iterations, �̃k is the sample covariance matrix constructed using the 
previous MCMC iterates, sp = 2.382/p and ε > 0 is a small number of ensure that �k is positive definite [28]. Although 
the resulting chains in both the adaptations are non-Markovian, they satisfy the so-called diminishing adaptation condition 
which ensures that the resulting chain has the correct ergodic properties and samples from the target distribution [11, 
Chapter 4].

4. Randomized strategies for efficient likelihood evaluation

In this section, we discuss several different strategies for efficiently evaluating the likelihood. The methods are split into 
two different cases: geometry-independent (‘MCTrace’) and geometry-dependent (‘RandLR’, ‘RandTrace’, and ‘RandHODLR’). 
For simplicity, we first consider the case E = 1, where 1 ∈ RNs×Nr is the matrix of ones. The case E �= 1 will be discussed 
in Section 4.3. Finally, in Section 4.4, we discuss ways of incorporating the randomized approximations for the log-likelihood 
into the MCMC algorithms discussed in Section 3.

4.1. MCTrace: Monte Carlo trace approximation

We develop an estimator for π(p|d) based on the Monte Carlo estimator for the trace of a matrix. Let G ∈ RM×N , 
and consider the computation of its squared Frobenius norm ‖G‖2F . This can be expressed in terms of the matrix trace as 
‖G‖2F = trace(G�G). The Monte Carlo trace estimator approximates the trace by

‖G‖2F = trace(G�G) = E
[
ω�G�Gω

]
, (11)

where ω ∈ RN is a random vector drawn from any multivariate distribution which has mean zero and identity as the 
covariance matrix. The Monte Carlo trace estimator replaces the expectation by a sample average, i.e.,

‖G‖2F ≈ 1

�

�∑
j=1

ω j
�G�Gω j = 1

�
trace(��G�G�),

where ω j are independent draws and � = [
ω1 · · · ω�

] ∈ RN×� . The Monte Carlo estimator is an unbiased estimator 
for the matrix trace and the variance of this estimator depends on the particular choice of the distribution of the random 
vectors ω. We mention a few options for the distributions:

1. Gaussian: the entries of ω are independent and identically distributed (i.i.d.) N(0, 1) random variables;
2. Rademacher: the entries of ω are independently chosen from {−1, 1} and each with probability 1/2;
3. Sparse Rademacher: the entries of ω are independently chosen from {−√

s, 0, 
√
s} and with probability 1/2s, 1 −

1/s, 1/2s respectively (here, s > 0 is a user-defined parameter);
4. Unit orthogonal: the vector ω is drawn uniformly from the columns of an orthogonal matrix (e.g., the identity matrix).
7
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Fig. 1. Visualization of the three different scenarios of source receiver geometries: (left) transmittance, (center) annular, (right) sub-surface reflectance. The 
sources are denoted by red circles, and receivers by black circles, and the domain of interest is shaded. (For interpretation of the colors in the figure(s), the 
reader is referred to the web version of this article.)

The Sparse Rademacher has a few special cases worth pointing out: if s = 1 this is the Rademacher distribution, and if 
s = 3 this is the Achlioptas distribution [1]. A large value of s ensures that ω is sparse and is beneficial when G is sparse. 
An analysis of various choices has been given in [8,48,33,26,19]. In this paper, we use the Gaussian random vector as the 
distribution for ω since Gaussian random vectors will also play a role in the geometry dependent methods.

Let us focus our attention on the computation of the data-misfit term �(p) = ‖D −X(p)‖2F /2σ 2 where X(p) = R�A−1(p)S. 
Applying the Monte Carlo trace estimator to the matrix G(p) ≡ D − X(p), it follows that

�(p) = 1

2σ 2
‖D − X(p)‖2F ≈ 1

2�σ 2

�∑
j=1

‖Dω j − X(p)ω j‖22 = 1

2�σ 2
‖(D− X(p))�‖2F .

The last term is denoted as �̂(p). The reduction in computational costs is evident from the observation that

X(p)� = RT A−1(p)S︸ ︷︷ ︸
Ns−solves

� = R� A−1(p)(S�)︸ ︷︷ ︸
�−solves

.

Here, if � � Ns , then the number of solves to be performed with the matrix A(p) is reduced from Ns to �. Each column of 
the matrix S� is a random combination of the sources, represented by the columns of S; each column of S� can therefore 
be interpreted as a “simultaneous” random source. Similarly, the columns of D� are random combinations of the columns 
of the data matrix D.

We briefly discuss the accuracy of the Monte Carlo trace estimators. Let � be a standard Gaussian random matrix, and 
let 0 < ε, δ < 1. Assume that the vectors d and p are fixed; if the number of columns of � satisfies �G ≥ 8ε−2 log(2/δ), then 
a straightforward application of Theorem 3 in [48] gives

Prob
[∣∣�(p) − �̂(p)

∣∣ ≤ ε�(p)
] ≥ 1− δ. (12)

If instead of Gaussian random variables, Rademacher random variables are used, then for (12) to hold, the number of 
samples �R is required to satisfy �R ≥ 6ε−2 log(2/δ). These results give insight into the accuracy of the log-likelihood. To 
quantify the accuracy of the resulting posterior distribution, we can use the approach in [34] to bound the Hellinger distance 
between the exact and approximate posterior distributions based on the moments of the difference between the true and 
approximate log-likelihoods.

4.2. Geometry exploiting randomized methods

We propose three different randomized estimators for the likelihood, depending on the geometry of the data-acquisition 
scheme, i.e., the geometric locations of the sources and receivers (see e.g., Fig. 1). To make matters concrete, we consider 
three different scenarios that are commonly used in DOT applications [46]. In the first scenario, called transmittance ge-
ometry, the sources and receivers are on either side of the domain and are well separated from each other. In the second 
scenario, called annular geometry, the sources and receivers surround the domain, but there is no clear separation between 
them. Finally, we also consider the sub-surface geometry, where the sources and receivers are on the same side of the 
domain and are not well-separated. The first two methods proposed are applicable when the sources and receivers are 
well-separated from each other (e.g., transmittance geometry) but the third method is capable of handling situations where 
the sources and receivers are not well-separated from each other (e.g., annular or reflectance geometry).

4.2.1. RandLR: randomized low-rank approximation
Consider again the computation of the data-misfit part of the likelihood �(p) = ‖D − X(p)‖2F /2σ 2. We first observe that 

the entries of the model Xi j(p) = r�i A(p)−1s j can be seen as the discrete representation of the Green’s function G(x j, ·)
due to source s j (with source location x j) and evaluated at the receiver location, defined by ri . Note that in the case of 
8
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DOT, the PDE corresponds to a uniformly elliptic operator; therefore, based on the arguments of [10], when the sources and 
receivers are well-separated, we can approximate the Green’s function using a separable representation. This can be used 
to approximate the matrix X(p) using a low-rank representation. Numerical verification of the accuracy of the low-rank 
approximation has been demonstrated for the DOT application in Section 5.1. Note that the results in [10] are applicable to 
any uniformly elliptic PDE and, therefore, the low-rank approximation of X(p) is a feature of many imaging problems with 
similar structure (e.g., electrical resistivity tomography, electrical impedance tomography, hydraulic tomography, etc).

Although the results from [10] guarantee the existence of such a low-rank approximation of X(p), there are no algorithms 
provided to explicitly construct such a low-rank approximation. Traditional algorithms for low-rank representation, such as 
the singular value decomposition (SVD), rely on explicit access to the entries of the matrix. However, forming X(p) requires 
min{Ns, Nr} PDE solves, which we want to avoid. Our main idea to compute this low-rank approximation is to use the 
randomized SVD algorithm, previously reviewed and analyzed in [31]. Randomized SVD has the following crucial advantage 
compared to traditional algorithms: Computing the low-rank approximation does not require access to the entries of X(p)

explicitly, but only requires matrix-vector products (henceforth, referred to as matvecs) involving X(p) and X(p)� . We show 
how this can be exploited to lead to an efficient algorithm. Before proceeding, we note that other low-rank approximations 
can also be used in place of randomized SVD; examples include Golub-Kahan bidiagonalization [54] and sampling based 
methods [38].

To explain the randomized SVD approach, consider a matrix G ∈ RM×N , that is known to be approximately low-rank or 
to have rapidly decaying singular values. Let � ≤ min{M, N} be the target rank of the low-rank approximation. The algorithm 
first samples a random matrix � ∈ RN×� with i.i.d. entries drawn from the standard normal distribution N(0, 1) entries. 
A random combination of the columns of G, denoted as Y = G� is computed. A thin-QR factorization of Y is computed 
Y = QZ, whose columns contain an orthonormal basis for the range of Y. The main idea behind the low-rank approach is 
that, if G has rapidly decaying singular values, then the columns of Q form a basis that approximates the range of G. This 
gives us the low-rank approximation G ≈ QQ�G. If the approximate SVD of G is needed, compute B = Q�G and its thin-SVD 
B = UB�̂V̂�; then

G ≈ Û�̂V̂� Û ≡ QUB .

The accuracy of the low-rank approximation depends on the decay of the singular values. Precise results have been derived 
in [31,27]. The choice of the parameter � depends on one of two scenarios: when the target rank is known, or if it is 
unknown. In the first scenario, when the target rank is known and we use Gaussian random matrices (as is the case in our 
implementation), the parameter � = r + ρ where ρ is some small oversampling parameter 5 − 10. In the second scenario, 
when the target rank is not known, this must be determined in an adaptive fashion, which can be done using the adaptive 
algorithms [59,40]. In the numerical experiments in Section 5, we show the accuracy of the randomized approach with 
increasing � and we use a fixed � in the MCMC iterations.

In the context of the MCMC approach, suppose that the current step is pk and the proposed step is p∗; we develop an 
approximation to the data misfit term �(p) that makes it computationally efficient to evaluate the posterior density (up 
to a proportionality constant) at a point p∗ that is close to the current step pk . We show how to adapt the randomized 
SVD approach to estimate �(p). Let � ≤ min{Ns, Nr} denote the target rank of the low-rank approximation we seek. As 
described in the general case for a matrix G, we draw the standard Gaussian random matrix � ∈ RNs×� and we compute 
Yk = X(pk)�. A thin-QR factorization of Yk is computed to obtain Yk = QkZ. Based on the previous arguments, the range of 
Qk approximates the range of X(pk). For a proposed point p∗ that is close to pk , we use the following rank-� approximation 
to X(p∗): namely, X(p∗) ≈ QkQ�

k X(p∗). We then have the local approximation of the data misfit �pk (p∗)

�pk (p∗) = 1

2σ 2
‖D −QkQ

�
k X(p∗)‖2F . (13)

The procedure is explained in detail in Algorithm 3. Henceforth, we will refer to this approach as RandLR.

Algorithm 3 RandLR approach for estimating �(p∗) ≈ �̂pk (p∗).
Require: Parameter 1 ≤ � ≤ min{Ns, Nr}.

Matrices R ∈Rn×Nr , S ∈Rn×Ns , data D ∈RNr×Ns .
Parameters pk (current step), p∗ (proposed step), and noise variance σ 2.

1: {// Stage 1: Computing the basis Qk at the current step pk}
2: Sample � ∈RNs×� with entries sampled from i.i.d. N(0, 1).
3: Compute Yk = R�A(pk)−1(S�) {Cost: � forward solves.}
4: Compute thin-QR factorization Yk = QkZ.
5: {// Stage 2: Estimate of the negative log-likelihood at the proposed step p∗}
6: Compute B∗ = S�A−�(p∗)(RQk) {Cost: � adjoint solves.}

�̂pk (p∗) = 1

2σ 2
‖D−QkB∗‖2F

7: return �̂pk (p∗)
9
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Fig. 2. A hierarchy of low-rank off diagonal blocks. Blue blocks refer to low-rank matrices, red blocks correspond to full-rank blocks.

We assume that the cost of this algorithm is dominated by the cost of solving the PDEs. Hence, the dominant cost of this 
algorithm is 2� PDE solves: � PDE solves to compute the basis Qk and � PDE solves to compute B∗ . Clearly the randomized 
approach is computationally effective if 2� � min{Ns, Nr}. The accuracy of the approximation depends on two factors: the 
proximity of pk to p∗ , and the decay of the singular values of X(p). When p∗ = pk , the approximation X(pk) ≈ QkQ�

k X(pk)
is accurate if the singular values of X(pk) are rapidly decaying. However, even when p∗ ≈ pk , we expect the low-rank 
approximation X(p∗) ≈ QkQ�

k X(p∗) to be accurate. We will investigate the accuracy of the RandLR approach more carefully 
in the numerical experiments.

4.2.2. RandTrace: randomized trace estimator based on subspace iteration
As before, we denote the misfit G(pk) ≡ D − X(pk) at the current iterate pk . In the transmittance geometry, where the 

sources and receivers are well-separated, we argued in Section 4.2.1 that the forward model X(pk) can be approximated by 
a low-rank matrix. From (4), the data matrix can be represented as D = X(ptrue) + N for a true parameter ptrue. When the 
noise level is sufficiently small, by the Weyl perturbation theorem [25, Corollary 8.6.2], it is reasonable to assume that the 
data matrix D is also approximately low-rank. Similarly, we argue that the misfit D − X(pk) is also a low-rank matrix with 
a possibly higher numerical rank than X(pk).

To estimate the misfit �(p), we use the randomized trace estimator developed in [50] which is based on the randomized 
subspace iteration [50]. Let � denote the number of samples. We first draw a standard Gaussian random matrix � ∈ RNs×�

and compute Yk = G(pk)�G(pk)� and the thin QR factorization Yk = QkZk . Then we approximate

‖D − X(p)‖2F = trace(G(p)�G(p)) ≈ ‖(D− X(p))Qk‖2F .
This gives a local approximation to the data misfit at the current iterate pk

�̂pk (p∗) = 1

2σ 2
‖(D − X(p∗))Qk‖2F .

The procedure is summarized in Algorithm 4. The dominant computational cost of estimating the log-likelihood is � forward 
solves and � adjoint solves to compute Qk , and an additional cost of � forward solves. Compared to RandLR this algorithm 
is more expensive since it requires � additional forward solves.

Algorithm 4 RandTrace approach for estimating �(p∗) ≈ �̂pk (p∗).
Require: Parameter 1 ≤ � ≤ min{Ns, Nr}.

Matrices R ∈Rn×Nr , S ∈Rn×Ns , and data D ∈RNr×Ns .
Parameters pk (current step), p∗ (proposed step), and noise variance σ 2.

1: Sample a standard Gaussian random matrix � ∈RNs×� .
2: {// Stage 1: Computing the basis Qk at the current step pk}
3: Compute Y′ = D� − R�A(pk)−1(S�) {Cost: � forward solves.}
4: Compute Yk = D�Y′ − S�A(pk)−�(RY′) {Cost: � forward solves.}
5: Compute thin-QR factorization Yk = QkZk .
6: {// Stage 2: Estimate of the negative log-likelihood at the proposed step p∗}
7: Compute B∗ = DQk − R�A−1(p∗)(SQk) {Cost: � forward solves.}
8: return Estimate of the negative log-likelihood �̂pk (p∗) = 1

2σ 2 ‖B∗‖2F

4.2.3. RandHODLR: randomized techniques for other geometries
The previous methods made the crucial assumption that the sources and the receivers are well-separated, which led to 

a low-rank approximation of the forward model X(p) and the misfit D − X(p). The different randomized methods exploited 
this low-rank property in different ways. However, for certain source-receiver configurations, this well-separated assumption 
no longer holds since the sources and receivers are interspersed with each other. Examples of these configurations are the 
circular and the sub-surface geometry. In these circumstances, while the matrix X(p) is itself not approximately low-rank, 
it has a special structure which we describe and exploit.
10
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Table 1
A summary of the various randomized methods proposed in the paper. Here (ε, δ) and � are 
user-defined parameters depending on the context. For RandHOLDR, we give the asymptotic 
number of matvecs required.

Geometry dependent E �= 1 Matvecs/PDE solves

MCTrace No Yes 8ε−2 log(2/δ)
RandLR Yes Yes 2�
RandTrace Yes No 3�
RandHODLR Yes Yes ∼ � log2(Ns)

For these geometries, the matrix X(p) can be approximated by a matrix with Hierarchical Off-Diagonal Low-Rank 
(HODLR) structure. A simple visualization of the hierarchy of low-rank approximations is available in Fig. 2. In this structure, 
the diagonal blocks are stored in full-rank format, whereas the off-diagonal blocks are stored in low-rank format. We assume 
that there L levels, where L ∼ log2(Ns), and the off-diagonal blocks are approximated using low-rank matrices with target 
rank �. At level 0, the matrix is effectively full-rank. At level 1, the (1, 2) and (2, 1) blocks can be compressed and stored 
in low-rank format with target rank �. At level 2, the (1, 1) and (2, 2) blocks are further compressed recursively, and so on. 
Most importantly, to approximate the matrix X(p) in HODLR format, the matrix need not be stored or computed explicitly 
but can be approximately reconstructed using a peeling algorithm originally proposed in [35]. The version of the algorithm 
that is used in this paper is based on [39, Section 3]. We will not reproduce this algorithm here since it is explained in 
great depth in that paper. We will refer to this approach as RandHODLR.

The number of matvecs involving X(p) required for approximating the matrix is O(� log2(Ns)); since each matvec in-
volves a forward or an adjoint PDE solve, this is also the dominant cost of the algorithm. Compared to the naive approach, 
RandHODLR is computationally efficient if � log2(Ns) � min{Ns, Nr}. Let the current iterate be pk; once the approximation 
X̂(pk) has been computed in HODLR format, computing the approximation to �(pk) is straightforward, and is computed as 
�̂pk (pk) = ‖D − X̂(pk)‖2F /(2σ 2). In this case, we are able to approximate the misfit �(pk) at a given point pk but cannot 
construct a local approximation as was done in RandLR and RandTrace approaches. This has implications in the choice of 
MCMC algorithms used in combination with the RandHODLR approach.

4.3. The case E �= 1 and summary

Thus far, we have assumed that all the source receivers pairs are active, i.e., E = 1. This assumption need not hold for 
every application. For example, in the transmittance geometry, the sources and receivers are co-axial and for every source, 
only one receiver may be active; in this case Ns = Nr and E = I. For the RandLR and RandHODLR approaches, we first 
compute the approximation X̂(p) and then compute the approximation �̂(p). Therefore, when E �= 1, we can easily amend 
this algorithm to compute �̂(p) as

�̂(p) = 1

2σ 2
‖E 	 (D− X̂(p))‖2F .

For the RandTrace approach, we did not pursue the extension to the case E �= 1. For the MCTrace approach, when E �= 1, we 
can use develop stochastic approximations based on [30,29]. For example, denoting G(p) = D − X(p), we can write

E	 G(p) = E [diag(G(p)w)Ediag(w)] .

Here w is a random vector with zero mean and identity as the covariance matrix. Given this stochastic reformulation, we 
can derive the Monte Carlo approximation (see [30, Section 4])

�̂(p) = 1

2σ 2

∥∥∥∥∥∥
1

�

�∑
j=1

diag(G(p)w j)Ediag(w j)

∥∥∥∥∥∥
2

F

.

Finally, in Table 1 we summarize the various choices of randomized methods, their applicability, and associated computa-
tional costs.

4.4. Combining randomization with MCMC

In this section, we have proposed several randomized approximations to the log-likelihood. We discuss the various 
options of combining these randomization strategies with the MCMC algorithms. We have three different options:

Option I Use Metropolis-Hastings using the approximate log-likelihood. This is the approach proposed in [24],
Option II Use state-independent approximation within the delayed acceptance framework of Algorithm 2. This is essentially 

the surrogate transition MCMC [36, Section 9.4.3]. Note that this approach is only feasible with the MCTrace 
approximation to the log-likelihood.
11
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Table 2
Summary of the various combinations of randomized log-likelihood approximations with the MCMC algorithms.

Method Option I Option II Option III

Geometry independent MC Trace Yes Yes Yes

Geometry independent RandLR Yes No Yes
RandTrace Yes No Yes
RandHODLR Yes No No

Fig. 3. Relative Error of the randomized methods to evaluate the misfit �(p). We compare the MCTrace, RandLR, and RandTrace approaches as a function 
of the parameter �; note that the computational cost of each algorithm is different.

Option III Use state-dependent delayed acceptance algorithm, i.e., Algorithm 2.

This list of options is arranged in roughly increasing order of computational cost per iteration. When a Monte Carlo estimator 
for a quantity of interest is constructed using the chain resulting from Option I, in general, the resulting estimator is biased. 
However, the bias may be acceptable if the resulting Monte Carlo estimator has a smaller mean square error for a given 
amount of computational effort, compared with the standard Metropolis–Hasting algorithm. Further details on this trade-off 
are given in [21, Section 5]. On the other hand, the chains resulting from Options II and III result in chains with the correct 
stationary distribution, provided the other necessary conditions are satisfied.

A summary of the various combinations of randomization with the MCMC options is given in Table 2.

5. Numerical results

The first set of numerical experiments we perform investigates the accuracy of the randomized methods for evaluating 
the log-likelihood proposed in Section 4. We then present numerical methods that investigate the performance of the 
randomized methods in combination with the MCMC methods presented in Section 3.

5.1. Accuracy of log-likelihood

In this set of experiments, we test the accuracy of the various randomized algorithms for approximating the log-
likelihood proposed in Section 4.

Experiment 1: transmittance geometry. The domain is taken to be D = (0, L)2 where L = 4 cm. The grid size is fixed to be 
201 ×201 with 40, 401 grid points. The PDE is discretized using standard linear finite elements using the FEniCS package [3,
37]. We take 256 sources evenly spaced in the interval x ∈ [0.2L, 0.8L] with y = 0, the 256 receivers have the same x values 
but with y = L. We take the following values for the parameters μp

a = 0.1 cm−1, μb
a = 0.06 cm−1, μ′

s = 9 cm−1, and 
An = 2.82.

The true image is chosen to be a PaLS representation with three basis functions and randomly chosen centers (αk = βk =
1 for k = 1, 2, 3); the parameter p defining the point at which the log-likelihood is evaluated is chosen in a similar manner 
but is different than the true image. We add 1% Gaussian noise to simulate measurement error.

The sources and the receivers are well separated from each other, therefore, this setup satisfies the assumptions of the 
methods in Sections 4.2.1 and 4.2.2. We call these two methods RandLR and RandTrace respectively. We compare this with 
the MCTRace approach proposed in Section 4.1, and the resulting estimates �̂(p) were averaged over 100 different runs. 
The results for all three methods are reported in Fig. 3, where the relative error |�̂(p) − �(p)|/�(p) is plotted against the 
number of samples �. Note that the cost of RandLR is 2� PDE solves and RandTrace is 3� PDE solves, whereas the cost of 
MCTrace is � PDE solves. We see that the errors in the MCTrace and the RandTrace approach are comparable and acceptable 
if a coarse approximation is desired. On the other hand, the RandLR approximation is highly accurate (in terms of relative 
errors) and a sample size of � = 5 − 10 is sufficient for this particular setup. A closer examination reveals (see Fig. 3, right 
panel) that the singular values of the matrix X(p) decay exponentially, which explains why RandLR is very accurate. Using 
12
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Table 3
Relative error in the RandHODLR approach with varying parameter � which controls target 
rank of the off-diagonal blocks. The number of sources and receivers are Ns = Nr = 256. Re-
ported also are the number of PDE solves to compute using the RandHODLR approach, and the 
computational speedup. The last column reports the relative error in the misfit �(p).

Parameter PDE solves Speedup Error

� = 3 68 3.8 1.83 × 101

� = 5 92 2.8 2.07× 10−1

� = 7 116 2.2 8.03× 10−3

� = 9 140 1.8 8.41 × 10−4

a sample size � = 10 gave relative error on the order of machine precision, with a speedup, measured in PDE solves, by a 
factor of 256/20 ≈ 13.

Experiment 2: annular geometry. In this setup, the domain is taken to be a circle of radius R = 4 cm with Ns = 256 sources 
and receivers. The domain is discretized with 20, 054 grid points. The sources and receivers are evenly spaced on the 
circumference of the domain, but we neglect the source/source interaction. That is, we take S = R and E = 1 − I ∈ RNs×Ns ; 
in other words, the matrix E has entries 1 except along the diagonals where it has zero entries. The true image is chosen 
to be a PaLS representation with 3 basis functions and randomly chosen centers {χk} but αk = βk = 1 for k = 1, 2, 3; the 
parameter p defining the point at which the log-likelihood is evaluated is chosen in a similar manner and is different than 
the true image. Once again, we use the same optical parameters and add 1% noise to the data to simulate measurement 
noise.

In this case, since the sources and receivers are not well-separated, so the RandLR/RandTrace approaches are not suitable, 
and therefore, we use the RandHODLR approach to approximate X(p). We use the peeling algorithm as described in [39, 
Section 3], with log2(Ns/16) = 4 levels, as outlined in Section 4.2.3. In Table 3, we report the computational cost (measured 
as number of PDE solves), speedup, and the relative error in the data-misfit �(p). As the parameter � increases, the cost 
increases but the relative error decreases sharply. We see that we obtain speedups of factor ∼ 2 using the RandHODLR 
algorithm for a reasonable relative error ∼ 10−3. Additional speedups can be obtained by utilizing the symmetry of X(p), 
which we have ignored in the present implementation of the peeling algorithm.

5.2. MCMC results

In the previous experiment, we investigated the accuracy of the randomized approximations to the log-likelihood. In 
the next set of experiments, we now investigate the use of randomized approximations within the MCMC algorithms. We 
focus on the transmission geometry case as in Experiment 1 of Section 5.1 and consider two different variations. We use 
the same domain size, distribution of sources and receivers and optical parameters as in that experiment. The number of 
sources and receivers are taken to be 100 each; since each source-receiver pair is assumed to be active, this results in 104
measurements. We use a grid with 51 × 51 = 2601 grid points to discretize the PDE. To simulate measurement error we 
add 1% additive Gaussian noise.

1. Setup 1 The true image is taken to be an amoeba shaped object (see Fig. 4). Once again, we use np = 3 basis functions. 
We fix the parameters αk = 1 and βk = 1.7 for k = 1, 2, 3 and only invert for the centers of the radial basis 
functions {χk}; therefore, the inverse problem only has p = 2np = 6 unknown parameters. The prior distribution 
is taken to be the Gaussian distribution N(μ, �) with mean μ = 2e, where e ∈ R6 is the vector of ones, and the 
covariance � = 10−2I. Note that the mean of the prior distribution corresponds to the coordinates of the center of 
the domain.

2. Setup 2 We consider a true image which consists of two horizontal bars of thickness 0.8 cm (see Fig. 9). We use np = 4
basis functions, fix the parameters αk = 1 and βk = 1 for k = 1, . . . , 4 and only invert for the centers of the radial 
basis functions {χk}; in this instance of the inverse problem we have p = 2np = 8 unknown parameters. The prior 
distribution is taken to be the Gaussian distribution N(μ, �) with mean μ = 2e, where e ∈ R8 is the vector of 
ones, and the covariance � = 10−2I ∈R8×8.

Note that in both cases, we are avoiding inverse crimes since the true image cannot be exactly represented using the 
parameterizations adopted in the paper. Note that only allowing the centers, χk , to move limits the type of images that 
can be represented using this parameterization. However, the emphasis of this paper is on the computational costs, and an 
exploration of different parameterizations and prior distributions is being pursued in ongoing work.

5.2.1. MH algorithm
We first consider the MH described in Section 3, with a simple adaptation scheme to select the step size of the 

random walk. We consider two different randomized techniques for mitigating the computational cost of evaluating the 
log-likelihood: the MCTrace approach and the RandLR approach, and compare these approaches with exact log-likelihood 
13
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Fig. 4. Top row: Corresponds to Setup 1 (left) True image, (center) initial guess for all three methods, (right) and image obtained from the conditional mean 
using the ‘exact’ likelihood evaluation (only the latter 50% of the chain was used). In the second row, we plot the image obtained from the conditional 
mean using (left) MCTrace randomized approximation and (right) RandLR.

Fig. 5. Trace plots of the parameters p, which denote the centers, χk , of the basis functions. The first row corresponds to the x-coordinates of the centers 
and the second row corresponds to the y-coordinates of the centers. The chain was generated using MH on the ‘exact’ log-likelihood evaluation. The first 
half of the chain was treated as the burn-in stage and is, therefore, discarded.

Fig. 6. In this plot, we compare the log-likelihood evaluations generated by the MCMC chain corresponding to Setup 2.

evaluation. We choose a sample size � = 20 for the MCTrace approach and � = 10 for the RandLR approach. With this choice, 
both the approximate algorithms have the same cost of evaluating the likelihood. Furthermore, the random matrix � was 
kept fixed throughout the simulation.

In each case, the MCMC algorithm is run for 5 × 105 iterations and the first half of the chain is discarded to mitigate 
the effects of burn in. For the full log-likelihood evaluation, we display the trace plots of all the variables in Fig. 5. The 
trace plots show that the Markov chain appears to be mixing well. In Fig. 4, we show the true image, the initial starting 
guess, and the conditional mean (the average is computed in parametric space). In Fig. 6, we give the trace plots of the log-
14
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Table 4
We report various MCMC diagnostic metrics for the three different methods. The MCMC algorithms were run 
using Option I in Section 3; ‘Full’ means that no randomization was used in the log-likelihood evaluations.
Method AR IACT ESS MSJ Speedup

Full 0.31 685.43 364 1.77× 10−5 −
MCTrace 0.21 333.14 750 2.14× 10−5 5
RandLR 0.31 685.43 364 1.77× 10−5 5

Fig. 7. Individual and pairwise marginal densities of the different inversion parameters corresponding to Setup 1 (see Fig. 4). Blue corresponds to ‘exact,’ 
red curves correspond to ‘RandLR,’ and orange corresponds to ‘MCTrace.’ We discarded the first 25% of the chain and thinned it down further by retaining 
every 10-th element.

likelihood evaluations. The results show that there is very close agreement between the chains obtained using the ‘exact’ 
and the ‘RandLR’ approaches.

Some other statistics of the chains are given in Table 4. To compute the IACT, we used the implementation in the emcee 
package [23]. The essential sample size (ESS) is the total number of iterations divided by the integrated autocorrelation time 
(IACT). The mean squared jump (MSJ) is defined as

MSJ = 1

M − 1

Nchain−1∑
j=Nb+1

‖p j+1 − p j‖22.

Here M = Nchain − Nb is the number of iterations retained after burn-in. It is seen that the sampling statistics for the 
full log-likelihood evaluation is very similar to the results of RandLR approach, suggesting the high accuracy of the log-
likelihood evaluations in the RandLR approach. Interestingly, MCTrace has a lower IACT suggesting that the chain has better 
mixing properties than without the approximation; a similar observation was made in [42, Section 3]. Finally, in Fig. 7, we 
plot the empirical distribution of the various inversion parameters obtained for each of the three methods; we see that 
while the empirical distribution using RandLR looks similar to that using the ‘exact’ log-likelihood evaluation, the empirical 
distribution using MCTrace looks slightly different. This is likely due to the fact that the accuracy of the log-likelihood 
evaluations using MCTrace is not high compared with RandLR; see Section 5.1.
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Fig. 8. Trace plots of entries of the parameters p, which denote the centers, χk , of the basis functions. The first row corresponds to the x-coordinates 
of the centers, and the second row corresponds to the y-coordinates of the centers. The chain was generated using the MH algorithm with the ‘exact’ 
log-likelihood evaluation. The first 25% of the chain was treated as the burn-in stage and therefore discarded.

Fig. 9. Results for Setup 2: top row (left) True image, (center) initial guess for all three methods, (right) and image obtained from the conditional mean 
using the ‘exact’ log-likelihood evaluations (the first 25% of the chain was discarded due to burn-in). In the second row, we plot the image obtained from 
the conditional mean using (left) MCTrace randomized approximation and (right) RandLR.

Both the approximate log-likelihood evaluations are 5 times faster (cost measured in number of PDE solves) than the full 
log-likelihood evaluation. The gains in computational cost are more substantial when more sources are used but the same 
number of samples � are used. The resulting bias due to the use of an approximate likelihood is likely to be small compared 
with the variance of the Monte Carlo estimator.

We now consider the Setup 2 and investigate the performance of the randomized algorithms on this setup. We use 
the RandLR approximation to the log-likelihood and use it with Metropolis-Hastings (Option I) with the parameter � = 10
for RandLR; once again we obtain a speedup of a factor of 5. We also run MCTrace using a higher number of samples 
� = 40, since for this problem a smaller number of samples led to poor reconstructions. We run the algorithms for all three 
methods for 106 iterations and discard the first 25% of the chain due to burn-in. The trace plots are displayed in Fig. 8
corresponding to the ‘exact’ log-likelihood evaluation and provide a “sanity check” for the convergence. Other diagnostic 
information corresponding to the chains are provided in Table 5, and the trace plot of the log-likelihood is provided in 
Fig. 10. The empirical densities of the parameters are reported in Fig. 11; once again, we see that the empirical distribution 
of the RandLR matches the ‘exact’ log-likelihood evaluation, but the empirical distribution of the MCTrace approach appears 
to differ slightly.

5.2.2. Two-stage MCMC
Finally, we consider the two-stage approach discussed in Section 3 applied to Setup 1. We first consider the RandLR 

approach for the approximate log-likelihood evaluation, i.e., we use (13) as the local approximation—this corresponds to 
16
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Table 5
We report various MCMC diagnostic metrics for the three different methods. The MCMC algorithms were run 
using Option I in Section 3; ‘Full’ means that no randomization was used in the log-likelihood evaluations.
Method AR IACT ESS MSJ Speedup

Full 0.38 3781.39 198 3.99 × 10−6 −
MCTrace 0.38 4547.50 165 4.71 × 10−6 2.5
RandLR 0.38 3781.39 198 3.99 × 10−6 5

Fig. 10. In this plot, we compare the log-likelihood evaluations generated by the MCMC chains corresponding to Setup 2.

Fig. 11. Individual and pairwise marginal densities of the different inversion parameters corresponding to Setup 2 (see Fig. 9). Blue corresponds to ‘exact’, 
red curves correspond to ‘RandLR,’ and orange corresponds to ‘MCTrace.’ We discarded the first 25% of the chain to burn-in and thinned it down further by 
retaining every 100-th element.

Option III in Section 4.4. In this experiment, we vary the parameter � and report various MCMC diagnostic parameters in 
Table 6. Here ‘AR1’ and ‘AR2’ denote the ratio of number of accepted steps to the total number of iterations. We see that 
when � = 3, we have (0.39/0.41) × 100 ≈ 95% acceptance rate at the second stage, whereas when � ≥ 5 we have 100%
acceptance rate at the second stage. This is consistent with the observation in Section 5.1, that the RandLR approach for 
evaluating the log-likelihood is highly accurate.
17
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Table 6
Various MCMC diagnostic metrics using the Two-stage approach with RandLR approximation as the approximation which corresponds to Option III in 
Section 3. ‘AR1’ is the acceptance ratio at the first stage, and ‘AR2’ denotes the acceptance ratio at the second stage (fraction of proposed samples to the 
total number of iterations); AR2/AR1 gives the fraction of the number accepted to the number promoted.

� AR1 AR2 IACT ESS MSJ Speedupcomp Speedupstat

3 0.41 0.39 1736.4 143 1.38 × 10−5 2.09 0.82
5 0.30 0.30 885.53 282 1.80 × 10−5 2.53 1.95
10 0.31 0.31 788.57 317 1.77 × 10−5 1.98 1.72

We discuss the speedup of the two-stage approach. The cost of the full log-likelihood evaluation, measured in the number 
of PDE solves, is t f = Ns = 100. The cost at the first stage of the algorithm is t1 = � PDE solves, since the basis Qk is available, 
and the cost at the second stage is t2 = n2 + 3� PDE solves, since it involves computing the full likelihood (Ns solves), 
computing the basis Qp∗ (� PDE solves), and the ratio πp∗ (pk|d)/πp∗ (p∗|d) (2� PDE solves). Therefore, the computational 
and statistical speedups take the form

Speedupcomp = Ns

η(3� + Ns) + �
, and Speedupstat = τ f

τt

Ns

η(3� + Ns) + �
.

From the table, we also see that the IACT for the two stage approach τt is greater than the IACT for the exact likelihood 
approach τ f . Therefore, while the computational speedup Speedupcomp ≈ 2, the statistical speedup can be smaller than 1, 
as is the case for � = 3. Based on these results, the parameter � = 5 appears to have the highest statistical speedup of the 
three cases considered. For � = 10, although the acceptance rate is 100%, the computational cost is higher, leading to lower 
speedups, both computational and statistical. However, since the acceptance ratio at the second stage seems to be close 
to 100%, the two-stage approach (Option III) seems to be unnecessary for � = 5, 10; we can instead use RandLR with MH 
(Option I) with � = 5, 10 to obtain speedups of a factor 10 and 5 respectively.

We briefly comment on the use MCTrace approach for approximating the log-likelihood in the two-stage approach. If the 
random matrix � is considered fixed throughout the iterative process, we have a state-independent approximation of the 
log-likelihood. This corresponds to Option II as described in Section 4.4. For small sample sizes we found that the IACT of 
the two stage approach was high so that the statistical speedup Speedupstat were less than 1 for all the parameters of �
we tried (10 − 60). Furthermore, the percentage of iterates at the second stage compared to those promoted was between 
30 − 70%. Therefore, we found the cost benefit versus accuracy of the MCTrace approach did not make it suitable for the 
Two-Stage approach.

6. Conclusion

Motivated by the computational cost of MCMC algorithms involving repeated evaluations of the log-likelihood, which in 
turn can have hundreds of PDE evaluations, we proposed several randomized methods for mitigating this cost. The random-
ized methods come in two flavors depending on whether or not we take into account the geometric locations of the sources 
and receivers. Numerical experiments showed that the geometry-dependent methods are both computationally efficient and 
very accurate. However, the geometry-independent method, MCTrace, has benefits since it is geometry independent, making 
it widely applicable to many scenarios, and is very easy to implement but suffers from low accuracy for small sample sizes. 
When the randomized approximations to the log-likelihood are used in the standard MH algorithm (Option I), the resulting 
iterates have similar behavior to the MH algorithm with exact log-likelihood evaluations. In the two-stage approach (Option 
III), the RandLR approximation had very high acceptance at the second stage, suggesting that RandLR can safely be used in 
the MH algorithm, which yields a dramatic speedup in computational costs.

It should be mentioned that the randomized techniques developed here can be used along with other techniques for 
computational cost reduction such as model reduction techniques [22], and recycling Krylov subspace methods [43] to 
produce more efficient MCMC algorithms. In addition to this, another avenue for research appears to be using optimized 
sources/detectors in addition to randomized sources as was done in our previous work [7]. We are currently investigating 
the use of the parametric level set approach for piecewise constant reconstruction in Bayesian inverse problems, allowing 
for a richer class of target shapes than was used in the numerical experiments in Section 5.
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