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a b s t r a c t

Estimation models from connected vehicles often assume low level parameters such as

arrival rates and market penetration rates as known or estimate them in real-time. At

low market penetration rates, such parameter estimators produce large errors making esti-

mated queue lengths inefficient for control or operations applications. In order to improve

accuracy of low level parameter estimations, this study investigates the impact of con-

nected vehicles information filtering on queue length estimation models. Filters are used

as multilevel real-time estimators. Accuracy is tested against known arrival rate and mar-

ket penetration rate scenarios using microsimulations. To understand the effectiveness for

short-term or for dynamic processes, arrival rates, and market penetration rates are chan-

ged every 15 min. The results show that with Kalman and Particle filters, parameter esti-

mators are able to find the true values within 15 min and meet and surpass the accuracy

of known parameter scenarios especially for low market penetration rates. In addition,

using last known estimated queue lengths when no connected vehicle is present performs

better than inputting average estimated values. Moreover, the study shows that both filter-

ing algorithms are suitable for real-time applications that require less than 0:1 second

computational time.

� 2021 Tongji University and Tongji University Press. Publishing Services by Elsevier B.V.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).

1. Introduction

Queue length estimation (QLE) with sensor technology has been getting more attention as real-time estimation is

becoming feasible. Queue lengths can be utilized especially in intelligent transportation system operations and control. In

this usage of queue lengths, market penetration levels, coverage of sensors, and accuracy are crucial points to consider. Given

low penetration levels, researchers aim to improve estimators by filtering (Tiaprasert et al., 2015; Yin et al., 2018; Emami

et al., 2019) as well as fusing with existing surveillance technologies (e.g., inductive loop, video, piezoelectric, and range sen-

sors). Real-time performance and simplicity would facilitate methods to be used in simpler controllers (Khan et al., 2017).

Change in low level parameters is also a concern as known and constant parameter assumptions would generate inaccurate

estimations at low market penetration rates (MPR) or coverage of surveillance systems (e.g., connected vehicles, inductive

loop, or video cameras). Although, fusion and data driven methods would be alternative to improve estimators under low

coverage (Li et al., 2013; Grumert and Tapani, 2018; Aljamal et al., 2020), we focused to single type of sensing technology
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(i.e., connected vehicles). Researchers have used filtering to reduce error in such cases (Yin et al., 2018; Emami et al., 2019).

Filtering can be applied in different layers depending on the objective. Since true performance measures (e.g., queue lengths)

are not known, assuming relatively short unchanging parameters would help to improve estimators. The challenges are mul-

timodality over longer term and underlying unknown distribution for parameters. In this paper, we utilize Kalman and

Sequential Monte Carlo (e.g., bootstrap, particle) filters to estimate primary parameters more accurately and thereby

improve cycle-to-cycle queue length estimation at traffic intersections within the framework of connected vehicles (CV).

Readers are referred to the surveypapers byZhaoet al. (2019) andGuoet al. (2019) for general queue lengthestimation from

connected vehicles at traffic intersections, and Asanjarani et al. (2017) for queue length estimation. Recent similar studies

includemethods reconstructing trajectories (Xu et al., 2017; Rompis et al., 2018; Zhao et al., 2019), cycle-to-cycle estimations

(Tan et al., 2019), and real-time applications with high market penetration rates (Mei et al., 2019). Based on shockwaves and

queue dynamics, Yin et al. showed effectiveness of Kalman filter in QLE, especially within 20%MPR (Yin et al., 2018). Discrete

Fourier transformbased filteringwas applied by Tiaprasert et al. (2015) on queue length estimation but not on primary param-

eters. Any overestimation and underestimation on primary parameters would be passed to QLE accuracy. Queue sizes, espe-

cially medium to high volume-to-capacity ratios can fluctuate significantly. Filtering estimation QLs would result as low or

high trimmed values. Thus, knowing relatively fixed parameters at a level can be better target to filter.

Stochastic models of QLEs from CVs mainly concerns with stationary (behavior after sufficiently long time interval) or

non-stationary (short-time intervals, by cycle, and red phase). Such classification is impacted by treatment of arrival rate,

distribution, and market penetration rate (MPR) (probe percentage). For instance, Yang and Menendez showed that 20%

to 30% MPR is required to control signals (Yang and Menendez, 2018). Although 20 to 30% MPR is shown to be required

to control signals (Yang and Menendez, 2018), in another study Argoteet al. showed different accuracy levels, �10% with

80% MPR (Argote et al., 2011). Using sensor fusion with the existing deployed traffic sensing technology (e.g., inductive

loops, license plate recognition) was also investigated by the researchers (Wu and Yang, 2013; Li et al., 2013; Comert,

2013; Tan et al., 2020; Mandal et al., 2020).

Even if penetration levels increase, efficient estimators performing at low MPRs would still be desirable for efficient data

management. The question of howmuch data one needs is important not to overload systems for safety and security reasons.

Partially supporting these, in an interesting report (Arizona et al., 2016), researchers have found in a simulation environment

that over 200 vehicles at 100% penetration level signal control from CVs becomes difficult due to computational overhead.

Rural roads and isolated intersections would also have lower MPRs. Regardless, increasing QLEs and filtering inconsistent

extreme over and under estimations are very important for traffic operations and any partially observed systems.

1.1. Contributions of this study

Simple expectation-based QLE models and estimators with known characteristics in Comert (2016) enable application of

filtering algorithms to deal with measurement of low MPR related errors. The estimation problem where we only assume

partially observed system becomes interesting. This approach can be adopted for any similar problem like autonomous vehi-

cles. Studies in estimation of primary parameters using only fundamental CV information (i.e., time, location, speed, and

vehicle type etc.) are getting more attention (Comert, 2016; Van and Farhi, 2018; Zhao et al., 2019). But, there are limitations

for connected vehicles with low MPRs.

In this study, we aim to improve accuracy by enhancing the low level parameter estimators using filtering algorithms. The

resulting formulae would not depend on any primary parameters such as arrival rate or MPR. So, the method can be used for

time dependent arrival rates, MPR, or under dynamic conditions.

2. Problem definition

Estimation of queue lengths is one of the inherent key capabilities of connected and autonomous vehicles for operations

control as moving (as opposed to fixed loops or video cameras) objects reporting sample observations from traffic systems. In

this study, we aim to estimate the queue lengths at traffic intersections without knowing the true low level parameters as

well as true queue lengths through classic localization idea in robotics (Thrun, 2002; Thrun et al., 2006). Assume that CVs can

share location and time information with a time reference point (e.g., signal timing, red duration), number of queued

vehicles is aimed.

Considering Fig. 1 as an example layout, for any approach right before the signal turns green, we aim to estimate the

queue length. For instance, consider left turn on east–west bound approach. Assuming that the blue or darker cars are

connected vehicles, we try to find total queue length of N ¼ 7 given last connected vehicle’s location L ¼ 6, number of con-

nected vehicles M ¼ 2, and arrival time during red T ¼ 10 seconds s with remaining R� T s.

Mathematically, the estimator E NijL ¼ li; T ¼ ti;M ¼ mi;Rð Þ for short target i time intervals is aimed to be described. In the

estimator, Ni is cycle-to-cycle total queue lengths at the end of analysis period, Li location of the last CV, T i is queue joining

time of the CV, and Mi is number of CVs in the queue. Using models in the literature, for Poisson arrivals, simple

li þ 1� pð Þk R� tið Þ are shown to be an unbiased estimators. Certainly, arrival rate k and market penetration rate p are equally

difficult to determine in practice. So, several estimators for k and p are also given in Comert (2016). However, for low market

penetration levels less than 30%, estimators tend to performwith high variance. Thus, it is intuitive to utilize filters similar to
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localization idea in robotics. The difference in this problem is that there are no landmarks assumed to correct measurements.

It is advantageous to assume constant market penetration and arrival rate for relatively short terms, e.g., 15 to 30 min. This

assumption would allow us to locate true values from unimodal distributions. It can be relaxed using desirably nonparamet-

ric filtering techniques that would allow multimodal distributions. The nature of the problem can be summarized as follows:

i. Queue lengths show nonlinear behavior with unknown distribution type.

ii. The underlying process model is also very complex depending on arrival rate, changing signal timing, day of time, and

roadway geometry etc.

Alternative to such conditions can be listed as discrete Bayes filters and particle filters. Since we are working with constant

parameters within short time intervals such as 15 min, we aim to filter parameters for unimodal distribution case. If we are

able to get p̂; k̂
h i

values as correctly as possible, then we would be able to estimate QLs more correctly and do not violate the

constant parameter within short intervals. In the figures presented in Section 4, estimated parameters are given in incremen-

tal time interval.

3. Methodology

In this paper, filters are mainly used to estimate primary parameters, arrival rate (k) and market penetration level (p).

Impact of filtering on the lowest level CV time, location, and count information was also checked. Parameter filters would

perform better under given consistent behavior of noise levels and described underlying dynamics such as object movement.

In this case, no assumption was made for underlying distribution especially for particle filter as it is considered a

distribution-free multimodal method. Whereas, KF assumes Gaussian and unimodal underlying process distribution. For

both methods, queue length estimation scenarios would be appropriate since unimodal/constant higher level arrival rate

and market penetration rates are assumed within 15-min time intervals.

In order to set up the application, first consider the estimators in general form of

E N ¼ njL ¼ l; T ¼ t;M ¼ mð Þ ¼ lþ 1� pð Þk R� tð Þ. The problem with this estimator is lack of accuracy on p̂ and k̂, especially

at low p (p 6 0:30). Note that fusion with other sensing technologies would also be solution, however, it is beyond the scope

of this study (Comert, 2013; Comert and Cetin, 2020). We aim to filter and find out true parameter values given short-time

intervals i.e., 15 min. Estimator combinations that best performed in QLE (Comert, 2016) were

p̂ ¼ 1� miti
mitiþ li�mið ÞR

� �
; mi

li

n o

k̂ ¼ li�mi

ti
þ mi

R

� �
; li
ti

n o

Thus, queue length estimators are used in Eqs. (2) and (3) for comparison of simple estimator in Eq. (1) with p̂ ¼ mi

li=tið ÞR and

k̂ ¼ li=ti. Note that this estimator simplifies to Rli
ti
�mi R� tið Þ ¼ Rk̂�mi R� tið Þ.

E N̂ijli; ti;mi; qi

� �
¼

li þ 1� miti
liR

� �
i
ti

� �
R� tið Þ; li > 0

E N̂jjlj; tj;mj; qj

� �
– 0; j ¼ 1; � � � ; i� 1ð Þ; li ¼ 0

8
><
>:

ð1Þ

Fig. 1. An example intersection with multiple approaches generated in Vissim.
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Fig. 2. Parameter estimation example with filters at p; v=c ¼ 0:99 as average of 3 random seeds.
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E N̂ijli; ti;mi; qi

� �
¼ lþ 1�mi

li

� �
li
ti

� �
R� tð Þ ¼ li þ

li �mi

ti

� �
R� tið Þ ð2Þ

E N̂ijli; ti;mi; qi

� �
¼ lþ 1� miti

miti þ li �mið ÞR

� �
li �mi

ti
þmi

R

� �
R� tið Þ ¼ mi þ

R li �mið Þ
ti

ð3Þ

3.1. Kalman filter

In its simplest form, Kalman filter (KF) assumes underlying Gaussian measurements or noise (Labbe, 2014). KF also per-

forms well if a physical system is modeled adequately (e.g., vehicle moving dynamics). In the QLE problem, both are not true.

We may have different parameter values and no closed-form formulas are available for dynamics of parameters (i.e., p; k)

given connected vehicle information. However, it is possible to demonstrate the problem better and can easily be imple-

mented. After careful experimentation, observed CV information for each k̂ are defined as Xi ¼ min Li�Mi

T i
þ Mi

R

� �
;0:272

n o
.

When lower level L; T are also filtered, in estimators XCi used as XCi ¼ min XLi
XT i

;0:280
n o

. They were filtered for all k; p.

Fig. 3. Estimation examples for p with filters at p ¼ 0:05;0:10; 0:20;0:30f g;v=c ¼ 0:70;0:80;0:89;0:99f g as average of 3 random seeds.
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Similarly, market penetration rate (p̂) was estimated and filtered using Xi ¼ min 1� MiT i
MiT iþ Li�Mið ÞR

� �
;1:00

n o
and

XCi ¼ min XMi

XLi
;1:00

n o
.

Algorithm 1: Kalman Filter

assign:

X̂i ¼ li

SXi
¼ SXi�1

update:

KXi
¼ SXi

= SXi
þ s

� �

YXi
¼ Xi � X̂i

liþ1 ¼ li þ KXYX

SXiþ1
¼ 1� KXi

� �
SXi

Fig. 4. k estimation examples with filters at p ¼ 0:05; 0:10;0:20;0:30f g; v=c= 0:70;0:80; 0:89;0:99f g as average of 3 random seeds.
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In the algorithm, SXi
is the system uncertainty, s is sensor uncertainty, KXi

is the Kalman gain in cycle i;Xi observation in

cycle i;YXi
estimation error, and liþ1 is the state update using Kalman gain and estimation errors.

3.2. Particle filters

Sequential Monte Carlo (SMC) framework contains many similar filters such as particle, bootstrap, and sequential impor-

tance filters with slight changes in the resampling (i.e., update) methods (Liu and Chen, 1998; Gustafsson et al., 2002; Doucet

and Johansen, 2009; Carvalho et al., 2010; Lopes and Tsay, 2011; Bernardo et al., 2011). QLE setting has [p; k] with corre-

sponding weights each showing how likely they represent true p̂ and k̂ values. Unlike usual robotics localization problem

landmarks, sensing, or true (or noisy) parameter values are not available in QLE application for low MPRs. Thus, after each

movement, convergence to true parameters (importance resampling) is more challenging. Heuristic SMC filtering steps can

be written within parameter estimation concepts as follows:

(1) Observe new information from the cycle as triplets [M; L; T] and estimate with [k̂; p̂].

(2) Update the weights of the particles based on the new estimates from the updated observations.

Fig. 5. Performance with filters for different p; k, and v=c.
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(3) Based on the triplet received and new estimation of parameters, resample with replacement to eliminate particles that

are highly unlikely. Particles close to the estimates get higher weights.

(4) Estimate weighted mean and variance of the filtered p̂; k̂.

Algorithm 2 is adopted from Lopes (2009). Initial weights are input as uniform, observations are denoted by

Xiþ1 � p Xiþ1jZiþ1; kð Þ, and transitions are denoted by Xiþ1 � p Xiþ1jXi; kð Þ. Posterior distributions with p Zi; kjXi
� �

with

Xi ¼ X1; . . . ;Xið Þ. Since, we do not have movement for particles, a particle filter (Bootstrap filter) with a simpler resampling

wheel can be written as propagate: Z
jð Þ

i

n oN

j¼1
to eZ jð Þ

iþ1

n oN

j¼1
via p Ziþ1jZi

� �
, generate: Z

jð Þ
iþ1

n oN

j¼1
to eZ jð Þ

iþ1

n oN

j¼1
via p Ziþ1jZi

� �
, and

resample with weights: w
jð Þ

iþ1 / p Xiþ1jeZ jð Þ
iþ1

� �
. In fact, without approximately defined dynamics of particles, full version of

particle filter performed very similar with higher computational run time.

Algorithm 2: Particle Filter

N particles: X � N 0:0;0:05ð Þ, bX cycles�n

for cycle i do

particle jittering: X0 ¼ X þ �
w ¼ f Xi;X0= 1þ X02;1:00

� �� �

sample: n from : X0 with p wð Þ
end for

X ¼ X0, bX i;1:n ¼ X, median(bX)

Fig. 6. Impact of filters in estimation %D
ffiffiffiffi
V

p
Dð Þ=E Nð Þ for different p; k, and v=c average of 3 random seeds.
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In Algorithm 2, numerical values are selected after trial and errors on one series (e.g., volume to capacity ratio v=c ¼ 0:88

and p ¼ 0:10). Low jittering noise was selected to prevent low resampling or fast bad convergence � ¼ N 0:0;0:0005ð Þ.

4. Numerical Results

Numerical examples are given to show performance of the filtering approach. Analysis include discussions for both filters

and queue length estimation from connected vehicles for fixed and varying primary parameters. Simulated intersection

queue data are used in the examples. An isolated signal with fixed signal control in Vissim is used to test the estimators with

filtered vehicle information after revising the network generated in Comert (2016) and default queue definition in Vissim is

used (Liu et al., 2019). Simple intersection is used only for generating queueing data. As mentioned earlier estimators can be

adopted for approaches with a standing queue.

Note that given required information, estimators can be used under any condition and signal control. Queue lengths that

we observe show an autocorrelated times series as dynamic stochastic process. Thus, if estimators perform well here, they

can be used under any conditions as only fundamental vehicle information location, time, count, and time period of estima-

tion (e.g., signal timing such as red, green duration) was assumed to be known.

Vehicle trace files generated frommicrosimulations are used to evaluate queue length estimation without and with initial

queue cases for arrival rates of k ¼ 0:163;0:190;0:218;0:239;0:267f g vehicle per second (vps) that correspond to volume-to-

capacity ratios of v=c ¼ 0:60; 0:70;0:80;0:89;0:99f g and p ¼ 0:001;0:05;0:10;0:20; . . . ;0:90f g for the desired simple inter-

section with 90 s (s) cycle length equal 45 s red/green split with no yellow or all red phases. Note that our approach is

QLE given partial information about the system and can be applied for any approach with a standing queue at a certain time

period (e.g., red duration).

4.1. Fixed parameters

Cycle-to-cycle updated parameter estimators using filtering that do not involve cumulative connected vehicles informa-

tion are given in Figs. 2–8. In order to check the impact in lowest level information (i.e., applied on L; T ,and M), estimator

values with raw CV are denoted by CVR and the values with filtered CV information are denoted by CVF. Impact is more seen

in p̂. However, resulting QLEs are not much impacted when using raw or filtered CV values.

From Fig. 2, it can be seen that highly dispersed ratios are filtered to point desired parameter level. However, we are not

able to obtain true parameters for p < 0:20. At MPR p ¼ 0:20, parameter estimators are improved and with filtering, we are

able to track the underlying true parameter values p and k very closely.

Estimator performances for k̂ for different p levels and p̂ for different k levels are given in Figs. 3 and 4, respectively. In

Fig. 4, KF is able to get closer to true values at low volume-to-capacity ratio v=c ¼ 0:70 and p ¼ 0:10. In all cases, as p gets

higher, estimator performs better. Similarly, in Fig. 3, it can be seen that estimation with filters perform well for all k and p

values. Both KF and PF show similar behavior.

In Fig. 5, estimation errors with and without filtering are presented. Filtering improves the estimation errors compared to

unknown primary estimators (denoted by QLE1 and QLE2). Known denotes the estimation with set k and p values in the

simulation runs. With filtering, at 20% market penetration level, errors with known primary parameters can be met. As

Fig. 7. Estimation example with filters at p ¼ 5%;v=c ¼ 0:99 as average of 3 random seeds.
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volume-to-capacity ratio increases, filtering is able to meet and improve the queue length estimation compared to known

case.

The differences in the form of%D
ffiffiffiffi
V

p
Dð Þ=E Nð Þ from QLE with known (p; k) errors can be seen in Figs. 6a-d. In all v=c values

up to 40% MPR, QLE with filtering shows improved errors, i.e., lower than QLE1 and QLE2. This is desirable as accuracy

improvement is needed at low MPR values. Only for v=c ¼ 0:70, after 50% MPR filtering shows worse errors. However, these

errors are already very low (less than 1 vehicle in Fig. 5). QLE with filtering shows better performance than QLE with known

(p; k) up to 40% in v=c ¼ 0:99.

Example of queue length estimation is shown in Fig. 7 for p ¼ 5% and v=c ¼ 0:99. Filtered estimators are able to closely

follow true QLs. Extreme reactions due to misrepresenting CAVs information are filtered. True queue lengths were obtained

by scanning queued vehicles in Vissim at the end of each red phase.

All the examples so far have been on single parameter for relatively long time. Estimators are able to perform well in 50

cycles or 1:25 hours. Next, we consider changing parameter cases and performance of estimation with filters.

4.2. Dynamic parameters

In this subsection, estimators’ performance are shown when parameters change for shorter time intervals. Since the phy-

sics of queue evolution is not defined in closed form for KF, it is expected that PF performs better for multi-regime param-

eters as shown in Fig. 8a-b. These scenarios are arbitrarily generated by increasing and decreasing with a peak to mimic

changing traffic conditions. Setting up full factor experiments is beyond the scope of this paper.

Overall average estimation errors from these scenarios are also given in Fig. 8c. From the figure, we can deduce that PF

performs slightly better than KF in all scenarios. Estimation with filtering outperforms unknown parameter cases and closely

follows the estimation errors of known (p; k) QLE.

Example queue length estimations are given in Fig. 9 for 4 scenarios where overall we can see filtering helps to more clo-

sely follow true queue lengths. Behavior of KF and PF on changing parameter estimations are shown in Fig. 10. PF is expected

to perform better under dynamic p and k behaviors. It is also observed that for low p values, using last estimated queue

length performs much better than using average values until then. This is due to volatile behavior of queue lengths instead

of a level we are able to catch high and low points better with last known point missing data amputation.

For computational times, for a single scenario for 1000 cycles running KF for k and p estimations on a PC with 8 GB of

memory, Pentium I5 Quad-Core CPU took 0:03 s and 0:04 s, respectively. For running PF took 3:50 s and 3:31 s, respectively.

As per cycle calculations are well below 0:1 s, both filtering algorithms can be utilized in real-time cycle-to-cycle control and

safety critical applications.

4.3. Results from field test data

Effectiveness of the approach is also shown using 2014 ITS World Congress Connected Vehicle Test Bed Demonstration

Data (Dataset, 2014). The queue length part of the dataset was collected at the intersection of Larned and Shelby streets,

Detroit, Michigan. Between September 8–10, 2014, the data contains 98, 254, and 135 manually collected maximum queue

and number of connected vehicles observations where rear of connected vehicles were marked with blue X. Each row of

dataset includes hour, minute, second of the observation, the true maximum queue lengths, and the number of connected

vehicles in the maximum queues (i.e., M) on left, center, and right lane of Larned street approach.

The dataset does not provide the detailed information that were used (i.e., L; T;M, and R) in the models proposed so far,

however, with some assumptions, it is interesting to investigate if the accuracy of queue length estimates can be improved?

Therefore, back of queue observations were assumed to be collected at the end of varying red phases. Time between two

observations were assumed to be cycle lengths and since this is a major intersection half of cycle lengths were assumed

Fig. 8. Scenarios with changing p; k, and resulting estimation errors in
ffiffiffiffiffiffiffiffiffiffiffi
V Dð Þ

p
[vehs].
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to be red phases. There was no steady growth of queue lengths and many zero values, we assume no initial queues were

present with low to medium v=c of 0:50. Capacity of the approach was also approximated by observed maximum queue

value of 10 vehicles within 70 s (10� 3600=35=1029 vehicles per hour or 0:286 vehicle per second (vps) saturation flow

rate). These values are used essentially in Highway Capacity Manual (HCM) and back of queue calculations. Note that values

would not be reflecting actual capacity and phase splits, however, comparison against true values would provide insights

about effectiveness of our approach in addition to the simulation analysis.

The approach was compared with the approximations from HCM delay and back of queue models in Eqs. (4) and (5).

d1 ¼ C
2

1�G=Cð Þ2
1� min 1;Xð ÞG=C½ �

h i

d2 ¼ 900T X � 1ð Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X � 1ð Þ2 þ 8kIX

cT

q	 
 ð4Þ

where d=d1 � PF þ d2 þ d3 is control delay seconds per vehicle, d2 is uniform delay, PF is progression factor due to arrival

types, d2 is overflow delay component, and d3 is delay due to initial queue. In this study, only d1 þ d2 are considered with

d3 ¼ 0 since no clear queue growth was observed. PF ¼ 1:0 was assumed for random arrivals. Volume-to-capacity

X ¼ v=c ¼ 0:5 was assumed. Green time G is in seconds s;C is cycle time in s. T denoted analysis period in hours where in

cycle-to-cycle estimations T i ¼ Ci=3600 was assumed where i denotes cycle number. k is incremental delay factor and 0:5

was assumed for pretimed like movement. I ¼ 1 upstream filtering was assumed for no interaction with nearby intersec-

tions, and c ¼ 1029vphwas assumed as explained above. Note that in our calculations, uniform delay is the main component

updated by changing G and C values. Queue lengths were approximated by Little’s formula d� k where d and k are both cal-

culated at each cycle using M number of connected vehicles in the queues (Little, 1961). This method is based on HCM 2000

adopted from (Roess et al., 2004) and checked updated versions from (Prassas and Roess, 2020; Ni, 2020).

Moreover, a simpler approach from (Kyte and Tribelhorn, 2014) was used to calculate cycle-to-cycle back of queues which

is given in Eq. (5).

Fig. 9. Queue length estimation examples.
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Qback ¼ v Rþ gsð Þ ð5Þ

where, Qback is back of the queue in vehicles, v is arrival rate in vehicles per second (vps), R is red duration in seconds s, and

gs is queue service time which can be calculated vR= s� vð Þ with s is saturation flow rate (i.e., assumed as 0:286 vps). All of

the values (R; gs, and v) except s are updated cycle-to-cycle.

Filtering approach was only showed using Kalman filter on using only M as estimator, Avg ¼ XMiþM
2

; Est1 ¼ Mi=RiþCiMi�2:i

2
, and

Est2 ¼ Ci XMi=Ci�2:ið ÞþMi= XMi=max M1:ið Þð Þ
2

where notation M1:i represents values from cycle 1 to i and M1:i ¼
Pi

j¼1

Mj

i
.

In Table 1, summary of average queue length estimation errors are provided in root mean squared errors

(RMSE=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1

QLi�Q̂Lið Þ2
n

r
). Overall average market penetration rates for each lane are also given. Since, true maximum queues

Fig. 10. Parameter estimation example with filters at p%; v=c ¼ 0:99 as average of 3 random seeds.

Table 1

Back of queue estimation results with RMSE errors in [vehs/cycle].

Lane Avg. p M Avg Est1 Est2 HCM Q back Imp.

Sep 08 L 13% 1.171 1.355 1.233 1.023 1.328 1.176 0.153

C 21% 1.016 1.266 1.153 0.830 1.323 0.998 0.168

R 7% 0.593 1.315 0.599 0.737 0.637 0.586 -0.151

Sep 09 L 10% 1.314 1.275 1.349 0.948 1.413 1.316 0.369

C 26% 1.535 1.392 1.674 1.119 1.880 1.534 0.415

R 2% 0.349 1.834 0.360 0.916 0.368 0.350 -0.566

Sep 10 L 7% 2.831 1.899 2.877 2.024 2.944 2.820 0.795

C 18% 1.778 2.316 2.435 1.492 2.624 2.315 0.823

R 1% 0.862 2.241 0.865 1.143 0.869 0.860 -0.283
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are not known, these ps are not used in estimations. Similar to simulation results, estimation with filtering is more accurate

when some data is received from connected vehicles p=10%;13%;18%;21%; and26%. Mixed results are obtained up to

p ¼ 10%. In Fig. 11-a, -a, Est2 clearly performs better as p increase. Using onlyM for queue estimation is accurate when there

is no vehicle in the queue at all cases. Having other information (L; T), these cases can be identified in Est2 and it could be

improved. In Fig. 11-b, -b, trend of higher improvement of Est2 over Qback method with respect to p can be seen.

Example performance with high and low penetration rates are given in Fig. 12. When there is a probe vehicle in the

queue, Est2 is able to produce more accurate estimation (Fig. 12-a). Kalman filter needs observations to be able to update

estimates as it can be seen in the failures in right lane estimates at p=7% for series of zero queue values (Fig. 12-b).

5. Conclusions

In this study, we investigated the impact of localization framework on queue length estimation at lowmarket penetration

rates. We used two different filtering methods: (1) Kalman filter: unimodal and Gaussian noise and (2) Particle filter: mul-

timodal and noise from any distribution.

The filters are fitted to queue length estimation framework where no true feedback is available. Two cases of fixed arrival

and market penetration rate parameters and changing parameter are analyzed. Queue length estimation with filters show

promising results improving accuracy by 20% for high volume-to-capacity ratio of v=c ¼ 0:99. For lower v=c levels, with fil-

tering by 30% market penetration rates, queue length estimation errors with known parameters (k; p) are matched.

Fig. 11. Summary of queue length estimation results.

Fig. 12. Example queue length estimations on connected vehicle test data.
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Estimation models and filters are both simple and enable real-time applications with no significant overhead. When there

are some connected vehicles are present, filtering would be able to improve estimation. The approach can be used for real-

time applications (e.g., signal control, ramp metering, and queue warning) or complement HCM methods to approximate

control delay. In HCM methods, parameters are assumed to be unchanging in short-term intervals (e.g., 5 to 15-min) inter-

vals where filtering can be used to locate true parameter values after low number of observations. Moreover, proposed

approach can also be used if partial observations are available to better approximate the central tendency measures.

For future research, alternative queue length estimation models will be included for more realistic arrival and service

time distributions as well as other intelligent transportation system applications.
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