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ON BOREL ANOSOV REPRESENTATIONS IN EVEN DIMENSIONS

KONSTANTINOS TSOUVALAS

ABsTRACT. We prove that a word hyperbolic group which admits a Pzq+1-Anosov representation into
PGL(4g+2,R) contains a finite-index subgroup which is either free or a surface group. As a consequence,
we give an affirmative answer to Sambarino’s question for Borel Anosov representations into SL(4g+2, R).

1. INTRODUCTION

In this note, we address the following question of Andrés Sambarino and provide a positive answer
when d = 4q + 2 for some g € N.

Sambarino’s Question: Suppose that I is a torsion free word hyperbolic group which admits a Borel
Anosov representation into SL(d,R). Is T' necessarily free or a surface group?.

Anosov representations of word hyperbolic groups into real semisimple Lie groups were introduced
by Labourie [19] in his study of the Hitchin component. They are discrete subgroups of real reductive
Lie groups which generalize convex cocompact subgroups of rank one Lie groups. A representation
p: ' — GL(d,R) is called Py-Anosov, where 1 < k < g, if it is Anosov with respect to the pair of
opposite parabolic subgroups of GL(d,R) defined as the stabilizers of a k-plane and a complementary
(d— k)-plane (see subsection 2.3). The representation p is called Borel Anosov if p is Pi-Anosov for every
k. Labourie in [19] proved that every Hitchin representation into PSL(d,R) is irreducible and admits a
lift into GL(d,R) which is Borel Anosov. The only known examples of Borel Anosov representations are
constructed from representations of free or surface groups. By a surface group we mean the fundamental
group of a closed surface of negative Euler characteristic. Hitchin representations are the only known
examples of Borel Anosov representations of surface groups in even dimensions. In all odd dimensions,
Barbot’s construction [1] can be used to produce reducible examples.

A positive answer to Sambarino’s question was given in [11] for d = 3 or 4. By using results of Benoist
in [2, 3], we prove that a torsion free word hyperbolic group admitting a Py 1-Anosov representation
into GL(4¢g + 2,R) has to be either free or a surface group. Moreover, by using Wilton’s result [23] on
the existence of quasiconvex surface groups or rigid subgroups in one ended-word hyperbolic groups and
a theorem of Kapovich-Leeb-Porti in [16] (see also [17, Theorem 6]), we prove the following stronger
statement:

Theorem 1.1. Let T' be a word hyperbolic group and p : T — GL(4q + 2,R) a representation. Suppose
that there exists a continuous, p-equivariant dynamics preserving map & : Osol' — Grag1(R19T2). Then
I is virtually free or virtually a surface group.

The group T is virtually free (resp. a surface group) if it contains a finite-index subgroup which is free
(resp. a surface group). The map ¢ is called dynamics preserving whenever v € T' is an infinite order
element, p(v) is Py-proximal and £(y*) is its attracting fixed point in Grog1(R%%2). An analogue of
Theorem 1.1 does not hold in dimensions which are multiples of 4, see Section 4.

Corollary 1.2. Let Gyq42 be either GL(4q +2,R) or PGL(4¢+2,R). If T is a word hyperbolic group and
p: I = Gugya is a Pagy1-Anosov representation, then I' is virtually free or virtually a surface group.

Let 7,7 : Grg(R?) — P(A*RY) be the Pliicker embedding (see subsection 2.1). By using the connected-
ness properties of the boundary of a rigid hyperbolic group with the methods of the proof of Theorem
1.1 we have:
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Corollary 1.3. Let T be a torsion free rigid word hyperbolic group and p : T' — GL(4g+2,R) a represen-
tation. Suppose there exists a continuous p-equivariant map & : OxoI' — Gr2q+1(R4q+2). Then the map &
is nowhere dynamics preserving and TQJCHl o & is not spanning.

The map £ is called nowhere dynamics preserving if for every infinite order element v € I', the restriction
of £ on {y~,7"} is not dynamics preserving.
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2. BACKGROUND

In this section, we provide some background on proximality, define Anosov representations and state
Benoist’s results that we are going to use for the proof of the main theorem.

2.1. Proximality. Let d > 2 and ey, .., eq be the canonical basis of R%. For an element g € GL(d,R) we
denote by A1(g) = A2(g) = ... > Aa(g) the moduli of its eigenvalues. For 1 < k < £, we denote by P, the
stabilizer of the plane (e1, .., ex) and by P~ the stabilizer of the complementary (d—k)-plane (ex1, ..., €q)-
The Grassmannian of k-planes, Gri,(R?) is identified with the quotient manifold GL(d,R)/Py. Similarly
Grg—i(R?) is identified with GL(d,R)/P, . A pair of planes (V,V ™) € Grj,(R?) x Gra—x(R?) is transverse
if there exists h € GL(d,R) such that V* = h{ey,...,ex) and V~ = h{epi1,..,eq). An element g €
GL(d,R) is called Py-prozimal if A (g) > Aey1(g). Equivalently, g has two fixed points z; € Grg(R?) and
V€ Grg_i(R?) such that the pair (z},V,") is transverse and for every k-plane Vj transverse to V", we
have lim,, ¢"Vy = ;C;. The element g is called Py-biprozimal if g and ¢~ ' are P,-proximal. We denote
by x, the attracting fixed point of g~ in Gri(R%). For k = 1, a P;-proximal element g € GL(d,R) in
P(R?) has a unique eigenvalue, /;(g), of maximum modulus with multiplicity exactly one. The repelling
hyperplane of g is denoted by V,~. The matrix g is called Pi-positively prozimal if £1(g) > 0.

The Pliicker embeddings 7,7 : Gry(R?) — P(AFR?) and 7, : Grg_i(R?) — Grg,_1(A*RY), d), = (Z),
where

T (gP) = [ger A ... Ager]) T (gPy) = [AFgler A ... Aer)t]

are embeddings and an element g is Py-proximal if and only if 7']:_ (g) is Py-proximal (see also [13, Propo-
sition 3.3] for more details).

From now, unless specified, proximal (resp. positively proximal) will refer to Pj-proximality (resp.
positive P;-proximality) in the projective space.

2.2. Dynamics preserving maps. Let I' be a word hyperbolic group and denote by 0,I" its Gromov
boundary. Every infinite order element v € T" has exactly two fixed points 7 and v~ on 95" called
the attracting and repelling fixed points of v respectively. Let p : I' — GL(d,R) be a representation
and 1 < k < d — 1. Suppose there exists a continuous p-equivariant map ¢ : doI' — Gri(R?). The
map & is called dynamics preserving if for every element v € I" of infinite order, p(y) is Py-proximal and
E(yT) = :r;r(,y). The map & is called nowhere dynamics preserving if for every v € I' the restriction of £

on dso{y) = {7~,7"} is not dynamics preserving.

2.3. Anosov representations. The dynamical definition of Anosov representations (see [14, 19]) in-
volves the geodesic flow of a word hyperbolic group. Characterizations of Anosov representations into
real reductive Lie groups, without involving flow spaces, have been established in several papers, see
[4, 13, 15, 18]. Here we define Anosov representations by using a characterization of Kapovich-Leeb-Porti
in [15] and Bochi-Potrie-Sambarino [4]. For a finitely generated group I" we always fix a left-invariant word
metric and for v € T', |y|r is the distance of  from the identity element of T'. For an element g € GL(d, R)
let 01(g9) = o2(g) > ... = 04(g) be the singular values of g. Recall that for each i, o;(g) = /A\i(99?),

where ¢' is the transpose of g. Notice that for an element [h] € PGL(d,R) the ratio Ui?&) does not

depend on the choice of the representative h € GL(d,R).
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Let G4 be either GL(d,R) or PGL(d,R), p : I' — G4 a representation and 1 < k < %. Then p is
Py-Anosov if and only if there exist C,a > 0 such that

O'k(p(/Y)) > Cea|'y\r
or+1(p(7))
for every v € I
It is clear from the previous definition that for every quasiconvex subgroup H of T' the restriction p|g
is Pp-Anosov. The following theorem summarizes some of the properties of Anosov representations.

Theorem 2.1. [14, 19] Let G4 be either GL(d,R) or PGL(d,R) and T be a word hyperbolic group. Suppose
1<k< % and p:T' = Gy is a Py-Anosov representation. Then:

(i) p is a quasi-isometric embedding, i.e. there exist constants A,C > 0 such that for every v € T

o1(p(7))

salp(y)) S i T4

1
5|7|F — A <log

(ii) There exist continuous p-equivariant maps
€ 0ol = Gri(RY)  €57% : 0o = Grg_i(R?)

which are dynamics preserving and for distinct points x,y € Oxol' the pair ({;j (:c),fg’k(y)) is transverse.

(iii) The set of Py-Anosov representations of T' in Gq is open in Hom(T', Gg).

Notice that by the previous definition, the representation p is Py-Anosov if and only if AFp is P;-Anosov.
The Anosov limit maps of A" p are 7, o £F and 7, 0 £47F.

We also need the following fact which implies the continuity of the first eigenvalue among P;-Anosov
representations.

Fact 2.2. Let {Ai}icio,1) be a continuous family of proximal elements of GL(d,R). Then, the function
t— 01 (Ay) is continuous.

Proof. The conclusion follows immediately from the continuity of the characteristic polynomial of matri-
ces. O

2.4. The work of Benoist. We summarize here some results that we use from [2] and [3]. An open
cone C' C R? is called properly convez if it does not contain an affine line. A domain 2 C P(R?) is called
properly conver if it is contained in some affine chart of P(R?) in which € is bounded and convex. An
element g € GL(d,R) is called positively semi-proximal if A;(g) is an eigenvalue of g. A subgroup I' of
GL(d,R) is called positively proximal if it contains a proximal element and every proximal element of T"
is positively proximal.

Lemma 2.3. [3, Lemma 3.2] Let T’ be a subgroup of GL(d,R) which preserves a properly convex open
cone C in R, Then every v € T is positively semi-prozimal. In particular, every prozimal element v € T
is positively prozimal.

Benoist characterized irreducible subgroups of GL(d, R) which preserve a properly convex cone in R?
as follows:

Theorem 2.4. [2, Proposition 1.1] Let T be an irreducible subgroup of GL(d,R). Then T' preserves a
properly convex open cone C in R? if and only if T is positively proximal.

We also have the following fact for subgroups of GL(d, R) which preserve properly convex domains in
P(RY):
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Fact 2.5. Let I' be a subgroup of GL(d,R) which preserves a properly convex domain Q C P(R9).
There exists a representation ¢ : I' — GL(d,R) and a group homomorphism ¢ : ' — Z/2 such that:
(y) = (=1)*Mx for every v € T and 7(T') preserves a properly convex open cone C' lifting Q. Thus, if
I" is also finitely generated the group I's := (\{H : [[" : H] < 2} has finite-index in T' and preserves the
properly convex cone C.

We will also use the following fact:

Proposition 2.6. Let T' be a word hyperbolic group and p : T' — GL(d,R) be a representation. If there
exists a continuous p-equivariant non-constant map € : O, I' — P(RY), then p is discrete and ker(p) is
finite.

Proof. Assume that there exists an infinite sequence (v, )nen of elements of T’ with lim,, p(y,) = I4.
The group T' acts on 05" as a convergence group, hence up to subsequence, there exists 7,7 € OpoI’
with lim, v,2 = n for  # 7’ and &(z) = £(n), @ # n’. Since 0T is perfect, £ has to be constant, a
contradiction. In particular, ker(p) is a torsion subgroup of T', hence finite. O

Let F} be the free group on k generators. We close this section with the following proposition which
follows by the work of Breuillard-Green-Guralnick-Tao (see [6, Theorem 4.1]):

Proposition 2.7. [6] The set of Zariski dense representations from Fy in SL(d,R) is dense in the rep-
resentation variety Hom(Fy, SL(d, R)).

3. PROOF OF THE MAIN RESULT

In this section we give the proof of Theorem 1.1. First, we need the following lemma which is proved
using a theorem of Kapovich-Leeb-Porti [16] (see also [10]).

Lemma 3.1. Let I' be a torsion free non-elementary word hyperbolic group and p : I' — GL(d,R) be
a representation which admits a continuous p-equivariant map & : 0T — P(R?). Suppose there eists
~v €T such that p(v) is biprozimal, £(yT) = x;'(v) and E(y7) = .y Then, there exist a,b € I' such that
(a,b) is a free quasiconvex subgroup of T' of rank 2 and the restricted representation p : {a,b) — GL(d,R)
is Py-Anosov with Anosov limit map &.

Proof. By Proposition 2.6, the representation p is discrete and faithful. Let ¢ € T" be an infinite order
element such that {yT,7~} N {tT,¢t~} is empty. Up to conjugating p we may assume that x;'(v) =

[el],x;r(,y,l) = [eq] and Vp(,y) = (€2, ..., €4), Vp(,y,l) = (e1,...,e4—1). Then we notice that

14, + - - 1y, — - -
P2, EB(V ) ) UR(V, () and p(85)a ) € PV, () ) UR(V (1))

For example, suppose that p(t)x:(,y) € ]P’(Vp*(,y)), then lim,, p(v")p(t)x;r(,y) =lim, E(v"tv") = &(vT) = [e1]

has to be in ]P’(Vp?,y)), a contradiction. Since, lim,, vt~ 1y" = 4* we have lim,, p(y"t~1)¢(yT) = :1::(7) and

p(tfl)x:(,y,l) ¢ P(szv))' Then, by [16, Theorem 7.40] (see also [10, Theorem A2]), there exists N > 0
such that the group H = (v, ty"t~!) is a free group of rank 2 and the restriction p|g is Pi-Anosov.
The restriction p|y is also a quasi-isometric embedding hence H is a quasiconvex subgroup of I' and its
Anosov limit map is the restriction of £ on J,,H considered as a subset of 0, O

Recall that for a finitely generated group I', I's is defined to be the intersection of all finite-index
subgroups of I' of index at most 2.

Lemma 3.2. Let I" be a torsion free one-ended word hyperbolic group and p : I' x Z — GL(d,R) be a
representation which admits a p-equivariant continuous map & : Ooo (I * Z) — P(R?). Suppose that § € Ty
is a non-trivial element such that p(d) is biproximal and £(67) = x:(é) and £(67) = T 5 Then p(0) is
positively prozimal.
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Proof. Let s be a generator of the free cyclic factor, t = sés~! € I' and notice that p(t) is proximal with
P(S)JU;F((;) = :C;r(t) =£(tT) and tF ¢ 0,1, If € 0T, limy, p(t)€(w) = lim,, £(t"x) = £(tF). Since p(t)

preserves V) and limy, t"z = t+, &(x) cannot lie in ]P’(szt)). It follows that £(0ooT) lies in the affine chart

P(R?) — ]P’(Vp?t)). Let V = (£(0-T")) and we consider the representation p’ : I' — GL(V') where p/(y) =
plv(7), v € T'. The map & is not constant, hence p’ is discrete and faithful. The map £ : O’ = P(V) is
p'-equivariant, p’(d) is proximal with attracting fixed point £(67) and £1(p(8)) = £1(p'(9)).

Then we notice that £(0-T") also lies in the affine chart A = P(V) —P(V' N szt)) of P(V). Since T
is one-ended, d5I' and £(9xI") are connected. The convex hull of {(0-.T) in A, say C, is bounded and
convex in A and has non-empty interior since (9-,I") spans V. Then p/(T") preserves £(0oI") and by [11,
Proposition 2.8] it also preserves C. It follows that p'(T") preserves the non-empty properly convex set
Q =Int(C) C P(V). Fact 2.5 shows that there exists a representation p’ : I' — GL(V') which preserves
a properly convex cone C' C V and p'(v) = p'(v) for every v € T's. By Lemma 2.3, p(d) is positively

proximal in P(V') and hence in P(R9). O

A torsion free word hyperbolic group I is called rigid if it does not admit a non-trivial splitting over a
cyclic subgroup. For example, the fundamental group of a closed negatively curved Riemannian manifold
of dimension at least 3 is rigid. By a theorem of Bowditch [5] the Gromov boundary d,.I" of a rigid
hyperbolic group I'" does not contain local cut points.

Lemma 3.3. Let T" be a torsion free rigid one-ended word hyperbolic group. Let p : T'— GL(d,R) be a
representation which admits a continuous p-equivariant map € : 9o — P(RY). Suppose that § € Ty is
a non-trivial element such that p(d) is biprozimal and £(6T) = x;r(é) and £(67) = L5 Then p(0) is
positively prozimal.

Proof. Since 05,I" does not have any local cut points, the set 9o T'— {67, 5~} is connected. For x # 6,5~
we have that lim, 6%z = 6% and, as in Lemma 3.2, the conected set 5(800F — {6, 6’}) is contained
in P(R?) — P(szé)) u ]P’(Vp_(é,l)). Note that the two (d — 1)-planes V5 and V . are distinct, hence
by the connectedness of O I' — {d7,5~} we can find a hyperplane Vj such that £(0T) is contained in
P(R?) — P(Vp). Then we consider the restriction p' : T' — GL(V), V = (£(0xI)), whose image preserves
the compact connected subset {(0-T") of the affine chart P(V) —P(VNV;) of P(V). The element p'(7) is
proximal in P(V') and ¢1(p(7)) = ¢1(p'(y)). We similarly conclude that p'(T") preserves a properly convex
domain Q of P(V). Again, Fact 2.5 guarantees that p’(I'y) preserves a properly convex cone of V and

41(p'(6)) > 0. (]
Now we combine the previous results to prove Theorem 1.1.

Theorem 1.1: Let T’ be a word hyperbolic group and p : T' — GL(4q + 2,R) a representation. Suppose
that there exists a continuous, p-equivariant dynamics preserving map & : Oocl' — Gragy1(R49T2). Then
I' is virtually free or virtually a surface group.

Proof. We first assume that I' is a torsion free hyperbolic group. By Proposition 2.6, p is faithful and
we may assume that p(I') is a subgroup of SL(4¢ + 2,R). If not, we replace p with the representation
p:T = SLE(n,R), p(y) = |det(p(7))|~1/“@4+2) p(y) and T with a finite-index subgroup I'g such that p(T'o)
is a subgroup of SL(4¢ + 2,R). Notice that p has to be faithful since £ is p-equivariant and dynamics
preserving for p.

Let V, = A29F1R49+2 and notice by assumption that &, = TQJ; +10& is AP p-equivariant and dynamics
preserving. We consider the following two cases:

Case 1. Suppose that I' has infinitely many ends. Then we show that I' is free. If not, by Stallings’
theorem [21], there exists a splitting I' = T'y ... x I’y x Fy, where s > 0 and for 1 < i < k, ['; is an
one-ended word hyperbolic group. In particular, there exists a quasiconvex subgroup of I' of the form
AxZ, with A one-ended. Lemma 3.1, shows that there exists a quasiconvex free subgroup Hy of Ay such
that A2971p(Hy) is Pi-Anosov in SL(V,) and its limit map is the restriction &, : O Ho — P(V,).

Since A29t1p(§) is proximal for every § € Hy C As, by Lemma 3.2, £1(A%9F1(p(5))) > 0. The
representation p : Hy — SL(4q + 2,R) is Pagt1-Anosov and A% !p(v) is positively proximal for every
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non-trivial v € Hy. By Theorem 2.1 (iii), we can find a path connected open neighbourhood U of
po := plu, in Hom(Hy, SL(4¢g+2,R)) consisting of entirely of P4 1-Anosov representations. Proposition
2.7 guarantees that there exists p; € U such that py(Fy) is Zariski dense in SL(4q + 2,R). Let {p: o<t<1
be a continuous path between py and p; contained entirely in U. By Fact 2.2, for every v € Hy, the map
t = £1(A%9F1p,(7y)) is continuous with real values and nowhere vanishing. Hence £1(A29+1p1 (7)) > 0 for
every v € Hy. Therefore, since A2**1 is an irreducible representation, the group A29+! p; (Hy) is a strongly
irreducible subgroup of SL(V;) which is positively proximal. By Theorem 2.4, the group A*"™!p;(Hy)
preserves a properly convex cone and hence a properly convex domain of P(V;). On the other hand,
the group A21T1SL(4¢ + 2,R) (and hence A?7"1p;(Hy)) preserves the symplectic non-degenerate form
wq : Vg x Vy — R given by the formula wy(a,b) = aAb € (e1 A... Aeggyo). However, by [2, Corollary 3.5],
a strongly irreducible subgroup of SL(d, R) which preserves a symplectic form cannot preserve a properly
convex domain of P(R?). We have reached a contradiction, so I' cannot contain any non-trivial one-ended
factors in its free product decomposition. Therefore, I' is free.

Case 2. Suppose that I is one-ended and not virtually a surface group. Wilton’s result [23, Corollary
B| ensures that T' contains a quasiconvex subgroup A which is either isomorphic to a surface group or
rigid. If A has infinite index in I', then there exists a quasiconvex subgroup of I' isomorphic to A x Z.
However, by the previous case we obtain a contradiction. Therefore, we may assume that A is rigid and
has finite index in I'. By Lemma 3.1, there exists H; a quasiconvex free subgroup of As such that the
restriction A2971p|y, is Pi-Anosov. By Lemma 3.3, for every h € Hy, A24T1p(h) is positively proximal
in P(V,). By continuing as previously, we obtain a Ps,11-Anosov, Zariski dense deformation p; of p|g,
such that A29+1p; (Hy,) is positively proximal. Again, by Theorem 2.4, A29+1p; (H},) preserves a properly
convex domain and the symplectic form wg, a contradiction.

If p is not faithful, Proposition 2.6 shows that ker(p) is finite. The group IV = T'/kerp is word
hyperbolic, 0xI” = 05T, so € is a p’-equivariant dynamics preserving map, where p’ : IV — GL(4¢+ 2, R)
is the faithful representation induced by p. By Selberg’s lemma, there exists a torsion free finite-index
subgroup I'; of IV. The previous arguments imply that I'; is either a surface group or a free group.
Therefore, I' is either a finite extension of a virtually free group or a virtually surface group. In the
second case, its boundary is the circle and by [9], ' is virtually a surface group. In the first case, by [8], T"
has infinitely many ends and splits as the fundamental group of a finite graph of groups with finite edge
groups and vertex groups of at most one end. The vertex groups of this splitting are also finite extensions
of a virtually free group hence finite. It follows that I" is virtually free. O

By following the argument of case 1 in of the proof of Theorem 1.1 we obtain the following conclusion:

Theorem 3.4. Let Fy be the free group on two generators and p : Fo — GL(4q + 2,R) a represen-
tation. Suppose that p is Pagi1-Anosov. Then N*7T1p(Fy) is not a positively prozimal subgroup of
GL(A2aHIRAa+2),

For the proof of Corollary 1.2 we need the following proposition for the existence of lifts of Pyj41-Anosov
representations into PGL(d, R). The proof is similar to Lemma 3.2 and 3.3. In the case p is irreducible
and k = 0, Zimmer has proved the existence of lifts in [24, Theorem 3.1].

Proposition 3.5. Let ' be a torsion free word hyperbolic group and p : T' — PGL(d,R) is a Pop41-Anosov
representation, where 0 < k < %.

(i) Suppose that A is an infinite indez, one-ended quasiconver subgroup of T' and py is the restriction of
p on A. There exists a lift po : A — GL(d,R) such that A***154(A) is positively prozimal.

(ii) If T is a rigid word hyperbolic group then there exists a lift p: I' — GL(d,R) of p such that N**T1p(T)
18 positively proximal.

Proof. We begin with the following observation: suppose that ¢ : T' — PGL(V; & V3) is a representation
such that ¢(v) preserves Vi for every v € I'. If p(y) = [g,] then the map ¢o(v) = [g4]v,] is a well
defined representation ¢g : I' — PGL(V7). If o admits a lift $p, then there exists a lift @ of ¢ such that
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2(Y)|vy = @o(7) for every v € T. The lift ¢ is defined as follows: for v € T, ¢(7y) is the unique element
hy € GL(Vi & V3) such that the restriction of h, on Vi is @o(7y) and ¢(y) = [hy].

Notice that we may asssume that k& = 0, because the exterior power A2**1 : GL(d, R) — GL(AZFH1R?)
is faithful. For part (i), we may consider § € T with 6% ¢ 9., A and £(05A) is a connected compact subset
of the affine chart P(R?) — ]P’(Vp?é)). In particular, £(0-A) lies in the affine chart A = P(V)—P(V N szé))
of P(V), where V = (£(0xA)). Since po(A) preserves V there exists a well defined representation
p1 A — PGL(V). The image p1(A) preserves the connected compact set £(0-A) and hence the
interior of the convex hull of {(0A) in A. There exists a lift p; of p; into GL(V) such that pi(A)
preserves a properly convex cone C' of V. The representation p; is Pi-Anosov, faithful and by Lemma
2.3, p1(7y) is positively proximal for every v € A non-trivial. By our initial observation we obtain a lift
po : A — GL(d,R) of po with po(7)|v = p1(7). The representation py is Pi-Anosov with Anosov limit map
&. For every non-trivial v € A, the attracting fixed point of po(v) is in V and #1(po (7)) = £1(p1(7)) > 0.

The proof of (ii) follows by observing, as in Lemma 3.3, that the image of J,,I' under the Anosov limit
map & lies in an affine chart of P(R?). Then we continue as previously to obtain the lift p. O

Proof of Corollary 1.2. We assume that I' is torsion free. If I' contains a quasiconvex infinite index
one-ended subgroup Ty, there exists a lift py of p|r, such that the group A2¥*154(Ty) is positively
proximal, contradicting Theorem 3.4. Also I" cannot be rigid again by part (ii) of the previous proposition.
Therefore, T' is either free or has one end and by [23, Corollary B] there exists a quasiconvex surface
subgroup which has to be of finite index in T'. In every case, since ker(p) is finite, the boundary O I is
either a circle or totally disconnected so I' is virtually free or virtually a surface group. O

Proof of Corollary 1.5. Suppose that there exists a continuous p-equivariant map £ and p(y) € p(T') a
Psy41-proximal element with {(yF) = a::(w) and £(y7) = ,y)- The map Ef =1 0 & is A2 p-
equivariant and by Lemma 3.1 there exist a free quasiconvex subgroup H of I'y such that A24T1p|g is
Pj-Anosov. Lemma 3.3 shows that A29t1p(H) is positively proximal, a contradiction by Theorem 3.4.

Let V, = A20HIRYT2 and £~ = 75, 0 £&. We show that the map £t cannot be spanning. Suppose
that £ is spanning and 1, ..., 2, € JooI' with V, = @I_, & (2;), r = dim(V;). Since I' acts minimally on
00T, every open subset U of 0o, £7(U) spans V, and the union U/_; £~ (z;) cannot contain 1 (dI).
There exists y € dool' and 1 < j <7 with V, = (z;) @€ (y) = T (y) @ € (x). By the density of pairs
{(67,67) : § € T} in the set of 2-tuples of 9T, we can find v € I such that V, = () @& (™) =
Er(y) e ().

Then we claim that g = A29F1p(~) is a biproximal matrix. Up to conjugating g we may assume that
EY(yT) = [e1], € (7v7) = [e1] and write g = [a(og) Sl] for some matrix A € GL(ei). Suppose that
M(A) = |a(g)]. Let p > 1 be the largest possible dimension of a complex Jordan block corresponding
to an eigenvalue of maximum modulus of A. Then there exists a subsequence (k;,)nen, Ao @ non-zero
matrix and b € R with

lim __ gk = [b 0 }

n—00 kz_l)\l (A)kn 0 Aoo
Since 0T is perfect and 1 (0xI") spans V,, we may choose z € 95" — {7~} such that the projection
of £¥(z) in ef is not in ker(Ay). Thus, lim, g* ¢t (x) = lim, £7 (v 2) = ¢F(y") cannot be the line
[e1], a contradiction. It follows that |a(g)| > A1 (A) and A2 p(7) is proximal with attracting fixed point
EX(yh). Since V, = £F(y7) @ € (y1), the same argument shows that A291p(y~1) is proximal with
attracting fixed point €7 (y7). The map £F (and hence £) preserves the dynamics of {y~,~vT}. This
contradicts the fact that £ is nowhere dynamics preserving. Therefore, TQ-Z +1(&(0s0T)) lies in some proper
vector subspace of V. [

4. EXAMPLES

In this section we provide an example showing that the analogue of Theorem 1.1 does not hold in
dimensions which are multiples of 4. Also, we give an example of a surface group representation p into
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SL(4¢q +2,R) which is not Psq41-Anosov but admits a p-equivariant continuous dynamics preserving map
€ into Grag+1(R*2). Let S be a closed orientable hyperbolic surface and 75 : SL(2,C) — SL(4,R) be the

standard inclusion defined as 72(g) = [gﬁg; _}%ZE;?] for g € SL(2,C).

Example 4.1. Let F, be the free group on two generators. The group I' = 71 (S) * Fy admits an Anosov
representation p into SL(2,C) and hence 72 o p is a Po-Anosov representation into SL(4,R). For k € N,
the representation py = ©F_;(m9 0 p) of T into SL(4k, R) is Pyx-Anosov. In fact, by Theorem 2.1 (iii) and
Proposition 2.7 there exists a deformation p) of pi which is Zariski dense and Paj-Anosov.

Example 4.2. Let M be the mapping torus of the closed hyperbolic surface S with respect to a fixed
pseudo-Anosov homeomorphism ¢ : S — S. The group m1 (M) contains a normal infinite index subgroup
I' isomorphic with 71 (S). By a theorem of Thurston [22] (see also Otal [20]), the group 71 (M) admits a
convex cocompact representation ¢ into PSL(2, C). In fact, by [7], ¢ lifts to a quasi-isometric embedding 7 :
m1 (M) — SL(2,C). By composing 7, with 7, we obtain a Py-Anosov representation p; : (M) — SL(4,R).
The Cannon-Thurston map (see [12]), 0 : 0s71(S) — Ooomi (M) composed with the Anosov limit map
€2+ Doom (M) — Gra(R*) provides a p;|p-equivariant dynamics preserving map &y : 9o’ — Gra(R*).
Note that the representation p1|r is not a quasi-isometric embedding, in particular not P»-Anosov, since
T is not a quasiconvex subgroup of w1 (M). Let pp : T' — SL(2,R) be a Fuchsian representation with limit
map f})F. The representation p = (®7_;p1|r) ® pr into SL(4¢g + 2,R) is not Psq41-Anosov, however the
p-equivariant map & = (®]_,&o) ® f}w is dynamics preserving.
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