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ON BOREL ANOSOV REPRESENTATIONS IN EVEN DIMENSIONS

KONSTANTINOS TSOUVALAS

Abstract. We prove that a word hyperbolic group which admits a P2q+1-Anosov representation into
PGL(4q+2,R) contains a finite-index subgroup which is either free or a surface group. As a consequence,
we give an affirmative answer to Sambarino’s question for Borel Anosov representations into SL(4q+2,R).

1. Introduction

In this note, we address the following question of Andrés Sambarino and provide a positive answer
when d = 4q + 2 for some q ∈ N.

Sambarino’s Question: Suppose that Γ is a torsion free word hyperbolic group which admits a Borel

Anosov representation into SL(d,R). Is Γ necessarily free or a surface group?.

Anosov representations of word hyperbolic groups into real semisimple Lie groups were introduced
by Labourie [19] in his study of the Hitchin component. They are discrete subgroups of real reductive
Lie groups which generalize convex cocompact subgroups of rank one Lie groups. A representation
ρ : Γ → GL(d,R) is called Pk-Anosov, where 1 6 k 6 d

2 , if it is Anosov with respect to the pair of
opposite parabolic subgroups of GL(d,R) defined as the stabilizers of a k-plane and a complementary
(d−k)-plane (see subsection 2.3). The representation ρ is called Borel Anosov if ρ is Pk-Anosov for every
k. Labourie in [19] proved that every Hitchin representation into PSL(d,R) is irreducible and admits a
lift into GL(d,R) which is Borel Anosov. The only known examples of Borel Anosov representations are
constructed from representations of free or surface groups. By a surface group we mean the fundamental
group of a closed surface of negative Euler characteristic. Hitchin representations are the only known
examples of Borel Anosov representations of surface groups in even dimensions. In all odd dimensions,
Barbot’s construction [1] can be used to produce reducible examples.

A positive answer to Sambarino’s question was given in [11] for d = 3 or 4. By using results of Benoist
in [2, 3], we prove that a torsion free word hyperbolic group admitting a P2q+1-Anosov representation
into GL(4q + 2,R) has to be either free or a surface group. Moreover, by using Wilton’s result [23] on
the existence of quasiconvex surface groups or rigid subgroups in one ended-word hyperbolic groups and
a theorem of Kapovich-Leeb-Porti in [16] (see also [17, Theorem 6]), we prove the following stronger
statement:

Theorem 1.1. Let Γ be a word hyperbolic group and ρ : Γ → GL(4q + 2,R) a representation. Suppose

that there exists a continuous, ρ-equivariant dynamics preserving map ξ : ∂∞Γ → Gr2q+1(R
4q+2). Then

Γ is virtually free or virtually a surface group.

The group Γ is virtually free (resp. a surface group) if it contains a finite-index subgroup which is free
(resp. a surface group). The map ξ is called dynamics preserving whenever γ ∈ Γ is an infinite order
element, ρ(γ) is Pk-proximal and ξ(γ+) is its attracting fixed point in Gr2q+1(R

4q+2). An analogue of
Theorem 1.1 does not hold in dimensions which are multiples of 4, see Section 4.

Corollary 1.2. Let G4q+2 be either GL(4q+2,R) or PGL(4q+2,R). If Γ is a word hyperbolic group and

ρ : Γ → G4q+2 is a P2q+1-Anosov representation, then Γ is virtually free or virtually a surface group.

Let τ+k : Grk(R
d) → P(∧k

R
d) be the Plücker embedding (see subsection 2.1). By using the connected-

ness properties of the boundary of a rigid hyperbolic group with the methods of the proof of Theorem
1.1 we have:
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Corollary 1.3. Let Γ be a torsion free rigid word hyperbolic group and ρ : Γ → GL(4q+2,R) a represen-

tation. Suppose there exists a continuous ρ-equivariant map ξ : ∂∞Γ → Gr2q+1(R
4q+2). Then the map ξ

is nowhere dynamics preserving and τ+2q+1 ◦ ξ is not spanning.

The map ξ is called nowhere dynamics preserving if for every infinite order element γ ∈ Γ, the restriction
of ξ on {γ−, γ+} is not dynamics preserving.

Acknowledgements. I would like to thank my advisor Richard Canary for his support and many
useful comments on earlier versions of this paper and Andrés Sambarino for his question. This work was
partially supported by grants DMS-1564362 and DMS-1906441 from the National Science Foundation.

2. Background

In this section, we provide some background on proximality, define Anosov representations and state
Benoist’s results that we are going to use for the proof of the main theorem.

2.1. Proximality. Let d > 2 and e1, .., ed be the canonical basis of Rd. For an element g ∈ GL(d,R) we
denote by λ1(g) > λ2(g) > ... > λd(g) the moduli of its eigenvalues. For 1 6 k 6 d

2 , we denote by Pk the

stabilizer of the plane 〈e1, .., ek〉 and by P−
k the stabilizer of the complementary (d−k)-plane 〈ek+1, ..., ed〉.

The Grassmannian of k-planes, Grk(R
d) is identified with the quotient manifold GL(d,R)/Pk. Similarly

Grd−k(R
d) is identified with GL(d,R)/P−

k . A pair of planes (V +, V −) ∈ Grk(R
d)×Grd−k(R

d) is transverse
if there exists h ∈ GL(d,R) such that V + = h〈e1, ..., ek〉 and V − = h〈ek+1, .., ed〉. An element g ∈
GL(d,R) is called Pk-proximal if λk(g) > λk+1(g). Equivalently, g has two fixed points x+

g ∈ Grk(R
d) and

V −
g ∈ Grd−k(R

d) such that the pair (x+
g , V

−
g ) is transverse and for every k-plane V0 transverse to V −

g , we

have limn g
nV0 = x+

g . The element g is called Pk-biproximal if g and g−1 are Pk-proximal. We denote

by x−
g the attracting fixed point of g−1 in Grk(R

d). For k = 1, a P1-proximal element g ∈ GL(d,R) in

P(Rd) has a unique eigenvalue, ℓ1(g), of maximum modulus with multiplicity exactly one. The repelling
hyperplane of g is denoted by V −

g . The matrix g is called P1-positively proximal if ℓ1(g) > 0.

The Plücker embeddings τ+k : Grk(R
d) → P(∧k

R
d) and τ−k : Grd−k(R

d) → Grdk−1(∧
k
R

d), dk =
(
d
k

)
,

where
τ+k (gPk) = [ge1 ∧ ... ∧ gek] τ−k (gP−

k ) = [∧kg(e1 ∧ ... ∧ ek)
⊥]

are embeddings and an element g is Pk-proximal if and only if τ+k (g) is P1-proximal (see also [13, Propo-
sition 3.3] for more details).

From now, unless specified, proximal (resp. positively proximal) will refer to P1-proximality (resp.
positive P1-proximality) in the projective space.

2.2. Dynamics preserving maps. Let Γ be a word hyperbolic group and denote by ∂∞Γ its Gromov
boundary. Every infinite order element γ ∈ Γ has exactly two fixed points γ+ and γ− on ∂∞Γ called
the attracting and repelling fixed points of γ respectively. Let ρ : Γ → GL(d,R) be a representation
and 1 6 k 6 d − 1. Suppose there exists a continuous ρ-equivariant map ξ : ∂∞Γ → Grk(R

d). The
map ξ is called dynamics preserving if for every element γ ∈ Γ of infinite order, ρ(γ) is Pk-proximal and
ξ(γ+) = x+

ρ(γ). The map ξ is called nowhere dynamics preserving if for every γ ∈ Γ the restriction of ξ

on ∂∞〈γ〉 = {γ−, γ+} is not dynamics preserving.

2.3. Anosov representations. The dynamical definition of Anosov representations (see [14, 19]) in-
volves the geodesic flow of a word hyperbolic group. Characterizations of Anosov representations into
real reductive Lie groups, without involving flow spaces, have been established in several papers, see
[4, 13, 15, 18]. Here we define Anosov representations by using a characterization of Kapovich-Leeb-Porti
in [15] and Bochi-Potrie-Sambarino [4]. For a finitely generated group Γ we always fix a left-invariant word
metric and for γ ∈ Γ, |γ|Γ is the distance of γ from the identity element of Γ. For an element g ∈ GL(d,R)

let σ1(g) > σ2(g) > ... > σd(g) be the singular values of g. Recall that for each i, σi(g) =
√
λi(ggt),

where gt is the transpose of g. Notice that for an element [h] ∈ PGL(d,R) the ratio σi(h)
σi+1(h)

does not

depend on the choice of the representative h ∈ GL(d,R).
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Let Gd be either GL(d,R) or PGL(d,R), ρ : Γ → Gd a representation and 1 6 k 6 d
2 . Then ρ is

Pk-Anosov if and only if there exist C,α > 0 such that

σk(ρ(γ))

σk+1(ρ(γ))
> Ceα|γ|Γ

for every γ ∈ Γ.
It is clear from the previous definition that for every quasiconvex subgroup H of Γ the restriction ρ|H

is Pk-Anosov. The following theorem summarizes some of the properties of Anosov representations.

Theorem 2.1. [14, 19] Let Gd be either GL(d,R) or PGL(d,R) and Γ be a word hyperbolic group. Suppose

1 6 k 6 d
2 and ρ : Γ → Gd is a Pk-Anosov representation. Then:

(i) ρ is a quasi-isometric embedding, i.e. there exist constants A,C > 0 such that for every γ ∈ Γ

1

C
|γ|Γ −A 6 log

σ1(ρ(γ))

σd(ρ(γ))
6 C|γ|Γ +A

(ii) There exist continuous ρ-equivariant maps

ξkρ : ∂∞Γ → Grk(R
d) ξd−k

ρ : ∂∞Γ → Grd−k(R
d)

which are dynamics preserving and for distinct points x, y ∈ ∂∞Γ the pair (ξkρ (x), ξ
d−k
ρ (y)) is transverse.

(iii) The set of Pk-Anosov representations of Γ in Gd is open in Hom(Γ,Gd).

Notice that by the previous definition, the representation ρ is Pk-Anosov if and only if ∧kρ is P1-Anosov.
The Anosov limit maps of ∧kρ are τ+d,k ◦ ξ

k
ρ and τ−d,k ◦ ξ

d−k
ρ .

We also need the following fact which implies the continuity of the first eigenvalue among P1-Anosov
representations.

Fact 2.2. Let {At}t∈[0,1] be a continuous family of proximal elements of GL(d,R). Then, the function

t 7→ ℓ1(At) is continuous.

Proof. The conclusion follows immediately from the continuity of the characteristic polynomial of matri-
ces. �

2.4. The work of Benoist. We summarize here some results that we use from [2] and [3]. An open
cone C ⊂ Rd is called properly convex if it does not contain an affine line. A domain Ω ⊂ P(Rd) is called
properly convex if it is contained in some affine chart of P(Rd) in which Ω is bounded and convex. An
element g ∈ GL(d,R) is called positively semi-proximal if λ1(g) is an eigenvalue of g. A subgroup Γ of
GL(d,R) is called positively proximal if it contains a proximal element and every proximal element of Γ
is positively proximal.

Lemma 2.3. [3, Lemma 3.2] Let Γ be a subgroup of GL(d,R) which preserves a properly convex open

cone C in Rd. Then every γ ∈ Γ is positively semi-proximal. In particular, every proximal element γ ∈ Γ
is positively proximal.

Benoist characterized irreducible subgroups of GL(d,R) which preserve a properly convex cone in Rd

as follows:

Theorem 2.4. [2, Proposition 1.1] Let Γ be an irreducible subgroup of GL(d,R). Then Γ preserves a

properly convex open cone C in R
d if and only if Γ is positively proximal.

We also have the following fact for subgroups of GL(d,R) which preserve properly convex domains in
P(Rd):
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Fact 2.5. Let Γ be a subgroup of GL(d,R) which preserves a properly convex domain Ω ⊂ P(Rd).
There exists a representation ι̃ : Γ → GL(d,R) and a group homomorphism ε : Γ → Z/2 such that:
ι̃(γ) = (−1)ε(γ)γ for every γ ∈ Γ and ι̃(Γ) preserves a properly convex open cone C lifting Ω. Thus, if
Γ is also finitely generated the group Γ2 :=

⋂
{H : [Γ : H ] 6 2} has finite-index in Γ and preserves the

properly convex cone C.

We will also use the following fact:

Proposition 2.6. Let Γ be a word hyperbolic group and ρ : Γ → GL(d,R) be a representation. If there

exists a continuous ρ-equivariant non-constant map ξ : ∂∞Γ → P(Rd), then ρ is discrete and ker(ρ) is

finite.

Proof. Assume that there exists an infinite sequence (γn)n∈N of elements of Γ with limn ρ(γn) = Id.
The group Γ acts on ∂∞Γ as a convergence group, hence up to subsequence, there exists η, η′ ∈ ∂∞Γ
with limn γnx = η for x 6= η′ and ξ(x) = ξ(η), x 6= η′. Since ∂∞Γ is perfect, ξ has to be constant, a
contradiction. In particular, ker(ρ) is a torsion subgroup of Γ, hence finite. �

Let Fk be the free group on k generators. We close this section with the following proposition which
follows by the work of Breuillard-Green-Guralnick-Tao (see [6, Theorem 4.1]):

Proposition 2.7. [6] The set of Zariski dense representations from F2 in SL(d,R) is dense in the rep-

resentation variety Hom(Fk, SL(d,R)).

3. Proof of the main result

In this section we give the proof of Theorem 1.1. First, we need the following lemma which is proved
using a theorem of Kapovich-Leeb-Porti [16] (see also [10]).

Lemma 3.1. Let Γ be a torsion free non-elementary word hyperbolic group and ρ : Γ → GL(d,R) be

a representation which admits a continuous ρ-equivariant map ξ : ∂∞Γ → P(Rd). Suppose there exists

γ ∈ Γ such that ρ(γ) is biproximal, ξ(γ+) = x+
ρ(γ) and ξ(γ−) = x−

ρ(γ). Then, there exist a, b ∈ Γ such that

〈a, b〉 is a free quasiconvex subgroup of Γ of rank 2 and the restricted representation ρ : 〈a, b〉 → GL(d,R)
is P1-Anosov with Anosov limit map ξ.

Proof. By Proposition 2.6, the representation ρ is discrete and faithful. Let t ∈ Γ be an infinite order
element such that {γ+, γ−} ∩ {t+, t−} is empty. Up to conjugating ρ we may assume that x+

ρ(γ) =

[e1], x
+
ρ(γ−1) = [ed] and V −

ρ(γ) = 〈e2, ..., ed〉, V
−
ρ(γ−1) = 〈e1, ..., ed−1〉. Then we notice that

ρ(t±1)x+
ρ(γ) /∈ P(V −

ρ(γ)) ∪ P(V −
ρ(γ−1)) and ρ(t±1)x−

ρ(γ) /∈ P(V −
ρ(γ)) ∪ P(V −

ρ(γ−1))

For example, suppose that ρ(t)x+
ρ(γ) ∈ P(V −

ρ(γ)), then limn ρ(γ
n)ρ(t)x+

ρ(γ) = limn ξ(γ
ntγ+) = ξ(γ+) = [e1]

has to be in P(V −
ρ(γ)), a contradiction. Since, limn γnt−1γ+ = γ+ we have limn ρ(γ

nt−1)ξ(γ+) = x+
ρ(γ) and

ρ(t−1)x+
ρ(γ−1) /∈ P(V −

ρ(γ)). Then, by [16, Theorem 7.40] (see also [10, Theorem A2]), there exists N > 0

such that the group H = 〈γN , tγnt−1〉 is a free group of rank 2 and the restriction ρ|H is P1-Anosov.
The restriction ρ|H is also a quasi-isometric embedding hence H is a quasiconvex subgroup of Γ and its
Anosov limit map is the restriction of ξ on ∂∞H considered as a subset of ∂∞Γ. �

Recall that for a finitely generated group Γ, Γ2 is defined to be the intersection of all finite-index
subgroups of Γ of index at most 2.

Lemma 3.2. Let Γ be a torsion free one-ended word hyperbolic group and ρ : Γ ∗ Z → GL(d,R) be a

representation which admits a ρ-equivariant continuous map ξ : ∂∞(Γ ∗Z) → P(Rd). Suppose that δ ∈ Γ2

is a non-trivial element such that ρ(δ) is biproximal and ξ(δ+) = x+
ρ(δ) and ξ(δ−) = x−

ρ(δ). Then ρ(δ) is

positively proximal.
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Proof. Let s be a generator of the free cyclic factor, t = sδs−1 ∈ Γ and notice that ρ(t) is proximal with
ρ(s)x+

ρ(δ) = x+
ρ(t) = ξ(t+) and t± /∈ ∂∞Γ. If x ∈ ∂∞Γ, limn ρ(t

n)ξ(x) = limn ξ(t
nx) = ξ(t+). Since ρ(t)

preserves V −
ρ(t) and limn t

nx = t+, ξ(x) cannot lie in P(V −
ρ(t)). It follows that ξ(∂∞Γ) lies in the affine chart

P(Rd) − P(V −
ρ(t)). Let V = 〈ξ(∂∞Γ)〉 and we consider the representation ρ′ : Γ → GL(V ) where ρ′(γ) =

ρ|V (γ), γ ∈ Γ. The map ξ is not constant, hence ρ′ is discrete and faithful. The map ξ : ∂∞Γ → P(V ) is
ρ′-equivariant, ρ′(δ) is proximal with attracting fixed point ξ(δ+) and ℓ1(ρ(δ)) = ℓ1(ρ

′(δ)).
Then we notice that ξ(∂∞Γ) also lies in the affine chart A = P(V ) − P(V ∩ V −

ρ(t)) of P(V ). Since Γ

is one-ended, ∂∞Γ and ξ(∂∞Γ) are connected. The convex hull of ξ(∂∞Γ) in A, say C, is bounded and
convex in A and has non-empty interior since ξ(∂∞Γ) spans V . Then ρ′(Γ) preserves ξ(∂∞Γ) and by [11,
Proposition 2.8] it also preserves C. It follows that ρ′(Γ) preserves the non-empty properly convex set
Ω = Int(C) ⊂ P(V ). Fact 2.5 shows that there exists a representation ρ̃′ : Γ → GL(V ) which preserves
a properly convex cone C ⊂ V and ρ′(γ) = ρ̃′(γ) for every γ ∈ Γ2. By Lemma 2.3, ρ(δ) is positively
proximal in P(V ) and hence in P(Rd). �

A torsion free word hyperbolic group Γ is called rigid if it does not admit a non-trivial splitting over a
cyclic subgroup. For example, the fundamental group of a closed negatively curved Riemannian manifold
of dimension at least 3 is rigid. By a theorem of Bowditch [5] the Gromov boundary ∂∞Γ of a rigid
hyperbolic group Γ does not contain local cut points.

Lemma 3.3. Let Γ be a torsion free rigid one-ended word hyperbolic group. Let ρ : Γ → GL(d,R) be a

representation which admits a continuous ρ-equivariant map ξ : ∂∞Γ → P(Rd). Suppose that δ ∈ Γ2 is

a non-trivial element such that ρ(δ) is biproximal and ξ(δ+) = x+
ρ(δ) and ξ(δ−) = x−

ρ(δ). Then ρ(δ) is

positively proximal.

Proof. Since ∂∞Γ does not have any local cut points, the set ∂∞Γ−{δ+, δ−} is connected. For x 6= δ+, δ−

we have that limn δ
±nx = δ± and, as in Lemma 3.2, the conected set ξ

(
∂∞Γ − {δ+, δ−}

)
is contained

in P(Rd)− P(V −
ρ(δ)) ∪ P(V −

ρ(δ−1)). Note that the two (d − 1)-planes V −
ρ(δ) and V −

ρ(δ−1) are distinct, hence

by the connectedness of ∂∞Γ − {δ+, δ−} we can find a hyperplane V0 such that ξ(∂∞Γ) is contained in
P(Rd)− P(V0). Then we consider the restriction ρ′ : Γ → GL(V ), V = 〈ξ(∂∞Γ)〉, whose image preserves
the compact connected subset ξ(∂∞Γ) of the affine chart P(V )−P(V ∩V0) of P(V ). The element ρ′(γ) is
proximal in P(V ) and ℓ1(ρ(γ)) = ℓ1(ρ

′(γ)). We similarly conclude that ρ′(Γ) preserves a properly convex
domain Ω of P(V ). Again, Fact 2.5 guarantees that ρ′(Γ2) preserves a properly convex cone of V and
ℓ1(ρ

′(δ)) > 0. �

Now we combine the previous results to prove Theorem 1.1.

Theorem 1.1: Let Γ be a word hyperbolic group and ρ : Γ → GL(4q + 2,R) a representation. Suppose

that there exists a continuous, ρ-equivariant dynamics preserving map ξ : ∂∞Γ → Gr2q+1(R
4q+2). Then

Γ is virtually free or virtually a surface group.

Proof. We first assume that Γ is a torsion free hyperbolic group. By Proposition 2.6, ρ is faithful and
we may assume that ρ(Γ) is a subgroup of SL(4q + 2,R). If not, we replace ρ with the representation
ρ̂ : Γ → SL

±(n,R), ρ̂(γ) = |det(ρ(γ))|−1/(4q+2)ρ(γ) and Γ with a finite-index subgroup Γ0 such that ρ̂(Γ0)
is a subgroup of SL(4q + 2,R). Notice that ρ̂ has to be faithful since ξ is ρ̂-equivariant and dynamics
preserving for ρ̂.

Let Vq = ∧2q+1R4q+2, and notice by assumption that ξq = τ+2q+1◦ξ is ∧
2k+1ρ-equivariant and dynamics

preserving. We consider the following two cases:
Case 1. Suppose that Γ has infinitely many ends. Then we show that Γ is free. If not, by Stallings’

theorem [21], there exists a splitting Γ = Γ1 ∗ ... ∗ Γk ∗ Fs, where s > 0 and for 1 6 i 6 k, Γi is an
one-ended word hyperbolic group. In particular, there exists a quasiconvex subgroup of Γ of the form
∆∗Z, with ∆ one-ended. Lemma 3.1, shows that there exists a quasiconvex free subgroup H0 of ∆2 such
that ∧2q+1ρ(H0) is P1-Anosov in SL(Vq) and its limit map is the restriction ξq : ∂∞H0 → P(Vq).

Since ∧2q+1ρ(δ) is proximal for every δ ∈ H0 ⊂ ∆2, by Lemma 3.2, ℓ1(∧
2q+1(ρ(δ))) > 0. The

representation ρ : H0 → SL(4q + 2,R) is P2q+1-Anosov and ∧2q+1ρ(γ) is positively proximal for every
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non-trivial γ ∈ H0. By Theorem 2.1 (iii), we can find a path connected open neighbourhood U of
ρ0 := ρ|H0

in Hom(H0, SL(4q+2,R)) consisting of entirely of P2q+1-Anosov representations. Proposition
2.7 guarantees that there exists ρ1 ∈ U such that ρ1(Fk) is Zariski dense in SL(4q+ 2,R). Let {ρt}06t61

be a continuous path between ρ0 and ρ1 contained entirely in U . By Fact 2.2, for every γ ∈ H0, the map
t 7→ ℓ1(∧

2q+1ρt(γ)) is continuous with real values and nowhere vanishing. Hence ℓ1(∧
2q+1ρ1(γ)) > 0 for

every γ ∈ H0. Therefore, since ∧
2k+1 is an irreducible representation, the group ∧2q+1ρ1(H0) is a strongly

irreducible subgroup of SL(Vq) which is positively proximal. By Theorem 2.4, the group ∧2q+1ρ1(H0)
preserves a properly convex cone and hence a properly convex domain of P(Vq). On the other hand,
the group ∧2q+1

SL(4q + 2,R) (and hence ∧2q+1ρ1(H0)) preserves the symplectic non-degenerate form
ωq : Vq ×Vq → R given by the formula ωq(a, b) = a∧ b ∈ 〈e1 ∧ ...∧ e4q+2〉. However, by [2, Corollary 3.5],
a strongly irreducible subgroup of SL(d,R) which preserves a symplectic form cannot preserve a properly
convex domain of P(Rd). We have reached a contradiction, so Γ cannot contain any non-trivial one-ended
factors in its free product decomposition. Therefore, Γ is free.

Case 2. Suppose that Γ is one-ended and not virtually a surface group. Wilton’s result [23, Corollary
B] ensures that Γ contains a quasiconvex subgroup ∆ which is either isomorphic to a surface group or
rigid. If ∆ has infinite index in Γ, then there exists a quasiconvex subgroup of Γ isomorphic to ∆ ∗ Z.
However, by the previous case we obtain a contradiction. Therefore, we may assume that ∆ is rigid and
has finite index in Γ. By Lemma 3.1, there exists H1 a quasiconvex free subgroup of ∆2 such that the
restriction ∧2q+1ρ|H1

is P1-Anosov. By Lemma 3.3, for every h ∈ H1, ∧
2q+1ρ(h) is positively proximal

in P(Vq). By continuing as previously, we obtain a P2q+1-Anosov, Zariski dense deformation ρ1 of ρ|H1

such that ∧2q+1ρ1(Hk) is positively proximal. Again, by Theorem 2.4, ∧2q+1ρ1(Hk) preserves a properly
convex domain and the symplectic form ωq, a contradiction.

If ρ is not faithful, Proposition 2.6 shows that ker(ρ) is finite. The group Γ′ = Γ/kerρ is word
hyperbolic, ∂∞Γ′ = ∂∞Γ, so ξ is a ρ′-equivariant dynamics preserving map, where ρ′ : Γ′ → GL(4q+2,R)
is the faithful representation induced by ρ. By Selberg’s lemma, there exists a torsion free finite-index
subgroup Γ1 of Γ′. The previous arguments imply that Γ1 is either a surface group or a free group.
Therefore, Γ is either a finite extension of a virtually free group or a virtually surface group. In the
second case, its boundary is the circle and by [9], Γ is virtually a surface group. In the first case, by [8], Γ
has infinitely many ends and splits as the fundamental group of a finite graph of groups with finite edge
groups and vertex groups of at most one end. The vertex groups of this splitting are also finite extensions
of a virtually free group hence finite. It follows that Γ is virtually free. �

By following the argument of case 1 in of the proof of Theorem 1.1 we obtain the following conclusion:

Theorem 3.4. Let F2 be the free group on two generators and ρ : F2 → GL(4q + 2,R) a represen-

tation. Suppose that ρ is P2q+1-Anosov. Then ∧2q+1ρ(F2) is not a positively proximal subgroup of

GL(∧2q+1R4q+2).

For the proof of Corollary 1.2 we need the following proposition for the existence of lifts of P2k+1-Anosov
representations into PGL(d,R). The proof is similar to Lemma 3.2 and 3.3. In the case ρ is irreducible
and k = 0, Zimmer has proved the existence of lifts in [24, Theorem 3.1].

Proposition 3.5. Let Γ be a torsion free word hyperbolic group and ρ : Γ → PGL(d,R) is a P2k+1-Anosov

representation, where 0 6 k 6 d−1
4 .

(i) Suppose that ∆ is an infinite index, one-ended quasiconvex subgroup of Γ and ρ0 is the restriction of

ρ on ∆. There exists a lift ρ̃0 : ∆ → GL(d,R) such that ∧2k+1ρ̃0(∆) is positively proximal.

(ii) If Γ is a rigid word hyperbolic group then there exists a lift ρ̃ : Γ → GL(d,R) of ρ such that ∧2k+1ρ(Γ)
is positively proximal.

Proof. We begin with the following observation: suppose that ϕ : Γ → PGL(V1 ⊕ V2) is a representation
such that ϕ(γ) preserves V1 for every γ ∈ Γ. If ρ(γ) = [gγ ] then the map ϕ0(γ) = [gγ |V1

] is a well
defined representation ϕ0 : Γ → PGL(V1). If ϕ0 admits a lift ϕ̃0, then there exists a lift ϕ̃ of ϕ such that
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ϕ̃(γ)|V1
= ϕ̃0(γ) for every γ ∈ Γ. The lift ϕ̃ is defined as follows: for γ ∈ Γ, ϕ̃(γ) is the unique element

hγ ∈ GL(V1 ⊕ V2) such that the restriction of hγ on V1 is ϕ̃0(γ) and ϕ(γ) = [hγ ].
Notice that we may asssume that k = 0, because the exterior power ∧2k+1 : GL(d,R) → GL(∧2k+1Rd)

is faithful. For part (i), we may consider δ ∈ Γ with δ± /∈ ∂∞∆ and ξ(∂∞∆) is a connected compact subset
of the affine chart P(Rd)−P(V −

ρ(δ)). In particular, ξ(∂∞∆) lies in the affine chart A = P(V )−P(V ∩V −
ρ(δ))

of P(V ), where V = 〈ξ(∂∞∆)〉. Since ρ0(∆) preserves V there exists a well defined representation
ρ1 : ∆ → PGL(V ). The image ρ1(∆) preserves the connected compact set ξ(∂∞∆) and hence the
interior of the convex hull of ξ(∂∞∆) in A. There exists a lift ρ̃1 of ρ1 into GL(V ) such that ρ̃1(∆)
preserves a properly convex cone C of V . The representation ρ̃1 is P1-Anosov, faithful and by Lemma
2.3, ρ̃1(γ) is positively proximal for every γ ∈ ∆ non-trivial. By our initial observation we obtain a lift
ρ̃0 : ∆ → GL(d,R) of ρ0 with ρ̃0(γ)|V = ρ̃1(γ). The representation ρ̃1 is P1-Anosov with Anosov limit map
ξ. For every non-trivial γ ∈ ∆, the attracting fixed point of ρ̃0(γ) is in V and ℓ1(ρ̃0(γ)) = ℓ1(ρ̃1(γ)) > 0.

The proof of (ii) follows by observing, as in Lemma 3.3, that the image of ∂∞Γ under the Anosov limit
map ξ lies in an affine chart of P(Rd). Then we continue as previously to obtain the lift ρ̃. �

Proof of Corollary 1.2. We assume that Γ is torsion free. If Γ contains a quasiconvex infinite index
one-ended subgroup Γ0, there exists a lift ρ̃0 of ρ|Γ0

such that the group ∧2k+1ρ̃0(Γ0) is positively
proximal, contradicting Theorem 3.4. Also Γ cannot be rigid again by part (ii) of the previous proposition.
Therefore, Γ is either free or has one end and by [23, Corollary B] there exists a quasiconvex surface
subgroup which has to be of finite index in Γ. In every case, since ker(ρ) is finite, the boundary ∂∞Γ is
either a circle or totally disconnected so Γ is virtually free or virtually a surface group. �

Proof of Corollary 1.3. Suppose that there exists a continuous ρ-equivariant map ξ and ρ(γ) ∈ ρ(Γ) a
P2q+1-proximal element with ξ(γ+) = x+

ρ(γ) and ξ(γ−) = x−
ρ(γ). The map ξ+ := τ+2q+1 ◦ ξ is ∧2q+1ρ-

equivariant and by Lemma 3.1 there exist a free quasiconvex subgroup H of Γ2 such that ∧2q+1ρ|H is
P1-Anosov. Lemma 3.3 shows that ∧2q+1ρ(H) is positively proximal, a contradiction by Theorem 3.4.

Let Vq = ∧2q+1R4q+2 and ξ− = τ−2q+1 ◦ ξ. We show that the map ξ+ cannot be spanning. Suppose

that ξ+ is spanning and x1, ..., xr ∈ ∂∞Γ with Vq = ⊕r
i=1ξ

+(xi), r = dim(Vq). Since Γ acts minimally on
∂∞Γ, every open subset U of ∂∞Γ, ξ+(U) spans Vq and the union ∪r

i=1ξ
−(xi) cannot contain ξ+(∂∞Γ).

There exists y ∈ ∂∞Γ and 1 6 j 6 r with Vq = ξ+(xj)⊕ ξ−(y) = ξ+(y)⊕ ξ−(xj). By the density of pairs
{(δ+, δ−) : δ ∈ Γ} in the set of 2-tuples of ∂∞Γ, we can find γ ∈ Γ such that Vq = ξ(γ+) ⊕ ξ−(γ−) =
ξ+(γ−)⊕ ξ−(γ+).

Then we claim that g = ∧2q+1ρ(γ) is a biproximal matrix. Up to conjugating g we may assume that

ξ+(γ+) = [e1], ξ
−(γ−) = [e⊥1 ] and write g =

[
a(g) 0
0 A

]
for some matrix A ∈ GL(e⊥1 ). Suppose that

λ1(A) > |a(g)|. Let p > 1 be the largest possible dimension of a complex Jordan block corresponding
to an eigenvalue of maximum modulus of A. Then there exists a subsequence (kn)n∈N, A∞ a non-zero
matrix and b ∈ R with

lim
n→∞

1

kp−1
n λ1(A)kn

gkn =

[
b 0
0 A∞

]

Since ∂∞Γ is perfect and ξ+(∂∞Γ) spans Vq, we may choose x ∈ ∂∞Γ − {γ−} such that the projection
of ξ+(x) in e⊥1 is not in ker(A∞). Thus, limn g

knξ+(x) = limn ξ
+(γknx) = ξ+(γ+) cannot be the line

[e1], a contradiction. It follows that |a(g)| > λ1(A) and ∧2q+1ρ(γ) is proximal with attracting fixed point
ξ+(γ+). Since Vq = ξ+(γ−) ⊕ ξ−(γ+), the same argument shows that ∧2q+1ρ(γ−1) is proximal with
attracting fixed point ξ+(γ−). The map ξ+ (and hence ξ) preserves the dynamics of {γ−, γ+}. This
contradicts the fact that ξ is nowhere dynamics preserving. Therefore, τ+2q+1(ξ(∂∞Γ)) lies in some proper
vector subspace of Vq. �

4. Examples

In this section we provide an example showing that the analogue of Theorem 1.1 does not hold in
dimensions which are multiples of 4. Also, we give an example of a surface group representation ρ into



8 KONSTANTINOS TSOUVALAS

SL(4q+2,R) which is not P2q+1-Anosov but admits a ρ-equivariant continuous dynamics preserving map
ξ into Gr2q+1(R

4q+2). Let S be a closed orientable hyperbolic surface and τ2 : SL(2,C) → SL(4,R) be the

standard inclusion defined as τ2(g) =

[
Re(g) −Im(g)
Im(g) Re(g)

]
for g ∈ SL(2,C).

Example 4.1. Let F2 be the free group on two generators. The group Γ = π1(S) ∗F2 admits an Anosov
representation ρ into SL(2,C) and hence τ2 ◦ ρ is a P2-Anosov representation into SL(4,R). For k ∈ N,
the representation ρk = ⊕k

i=1(τ2 ◦ ρ) of Γ into SL(4k,R) is P2k-Anosov. In fact, by Theorem 2.1 (iii) and
Proposition 2.7 there exists a deformation ρ′k of ρk which is Zariski dense and P2k-Anosov.

Example 4.2. Let M be the mapping torus of the closed hyperbolic surface S with respect to a fixed
pseudo-Anosov homeomorphism φ : S → S. The group π1(M) contains a normal infinite index subgroup
Γ isomorphic with π1(S). By a theorem of Thurston [22] (see also Otal [20]), the group π1(M) admits a
convex cocompact representation ι into PSL(2,C). In fact, by [7], ι lifts to a quasi-isometric embedding ι̃ :
π1(M) → SL(2,C). By composing τ2 with ι̃, we obtain a P2-Anosov representation ρ1 : π1(M) → SL(4,R).
The Cannon-Thurston map (see [12]), θ : ∂∞π1(S) → ∂∞π1(M) composed with the Anosov limit map
ξ2ρ1

: ∂∞π1(M) → Gr2(R
4) provides a ρ1|Γ-equivariant dynamics preserving map ξ0 : ∂∞Γ → Gr2(R

4).
Note that the representation ρ1|Γ is not a quasi-isometric embedding, in particular not P2-Anosov, since
Γ is not a quasiconvex subgroup of π1(M). Let ρF : Γ → SL(2,R) be a Fuchsian representation with limit
map ξ1ρF

. The representation ρ = (⊕q
i=1ρ1|Γ) ⊕ ρF into SL(4q + 2,R) is not P2q+1-Anosov, however the

ρ-equivariant map ξ = (⊕r
i=1ξ0)⊕ ξ1ρF

is dynamics preserving.
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