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Abstract

Today vehicles are becoming a rich source of data as they are equipped with localization or tracking
and with wireless communications technologies. With the increasing interest in automated- or self-
driving technologies, vehicles are also being equipped with range measuring sensors (e.g., LIDAR, stereo
cameras, and ultrasonic) to detect other vehicles and objects in the surrounding environment. It is
possible to envision that such vehicles could share their data with the transportation infrastructure
elements (e.g., a traffic signal controller) to enable different mobility and safety applications. Data from
these connected vehicles could then be used to estimate the system state in real-time. This paper develops
queue length estimators from connected vehicles equipped with range measurement sensors. Simple plug-
and-play models are developed for queue length estimations without needing ground truth queue lengths
by extending the previous formulations. The proposed method is simple to implement and can be adopted
to cyclic queues at traffic signals with known phase lengths. The derived models are evaluated with data
from microscopic traffic simulations. From numerical experiments, the QLE model with range sensors
improves the errors as much as 25% in variance-to-mean ratio and 5% in coefficient of variation at low
≤ 20% market penetration rates.

Keywords: Applied probability, queue length estimation, connected and autonomous vehicles, range
measurement sensor, sensor fusion.

1. Introduction

Tracking individual vehicles traversing the transportation network in real time has gained significant
momentum lately due to recent developments in Connected Vehicles (CVs) technologies. Real-time
data from CV enable observing complex system dynamics and support new applications to improve
system efficiency and safety. However, not all vehicles may be equipped with CV technologies nor all
drivers are willing to share their locations. Consequently, predicting the overall system behavior based
on data from a fraction of vehicles has been an area of active research for more than three decades now.
Queue Length (QL) is a fundamental performance criteria for any system with multiple users demanding
service from a server as for real-time control of signalized intersections or port terminal gates. It is
critical for applications such as emergency management and reliability of the network. Models based on
performance measures can be input for traffic control, facility design, and construction planning purposes.
Specifically, the real-time (adaptive) control demands high accuracy from such models. Today, vehicles
are becoming a rich data and computational resource as they are equipped with localization or tracking,
wireless communication technologies, and microprocessors. Furthermore, with the increasing interest on
automated- or self- driving technologies, vehicles are also being equipped with range measuring sensors
(e.g., LIDAR, stereo cameras, and ultrasonic) to detect other vehicles and objects in the surrounding
environment. It is possible to envision that such vehicles could share their data with the transportation
infrastructure elements (e.g., a signal controller) to enable various traffic mobility and safety applications.
Data from these CVs could then be used to estimate the system state in real-time. Consequently, this
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paper is focused on estimation of QL from such CVs that may represent partial vehicles in the traffic or
other systems (Nam et al. (2009)). Connected and autonomous vehicles (CAVs) or autonomous vehicles
can also be treated similarly.

1.1. Background

Queue length estimation (QLE) from connected vehicle at traffic signals is a well-investigated problem.
In basic form, there is no feedback from environment, thus, true queue length values are not known. This
makes critical difference with the prediction formulations with series of true queue lengths are available
where researchers used filtering, fit models, and deep learning methods (Tiaprasert et al. (2015); Yin et al.
(2018); Gao et al. (2020); Comert et al. (2019)).

In the literature, researchers obtained CV based queues via reconstructing trajectories (Argote et al.
(2011); Cetin (2012); Cheng et al. (2012); Xu et al. (2017); Rompis et al. (2018); Zhao et al. (2019b)).
Stochastic formulations are desirable as increase in number of related paper show. Researchers developed
important models using similar approach. Within the scope and space, for more information on general
queue length estimation, readers are referred to recent survey studies on QLE methods from CAVs
(Zhao et al. (2019b); Guo et al. (2019)) and queue estimation bibliography by (Asanjarani et al. (2017)).
Hence here, we focus on related previous works on stochastic QLEs from CVs are discussed.

Stochastic models of QLEs from CVs mainly concerns with stationary (behavior after sufficiently
long time interval) or non-stationary (short-time intervals, by cycle, and red phase). Such classification is
impacted by treatment of arrival rate, distribution, and market penetration rate (MPR) (probe percent-
age). For instance, cycle-to-cycle estimation of QLs including green arrivals was modeled in (Tan et al.
(2019)) and real-time applications with high frequency connected vehicle data was presented by(Mei et al.
(2019)).

In queueing, detection the stopped vehicles accurately is crucial as it will be impacting the back of
queue. This problem was addressed in (Liu et al. (2019)). Reported error levels in similar QLE studies
may exceed 10% of true queue lengths (Argote et al. (2011)) which would require 80% CV penetration
rate. In order to improve the accuracy, data fusion from different traffic surveillance technologies are also
considered such as loops (Li et al. (2013); Comert (2013a)), license plate recognition (Tan et al. (2020)),
and inclusion of radio frequency identification Wu and Yang (2013) which acts as filtered QLE would give
higher errors. Queue lengths for constant arrival rate at the end of red phase act like autoregressive (2)
time series with large coefficients with opposite signs or moving average (1) with positive high coefficient.
Therefore, filtering for a true QLs would over-smooth the series. With back of queue estimation and
convex optimization, similar error levels at p = 20% was observed (Yang and Menendez (2018)). Range
sensor applications in traffic in some capabilities are discussed in (Mandal et al. (2020)). Authors, placed
ultrasonic sensors capable Arduinos on lane markings and reported distance that vehicles could be de-
tected for queue lengths. Although we seek higher penetration levels, efficient estimators performing at
low MPRs would be desirable as we will need to address efficient data management. Question of how much
data we need is important not to overload systems or security reasons. Partially supporting these, in an
interesting report, researchers found in a simulation environment, over 200 vehicles at 100% penetration
level signal control from CVs becomes difficult (University of Arizona (2016)) due to computational load.

In this study, simple plug-and-play expressions are developed for QLE from CVs in the case of
connected vehicles are also equipped with a range sensor by extending the authors’ previous formulations
in (Comert and Cetin (2009, 2011); Comert (2013b, 2016)). Derived formulate in this paper incorporate
the measured range from each CV as an additional source of real-time data supplementing the typical
CV information (e.g., location and time). In a standing queue, the range will inform whether there is a
vehicle behind a CV. Steady-state behavior of estimated QLs and their errors are formulated. These are
then compared against and validated with results from point queue as well as microscopic simulations.

1.2. Contributions of this study

Our modular expectation-based approach enables application of filtering algorithms to deal with
measurement or low MPR related errors. Note also that the estimation problem is interesting where

2



only assume partially observed system. Thus, for any similar problem such as autonomous vehicles, our
approach can be adopted. One of limitations for connected vehicles with low MPRs, as we discussed in
(Comert (2016)), is distinguishing whether the last connected vehicle is the last vehicle in the queue.
This information would be available from a range sensor (ultrasonic , LIDAR) Cetin et al. (2017) showed
the accuracy levels in LIDAR-based estimations. Moreover, presented formulae do not depend on any
primary parameter such as arrival rate or MPR. So, method can be used for time dependent arrival rates
or p. Estimation of these primary parameters are becoming interest also (Comert (2016); Zhao et al.
(2019a); Van Phu and Farhi (2018)).

Impact of additional sensors in terms of estimation errors for different arrival rates λ and MPR
(probe percentage) p are presented. This research gives insights about the benefit of additional data
from range measuring sensors that can be common with the upcoming autonomous vehicles. The results
can be incorporated for more accurate queue lengths and delay calculations in new control heuristics
(Comert et al. (2009)).

2. Problem Statement and Notation

Fig. 1 shows a view of an approach lane right before turning green, vehicles with darker colors represent
CVs and shaded ones depict the detected vehicles via range sensors. Location of the connected vehicle
information in queue L are inferred as number of vehicles. Number of CVs (M) is 3, location of the last
CV (L) is 9, and queue time tag of the last probe T is 35 seconds (s). Moreover, last CV is able to detect
the vehicle behind it, so, L′=(9 + 1) and queuing time of the following vehicle detected by sensor on the
last CV is T ′ = 38 s.

Basic problem is defined as deriving estimators for the total queue length N given the information
from CVs and other detected vehicles by CVs’ range measuring sensors such as LIDARs (i.e., CV locations
and time tags). Range measuring sensors provide the critical information of whether the last CV actually
is the last vehicle in the queue (i.e., there is at least one more vehicle joined the queue after it). The
queue length (N) is 11 which is estimated in real-time at the end of red phase R using the location and
the time of CVs (L′ = 10, T ′ = 38, M = 3, and R). Estimators are developed for known R, but they can
be used for actuated or adaptive signal phase lengths at the time instance of interest.

Fig. 1: Approach lane right before the green phase
2.1. Limitations of the study

In this study, we aim to develop analytical input-output models. For simplifications we assume
following.

(i) Approach lane has no capacity limit and there is no loss time due to acceleration. These assumptions
are for adopted overflow queue models (Haight (1959); Ohno (1978); Medhi (1991); Heidemann
(1994)). Usefulness of the models in the proposed estimators are shown via comparing with errors
from microscopic traffic simulations (i.e., VISSIM) which provide more realistic arrivals and queuing
at the signal.

(ii) Poisson arrivals to the approach lane are assumed which can describe isolated intersections, low
demand scenarios of more complex intersections, and enable simple closed-form derivations.
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(iii) Lane level accuracy for CV locations is assumed. Position and time tags are accurately received.
Connected vehicle architectures especially at intersections will satisfy this by map information and
timing passed by roadside units. When location is provided as latitude and longitude, using av-
erage vehicle length or passenger car equivalencies, spot in number of vehicles can be estimated.
Basic safety messages also include vehicle type, using vehicle lengths by type locations can also be
estimated.

(iv) Uniform vehicle type is assumed. Mixed traffic could be incorporated to the models by arrival
rates in Poisson arrivals (Walraevens et al. (2017)). Impact of different vehicle types would impact
intersection capacity and location information.

(v) Connected vehicles are able to sense accurately if there is a vehicle behind with the help of range
sensors.

Estimators presented are unbiased under these assumptions. They would hold for estimating real-time
queues at isolated signals, signals with low to moderate volume-to-capacity ratios, Poisson, or wherever
approximately random arrivals can be assumed (Newell (1982); Fiems and De Turck (2019)). Such QLEs
are going to be unbiased. In fact, any approach queue length can be estimated given formulae. Amount
of deviations from random arrivals will be reflected into the estimation errors as bias.

3. Analysis for the Case without Overflow Queue

First, it is assumed that vehicles that have arrived in one given cycle clear the intersection in that cycle
(the overflow queue (Q) is zero). At each cycle, the total number of vehicles in the queue N is estimated
given L, T , and primary parameters arrival rate λ, p, and R. Throughout the examples, signal related pa-
rameters are chosen to be effective red duration of 45 s, green time of 43.2 s, and discharge rate 1.8 seconds
per vehicle (spv). Other selected parameter values are λ = {0.111, 0.133, 0.163, 0.190, 0.218, 0.239, 0.267}
vps which correspond to volume-to-capacity ratios of ρ = {0.41, 0.49, 0.60, 0.70, 0.80, 0.88, 0.98} and
0.001 ≤ p ≤ 1.00 (Comert (2016)).

As shown in Eq. 1, estimator of the queue length N can be written as summation of expected values
of the number of vehicles known until last CV N1 and inferred N2 after this CV for given conditions: (i)
whether the last CV is also the last vehicle I(L = lv) = 1 and (ii) the last CV is not the last vehicle
I(L 6= lv) = 1. Here, I() is the indicator function.

E(N |L = l, T = t) =

{

[E(N1|L = l, T = t) + E(N2|L = l, T = t)]I(L = lv)+

[E(N1|L = l, T ′ = t′) + E(N2|L = l, T ′ = t′)]I(L 6= lv)
(1)

In Eq. (1), for condition (i) I(L = lv), N1 is known and N1 = l and E(N2|L = l, T = t) is number of
arrivals after the last CV during (R− T )=δ which is zero leading to estimator with no error N = l. For
condition (ii) (L 6= lv), after the last CV, only non-CVs would arrive, thus N1 = l + 1 and δ = (R− T ′).
Arrival rate during δ is (1−p)λ. Denoting (1−p)λ by θ, we can simply writeN2|L = l, T = t′∼Poisson(θδ).
Simplified estimator is given in Eq. (2).

For the estimation error when first condition, queue length in Eq. (2) is known (N = l), thus, the
error is zero. For the second condition, first term is known (N1 = l+1) and there is no error. The second
term is ∼Poisson(θδ) and the variance is θδ. Thus, the conditional variance of Eq. (1) for L ≥ 0, T ≥ 0
can simply be written as Eq. 3. Practically, given the time information and if there is a vehicle behind
or not, we can calculate the estimation errors under the assumptions listed in 2.

E(N |L = l, T = t) =

{

l, L = lv

l + 1 + θδ, δ = (R − t′), L 6= lv
(2)

V (N |L = l, T = t) = θ(R− t′)I(L 6= lv), L ≥ 0, T ≥ 0 (3)

Formula for the errors can be expressed as deviations from D = N − E(N |L = l, T = t). Thus, the
variance of D for L ≥ 0 can be written as V (D) = E[V (N |L = l, T = t)] and given in Eq. (4). Suppose
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that E(T ) and E(T ′) are known (without and with range sensor, respectively), errors can be evaluated
and simplified to Eq. 4.

V (D) = E[θδ] = θ[R− E(T ′)]P (L 6= lv) =
p(1− e−pλR(1+p))

(1 + p)
, t < R (4)

where, P (L 6= lv) = E(1 − e−λ(R−t)), t < R and P (L = lv) = 1 − P (L 6= lv) can be interpreted as
L = lv probability of last CV is the last vehicles meaning no arrival during δ = (R − t) (i.e., e−λ(R−t)).

Using distribution of T (Comert (2013b)) f(t) = λpe−pλ(R−t)

(1−e−λpR)
, t < R is input for scenario probabilities

P (L 6= lv) as well as for the expected value of T ′ respectively. They can then be incorporated to compute
the variance given in Eq. (4).

3.1. Derivation of the expectations

Revising the the probability distributions derived in Comert (2013b), queue length estimators and the
errors are derived. Corresponding E(L) and E(L′) revised for range sensor incorporation which are given
in Eq. (5). The impact of sensor information is simply in the denominator adding one non-CV (1− p).

E(L) = λR− [(1− e−λpR)/p], m > 0

E(L′) = λR− [(1 − e−λpR)/(p + (1− p))], m > 0 (5)

Similarly, in Eq. (6), E(T ) and E(T ′) are provided. Impact is simple again by adding the term (1−p)λ.
The revised variance of D (V (D)) can be calculated using Eq. (6) in Eq. (4) and shown in Eq. (7). Note
that the QLE error formula without sensors is V (D) = E[θδ] = θ[R− E(T )]=(1 − p)(1 − e−pλR)/p.

E(T ) = R− [(1− e−λpR)/λp], m > 0

E(T ′) = R− [(1 − e−λpR)/λp + (1− p)/λ], m > 0 (6)

One of the main contribution of Comert (2013b) was to be able to compute E(L) and E(T ) from one
another, thus, E(T ′) can be utilized to calculate E(L′) and shows the impact of range sensor in Fig. (2)
which are derived using Eqs. (6) and (5). This error (Eq. 7) can be calculated using estimators for p and
λ and signal timing information.

V (D) = E[θδ] = θ[R−E(T ′)]P (L 6= lv)

= (1− p)λ[R− (R − (1− e−pλR)/λp + (1− p)/λ)]P (L 6= lv)

= [1− p][(1− e−pλR)/p − (1− p)]P (L 6= lv) (7)

where, P (L 6= lv) = [1− p(1− e−(1+p)λR)/(1 + p)].
To verify the formulation above, the results are compared with simple point queue simulations with

Poisson arrivals coded in R. From Fig. 2-a, it can be seen that E(T ′) is following the simulated values
very closely. As p is approaching 100%, the E(T ′) is getting closer to the red duration (e.g., 45 seconds).
In addition, Fig. 2-b shows the values of V (D)s computed with the analytical models with and without
range measuring sensors. These are then compared against simulations with 100, 000 replications. As it
is evident analytical results follow simulation results very closely.

Figs. 3 a-b are given to illustrate how much improvement is achieved when CVs are also equipped
with range measuring sensor, i.e., these graphs show the additional reduction in QLE error when N is
estimated from CVs that also provide information about their following vehicles (as compared to CVs that
provide only their own positions). In Fig. 3 a, this improvement is shown via graphing percent differences
of V (D)/E(N)s (i.e., variance-to-mean ratio or dispersion index) with respect to probe percentages p.
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Fig. 2: Impact of range sensor on {E(T ), E(L)} shown as {E(T ′), E(L′)} for λ = 0.239 vps

Figure depicts maximum gain (e.g., close to 20% at λ = 0.133 vps) at about p = 10% and increasing as
λ decreases. Figure suggests that about 20% probe vehicles are need to experience the maximum impact
(≈ 10%). Lower p values are still showing 8 to 10% improvements relative to mean QLs. And, the impact
is diminishing as p increases where P (L = lv) also get higher.

Figs. 4 a-b demonstrate the impact of range sensors in terms of % difference of
√

V (D)/E(N)s (i.e.,
coefficient of variations) and difference of

√

V (D)s changing as functions of market penetration rate p at
different λ values. The maximum improvement (e.g., close to 7% for λ = 0.133 vps) at about p = 30%
and increasing as λ decreases. Similarly, estimation error differences are higher for lower λ values. They
get very close to each other after about 30% p level. Difference of

√

V (D) values are given in Fig. 4 b that
are QLE error differences in terms of number of vehicles. Again, maximum impact 0.35 vehicle per cycle
is observed at p ≈ 30%. This behavior would make such estimator more suitable for intersections with
low demand or rural intersections. Desirably, this would also satisfy the assumptions for the derivations.

4. Analysis for the Case with Overflow Queue

When the overflow queue from signal cycles is incorporated in the queue length estimation, we can
express queue length N as the sum of the overflow queue Q and the new red duration arrivals A. Then,
for any cycle, based on the last CV information (e.g., CV in Q or A) and whether it is the last vehicle
(L = lv) (i.e., detected by range sensor), we can model the estimator with the help of five possible
scenarios:

(i) The last CV is within new arrivals and it is the last vehicle, I(l ∈ A ∧ L = lv).

(ii) The last CV is within new arrivals and it is not the last vehicle, I(l ∈ A ∧ L 6= lv).

(iii) The last CV is in the overflow queue and it is the last vehicle, I(l ∈ Q ∧ L = lv).

(iv) The last probe may be within the overflow queue and it is not the last vehicle, I(l ∈ Q ∧ L 6= lv).

(v) There is no CV in the queue, I(l = 0).

Considering these scenarios, we can write N |L, T=I(L = lv)[Q|L, T + A|L, T ] + I(L 6= lv)[Q|L, T +
A|L, T ]. Then, the estimator for the total queue length given CV information can be written as Eq. (8).
When utilized, Fig. 5 was given for the average estimation errors V (D)s from with and without range
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sensors. From the figure, similar to Q = 0 case, improvements with sensors are higher in between
p=0.05 − 30%. The estimator with overflow queue also contains a revised queue joining time τ that
defined as the remaining last CV’s joining time from previous green duration. These observations are
desired and expected. Benefit at lower CV penetration levels would be more cost saving. As p gets higher,
it is expected that more CVs will be the last vehicle in the queue, thus, saving would be less from the
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range sensor fusion.

E(N |L = l, L = lv, T = t) =


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
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I(l ∈ Q ∧ L 6= lv)[l + 1 + θ(C − τ ′) + θR]+

I(l ∈ A ∧ L = lv)[l]+

I(l ∈ A ∧ L 6= lv)[l + 1 + θ(R− t′)]+

I(l = 0)[(1 − p)(E(Q) + θR)].

(8)
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Fig. 5: Estimation errors from VISSIM with and without Q results for different λ and p values

Average overflow queue in Eq. (8), E(Q)= ρ2

2(1−ρ) , is adopted from (Akçelik (1980)) where ρ = λC/X
with X = 24 vehicles per cycle in our examples, λ arrival rate per second, and C is cycle time 90 seconds.
Alternatively, from (Viti (2006); Medhi (1991)) different average overflow queue formula can be adopted

E(Q)=1.5(ρ−ρo)/(1−ρ), E(Q)= (2ρ−1)ρ4

2(1−ρ) , and E(Q)=[ ρ
2(1−ρ) ]e

−[
(1−ρ)

√
R/2−R(1−ρ)2

4
] where ρo=0.67+X/600.

The queue length on the approach lane is assumed to be zero for all examples in the study. Using the
scenario probabilities in Eq. (9), we can obtain Eq. (8).

E(N) =































P (l ∈ Q ∧ L 6= lv)[E(L) + θ(C − E(τ ′)) + θR]+

P (l ∈ Q ∧ L = lv)[E(L) + θR]+

P (l ∈ A ∧ L 6= lv)[E(L) + 1 + θ(R− τ)]+

P (l ∈ A ∧ L = lv)[E(L)]+

P (l = 0)[(1 − p)(E(Q) + θR)]

(9)

Average or steady-state estimation error, V (D)s, can be given as in Eq. (10) with V (Q) in Eq. (12)
from (Medhi (1991)).

V (D) =























P (l ∈ Q ∧ L 6= lv)[θ(C − E(T ′)) + θR]+

P (l ∈ Q ∧ L = lv)[θR]+

P (l ∈ A ∧ L 6= Lv)[(1 − p)(1− e−(1+p)λR)/(1 + p)]+

P (l = 0)[(1 − p)(V (Q) + θR)]

(10)
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Probability distributions of Q and τ are needed to calculate Eq. (10). These distributions can be
obtained numerically (Olszewski (1990); Viti and Van Zuylen (2010)) or by solving the probability gener-
ating function (Gray et al. (1992); Tarko and Rouphail (1994); Mung et al. (1996); Van Den Broek et al.
(2006)). But, no exact simple form for V (D) is available. Thus, in Section 5 we used approximations in
the estimators and the errors and evaluated them with microsimulation results. Figs. 6 a-b are derived
using the approximation formulae and microsimulations using Eq. (14). Details of the approximate es-
timator is explained next by utilizing steady-state V (Q)s by the formulae adopted from (Medhi (1991);
Fu and Hellinga (2000)). The approximate V (D)s are also given against VISSIM results in Figs. 5-10.
Relative errors are expressed in coefficient of variations (i.e., 100

√

V (D)/E(N) or %∆CV ). Figures also
given as %∆

√

V (D) from the two evaluations.
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Fig. 6: Comparing estimation errors obtained from VISSIM and approximations

5. Approximate Inference for E(N) and V (D)

Approximation formulas for the estimators can be derived simply quantifying the impact of overflow
queue in terms of E(Q) and V (Q) in Eq. (11) and Eq. (12), respectively. Note that these formulas
assumeM/G/1 queue and they are based on the Pollaczek-Khintchine formula (Haight (1959); Heidemann

9



(1994); Ohno (1978)) and adopted from (Medhi (1991)). Numerical values are determined and discussed
in the simulation set up (Comert (2016)), mean discharge rate from the intersection is determined as 1.8
seconds per vehicle with the capacity for effective green of 43.20 seconds ((43.20/1.80)=24 vehicles per
cycle). Demand levels of {600, 700, 800, 900, 985} vph that corresponds to volume-to-capacity ratios of
ρ={0.60, 0.70, 0.80, 0.88, 0.98} are used in the numerical examples. VISSIM is run 1000 cycles (25 hours)
for 3 random seeds for 11 p = {0.1%, 5%, 10%..., 90%} CV percentages at each demand level. Average
of 3 random seeds are reported for estimation errors. Default queue definition of VISSIM in terms of
minimum speed≤ 10 kilometers per hour is used. For detailed discussions, readers are referred to (Akçelik
(1980); Medhi (1991); Fu and Hellinga (2000); Viti (2006)).

Note that we are presenting the steady-state QLE errors incorporating overflow queue moments,
however, cycle-to-cycle formulas were also given E(Qi) and results are given as figures in Section 6.
E(Qi) and V (Qi) are adopted from (Akçelik (1980)) and (Viti (2006)), respectively.

E(Q) =
ρ2

2(1 − ρ)
(11)

V (Q) = [4(1 − ρ)ρ3 + 3ρ4]/(12(1 − ρ)2) (12)

Simply, queue length estimation approximations for expected value and errors are obtained by incor-
porating Eqs. (11) and (12) into appropriate cases in Eqs. (8) and (10). Resulting approximations with
range sensors are then expressed as Eqs. (13) and (14). Scenario probabilities can be simply approximated
by quadratic equations.

E(N) =











P (l ∈ Q)[E(Q) + θR]+

P (l ∈ A)[E(Q) + λR]+

I(l = 0)[(1 − p)(E(Q) + θR)]

(13)

V (D) =











P (l ∈ Q)[(1 − p)(1− e−pE(Q))/p + θR]+

P (l ∈ A)[(1 − p)(1− e−pλR)/p]+

P (l = 0)[(1 − p)(V (Q) + θR)]

(14)

where, approximate probabilities are given in Eq. 15.

P (L = l) =











e−pλR − e−p(λR+(9.87p2−4.62p+0.991)E(Q), L ∈ Q

1− e−pλR, L ∈ A

e−p(λR+(9.87p2−4.62p+0.991)E(Q)), L = 0

(15)

V (D) =











P (l ∈ Q)[(1 − p)p(1− e−(1+p)E(Q))/(1 + p)− pθR]+

P (l ∈ A)[(1 − p)(1− e−pλR)/p − (1− p)][1− p(1− e−(1+p)λR)/(1 + p)]+

P (l = 0)[(1 − p)(V (Q) + θR)]

(16)

Performance of the approximations are presented in Figs. 6 a-d. It can be seen that approximate
errors are following VISSIM values closely for both with and without range sensors at all ρ and p levels.
Moreover, Fig. 7 presents linear regression lines without intercepts for V (D)s from VISSIM simulations
and approximate models without and with range sensor. Regression lines are given for estimated and
simulation results. The lines show high correlations between analytical approximations and VISSIM
errors without and with range sensor at R2=0.986 and R2=0.985, respectively.

Fig. 8-a shows Eq. (14) values along with VISSIM QLs for various ρ levels. Developed approximation
for QL is a simple formula that needs ρ, λ, and signal timing. Fig. 8 b shows the evolution of errors with
respect to cycles for p ≤ 0.05 and ρ ≥ 0.80. These errors are calculated from microsimulations. We can
see that approximate errors are able to match simulation values even at high ρ ≥ 0.80 and low probe
proportion p ≤ 0.05 values. When we consider the error differences with respect the mean QLs, they are
very close.
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Fig. 8: Estimation errors with and without results for different λ vps and ps

6. Estimation with Range Sensor, Unknown λ, and p

Known arrival λ and market penetration rate p parameters in Eqs. (2) and (8) can be relaxed by
replacing them with estimators for these low level parameters. Detailed derivations of such estimators
were given in (Comert (2016)). Best performing combinations were adopted from this earlier study.
Without Q, the QL with unknown arrival rate and probe proportion can simply be estimated using
Eq. (17). For E(N |l, t,m,Q = 0, referred as Estimator 1 with combination of p̂1 = m/l and λ̂1 = l/R
simply Eq. (18) is derived. Estimator 2 uses p̂2 = mt

(mt+(l−m)R) and λ̂2 = l−m
t

+ m
R

which simplifies to

Eq. (19).
E(N |l, t,m,Q = 0) = l + (1− p̂)λ̂(R− t) (17)
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E(N |l, t,m,Q = 0) = l + (l −m)(1 − t/R) (18)

E(N |l, t,m,Q = 0) = l + (1−
mt

mt+ (l −m)R
)((l −m)/t+m/R)(R− t) (19)

Similarly, estimation of queues real-time and steady-state including Q are also presented. In this
case, QLs can be considered as sum of random variables given in Eq. (20). Indicator function I(l ∈ Q)
represents the case if the last CV is in the overflow queue, I(l ∈ A) indicates the last CV in new red
arrivals, and I(l = 0) indicates that there is no CV in the queue. At any given cycle, these terms represent
disjoint events, hence, only one term will be positive where others will be zeros.

E(Ni|L = l, T = t,Qi ≥ 0) =











I(l ∈ Q)[l + θ̂(C − t′) + θ̂R]+

I(l ∈ A)[l + θ̂δ]+

I(l = 0)[(1 − p̂)(E(Qi) + θ̂R)]

(20)

E(Ni|L = l, L = lv, T = t,Qi ≥ 0) =































I(l ∈ Q ∧ L = lv)[l + θ̂R]+

I(l ∈ Q ∧ L 6= lv)[l + 1 + θ̂(C − τ ′) + θ̂R]+

I(l ∈ A ∧ L = lv)[l]+

I(l ∈ A ∧ L 6= lv)[l + 1 + θ̂(R − t′)]+

I(l = 0)[(1 − p̂)(E(Qi) + θ̂R)].

(21)

Overflow queueE(Qi) =
Xi(ρ̂−1)

4

√

(ρ̂− 1)2 + 12(ρ̂−ρo)
Xi

is adopted from (Akçelik (1980)) where ρo=0.67+

X/600, X = 24 vehicles per cycle, ρ̂ = λ̂C/X, and i = 1, 2, 3... denotes the cycle index. For E(Qi) =
E(Q)(1−e−βi) from (Viti (2006)) can also be used which gives very close results (Comert (2013b)) where

E(Q) = 3(ρ̂−ρo)

2(1−ρ̂)
.
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Fig. 9: Estimation errors %∆V (D)/E(N) with and without range sensor results for different λ vps and ps

Average true and estimated QLs derived from VISSIM runs. Note that QLs depend on VISSIM queue
definition where default in queue=I(speed ≤ 10 kilometers per hour. From Fig. 10, at 600 vehicles per
hour, 7.34 vehicles per 45 seconds red duration is expected. Similarly others 8.57, 9.79, 10.78, and 12.01
vehicles per red. However, overflow queue becomes more important when ρ > 0.80 on average 0.68, 2.13,
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and 20.68 vehicles in length for ρ = 0.80, ρ = 0.88, and ρ = 0.98, respectively. Impact of overflow queue
also observed accuracy of the estimators start to decrease after ρ > 0.88 from ± 1.5 to ± 3.45 vehicles.
Overall, Estimator 2 can provide accuracy between 12% to 19% of the true average QLs.
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With overflow queue combination of parameter estimators were input where results are shown in
Fig. 8. As queue length estimators closely follow true queue lengths by p=30%, queue length estimators
with λ and p estimators also gets very close to the behavior of estimator with known parameters.

0 20 40 60 80

0
2

4
6

8

Market Penetration Rate, p %

%
∆

C
V

0.163 (vps)
0.190 (vps)
0.218 (vps)
0.239 (vps)
0.267 (vps)

(a) Analytical approximation

0 20 40 60 80

0
2

4
6

8

Market Penetration Rate, p %

%
∆

C
V

0.163 (vps)
0.190 (vps)
0.218 (vps)
0.239 (vps)
0.267 (vps)

(b) VISSIM

Fig. 11: Estimation errors %∆
√

V (D)/E(N) from VISSIM and approximations

E(Ni|l, t,m,Qi = 0) = l + (l −m/l)(l/R)(R − t) = l + (l −m)(1− t/R) (22)

E(Ni|l, t,m,Qi = 0) = l + (1−
mt

mt+ (l −m)R
)((l −m)/t+m/R)(R− t) = m+

R(l −m)

t
(23)

13



Figs. 9-11 summarize the QLE errors with the overflow queue. The errors are expressed in %∆V (D)
and %∆CV where, CV=

√

V (D)/E(N). Since estimators are able to capture overflow queue, errors
are declining to zero as connected vehicle MPR increases. Results from the literature cited above also
confirmed that p ≥ 30% queue length can be predicted within ±10% across all all ρlevels. Similarly at
p = 50%, queue length can be predicted within ±2% in %∆CV and %∆EN .

Fig. 12 confirms these results with good agreement with the true QLs. The figures depict about 20
cycles for illustration of performance of estimators. Based on the numerical results, for p ≥ 30% QLEs
with unknown estimators shows good agreement with true average QLs. Thus, any of the Estimator 1
or Estimator 2 can be used in accurate queue length estimation in signal control. Estimator with range
sensor can also be seen that more closely following the true queue values.
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Fig. 12: Estimation results for λ = 0.239 vps at p = {30%, 50%}

7. Conclusions

In this study, models for queue length estimation from connected vehicles with range sensors at signal-
ized intersections are derived. Fully analytical models without overflow queue and approximations with
the overflow queue are presented. Contribution of the proposed models are simple input-output models
without requiring true queue length observations, as a step towards generalizing estimation problem with
partially observed entities in a cycling queueing system, and leverage of simple variations to previously
derived models to express additional complexity.

When range sensor included, estimators are more accurate as high as 25% in estimation errors relative
to average queue lengths for high volume-to-capacity ratio ρ=0.98 at market penetration ratio of p = 5%.
About 10% improvement is observed when volume-to-capacity ratio is ≤ 0.88. Moreover, approximately
0.25 vehicle per cycle was improved. For example, at constant arrival rate in 10 hours, total estimation
error of 100 vehicles (i.e., energy consumption, emissions, and delay) would be improved.
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