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Variable Speed Limit and Ramp Metering Control
of Highway Networks Using Lax-Hopf Method:
A Mixed Integer Linear Programming Approach

Suyash C. Vishnoi and Christian G. Claudel, Member, IEEE

Abstract— This paper presents a novel optimization formula-
tion to solve the problem of variable speed limit control on road
networks modeled by the Lighthill-Whitham-Richards (LWR)
partial differential equation. It also presents some mathematical
rules that allow for a reduction in the size and computational
time of the optimization problem. Using the analytical solutions
to the LWR model, an optimization problem is formulated
for the variable speed limit and ramp metering control of
traffic on highway networks using the Lax-Hopf algorithm. The
resulting problem, which is non-linear in the decision variables,
is transformed into a Mixed Integer Linear Program. An example
is presented to show the effectiveness of the approach, including
its application to a real-world highway network with multiple
ramp connections. The possibility of linear relaxation of integer
variables in the problem is also considered. Lastly, the method
is compared to a classical Link Transmission Model formulation
of the variable speed limit control problem.

Index Terms— Lax-Hopf method, variable speed limits,
network control, mixed integer linear programming.

I. INTRODUCTION

OPTIMAL control of traffic on highway networks is one
of the most efficient and inexpensive ways to mitigate

congestion, and has been studied extensively by researchers in
the past, for instance in [1]–[27] and references therein. The
most popular forms of control include ramp metering (RM)
and variable speed limits (VSL) [1]–[18]. A technique that is
widely used to implement traffic control is Model Predictive
Control (MPC) [28] such as in [15]–[20], [29] which allows
network operators to obtain the optimal control inputs for a
network based on its current state, over a certain time horizon
using a realistic traffic model and further implement the
obtained control input to the network. The various studies done
in the past differ in the types of traffic models they use and the
concerns that they aim to address by applying traffic control,
for example safety, environmental, or congestion alleviation.
In this work, we implement MPC similar to the mentioned
approaches but with a different model than used in the above
articles. Some popularly used models include discrete time
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models such as the Cell Transmission Model (CTM) [18], [30]
and METANET [2], [31] and continuous time models such as
the Link Transmission Model (LTM) [15], [32]. Broadly, these
models differ in their theoretical accuracy and computational
time. Discrete time models are more computationally intensive
and require larger running times. This is because to avoid
large discretization errors, they require breaking down the
network into a large number of small cells and performing
density computation for each cell at each time-step where
the time-step value again needs to be small. On the other
hand, continuous time approaches, such as the LTM as well
as the one presented in this paper, can compute the evolution
of density over the entire link space over longer acceptable
duration at once. This makes continuous time approaches more
attractive for real-time applications. Since control is generally
applied in real-time, network operators desire a technique that
is not only accurate but also robust and fast enough to complete
the optimization before the next control input is due, which in
case of online control is most often the very next time-step.

The CTM and LTM approaches are based on the Lighthill-
Whitham-Richards (LWR) model [33], [34] of traffic flow
which is a first order conservation law that describes the
evolution of traffic density on highways through a partial
differential equation (PDE). These approaches provide an
approximate solution to the LWR model. While the CTM is
prone to discretization errors, the LTM though exact in several
scenarios, does not provide an exact solution in the presence
of expansion waves in the traffic. It is possible to solve the
LWR equation exactly using the Lax-Hopf formula [35], [36]
after writing the LWR PDE in the form of a Hamilton-Jacobi
equation. Obtaining an exact solution to the process model
is important in network controls where minute errors can
increase exponentially over time. It has been shown previously
that the optimization problem associated with the Lax-Hopf
formula could be solved semi-analytically [37]. Furthermore,
in the case of a triangular fundamental diagram, we can
reduce the complexity of the problem [38] by skipping the
evaluation of some solution components. Finally, it can be
shown that when the initial density on a highway section is
uniform, the computational complexity of the Fast Lax-Hopf
approach [38] is identical to that of the LTM [32] which is
arguably the fastest of the solution schemes for the LWR
model to date.

Highway state estimation and boundary control problems
have been solved in the literature [27], [39] using efficient
optimization schemes based on the LWR model and Lax-Hopf
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method. However, these earlier studies assume that the speed
limits on the links, which are parameters of the model, remain
static over time. On the contrary, we assume in this paper that
the speed limits are dynamic, and controlled and hence are
also a variable in the formulation. One should note that in
this paper, unlike many earlier work on variable speed limits
such as [15], we assume that all vehicles of the highway
section immediately observe the updated posted speed limit.
In earlier work including [15], speed limits changes only affect
the vehicles that enter the section after the switch. The former
assumption is probably more realistic since typically variable
speed limit signs are posted across entire highway sections,
and any change in posted speed limit is propagated through
an entire section [40].

To this end, we first develop analytical formulae similar
to [37] for the Lax-Hopf approach under variable speed
limits. These formulae however are non-linear in the decision
variables which makes the optimization problem non-linear as
well. This poses a problem for real-time control as non-linear
problems are computationally harder and take longer to solve.
In this article, we formulate the problem as a Mixed Integer
Linear Program (MILP) consisting of continuous and binary
variables and linear constraints using methods presented in
[41], [42]. MILPs can generally be solved within a reason-
able amount of time with the help of available toolboxes
like CPLEX. While earlier papers [27], [39] also lead to a
MILP, the formulation of this MILP is considerably different.
Previously, the nonlinearities were only caused by junction
conditions (the control problem on a single link was formu-
lated as a Linear Program (LP)), while in the present case the
nonlinearities arise both from junction conditions and model
parameter switches (the control problem on a single link is
a MILP in general). Similar techniques have been used in
the past to transform the LTM variable speed limit control
problem into a MILP as well [15]. Additionally, we also
show that the principles that allow for the reduction of the
number of steps in the computation, in case of static speed
limits [38], do not apply to the variable speed limit case
in general. Thereafter, we establish a new set of rules that
allow for a reduction of computational complexity in the latter
problem.

The paper is organized as follows: In Section II we introduce
and discuss the theory behind the Lax-Hopf approach for
solving the LWR model. In Section III we present the math-
ematical definitions of initial and boundary condition blocks
and the analytical solutions for the variable speed limit case.
In Section IV we present the formulation of the optimization
problem. In that, we first discuss some properties that allow
us to reduce the number of solution steps and the assumptions
taken in formulating the problem. Then we discuss the model
constraints, the objective functions and the decision variables
along with the mixed-integer transformations. In Section V
we discuss an example of implementation of the optimiza-
tion problem on a real-world highway with multiple ramps.
In Section VI we compare LTM based optimal control with
the present approach, using a example. The paper is concluded
with remarks, along with the scope of future work. The
work in this paper derives from the first author’s master’s

Fig. 1. Triangular fundamental diagram under variable speed limits. ρc1 , ρc2
and ρc3 represent the values of critical density corresponding to the three
values of speed limits v1, v2 and v3. The congestion wave speed w and
maximum density ρm are taken to remain unchanged with the change in
speed limit.

thesis ‘Variable Speed Limit and Ramp Metering Control of
Highway Networks using Lax-Hopf Method: A Mixed Integer
Linear Programming Approach,’ copyright (2020) by Suyash
Chandra Vishnoi.

II. BACKGROUND

A. The Lighthill-Whitham-Richards Traffic Flow Model

Traffic flow can be described by the density function,
denoted as ρ(·, ·) which is equal to the number of vehicles
per space unit. The LWR model [33], [34] that describes the
evolution of ρ(·, ·) is written as follows

∂ρ(t, x)

∂ t
+ ∂ψ(ρ(t, x))

∂x
= 0 (1)

The function ψ(·) is called flux function for which sev-
eral models have been proposed called fundamental diagram.
In this paper we use the triangular fundamental diagram
defined below which has been extensively used in the liter-
ature [30], [43], [44].

ψ(ρ) =
{
vρ if ρ ≤ ρc

w(ρ − ρm) otherwise
(2)

Here, v denotes the free-flow speed which is assumed to be
equal to the speed limit value, w denotes the congestion-wave
speed, ρm denotes the maximum density, and ρc denotes the
critical density. The part of the fundamental diagram which is
below ρc is called the free-flow branch and above it is called
the congestion branch.

Under variable speed limits, which means that v is variable,
it is assumed that the change in v only affects the value of
ρc while ρm and w remain unchanged. In that, an increase
in v results in a smaller value of ρc while a decrease in v
results in a larger value of ρc. The impact of variable speed
limits on the fundamental diagram is depicted in Figure 1
which shows three possible values of speed limits v1, v2 and
v3, and the corresponding critical densities. Under static speed
limit, the diagram would only consist of the free-flow branch
corresponding to one of the speeds which would be the static
speed limit in that case. The ensuing results and definitions
in this section are independent of whether the speed limit is
variable or static.
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B. Hamilton-Jacobi Equation

The state of traffic can also be described by the Moskowitz
function [45], [46] denoted by M(·, ·) which can be interpreted
as the cumulative number of vehicles at a point.

The density function ρ(·, ·) is related [46] to the spatial
derivative of the Moskowitz function M(·, ·) as follows:

ρ(t, x) = −∂M(t, x)

∂x
(3)

If the density function is to be modeled by the LWR
PDE (1), the Moskowitz function satisfies a Hamilton-
Jacobi (HJ) PDE obtained [35], [47] by integration of the
LWR PDE:

∂M(t, x)

∂ t
− ψ

(
−∂M(t, x)

∂x

)
= 0 (4)

Several classes of weak solutions to equation (4) exist, such
as viscosity solutions [48], [49] or Barron-Jensen/Frankowska
(B-J/F) solutions [50], [51]. For the problem investigated in
this article, these solutions are equivalent and can be computed
implicitly using a Lax-Hopf formula.

C. Barron-Jensen/Frankowska Solutions to
Hamilton Jacobi Equations

To characterize the B-J/F solutions, we first define the
Legendre-Fenchel transform of the Hamiltonian ψ(·) as fol-
lows.

[Legendre-Fenchel transform] For an upper semicontinu-
ous Hamiltonian ψ(·), the Legendre-Fenchel transform ϕ∗(·)
is given by:

ϕ∗(u) := sup
p∈Dom(ψ)

[p · u + ψ(p)] (5)

To solve the HJ PDE (4) we need to define value conditions.
In this paper, we assume that for any highway section ξ
represents the upstream boundary while χ represents the
downstream boundary of the link space. Then a value con-
dition can be defined as follows:

[Value condition] A value condition c(·, ·) is a lower semi-
continuous function defined on a subset of [0, tmax] × [ξ, χ].

Each of these functions is defined on a subset of
R+ × [ξ, χ]. The value conditions are formally defined in
Section III-A.

For each value condition c(·, ·), we define the partial
solution [37] to the HJ PDE (4) using the Lax-Hopf
formula [35], [47].

[Lax-Hopf formula] Let ψ(·) be a concave Hamiltonian,
and let ϕ∗(·) be its Legendre-Fenchel transform (5). Let
c(·, ·) be a lower semicontinuous value condition, as in
Definition II-C. The B-J/F solution Mc(·, ·) to (4) associated
with c(·, ·) can be algebraically represented [35], [47] by:
Mc(t, x) = inf

(u,T )∈Dom(ϕ∗)×R+

(
c(t − T, x + T u)+ Tϕ∗(u)

)
(6)

D. Inf-Morphism Property

The inf-morphism property can be formally derived through
capture basins, such as in [47] and is given as follows

[Inf-morphism property] Let the value condition c(·, ·)
be minimum of a finite number of lower semicontinuous
functions:

∀(t, x) ∈ [0, tmax] × [ξ, χ], c(t, x) := min
j∈J

c j (t, x) (7)

The solution Mc(·, ·) associated with the above value con-
dition can be decomposed [35], [36], [47] as:

∀(t, x) ∈ [0, tmax] × [ξ, χ], Mc(t, x) = min
j∈J

Mc j (t, x) (8)

The inf-morphism property is essential for the derivation of
the LWR PDE model constraints and allows us to instantiate
these constraints as inequalities.

[Model compatibility constraints for block value con-
ditions] Let c(·, ·) = min

j∈J
c j (·, ·) be given, and let Mc(·, ·)

be defined as in (6). The value condition c(·, ·) satisfies
∀(t, x) ∈ Dom(c),Mc(t, x) = c(t, x) if and only if the
following inequality constraints are satisfied:

Mc j (t, x) ≥ ci (t, x) ∀(t, x) ∈ Dom(ci ), ∀(i, j) ∈ J 2 (9)

Readers are referred to [52] for various properties and
proofs related to the above definitions and propositions.
To solve the problem completely, we need to evaluate the
functions Mc j (·, ·) explicitly. In the following section we
present the mathematical formulae for the value condition
blocks along with the explicit solutions for the Moskowitz
function under variable speed limits.

III. EXPLICIT SOLUTIONS TO PIECEWISE AFFINE INITIAL

AND BOUNDARY CONDITIONS

A. Definition of Piecewise Affine Initial, Upstream and
Downstream Boundary Conditions

The initial, upstream and downstream boundary conditions
associated with the HJ PDE (4) can be formally defined as
follows:

[Piecewise affine initial, upstream and downstream
boundary conditions] Let us define K = {1, . . . , kmax} and
N = {1, . . . , nmax}. For all k ∈ K and n ∈ N, we define the
following functions, respectively called initial, upstream and
downstream conditions:

Mk(t, x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−
∑k−1

i=1
ρini(i)(xi+1 − xi )

−ρini(k)(x − xk) if t = 0
and x ∈ [xk, xk+1]

+∞ otherwise

(10)

γn(t, x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∑n−1

i=1
qin(i)T

+qin(n)(t − (n − 1)T )
if x = ξ
and t ∈ [(n − 1)T, nT ]

+∞ otherwise

(11)
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Fig. 2. Domains of the initial, upstream and downstream boundary condi-
tions. The upstream and downstream boundary condition blocks respectively
denoted by γn(·, ·) and βn (·, ·) are defined on line segments corresponding to
the upstream and downstream boundaries of the physical domain. In contrast,
the block initial conditions Mk (·, ·) are defined on line segments correspond-
ing to the initial time. Note that in the actual problem block initial conditions
cover the entire physical domain [ξ, χ ], while block boundary conditions
cover the temporal domain [0, tmax].

βn(t, x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑n−1

i=1
qout(i)T

+qout(n)(t − (n − 1)T )

−
∑kmax

k=1
ρini (k)(xk+1 − xk)

if x = χ
and t ∈ [(n − 1)T, nT ]

+∞ otherwise

(12)

Here, qin(n) ∈ [0, vρc] and qout(n) ∈ [0, vρc],∀n ∈ N

denote the inflow and outflow for the given highway section
respectively and ρini (k) ∈ [0, ρm],∀k ∈ K denotes the initial
density conditions. T > 0 is the duration of each time-step
such that tmax = nmax T . Note that all the upstream and
downstream boundary conditions have the same time duration
that is T , while the initial conditions can have different lengths
in space with their bounds denoted by [xk, xk+1]∀k ∈ K such
that xk ≤ xk+1, x1 = ξ and xkmax +1 = χ . The domains of
definitions of these functions are illustrated in Fig. 2. Since
the formulation of the above definitions is independent of
the free-flow speed, they are unaltered by the introduction of
variable speed limits. One difference, however, will be in the
upper bound for the flow variables that will be the maximum
flow based on the different speed limit values and which will
be obtained from the fundamental diagram.

B. Analytical Solutions to Piecewise Affine Initial, Upstream
and Downstream Boundary Conditions Under Variable
Speed Limits

This section presents a methodology to calculate Mc(·, ·) for
any value condition block c(·, ·) at any point in the time-space
domain with the help of analytical solutions for the static speed
limit case that can be found in [37], [52] and have been put
in Appendix for reference. The idea is to define temporary
density condition blocks (say c′(·, ·)) over the link space at the

time of a switch in speed limit, and use the analytical solutions
for the static speed limit case to calculate Mc′ (·, ·) due to those
temporary condition blocks at points from that switch time
to the next. We define the following values to formulate the
analytical solutions later in this section: Nsec is the number
of sections in the space-time domain of the link separated in
time by the time of switches in speed limit given by the set
{Tsw( j )| j ∈ [1, Nsec − 1]}. So each section is defined by the
set [ξ, χ]×[Tsw( j ), Tsw( j+1)]∀ j ∈ [1, Nsec−1] with the excep-
tion of the first and last section that are defined by [ξ, χ] ×
[0, Tsw(1)] and [ξ, χ] × [Tsw(Nsec−1), tmax ] respectively. The
speed limit and the corresponding critical density value for a
section defined by [ξ, χ]×[Tsw( j−1), Tsw( j )]∀ j ∈ [2, Nsec −1]
is denoted by v j and ρc, j , and v1, ρc,1 and vNsec , ρc,Nsec for
the first and last sections respectively. Mc

sw( j ),i denotes a
temporary density condition block created at Tsw( j ) due to
a condition block c(·, ·). Here, subscript i denotes the index
of the temporary condition block created due to block c(·, ·) at
that time starting from the most upstream block. The density
of this temporary condition block is denoted by ρc

sw( j ),i and its
bound in space is given by [xc

sw( j ),i, xc
sw( j ),i+1] similar to (10).

We now look at how the formulation is done for the initial
density condition blocks.

1) Analytical Solutions for Initial Density Conditions Under
Variable Speed Limits: Let an initial density condition block
Mk be defined as in (10) for an arbitrary k. For this condition
block we already know the analytical formulae (34) to obtain
the value of MMk (·, ·) at any point in the time-space domain
when there are no switches in the speed limit. We can use
those formulae to calculate MMk (·, ·) at anytime before Tsw(1),
that is before a switch in speed limit occurs. To obtain
MMk (·, ·) at points after Tsw(1), we follow the idea of defining
temporary density condition blocks at the switch times which
is implemented as follows.

First, we use the analytical formulae in (34) to calculate
MMk (t, x) at t = Tsw(1) for all x on the edges of the
characteristic traffic waves emerging from the value condition
block and lying within the link space. If any edges of the
characteristic waves cross the link boundaries before Tsw(1),
we then calculate MMk (·, ·) at the link boundaries, that is ξ or
χ , instead of that edge. Further, using (3) with the values
of MMk (t, x) obtained at the said x , we can calculate the
density of traffic for the different traffic regions formed at
Tsw(1) due to the condition block Mk . As mentioned before,
these densities are denoted by ρMk

sw(1),i and the density regions

by [x Mk
sw(1),i, x Mk

sw(1),i+1]. From these density values, we define

temporary density condition blocks denoted by M Mk
sw(1),i along

the link space at time Tsw(1). These are defined as in (13), as
shown at the bottom of the next page. In defining these tempo-
rary condition blocks, we assume temporarily that MMk (t, x)
at (Tsw(1), x Mk

sw(1),1) is 0. This does not affect the formulation
ahead since this value would only be added as a constant in the
defined formulae. This allows us to avoid writing this value
in the ensuing formulae which otherwise would just make the
formulae look even more complex. Instead, now it can just
be added when calculating the final value of MMk (·, ·) at any
later point.
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For these newly defined temporary density condition blocks,
the analytical formulae to get the solution values denoted by
M

M
Mk
sw(1),i

(t, x) for the section [ξ, χ] × [Tsw(1), Tsw(2)], taking

MMk (Tsw(1), x Mk
sw(1),1) as 0, can be written as in (14), as shown

at the bottom of the page. For this section, the speed limit is
denoted by v2 and the critical density is denoted by ρc,2.

Fig. 3 presents an example of how characteristic traffic
waves move forward from an initial density condition block
Mk . We can utilise the inf-morphism property to obtain the
combined solution value due to this set of temporary density
condition blocks at any point in [ξ, χ] × [Tsw(1), Tsw(2)]. Let
this solution value be denoted by M

M
Mk
sw(1)

(t, x). Note that

this notation does not have the subscript i in it because
it is the combined value from all temporary blocks at that
switch and not just the value due to individual temporary
blocks that are indexed using i . Now to obtain the value
MMk (t, x) due to the original condition block Mk for (t, x) ∈

[Tsw(1), Tsw(2)] × [ξ, χ], we can simply add the actual value
of MMk (Tsw(1), x Mk

sw(1),1) to M
M

Mk
sw(1)

(t, x). From here, we can

calculate MMk (·, ·) at the ends of traffic regions that will occur
at Tsw(2) and repeat the above procedure from defining tempo-
rary condition blocks M Mk

sw(2),i to obtaining the solution values
MMk (t, x) for (t, x) ∈ [Tsw(2), Tsw(3)] × [ξ, χ] and so on.
Therefore, for any point (t, x) with t ∈ [Tsw(sec−1), Tsw(sec)]
where sec denotes the number of the section containing
the point, such that sec > 1, the formula for calculating
MMk (t, x) can be written as in (15), as shown at the bottom
of the page.

2) Analytical Solutions for Boundary Conditions Under
Variable Speed Limits: We can use the same approach as
the initial density condition blocks to calculate Mγn(·, ·) and
Mβn(·, ·) for any upstream and downstream boundary condi-
tion blocks γn and βn respectively at all points throughout
the time horizon. Let secn denote the section containing

M Mk
sw(1),i(t, x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−
∑i−1

j=1
ρ

Mk
sw(1), j (x

Mk
sw(1), j+1 − x Mk

sw(1), j)

−ρMk
sw(1),i(x − x Mk

sw(1),i) if t = Tsw(1)

and x ∈ [x Mk
sw(1),i, x Mk

sw(1),i+1]
+∞ otherwise

(13)

M
M

Mk
sw(1),i

(t, x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

+∞ if x ≤ x Mk
sw(1),i + (t − Tsw(1))w

or x ≥ x Mk
sw(1),i+1 + (t − Tsw(1))v2

−
∑i−1

j=1
ρ

Mk
sw(1), j(x

Mk
sw(1), j+1 − x Mk

sw(1), j)

+ρMk
sw(1),i((t − Tsw(1))v2 + x Mk

sw(1),i − x) if x Mk
sw(1),i+1 + (t − Tsw(1))v2 ≥ x

and x Mk
sw(1),i + (t − Tsw(1))v2 ≤ x

and ρ
Mk
sw(1),i ≤ ρc,2

−
∑i−1

j=1
ρ

Mk
sw(1), j(x

Mk
sw(1), j+1 − x Mk

sw(1), j)

+ρc,2((t − Tsw(1))v2 + x Mk
sw(1),i − x) if x Mk

sw(1),i + (t − Tsw(1))v2 ≥ x

and x Mk
sw(1),i + (t − Tsw(1))w ≤ x

and ρ
Mk
sw(1),i ≤ ρc,2

−
∑i−1

j=1
ρ

Mk
sw(1), j(x

Mk
sw(1), j+1 − x Mk

sw(1), j)

+ρMk
sw(1),i((t − Tsw(1))w + x Mk

sw(1),i − x)

−ρm(t − Tsw(1))w if x Mk
sw(1),i + (t − Tsw(1))w ≤ x

and x Mk
sw(1),i+1 + (t − Tsw(1))w ≥ x

and ρ
Mk
sw(1),i ≥ ρc,2

−
∑i

j=1
ρ

Mk
sw(1), j(x

Mk
sw(1), j+1 − x Mk

sw(1), j)

+ρc,2((t − Tsw(1))w + x Mk
sw(1),i+1 − x)

−ρm(t − Tsw(1))w if x Mk
sw(1),i+1 + (t − Tsw(1))v2 ≥ x

and x Mk
sw(1),i+1 + (t − Tsw(1))w ≤ x

and ρ
Mk
sw(1),i ≥ ρc,2

(14)

MMk (t, x) = MMk (Tsw(1), x Mk
sw(1),1)+

∑sec−2

j=1
M

M
Mk
sw( j)

(Tsw( j+1), x Mk
sw( j+1),1)+ M

M
Mk
sw(sec−1)

(t, x) (15)

Mγn (t, x) = Mγn (Tsw(secn), xγn
sw(secn),1)+

∑sec−2

j=secn
MMγn

sw( j)
(Tsw( j+1), xγn

sw( j+1),1)+ MMγn
sw(sec−1)

(t, x) (16)

Mβn (t, x) = Mβn (Tsw(secn), xβn
sw(secn),1)+

∑sec−2

j=secn
M

Mβn
sw( j)

(Tsw( j+1), xβn
sw( j+1),1)+ M

Mβn
sw(sec−1)

(t, x) (17)
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Fig. 3. Characteristic traffic wave propagation from an initial condition block
Mk in time over the link space under variable speed limits. The speed limit for
the link is assumed to change at times Tsw(1) and Tsw(2). It is also assumed
here that ρini (k) ≤ ρc,1. The initial condition block Mk leads to the formation

of one temporary density condition block, M
Mk
sw(1),1 at the first switch with

density denoted by ρ
Mk
sw(1),1. From this block, assuming ρ

Mk
sw(1),1 ≥ ρc,2,

the traffic waves propagate forward to form two temporary condition blocks,
M

Mk
sw(2),1 and M

Mk
sw(2),2 , at the second switch. After the second switch,

the figure depicts the propagation of traffic waves from only M
Mk
sw(2),2

assuming ρMk
sw(2),2 ≤ ρc,3.

the boundary condition block. Then the solutions at points
within the section can be obtained using formulae from [37],
[52]. The formulae to obtain Mγn (t, x) and Mβn (t, x) for
(t, x) ∈ [Tsw(sec−1), Tsw(sec)] × [ξ, χ], where sec > secn,
can be written as (16) and (17), as shown at the bottom of the
previous page respectively.

While these formulae can be used to calculate the solution
values due to any value condition block at any point in the
time-space domain, we will see that by the virtue of certain
observations and assumptions presented in Section IV-C.1,
we only need to calculate these values at points up to the
next section in the time horizon. This eliminates the need to
evaluate the summation portion of these formulae.

IV. FORMULATION OF THE CONTROL PROBLEM AS A

MIXED INTEGER LINEAR PROGRAM

In this section, we formulate the optimization problem for
the VSL and RM control of networks and transform it into a
MILP. We discuss how the problem can be applied in a Model
Predictive Control (MPC) framework. Furthermore, we discuss
the different components of the optimization problem namely
the objective functions, constraints and decision variables and
how to cast them as Mixed Integer Linear. In this paper,
we assume that only some links have VSL control while other
links operate at the normal speed limit of the highway which
cannot be controlled. Let the set of all links be denoted by L,
the set of input links be denoted by I, the set of links with
VSL control be denoted by V and the set of on-ramps with
RM control be denoted M.

A. Model Predictive Control

Model predictive control (MPC) [28] is an advanced control
technique that uses a prediction model to obtain optimal

control inputs for a system over a prediction horizon by
solving an optimization problem with the desired objective
function. In this paper, we implement an online control scheme
that works on a rolling horizon MPC approach. In that,
we solve the optimization problem to obtain the control
inputs for the entire prediction horizon but only apply the
first step of the input to the actual system. We then record
the state of the system at the end of this step and use
it as the initial data for the next run of the optimization.
In general, the prediction horizon should be larger than the
time taken for vehicles to travel from the controlled link
to the end of the highway which is satisfied in the exam-
ples considered in this paper. In this paper, the prediction
model used is the Lax-Hopf scheme discussed in the previous
sections. In the following sections, we will formulate the
various parts of the optimization problem implemented in
the MPC.

B. Objective Function

The objective function is chosen to fit the specific require-
ments for which the control is performed. Objective functions
including total flow denoted by JTF, total travel time denoted
by JTTT, and total average congestion denoted by JTAC, can
be used to deal with matters of traffic flow and congestion.
These can be written as

JTF = −
∑
L

nmax∑
n=1

(
qin(n)+ qout(n)

)
, (18)

JTTT = T .

[∑
L

nmax∑
n=1

(
M(nT, ξ)− M(nT, χ)

)

+ T ·
∑
I

nmax∑
n=1

(
Qin(n)− qin(n)

)]
, (19)

JTAC =
∑
L

max
(
M(tmax, ξ)− M(tmax, χ)

)
/L, kc,max

) · L

(20)

where M(·, ·) represents the final solution value due to all the
condition blocks at the given point, Qin (n) is the demand for
the input link during time-step n, kc,max is the maximum of
the possible critical density values, and all the variables are
specific to the link being summed over in the summations. We
can also add the second term from (19) related to the input
flows as a penalty term in other objectives to penalize queue
formation at network entrances.

Also to ensure safety by avoiding large fluctuations in speed
limits and ramp control, we introduce the following penalty
terms:

γ
∑
V

nmax −1∑
n=1

| vn − vn+1 | (21)

ζ
∑
M

nmax −1∑
n=1

| rn − rn+1 | (22)

where γ and ζ are the weights attached to the penalty terms
and are set arbitrarily.
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TABLE I

M(·, ·) VALUES DUE TO DOWNSTREAM CONDITION BLOCKS AT UPSTREAM BOUNDARY POINTS

C. Problem Constraints
The problem constraints comprise of the model compat-

ibility constraints defined by (9), the demand and supply
constraints and the junction constraints. Time-varying speed
limits affect the compatibility constraints for controlled links
while RM affects the demand constraints for controlled on-
ramps. In this section, we will first look at some rules and
assumptions to reduce the number of model constraints and
then present a MILP formulation for various constraints.

1) Constraint Reduction Rules and Assumptions: In theory,
the model compatibility constraints for the Lax-Hopf approach
are defined for all possible combinations of value condition
blocks (9). However, many of these constraints are redundant
as the M(·, ·) values on the left hand side in (9) from some
condition blocks are larger than values from other condition
blocks for the same points in time-space and thus for any
condition block on the right hand side, the constraints resulting
from the condition blocks with the smallest M(·, ·) value on
the left hand side is the only one that matters and the rest can
be omitted from the formulation without loss of exactness.
Removing such redundant constraints helps in improving the
efficiency of the MILP as it reduces the number of required
binary variables.

In [38], the authors established a set of rules for omitting
such redundant constraints by comparing the M(·, ·) values
resulting from different condition blocks at the link boundaries
with the help of mathematical analysis, but they did so in a
static speed limit setting. According to the analysis in [38],
under static speed limits, the condition blocks resulting in the
smallest M(·, ·) values at any boundary points on the link
at a given time are the ones formed most recently whose
traffic wave reaches that point. Thus, we can ignore all other
condition blocks that are older than such a block even though
waves originating from those blocks still reach the said point.
In this section, we see through an example, that the rules
defined under static speed limit cannot be directly applied to
the dynamic time-varying case, that is, it is not sufficient to
just take the effect of the latest condition blocks affecting a
point.

Example: We assume an arbitrary highway section of length
500 m fitted with variable speed limit signs without on-ramps
or off-ramps. We simulate the traffic in this section using
the Lax-Hopf approach with time-steps of 30 s. The speed
limit is switched once after the fifth time-step, that is, after
150 s when it is changed from 30 m/s to 25 m/s. Other

parameters of the fundamental diagram are: w = −5 m/s,
and ρm = 0.5 veh/m. The link is assumed to be empty at
the start of the simulation. The demand and supply for the
section are taken as the maximum capacity at a free-flow speed
of 30 m/s that is 2.1428 veh/s. In this example, we focus on
the M(·, ·) values at upstream boundary points right at the
end of time-steps 4 to 11 resulting from the first to seventh
downstream boundary condition blocks, each block covering
one time-step. The exact values are presented in Table I. Our
objective is to verify if the aforementioned idea from [38] will
still hold under dynamic speed limits.

Discussion: Note, that a congestion traffic wave originating
from a downstream condition block at the downstream link
boundary will take 100 s or about 3.3 time-steps to reach the
upstream end of the link. Thus, if the speed limits were static,
then by the analysis in [38] Block 2 would have resulted in the
smallest M(·, ·) value on just one of the considered points on
the upstream boundary and that is Point 5. For Point 6 to 11,
the minimum M(·, ·) values would have resulted from Block
3 to 6 respectively and we could have left out constraints (9)
due to Block 2, Block 3 and so on at those points respectively.
However, in Table I one can see that the minimum value at all
these points is not because of the said blocks but instead due
to Block 1 and 2 only (or just Block 2 which is mathematically
capable of giving lower values than Block 1), and hence
constraints due to these condition blocks at these points are
not redundant. So if we want the exact solution to the LWR
model, we cannot leave out the constraints due to Block 2 at
these points. If one derives the mathematical expressions for
M(·, ·) values at those points from the given blocks, one will
be able to see that this irregularity in values occurs due to
the switch in speed limit at Point 5 which separates Point
6 to 11 in time from Block 2 to 5. This shows that it is not
sufficient to just consider the latest condition block affecting
a point when setting the constraints as earlier discussed.

This requires us to redefine the set of condition blocks that
we need to consider to formulate the compatibility constraints.
In general, when considering constraints at points lying after
a switch, in addition to the latest condition block affecting
the point, we also need to consider the latest condition blocks
that affect the M(·, ·) value at any point throughout the link
space at the switch. This means that in the above example,
for instance, we also need to consider Block 2 to 5 in
addition to Block 6 when setting the constraints associated
with Point 9 due to downstream boundary conditions. We can
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leave out Block 1 here since the M(·, ·) values due to it over
the link space at the switch will be redundant. This logic
of leaving out Block 1 also tells us that we do not need to
consider the effect of the additional condition blocks beyond
a certain point in time after the switch. While the analysis
under static speed limits given in [38] can still be applied when
comparing conditions within a single section within which the
speed is indeed static, we can write certain rules similar to ones
presented in [38] to compare M(·, ·) values from conditions
on opposite sides of a switch. These rules can be used to limit
the number of constraints in the variable speed limit case. The
following rules accompanied by the first assumption below
allow us to restrict the number of constraints.

Lemma 1: Let a set of upstream boundary conditions be
defined as in (11). Let us assume that Mγ j (t

′, χ) ≤ Mγi (t
′, χ)

for some i < j where γi belongs to section p and γ j belongs
to section p+1, for some t ′ > t j + χ−ξ

v p+1
. We have that ∀t > t ′,

Mγ j (t, χ) ≤ Mγi (t, χ).
Lemma 2: Let a set of downstream boundary conditions be

defined as in (12). Let us assume that Mβ j (t
′, ξ) ≤ Mβi (t

′, ξ)
for some i < j where βi belongs to section p and β j belongs
to the section p + 1, for some t ′ > t j + ξ−χ

w . We have that
∀t > t ′, Mβ j (t, ξ) ≤ Mβi (t, ξ).

Lemma 3: Let a set of upstream and downstream boundary
conditions be defined as in (11) and (12). Let us assume that
Mγ j (t

′, χ) ≤ Mβi (t
′, χ) for some i < j where βi belongs

to section p and γ j belongs to the section p + 1, for some
t ′ > t j + χ−ξ

v p+1
. We have that ∀t > t ′, Mγ j (t, χ) ≤ Mβi (t, χ).

Lemma 4: Let a set of upstream and downstream boundary
conditions be defined as in (11) and (12). Let us assume that
Mβ j (t

′, ξ) ≤ Mγi (t
′, ξ) for some i < j where γi belongs

to section p and β j belongs to the section p + 1, for some
t ′ > t j + ξ−χ

w . We have that ∀t > t ′, Mβ j (t, ξ) ≤ Mγi (t, ξ).
Next, we define certain assumptions taken to limit the

number of constraints, simplify the MILP formulations and
ensure computational feasibility.

1) For any link in the network, Tsw( j+1) − Tsw( j ) ≥
T · 	max(L/v j T,−L/wT )
, j = 1, . . . , Nsec − 2. This
assumption helps restrict the constraints as it ensures that
the M(·, ·) values from any value condition block are
relevant at most up to points in the section following the
one containing that block and not beyond that. In that too
we only need to check up to a maximum of T ·	−L/wT 

upstream points and T · 	L/v j+1T 
 downstream points
in the next section.

2) For any link in the network, v j ≥ L/T,∀ j ∈ [1, Nsec].
This assumption ensures that any free-flow traffic wave
originating from any condition block either covers the
entire link space at the switch or exits the link before
encountering a switch. Since in our formulation the
free-flow speed is unknown, this assumption removes the
need for further complex formulations than presented in
this paper.

3) The speed limit can take values only from a discrete set
of values that lie within a realistic range. This assump-
tion allows us to transform the non-linear constraints
into a mixed-integer form.

The next section discusses how the non-linear constraints can
be written as MILP constraints with the help of transforma-
tions suggested in [41], [42].

2) Transformation of Constraints: Non-linearity in the opti-
mization problem is introduced from model compatibility con-
straints, demand and supply constraints, junction constraints
and the objective function. We address them one by one in
this section.
Non-linearity

a) Model compatibility constraints: in these constraints
is introduced due to two types of terms- ρc, j v j and qin(i)/v j

where i ∈ N represents the time-step and j ∈ [1, Nsec]
represents the time section. While these terms, in theory, are
the product of continuous variables that cannot be handled
by linear programs, our assumption regarding the discrete-
ness of speed limit values helps to convert them into the
products of constant values and binary variables, and that
of continuous variables and binary variables respectively.
These combinations can be expressed as MILP constraints
by techniques provided in [41], [42]. Let the set of speed
limits be {V SL1 V SL2 . . . V SLS} where S is the number
of possible speed limit values. Since the parameters w and
ρm of the fundamental diagram are assumed to be constant
and known throughout the time horizon, we can calculate the
critical density corresponding to each value of speed limit in
the set beforehand using the continuity of the fundamental
diagram at critical density. Let the set of calculated possible
critical density values be written as {kc1 kc2 . . . kcS}. Then
the term ρc, jv j can be linearized as follows

ρc, j v j =
S∑

s=1

δs, j kcs V SLs , ∀ j (23a)

S∑
s=1

δs, j = 1, ∀ j (23b)

where δ1, j , δ2, j . . . , δS, j are binary variables corresponding to
section j . For the second type of non-linear term we use a
different approach where we define a new continuous variable
kin,i at each time-step corresponding to each qin(i) to store the
value qin(i)/v j by writing a set of linear constraints. Let the
possible maximum flow values corresponding to the different
speed limit values be denoted by {Q1 Q2 . . . QS}. We use the
same binary variables defined in (23). In addition, we define S
new auxiliary continuous variables named ka1,i , ka2,i , . . . , kaS,i

to store the values of qin(i)/v j at the S possible values of v j .
Also let Qmax be the maximum flow value in the set of
flows. Then the aforementioned linear constraints are given
as follows for s = 1, . . . , S:

0 ≤ kas ,i ≤ δs, j
Qs

V SLs
, ∀i, j (24a)

qin(i)

V SLs
− (1 − δs, j )

Qmax

V SLs
≤ kas ,i ≤ qin(i)

V SLs
, ∀i, j (24b)

kin,i =
S∑

s=1

kas,i , ∀i (24c)

Thus we can replace the non-linear terms qin(i)/v j every-
where with the continuous variable kin,i making the constraints
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linear. Thus, we can write all the model constraints in a linear
form using auxiliary binary and continuous variables and some
additional linear constraints as above.

b) Demand and Supply constraints: The demand of a link
is defined as the maximum traffic that can flow out of the link
if it was connected to a sink of infinite capacity while the
supply of a link is the maximum traffic that can enter the
link given that it is connected to a source of infinite capacity.
This implies that in calculating the demand and supply of the
link we want to take the maximum cumulative flow permitted
by the model constraints. Let us, for instance, denote the
maximum cumulative number of vehicles exiting the link up
to a certain time-step by L. Let three model constraints be
constraining L as follows

Mc1(·, ·) ≥ L (25a)

Mc2(·, ·) ≥ L (25b)

Mc3(·, ·) ≥ L (25c)

We want that L should be equal to the smallest of the three
values on the left-hand side. This is ensured by introducing
two new binary variables, say δ1 and δ2, and writing additional
constraints as follows

Mc1(·, ·) ≤ L + Cδ1 + Cδ2 (26a)

Mc2(·, ·) ≤ L + C(1 − δ1)+ Cδ2 (26b)

Mc3(·, ·) ≤ L + Cδ1 + C(1 − δ2) (26c)

where C is a value larger than any M(·, ·) value. We also put
a constraint on the sum of the binary variables as follows

δ1 + δ2 ≤ 1 (27)

Now, if say Mc2(·, ·) is the smallest of the three, then L
should be equal to Mc2(·, ·), which is ensured by setting
δ1 = 1 and δ2 = 0. Any other combination of values of
the binary variables would result in the violation of at least
one of the constraints and thus will not be selected by the
solver. In general, if there are N number of constraints then
we need to define 	log2(N)
 number of binary variables and
write the constraints in a similar manner as above.

From L we can easily calculate the actual demand values
in each time-step using the following expression. Let Ln be
the cumulative traffic up to and including time-step n and L0
be the value at the start of the horizon, then the demand D(n)
for time-step n can be calculated as follows

Dn = Ln − L0

nT
−

n−1∑
i=1

qout(i) (28)

Similarly, we can also calculate the supply S(n) for any link
over any time-step n using the variables for cumulative traffic
entering the link and that for inflow.

Ramp Metering Constraints: Ramp metering allows us to
pose an additional constraint on the demand of a controlled
on-ramp by controlling the total vehicles that can leave
the ramp at any time. Apart from the demand and supply
constraints discussed above, a controlled on-ramp has an
additional constraint on the maximum number of vehicles that
can leave the on-ramp up to any time-step n (same as L defined

above) and therefore, on the demand of the on-ramp during
any time-step n. This additional ramp metering constraint is
imposed with the help of a new ramp metering rate variable
r ∈ [0, 1] such that

T ·
n−1∑
i=1

qout(i)+ r · (ρc, jv j T ) ≥ L (29)

where j is the section (based on speed limit switch times)
to which the time-step n belongs. Here, the first term on
the left side of the inequality is the total number of vehicles
leaving the ramp up to time-step n − 1. In the second term,
r essentially represents the fraction of the maximum possible
number of vehicles that are allowed to leave that on-ramp
during time-step n. Note that in calculating the maximum
possible vehicles for this time-step we use v j and ρc, j which
are the speed and critical density corresponding to section j
to which the time-step n belongs. In our formulation, a ramp
metering rate variable is defined per time-step per controlled
on-ramp. Again, we also provide a lower bound constraint
(similar to (26)) corresponding to (29) for all n, to ensure
that we take the minimum of the possible demands for the
on-ramp.

c) Junction constraints: Junction models are based on
the conservation of vehicles, that is, the number of vehicles
entering a junction is the same as the number of vehicles
leaving it. The allocation of incoming flow on to the exit links
is done using an allocation matrix. Since junctions have no
storage capacity the sum of all the allocation parameters from
the incoming options among all the outgoing options must be
equal to one. Also, the flows must obey the demand and supply
constraints imposed at the boundary of the incoming and
outgoing links respectively. Traditionally, we maximize the
flow through the junctions while imposing the aforementioned
constraints [53]. For instance, let there be a diverge junction
with one incoming link having a demand D, and two outgoing
links having supplies S1 and S2, and the allocation matrix is[

a1
a2

]
. For any time-step, if the in-flow from the incoming link

is denoted by qin and the out-flow into the outgoing links is
denoted by qout1 and qout2, then these flows obey the following
constraints:

qout1 = a1qin

qout2 = a2qin

qin = min(D, S1/a1, S2/a2)

a1 + a2 = 1

a1, a2 ∈ [0, 1] (30)

Here the min(·) function can be expressed using mixed
integer linear inequalities similar to (25) and (26).

In the case of a merge junction, we also need to define
priority rules to allocate the supply of the output links to dif-
ferent input links. For instance, if there are two incoming links
having demands D1 and D2, and one outgoing link having
supply S, then we can define two non-negative parameters α1
and α2 such that α1 + α2 = 1 and the supply corresponding
to the two incoming links are α1S and α2 S respectively. If the
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inflow from the links is qin1 and qin2 and the outflow from
the junction is qout then these flows must obey the following
constraints similar to [54]:

qout = qin1 + qin2

qin1 = min(D1, α1 S)

qin2 = min(D2, α2S)

qin1, qin2 ≥ 0 (31)

Again, the min(·) functions can be written in a
mixed-integer linear form as mentioned before.

d) Objective function constraints: The objective
function JTJD contains the term max

(
M(tmax, ξ) −

M(tmax, χ)
)
/L, kc,max

)
for each link which introduces

the non-linearity. We can write it with the help of a new
continuous variable, say t , and some more linear constraints
as follows

min t

subject to t ≥ (
M(tmax, ξ)− M(tmax, χ)

)
/L

t ≥ kc,max

t ∈ R (32)

For the minimization of the penalty terms, we can use a
simple trick to write the absolute function in a linear form
using a new continuous variable, say z, as follows

min 1T z

subject to − zi ≤ vi − vi+1

− zi ≤ vi+1 − vi

i = 1, . . . , Nsec − 1

z ∈ R
Nsec−1 (33)

which makes zi essentially equal to | vi − vi+1 |. The ramp
metering penalty can also be incorporated in the same way.

The above will further require us to write vi in terms of a
combination of binary variables and the known discrete values,
similar to (23). The next section summarizes the different
variables used in the overall formulation.

D. Decision Variables

From the above discussion it is clear that the given optimiza-
tion problem contains both continuous and binary variables.

1) Continuous Variables: These include the in-flow and
out-flow variables, demand and supply variables, linear trans-
formation variables for qin/v (in model constraints), and the
slack variables for the JTAC objective and penalty terms.

2) Binary Variables: These include the auxiliary variables
required for selecting the speed limit for each time section,
variables for calculating the demand and supply for each
link at each time-step based on model constraints and those
required for setting the actual in-flow and out-flow equal to
the minimum of the demand and supply based on the junction
model.

Fig. 4. Google maps illustration of the Interstate 35 highway in Austin,
Texas. The 10.1 miles stretch considered for the implementation example in
Section V has been highlighted in blue color.

V. TRAFFIC CONTROL ON A HIGHWAY NETWORK

In this section, we implement the optimization framework
on a real highway network comprising of a stretch of a
highway with on-ramps and off-ramps. The simulation model
used in this case is the same model as used in the optimization
that is the LWR model solved using the Lax-Hopf approach.

A. Example Setup

We consider a 10.1 miles (about 16.3 km) stretch of the
Interstate-35 highway passing through Austin, Texas, high-
lighted in the Google Maps illustration in Fig. 4. This stretch
has 8 on-ramps and 8 off-ramps. We divide the main highway
into 18 links of different lengths, while each ramp is con-
sidered as one link, making a total of 34 links. The length
of the highway links in kilometers, ordered from upstream to
downstream end are 0.98, 0.48, 0.75, 0.37, 0.48, 0.82, 0.67,
1.30, 1.12, 1.28, 1.23, 1.88, 0.53, 1.12, 1.11, 0.78, 0.98, and
0.35 km. Let the links be numbered 1 to 18 in the specified
order. The ramps are placed at the junction of the links,
on-ramps located after link 2, 4, 6, 8, 10, 11, 13, and 16, and
off-ramps located after link 1, 3, 5, 7, 9, 12, 15, and 17. Let the
ramps be numbered 1 to 8 in the specified order for both on-
and off-ramps. There are a total of 8 merge junctions, 8 diverge
junctions and 1 one-to-one junction (between link 14 and 15).
We assume that links 15 and 16 of the highway are equipped
with VSL signs and on-ramps 6 and 7 are equipped with ramp
meters. The allocation and priority matrix for junctions are set
arbitrarily. The split ratios are taken as 10% for off-ramps 1,
2, 3, 5, 6 and 8, and 20% for off-ramps 4 and 7. The allocated
flow from on-ramps 1 to 7 onto the highway is kept as 10%,
while that from on-ramp 8 is kept as 20%. The demands for
the various input links is chosen arbitrarily and is kept varying
in a reasonable range of values to create a realistic scenario.
The demands are presented in Table II. The supply for the
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TABLE II

DEMANDS FOR HIGHWAY INPUT LINK AND ON-RAMPS FOR EXAMPLE 1 (VEH/S)

Fig. 5. Supply (veh/s) at downstream end of the highway.

Fig. 6. Initial density condition (veh/m) for highway network example.

off-ramps is assumed to be unrestricted. The supply for the
output section of the highway is depicted in Fig 5. We assume
the occurrence of an incident, for instance an accident, ahead
of the downstream end of the considered highway stretch at
around 10 min from the start of the simulation which results
in the drop of supply to 0.2 veh/s. The supply slowly recovers
over time however the incident creates a jam wave that travels
upstream from the downstream end of the highway. The initial
density on the highway at the start of the optimization process
is as shown in Fig. 6.

The fundamental diagram parameters values for highway
links with no VSL are chosen as: v = 33 m/s, w = −5 m/s,
ρm = 0.5 veh/m. The set of possible speed limits for the VSL
links is {19 25 33} m/s. ρm for ramp links is 0.125 veh/m.
The objective function used in this optimization is JT AC (20)
along with VSL (21) and RM (22) penalties with a weight

Fig. 7. Evolution of traffic density (veh/m) without control. The three fig-
ures depict conditions after (a) 20 minutes, (b) 40 minutes, and (c) 60 minutes.

of 10 for both. A penalty for unsatisfied demand is included
in the objective similar to the second term in (19). The weight
for the same is selected as the demand multiplied by a scaling
coefficient, in this case 0.1. Thus, the penalty weight increases
as more demand is unmet resulting in larger queues at the
entrances of the input links and on-ramps. The time-step value
T is taken as 60 s. The prediction horizon is set to 10-time-
steps that is 10 × T = 600 s or 10 min. In the optimization
setup, a change in speed limit is allowed once at 5 min from
the start of the prediction horizon. The control horizon is
kept as one time-step T . This means that the control signal
for the first one time-step, or the duration of the control
horizon, as obtained from the solver is applied to the system
in real-time and the corresponding initial condition at the end
of the control horizon, is again fed to the solver to perform
the optimization to obtain optimal control signals for the next
prediction horizon. Again, the control for the first time-step is
applied to the system and so on.

B. Results and Discussion

Fig. 7 presents the uncontrolled scenario at three different
time stamps during the simulation namely 20 min, 40 min and
60 min. It can be seen that a jam forms at the downstream end
of the highway corresponding to the incident that took place
ahead of the stretch end. As the supply at the downstream end
restores, the jam starts to dissolve near that end as the vehicles
at the downstream front of the jam are able to flow freely
again. However, the congestion that has already formed results
in a congestion wave that travels upstream on the highway and
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Fig. 8. Evolution of traffic density (veh/m) with VSL and RM control.
The three figures depict conditions after (a) 20 minutes, (b) 40 minutes, and
(c) 60 minutes.

Fig. 9. Optimal variable speed limit control inputs (m/s). (a) link 15, and
(b) link 16 of the highway.

continues to persist even after 50 minutes past the occurrence
of the incident.

We apply our control formulation to the system under the
same conditions of demands and supply as the uncontrolled
case. Fig. 8 shows the controlled scenario again at the same
time stamps as before. One can observe that in presence of
control, the jam dissolves much quicker and almost disappears
within around 50 min of its formation, as can be seen
in Fig. 8(c). At the end of the 60 min period the value of JT AC

for the uncontrolled case is 2549.1 and that for the controlled
case is 1945.4 which is an improvement of about 23.7% for
the controlled case over the uncontrolled case.

The obtained control signals for speed limit and ramp meters
are given in Fig. 9 and Fig. 10 respectively. Note that in this
example a metering rate value of around 0.4 is equivalent to a
value of 1, that is both values will give the same solution. This
is because the metering rate is a fraction of the maximum flow
based on fundamental diagram, but in the current scenario,
given the percentage of highway supply allocated to the on-
ramps, the possible flow from the ramps is already not higher
than about 0.4 of the maximum flow based on fundamental
diagram.

As expected from the controller, the speed limits are reduced
corresponding to the formation of the jam (Fig. 9) in order
to reduce the flow moving towards the jam to help the jam

Fig. 10. Optimal ramp metering control inputs (dimensionless). (a) on-ramp
6 and (b) on-ramp 7.

dissolve faster. Of course we expect this reduction to only be
to the extent that another jam does not form due to the control
on or behind the VSL controlled links. The ramp controls also
restrict the flow of the controlled on-ramps corresponding to
the formation of the jam. As observed in Fig. 10, the permitted
on-ramp flows eventually restores to normal as the jam dis-
solves. The restricted flow from the on-ramps not only reduces
the number of vehicles joining and thus worsening the jam on
the highway, but it also provides more space for the out-flow of
vehicles already in the jam thus helping the jam dissolve faster.
This does result in a jammed state on the controlled on-ramps
for a while but it helps to dissolve the jam on the highway
which would otherwise have been bad for both the travellers
coming from the on-ramps as well as those on the highway.

The problem consists of 1888 continuous variables,
1383 binary variables, and 9064 constraints, and took an
average time of 6.47 s per run of the solver using CPLEX
on a Windows computer with processor Intel Core i7-8750H
CPU@2.2GHz. The relatively small running time of the opti-
mization solver for a reasonably large 10.1 mile stretch of
highway network with several ramps, and its effectiveness
in reducing congestion on highways, as illustrated in the
example, makes it attractive for use in real-world network
control problems.

C. Relaxation Into a Linear Program

In this section we want to check if the relaxation of the
MILP into a corresponding LP (by allowing all Boolean vari-
ables to continuously vary between 0 and 1) is tight. We test
the effect of this relaxation on the example considered in
this section. The optimal value of the relaxed problem differs
from the originally computed optimal value, which shows
that these integer constraints are necessary in general. The
relaxed problem also results in theoretically incorrect (non-
physical) values of other decision variables such as critical
density variables, demand and supply variables and junction
flow variables. Though an unrelaxed mixed-integer program
generally demands more computational power than a relaxed
linear program, we have seen that we are still able to get a
decent performance in solving this problem for a reasonably
large highway system with ordinary computational power.
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Fig. 11. Initial Density conditions (veh/m) for example comparing Lax-Hopf
method with LTM.

VI. COMPARISON WITH THE LINK

TRANSMISSION MODEL

In this section, we discuss the difference between the LTM
and the Lax-Hopf method in terms of implementation and
compare the control input obtained from the optimization
formulation using both methods for a specific type of initial
density profile setting on the same network as in Section V-A.
We also compare the general running time of the optimiza-
tion obtained over several runs under different settings while
applying both methods.

The major point of difference between the LTM [32] and
the Lax-Hopf method [35], [36] is that the LTM does not
account for expansion waves in traffic while the latter does.
This difference between the two methods manifests in terms
of different solutions to the LWR model whenever there is an
expansion wave in the traffic stream, such as when a congested
initial density block is followed by a free-flow density block.
As a result, in the presence of expansion waves, the predicted
traffic flows using both methods will be different. A difference
in the predicted traffic evolution can result in different optimal
control signals being found for the same initial condition and
demand/supply settings. The same is illustrated in the ensuing
example.

We use the same configuration of parameters as in
Section V-A except for the allocated flow percentage for ramps
6 and 7 onto the highway which is set as 20%. The demand
and supply profile are kept the same as in Section V. We put a
different initial density profile on link 12 from that in Fig. 6,
that is, we set an initial density of 0.5 veh/m for the first
800 m of the link and 0.02 veh/m from 800 m to the end
of the link. The new initial density profile for the highway is
depicted in Fig. 11. The objective function is JT AC along with
the input penalty term with the penalty weight as described
in the Section V-A. We run the optimization with the given
initial conditions for a prediction horizon of 600 s. The optimal
solution from the two methods particularly differs in the ramp
metering controls which are presented in Fig. 12. As can
be observed, the optimal control signal from both methods
is different. The value of the objective function as obtained
by applying the control generated from both cases to the
simulation is 1759.3 in the case of LTM and 1730.4 in the case

Fig. 12. Optimal ramp metering control inputs (dimensionless) for example
comparing Lax-Hopf method with LTM. (a) on-ramp 6 and (b) on-ramp 7.

of Lax-Hopf. This shows that the optimal control generated
for this particular case using LTM is only sub-optimal in
reality. Note that in this example, results differ because of
the presence of an expansion wave in the initial conditions
of link 12. Initial conditions for which the density increases
over space (no expansion wave) lead to identical results for
the proposed approach and the LTM approach. The running
time for LTM based optimization problem was 1.46 s while
that for Lax-Hopf based problem was 1.87 s.

In our formulation using Lax-Hopf method, the expansion
waves are considered originating from the initial density
condition blocks as well as forming in the middle of the
time horizon due to switches in speed limits (Section III-B)
as we assume the formation of temporary density condition
blocks. Since LTM does not consider expansion waves in its
formulation, it reduces the number of constraints at both these
occasions. This does have an impact on the running time,
however the said impact as observed from several runs of
the solver under different conditions of initial density and
demand/supply is not very large. The running time in general
lies in the same order of magnitude. For instance, we ran
both LTM and Lax-Hopf based optimizations under different
conditions of initial density and demand/supply to get a mean
running time of 2.34 s for LTM with standard deviation
0.43 s and that of 3.89 s for Lax-Hopf with standard deviation
of 1.57 s.

VII. CONCLUSION

In this paper, an analytical formulation of the variable
speed limit control problem applicable to the LWR PDE is
developed. The analytical formulation is based on the classical
Lax-Hopf formulas. Rules are developed for limiting the
number of solution steps required in the Lax-Hopf scheme,
therefore, reducing the computational time. The analytical
scheme is further used to formulate an optimization problem
to apply variable speed limit and ramp metering control of
traffic on highway networks. Example numerical simulations
are presented to validate the method on both a single highway
section as well as an over 10 miles sub network of the
Interstate-35 highway running through Austin, Texas. The
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control inputs generated from the solver are shown to dissipate
a traffic jam on the highway faster than the uncontrolled case.
We also compare our method to another popular method, based
on the Link Transmission Model (LTM), which provides a fast,
approximate solution to the LWR PDE. In that, we see that
in some cases (expansion wave at the initial time), the control
input generated from the optimization problem using LTM are
sub-optimal as compared to the results generated from the
Lax-Hopf based optimization. In this paper, we also test the
influence of relaxing the binary variables used in the problem.
The tests show a significant optimality gap that can lead to
inaccurate, non-physical results when doing so.

Future work will focus on robust traffic control by allowing
for uncertainty in the demand and supply variables. The
analytical framework can also be used to perform other types
of control such as through route assignment. The proposed
mathematical formulation can also serve as a stepping-stone to
develop optimization schemes using second order models such
as in [55] or LWR model incorporating bounded acceleration
as in [56] which are more realistic than the LWR model.

APPENDIX

ANALYTICAL SOLUTIONS TO PIECEWISE AFFINE INITIAL,
UPSTREAM AND DOWNSTREAM BOUNDARY CONDITIONS

UNDER STATIC SPEED LIMITS

Given the piecewise affine initial, upstream and downstream
boundary conditions, (10) to (12), defined in Section III-A,
the corresponding solutions MMk (·, ·), Mγn (·, ·), Mβn (·, ·) at
any point on the link space at a time before the first change
in speed limit occurs from the time of start of the condition
block is given [37], [52] by the following formulae:

MMk (t, x)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

+∞ if x ≤ xk +wt

or x ≥ xk+1 + vt

−
∑k−1

i=1
ρini(i)(xi+1 − xi )

+ρini(k)(tv + xk − x) if xk + tv ≤ x

and xk+1 + tv ≥ x

and ρini(k) ≤ ρc

−
∑k−1

i=1
ρini(i)(xi+1 − xi )

+ρc(tv + xk − x) if xk + tv ≥ x

and xk + tw ≤ x

and ρini(k) ≤ ρc

−
∑k−1

i=1
ρini(i)(xi+1 − xi )

+ρini(k)(tw + xk − x)

−ρmtw if xk + tw ≤ x

and xk+1 + tw ≥ x

and ρini(k) ≥ ρc

−
∑k

i=1
ρini(i)(xi+1 − xi )

+ρc(tw + xk+1 − x)

−ρmtw if xk+1 + tv ≥ x

and xk+1 + tw ≤ x

and ρini(k) ≥ ρc

(34)

Mγn (t, x)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

+∞ if t ≤ (n − 1)T

+ x − ξ

v∑n−1

i=1
qin(i)T

+qin(n)(t − x − ξ

v
− (n − 1)T ) if (n − 1)T

+ x − ξ

v
≤ t

and t ≤ nT

+ x − ξ

v∑n

i=1
qin(i)T

+ρcv(t − nT − x − ξ

v
) otherwise

(35)

Mβn (t, x)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

+∞ if t ≤ nT

+ x − χ

w

−
∑kmax

k=1
ρini(k)(xk+1 − xk)

+
∑n−1

i=1
qout(i)T

+qout(n)(t − x − χ

w
− (n − 1)T )

−ρm(x − χ) if (n − 1)T

+ x − χ

w
≤ t

and t ≤ nT

+ x − χ

w

−
∑kmax

k=1
ρini (k)(xk+1 − xk)

+
∑n

i=1
qout(i)T

+ρcv(t − nT − x − χ

v
) otherwise

(36)

Readers are referred to [39] for various properties associated
with the affine condition blocks, their analytical solutions, and
the model constraints.
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