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A widely held assumption on network dynamics is that similar components are more likely to
exhibit similar behavior than dissimilar ones and that generic differences among them are necessarily
detrimental to synchronization. Here, we show that this assumption does not generally hold in
oscillator networks when communication delays are present. We demonstrate, in particular, that
random parameter heterogeneity among oscillators can consistently rescue the system from losing
synchrony. This finding is supported by electrochemical-oscillator experiments performed on a multi-
electrode array network. Remarkably, at intermediate levels of heterogeneity, random mismatches
are more effective in promoting synchronization than parameter assignments specifically designed
to facilitate identical synchronization. Our results suggest that, rather than being eliminated or
ignored, intrinsic disorder in technological and biological systems can be harnessed to help maintain
coherence required for function.
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INTRODUCTION

Heterogeneity among interacting components is usu-
ally seen as detrimental to the emergence of uniform
dynamics in networks, including consensus [1, 2] and
synchronization [3, 4]. For networks of coupled oscilla-
tors, the assumption has been that global synchroniza-
tion would be hindered by parameter mismatches among
oscillators. This assumption, which is observed to hold
for Kuramoto models [3], remains under-substantiated
for more general classes of oscillator networks [5–7], es-
pecially those studied using the master stability function
formalism and its variants [8–11]. In the relatively few
theoretical studies that have explicitly considered oscilla-
tor heterogeneity beyond the context of Kuramoto mod-
els, the focus has been on small parameter mismatches
and the persistence of synchronization among nearly-
identical oscillators [12–16]. These results all conform
to the perception that disorder, in the form of random
oscillator heterogeneity, is undesirable for synchroniza-
tion.

Yet, a few exceptions to this perception exist in the
literature. In particular, it has been shown that disor-
der can sometimes enhance synchronization and/or spa-
tiotemporal order in arrays of driven dissipative pendu-
lums [17–19]. For example, for coupled oscillators in a
chaotic regime, heterogeneity can suppress chaos, giv-
ing rise to more regular patterns [17]. In these studies,
and numerous subsequent ones [20–22], disorder does not
stabilize the system around an original synchronization
orbit, but instead generates new behavior that is quali-
tatively different. However, it has been recently realized
that certain oscillator heterogeneities can stabilize a syn-
chronization orbit of the homogeneous system [23–25]. In
these studies, the heterogeneity is purposively designed

to preserve at least one common orbit among the non-
identical oscillators, which may not always be practical
to achieve in applications.

Here, we show that oftentimes random differences
among individual oscillators can consistently stabilize the
dynamics around an otherwise unstable synchronization
orbit of the homogeneous system. We demonstrate the
phenomenon for random heterogeneity in delay-coupled
Stuart-Landau oscillators, which is a canonical model
for limit-cycle oscillations close to a Hopf bifurcation.
Stuart-Landau oscillators have been used to describe nu-
merous processes, ranging from electrochemical reaction
oscillations [26] to plant circadian rhythms [27]. Impor-
tantly, we establish that, to preserve system-level coher-
ence, random heterogeneity can be more effective than
heterogeneity purposely designed to optimize the stabil-
ity of identical synchronization. To support our theoreti-
cal and numerical results, we performed experiments us-
ing coupled electrochemical oscillators. The experimen-
tal results confirm our predictions and further demon-
strate the effect for systems not in the close vicinity of
a Hopf bifurcation. These findings are expected to have
implications for a broad class of natural and engineered
systems, whose functions depend on the synchronization
of heterogeneous components.

RESULTS

Modeling the Dynamics of Heterogeneous Oscillators

We consider a network of N delay-coupled nonidentical
Stuart-Landau oscillators, whose dynamics are governed
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FIG. 1. Impact of oscillator heterogeneity on the synchronization dynamics of Stuart-Landau oscillators. The different panels
show the time evolution of the imaginary components yj (top), order parameters R1 and R2 (middle), and angular velocities

Ωj = ψ̇j (bottom), for trajectories in a 18-node ring network initialized close to the identical synchronization state. (A)
Homogeneous system for the parameters defined in the text. (B) Heterogeneous system for the same parameters, except for
base angular velocities {ωj}, which are drawn from a Gaussian distribution with standard deviation σ = 0.1. The trajectories
show that synchronization is unstable in the homogeneous system but becomes stable in the heterogeneous one.

by

żj(t) = fj(zj(t)) +
K

dj

N∑
k=1

Ajk [zk(t− τ)− zj(t)] , (1)

where zj = rje
iψj = xj + iyj is a complex variable rep-

resenting the state of the jth oscillator and K is the
coupling strength. The adjacency matrix A = {Ajk}
encodes the network structure and dj =

∑
k Ajk is the

indegree for oscillator j. The coupling delay τ models
the finite speed of signal propagation in real systems,
which is often significant in biological [28–30], physical
[31–33], and control systems [34, 35]. The local dynam-
ics fj are expressed in the following canonical form for
systems born out of a Hopf bifurcation [36]:

fj(zj) =
[
λj + iωj − (1 + iγj)|zj |2

]
zj , (2)

where λj , ωj , and γj are real parameters associated with
the amplitude, base frequency, and amplitude-dependent
frequency of the underlying limit-cycle oscillations.

The oscillators are identical when λj = λ, ωj = ω,
and γj = γ for all j. For identical oscillators, the iden-
tical synchronization state is defined by the limit-cycle
synchronous solution

zj = r0e
iΩ0t, j = 1, · · · , N. (3)

The amplitude r0 and angular velocity Ω0 can be found
by solving the transcendental equations

r2
0 = λ+K(cos Φ− 1), (4a)

Ω0 = ω − γr2
0 +K sin Φ, (4b)

where Φ = −Ω0τ [10]. When random heterogeneity is
introduced through one or more oscillator parameters,
the identical synchronization state described by Eq. 3
will, in general, no longer exist. Nonetheless, we show
that heterogeneous systems can still admit states that
are synchronized in the sense of exhibiting cohesive phase

and amplitude dynamics, as formalized below. Here, we
consider synchronization in this sense and ask whether it
can be stabilized by random oscillator heterogeneity.

We start by considering a homogeneous system consist-
ing of N = 18 identical Stuart-Landau oscillators coupled
through a directed ring network (Ajk = 1 if k = j + 1
mod N and Ajk = 0 otherwise) for λ = 0.1, ω = −0.28,
γ = −4.42, K = 0.3, and τ = 1.8π. Under this pa-
rameter choice, the limit-cycle synchronous solution de-
scribed by Eq. 3 is unstable, and the system evolves into
a symmetry-broken state exhibiting incoherent chaotic
dynamics. As an example of a heterogeneous system, we
consider the same network with the base angular veloc-
ity ωj drawn from a Gaussian distribution with mean
ω = −0.28 (as in the homogeneous system) and stan-
dard deviation σ = 0.1. For additional details on the
numerical procedure, see Materials and Methods.

In Fig. 1, we show typical trajectories, order param-
eters, and angular velocities for the homogeneous and
heterogeneous systems. Here, two order parameters are
introduced to measure the cohesiveness of the dynam-
ics: the phase order parameter R1 =

∣∣∑
j e

iψj/N
∣∣, which

is the one typically used in the study of Kuramoto os-
cillators; the phase-amplitude order parameter R2 =

1
max(rj)

∣∣∑
j rje

iψj/N
∣∣, which measures the coherence in

both phases and amplitudes. It follows that both R1 and
R2 are constant for frequency-synchronized states. For
the trajectories shown, the two systems were initialized
close to the limit-cycle synchronous state. The homo-
geneous system loses synchrony at t ≈ 1500 and transi-
tions to an incoherent state with both R1 and R2 fluctu-
ating around 0.2. Remarkably, despite having different
base frequencies, oscillators in the heterogeneous system
converge to a stable cohesive state with large order pa-
rameters (R1 > R2 > 0.9) and identical angular veloci-
ties. That is, the oscillators are not only approximately
synchronized in phase and amplitude—they are also ex-
actly synchronized in frequency (i.e., phase-locked). For
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an animation of this phenomenon in larger systems, see
Movie S1. It is worth noting that the same phenomenon
is also observed when the coupling function is nonlinear
and/or when the coupling delay is link-dependent, which
we demonstrate in SI Text and Figs. S1–S2.

Synchronization States and Stability Conditions

To gain theoretical understanding of the effect shown
in Fig. 1 and its prevalence, we characterize the synchro-
nization states of interest in the presence of heterogeneity
and derive analytical conditions for their stability. These
results are established for delay-coupled Stuart-Landau
oscillators with arbitrary heterogeneity.

Inspired by the fact that the heterogeneous system in
Fig. 1B settles into a frequency-synchronized state, for
which the frequencies of all oscillators are equal and the
phase differences and amplitudes remain constant, we
employ the following ansatz:

zj = rje
i(Ωt+δj), (5)

where oscillator j has amplitude rj and phase lag δj ,
both of which are assumed to be constant, and all oscil-
lators share the same angular velocity Ω. Substituting
this ansatz into Eq. 1, we obtain 2N nonlinear algebraic
equations with 2N unknowns:

r2
j = λj +

K

dj

N∑
k=1

Ajk
rk
rj

cos Φjk −K, (6a)

Ω = ωj − γjr2
j +

K

dj

N∑
k=1

Ajk
rk
rj

sin Φjk, (6b)

for j = 1, · · · , N , where Φjk = δk− δj−Ωτ . Taking δ1 =
0, which can be done without loss of generality, the solu-
tion of Eqs. 6a and 6b determines δ2, · · · , δN , r1, · · · , rN ,
and Ω. As shown in Fig. 2, when parameter heterogene-
ity is not too large, this gives us frequency-synchronized
states that are close to the identical synchronization state
of the homogeneous system given by Eqs. 3 and 4.

We can analyze the stability of the frequency-
synchronized states through the variational equation
that governs the evolution of small deviations δrj(t)
and δψj(t) from those states. Taking zj(t) = rj [1 +
δrj(t)]e

i[Ωt+δj+δψj(t)], ηj = (δrj , δψj)
ᵀ, and η =

(ηᵀ
1 , · · · ,η

ᵀ
N )ᵀ, the variational equation can be written

as

η̇(t) = ⊕ (Jj −KPj)η(t) +K(DA⊗Rjk)η(t− τ), (7)

where Jj =
( −2r2j 0

−2γjr
2
j 0

)
, D = diag( 1

d1
, · · · , 1

dN
), Rjk =

rk
rj

( cos Φjk − sin Φjk

sin Φjk cos Φjk

)
, Pj = 1

dj

∑
k AjkRjk, and ⊕(Jj −

KPj) = diag(J1 −KP1, · · · ,JN −KPN ). Here, DA ⊗

FIG. 2. Normalized phase lags δj and amplitudes rj deter-
mined by Eqs. 6a and 6b for heterogeneous ωj . (A–B) Dis-
tribution of δj/2π (A) and rj/r0 (B) for σ = 0.06 estimated
from 1000 random realizations of heterogeneity. (C–D) Stan-
dard deviation of δj/2π (C) and rj/r0 (D) as functions of σ,
where each curve corresponds to an independent realization
of heterogeneity scaled by σ (10 realizations in total). The
network and the other parameters are the same as in Fig. 1.

Rjk is a 2N×2N matrix obtained by replacing each entry
Ajk/dj in DA with a 2× 2 block given by AjkRjk/dj .

Since all the matrices in Eq. 7 are time independent,
we can assume η(t) = η(0)ev`t and reduce the stability
calculation to determining the exponents v` that solve
the following characteristic equation:

det{⊕ (Jj −KPj) +K(DA⊗Rjk)e−v`τ − v`12N} = 0,
(8)

where ` indexes the solutions. The Lyapunov expo-
nents of Eq. 7 are given by the real parts of v`. One
Lyapunov exponent (referred to as Re(v0)) is identically
null and corresponds to the perturbation mode paral-
lel to the frequency-synchronization manifold (in which
the phases of all oscillators are subject to the same per-
turbation). The other Lyapunov exponents correspond
to perturbation modes transverse to the synchronization
manifold. The stability of the frequency-synchronization
state is determined by the sign of the maximum trans-
verse Lyapunov exponent (MTLE), which is given by
Λ = max`6=0{Re(v`)}.

Disorder Consistently Promotes Synchronization

We now examine systematically the phenomenon of
synchronization induced by random heterogeneity. In
particular, we address key questions underlying its preva-
lence. For example, what is the effect of the magnitude
of parameter mismatches? Do the results change signif-
icantly depending on which parameters are made het-
erogeneous? Most importantly, can different realizations
of random heterogeneity consistently induce synchroniza-
tion?

In Fig. 3, we start with the same homogeneous system
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FIG. 3. Statistics on the synchronizing effect of random oscillator heterogeneity for systems with (A) nonidentical ωj , (B)
nonidentical λj , and (C) nonidentical γj . For each upper panel, we generate 1000 realizations of random heterogeneity in the
corresponding parameter and then, for each realization, calculate R1(σ) and Λ(σ) of the frequency-synchronized state as σ is
increased from 0 to 0.15. The filled green curves show the percentage of realizations that successfully stabilize a frequency-
synchronized state with order parameter R1 > 0.7, which are validated by direct simulations shown as purple circles. To
visualize the differences between different realizations and their characteristics as an ensemble, each lower panel shows Λ(σ)
for 100 independent realizations of random heterogeneity. The stable portions are highlighted in blue. The network and other
parameters are the same as in Fig. 1.

as in Fig. 1A and introduce heterogeneity in {ωj}, {λj},
and r2

0{γj}, respectively. (Here, the factor r2
0 is intro-

duced to scale σ for γj , because the influence of γj in
Eq. 2 is scaled by the square of the oscillation amplitude.
The constant r0 can be found by solving Eqs. 4a and 4b
for the corresponding homogeneous system.) In all cases,
the standard deviation is σ and the mean is taken to be
the same as the corresponding parameter in the homo-
geneous system. For each realization of heterogeneity, as
σ increases from zero, the identical synchronization state
progressively changes into a phase-locked state with large
order parameters. The stability of this state is measured
by Λ(σ), which we obtain by solving Eq. 8 for each re-
alization of heterogeneity. The filled green curves in the
upper panels show the probability that synchronization
is stabilized by random heterogeneity in each parameter.
These results are verified by direct simulations of Eqs. 1
and 2 for various σ, shown as purple circles. In the lower
panels, we plot Λ(σ) for a representative subset of real-
izations of heterogeneity in each parameter, visualizing
their impact on stability as an ensemble.

One can see from Fig. 3 that there is always a sweet
spot of optimal heterogeneity at an intermediate value of
σ. Around that sweet spot, the green curves stay very
close to 1, indicating that intermediate levels of hetero-
geneity can consistently induce synchronization, largely
independent of its particular realization. It is interesting
to note from the lower panels that small heterogeneity al-
ways improves stability under the conditions considered,
as reflected in the monotonic decrease of Λ(σ) for small σ.
Disorder can also consistently stabilize synchronization
when all three parameters are allowed to be heteroge-

neous, as demonstrated in SI Text and Fig. S3. Further-
more, we verified that the same effect can be observed
for a wide range of network sizes and different network
structures (see SI Text and Figs. S4–S6).

Disorder Can Be Better Than Design

It is important to compare the effect of random and
nonrandom heterogeneities. When the heterogeneity is
purposively designed, Stuart-Landau oscillators can syn-
chronize identically (i.e., all phase differences are identi-
cally zero and all amplitudes are equal) even though they
are nonidentical. This is most easily seen from Eqs. 4a
and 4b, whose solution remains invariant under the trans-
formation ω → ω + h, γ → γ + h/r2

0 for any h ∈ R.
Thus, any given Stuart-Landau oscillator belongs to a
continuous family of nonidentical Stuart-Landau oscilla-
tors parameterized by h, within which the oscillators can
synchronize identically with each other. Moreover, as
shown in Ref. [25], mixing different oscillators from the
same family can stabilize identical synchronization that
would otherwise be unstable.

By designing heterogeneity to preserve identical syn-
chronization, can we do better than by relying on ran-
dom heterogeneity? Once again we start with the ho-
mogeneous system studied in Figs. 1 and 3. The oscilla-
tors are then made heterogeneous by sampling from the
identically synchronizable family, with h drawn from a
Gaussian distribution. More concretely, ωj = ω+hj and
γj = γ+hj/r

2
0, where {hj} has standard deviation σ and

mean zero. This can be seen as a special subset of os-
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FIG. 4. Comparing systems with random and designed het-
erogeneity in {ωj} and {γj}, where the latter preserves a
common orbit among heterogeneous oscillators. (A) Average
MTLE of systems with random heterogeneity (purple line)
and designed heterogeneity (orange line). The shades indicate
the standard deviation among 1000 independent realizations.
Designed heterogeneity stabilizes synchronization when σ is
large, but fails to do so for intermediate σ, where random het-
erogeneity is effective. (B) Magnification of the marked por-
tion of A, highlighting the effectiveness of random heterogene-
ity of intermediate magnitude. (C) Average order parameters
of systems with random and designed heterogeneities. Each
data point is averaged over 1000 independent realizations of
heterogeneity and also averaged over time for steady states
that are not frequency synchronized. The network and other
parameters are the same as in Fig. 1.

cillators with random heterogeneity in both parameters
{ωj} and {γj}, the crucial difference being that ωj − ω
and γj − γ are not independent for the designed hetero-
geneity.

In Fig. 4, we compare the ensemble average MTLE and
order parameters between systems with random hetero-
geneity and systems with designed heterogeneity on the
same parameters. Consistent with Fig. 3, random het-
erogeneity is most effective for intermediate magnitudes
σ, ranging from 0.05 to 0.1. On the other hand, designed
heterogeneity is effective for much larger σ, from about
0.4 to 0.6, which may be interpreted as a consequence
of the identical synchronization solution being preserved
in this case. Remarkably, no system with designed het-
erogeneity is stable within the range for which random
heterogeneity is effective. This implies that at interme-
diate magnitude, random heterogeneity can outperform
heterogeneity specifically designed to preserve identical
synchronization.

Insight From a Minimal System

To gain further understanding, in Fig. 5 we focus on
a minimal system formed by three nonidentical Stuart-
Landau oscillators coupled through a directed ring net-
work. The jth oscillator has parameters {λj , ωj , γj} =
{λ, ω + h, γ + (h + ∆j)/r

2
0}, with the constraint that∑3

j=1 ∆j = 0. The parameter h is introduced to vary
the synchronization stability of the homogeneous system
without altering the synchronous solution. This enables
us to investigate all possible realizations of heterogeneous
γj for different levels of instability by sweeping the ∆1–
∆2 plane.

In Figs. 5A and B, the origin is the only point corre-
sponding to a homogeneous system, and the differences
among oscillators increase as one moves away from the
origin along the radial directions. Stability analysis indi-
cates that regions of stability appear for intermediate lev-
els of oscillator heterogeneity, as shown in Fig. 5A (Λ < 0,
blue belts). The phase-locked state is unstable for weak
disorder (Λ > 0, red areas) and ceases to exist for strong
disorder (blank areas). A complementary perspective is
offered by direct simulations, as shown in Fig. 5B. Be-
cause order parameters averaged over time is a poor in-
dicator of coherence for systems with a small number of
oscillators, we quantify the level of coherence using the
minimum of R2 over a period of 10000 time units af-
ter the initial transient. For zero and small heterogene-
ity, the three oscillators are in an incoherent state with
minR2 ≈ 0. As σ is increased further, the oscillators first
settle into an approximate synchronization state with
minR2 ranging from 0.6 to 0.9 (light purple regions). The
level of coherence continues to improve until it plateaus
at minR2 ≈ 0.96 for phase-locked states (dark purple
regions), which correspond to the stable states marked
by the blue belts in Fig. 5A. Finally, once we cross the
outer boundary, synchrony is lost again and the value of
minR2 falls back to approximately 0. This incoherence-
coherence-incoherence transition is illustrated in Fig. 5C
with representative trajectories from each stage. It is
worth noting that even before the phase-locked state is
fully stabilized, disorder can already induce approximate
synchronization states with well-defined rhythms, as il-
lustrated by the second trajectory.

Figure 5 demonstrates two competing effects of dis-
order: when heterogeneity is too small, it cannot tame
synchronization instability; when it is too large, it de-
stroys the synchronization state. In other words, there is
a trade-off between synchronizability and stability, and
stable synchronization naturally emerges at intermediate
levels of disorder. Another interesting observation is that
the stable belts are contiguous in all cases in Fig. 5A and
completely surround the unstable regions in the middle,
which explains why intermediate levels of heterogeneity
can consistently stabilize synchronization. It also demon-
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FIG. 5. Synchronization among three nonidentical Stuart-Landau oscillators coupled through a directed ring network. (A)
MTLE of the phase-locked state in the ∆1–∆2 plane. The homogeneous system lies at the origin of each panel, and its instability
increases as h is changed from −1.1 to −1.7. For small ∆1 and ∆2, heterogeneity is not strong enough to tame the instability
(red regions). At intermediate ∆1 and/or ∆2, a stability belt emerges (blue regions), demonstrating the stabilizing effect of
heterogeneity. When heterogeneity becomes too strong, however, the phase-locked solution no longer exists (blank regions). (B)
Minimum of the order parameter R2 over 10000 time units in a steady state. As one moves along the green line for increasing
σ, we observe the incoherence-coherence-incoherence transitions predicted by the stability analysis. (C) Time evolution of yj
(colored by oscillator) for representative states corresponding to the parameters marked by the dots in the left panel in B. In
all panels, the other parameters are λ = 0.1, ω = 1, γ = 0, K = 0.3, and τ = 1.8π.

strates that the effect is robust against increasing insta-
bility (controlled by h) in the homogeneous system.

Electrochemical Experiments

A natural question at this point is whether the de-
scribed phenomenon is robust and general enough to be
observed in real systems. To provide an answer, we per-
formed experiments using chemical oscillators based on
the electrochemical dissolution of nickel in sulfuric acidic
media [26]. The experimental apparatus consists of a
counter electrode, a reference electrode, a potentiostat,
and N nickel wires submerged in the same sulfuric acidic
media, each attached to a resistor (Fig. 6A). At con-
stant circuit potential (V0 = 1.24 V relative to the ref-
erence electrode) and with the resistance of resistors set
to ξj = 1.06 kohm, the dissolution rate of each nickel
wire, measured as its current, exhibits periodic oscilla-
tions [37]. The oscillatory dynamics originate from a
Hopf bifurcation at V0 = 1.07 V. Compared to the circuit
potential used in some previous studies [33], the system
here is farther away from the bifurcation point. When the
wires are placed sufficiently far from each other, the cur-
rent oscillations do not show noticeable synchronization,
confirming that the interactions through the solution are
negligible. Coupling among the wires can be introduced

through external feedback [26, 33], in which the circuit
potentials of the wires Vj(t) are set based on the mea-
sured currents Ij(t) as

Vj(t) = V0 +
K

dj

N∑
k=1

Ajk [Ik(t− τ)− Ij(t)] (9)

for j = 1, · · · , N , where K and τ are the experimen-
tal coupling strength and delay, respectively. Here, we
investigate N = 16 wires with oscillatory currents ar-
ranged in an undirected 4-by-4 lattice network with pe-
riodic boundary conditions, which can be seen as a
2-dimensional variant of the ring networks considered
above. For additional details on the experimental setup
and procedure, see Materials and Methods.

For relatively strong coupling (K ≈ −0.40 V/mA) and
no delay (τ = 0 s), the system exhibits in-phase synchro-
nization [38]. Similar in-phase synchronization exists for
large delay (τ ≈ 2.4 s) that corresponds to the mean
period of the uncoupled oscillations. When τ is set to
≈ 1.2 s (about half of the oscillation period), the system
exhibits a two-cluster state in which every other element
on the grid is in phase, and the neighboring elements are
in anti-phase. When the delay is set between these two
regions (τ ≈ 1.75 s), the system exhibits a desynchro-
nized state. Nominal oscillator heterogeneity was intro-
duced by setting the resistance of each oscillator to a
different value ξj while keeping the mean resistance fixed
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FIG. 6. Electrochemical oscillator experiments showing that random heterogeneity promotes synchronization. (A) Diagram
illustrating the setup of the experimental system, where C is the counter electrode, R is the reference electrode, and W are the
working electrodes. (B) Time-averaged synchronization error 〈e〉 as a function of the nominal oscillator heterogeneity σ for one
realization of heterogeneous resistances. (C) Time-averaged synchronization error 〈e〉 vs. measured oscillator heterogeneity ∆,
where each dot represents a different realization of heterogeneous (orange) and homogeneous (blue) systems for σ = 0.13 kohm
and σ = 0 kohm, respectively.

to ξ = 1.06 kohm. The level of nominal heterogeneity is
measured by the standard deviation σ among all ξj .

First, we randomly picked one realization of hetero-
geneity and experimentally tested its effect on the col-
lective dynamics at different levels of heterogeneity σ.
Each experiment was initiated close to the in-phase syn-
chronization state and consisted of running the system
for 600 seconds. The level of coherence was measured
by the synchronization error e(t), defined as the stan-
dard deviation among the currents Ij at time t. In this
case, the synchronization error is a more natural mea-
sure of coherence than order parameters because the ex-
perimental system is not in the close vicinity of a Hopf
bifurcation and the dynamics of the amplitude variables
are oscillatory. (Nevertheless, we verified that the order
parameters of the phases extracted using either Hilbert
transform or peak detection algorithms give similar re-
sults as the ones obtained using the synchronization er-
ror.) The experimental results summarized in Fig. 6B
reveal a well-defined minimum of the average synchro-
nization error 〈e〉 (averaged over the last 200 seconds of
each experimental run) for an intermediate level of nom-
inal heterogeneity, σ = 0.1 kohm. This optimization of
synchronization at intermediate levels of heterogeneity is
consistent with what we observed numerically for delay-
coupled Stuart-Landau oscillators.

Unlike the idealized systems used in simulations, ex-
perimental systems come with unavoidable imperfections
and uncertainties. As a result, the electrochemical oscil-
lators in our experiments have slightly different dynamics
even when the resistances are all set to the same nomi-
nal value. These relatively small inherent heterogeneities
can arise because of unavoidable differences in the metal
wires (e.g., in composition and size) and surface condi-
tions (oxide film layer thickness, localized corrosion, etc.).
To account for such inherent heterogeneity, we use peak

detection algorithms [39] to extract the natural frequency
and amplitude of each uncoupled oscillator, and we use
that information to calculate the measured oscillator het-
erogeneity ∆ for both systems with homogeneous ξj and
systems with heterogeneous ξj . Here, ∆ = ρT+ρA, where
ρT (ρA) is the standard deviation of the oscillation peri-
ods (amplitudes) of the uncoupled oscillators normalized
by the mean. (For additional details on the data anal-
ysis protocol, see Materials and Methods.) In Fig. 6C,
we show results for five sets of independent experiments.
Each experiment corresponds to a different realization
of heterogeneous resistances (for σ fixed at 0.13 kohm),
and of the homogeneous system (corresponding to σ = 0
kohm). It can be seen that when uncoupled, all hetero-
geneous systems have a much higher measured oscillator
heterogeneity ∆ than the homogeneous systems. In con-
trast, when coupled, the heterogeneous systems achieve
significantly better coherence than the homogeneous sys-
tems, which is reflected by a consistently smaller 〈e〉.

The striking difference between the behavior of the
homogeneous and heterogeneous systems is further vi-
sualized in Fig. 7. There, we compare the dynamics in
the first (σ = 0 kohm) and the fifth (σ = 0.13 kohm)
data points from Fig. 6B. The time series of the homoge-
neous system (Fig. 7A) is very much incoherent compared
to that of the heterogeneous system (Fig. 7B). Accord-
ingly, the heterogeneous system exhibits a smaller syn-
chronization error and a more regular rhythm, as shown
in Figs. 7C and D. In SI Text and Fig. S7, we show that
the same phenomenon can be observed when random
shortcuts are added to the 4-by-4 lattice (which creates
a small-world network [40]), suggesting that our conclu-
sions extend to networks with heterogeneous degrees.
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FIG. 7. Comparison between the dynamics of homogeneous and heterogeneous systems in the electrochemical oscillator ex-
periment. (A) Time series of the currents in the homogeneous system, which shows desynchronized dynamics. (B) Time
series of the currents in the heterogeneous system, showing that they remain synchronized throughout the experiment. (C–D)
Evolution of the synchronization error e (C) and mean-field current (D) for the two systems. In all panels, we show the last 50
s of trajectories of 600 s, initialized close to a synchronized state for σ = 0 kohm (homogeneous system) and σ = 0.13 kohm
(heterogeneous system).

DISCUSSION

It is often challenging, if not impossible, to completely
eliminate component mismatches in oscillator networks.
Our results suggest that, rather than trying to erase these
imperfections (often to no avail), one may instead be
able to take advantage of them to promote synchroniza-
tion required for the system to function. Indeed, our
theory, simulations, and experiments consistently show
that synchronization can often be stabilized by interme-
diate levels of random oscillator heterogeneity. The fact
that no fine-tuning of the heterogeneity profile is needed
to induce synchronization can be valuable for stabiliz-
ing synchronization in both technological and biological
systems. For example, it is often important to gener-
ate high-power output of coherent light in laser systems.
Semiconductor diode lasers are of interest in many ap-
plications due to their low cost, portability, and ease of
fabrication, but a single diode laser typically generates
an output power of no more than a few watts [41]. It
is thus desirable to couple many diode lasers together
and exploit their frequency synchronization to increase
the emission power [42]. While in practice no two lasers
are perfectly identical, this study indicates that it might
be possible to boost the performance of coupled laser ar-
rays by harnessing rather than eliminating the existing
mismatches.

In physiology, many important rhythmic processes also
depend on the coordination and coherence among a di-
verse population of cells [43]. The heartbeat, for example,
is generated by the synchronized activity of thousands of
cardiac pacemaker cells in the sinoatrial node [44, 45],
whereas the sleep-wake cycle is regulated by the mutual
entrainment of circadian cells in the suprachiasmatic nu-

cleus [46–48]. Our findings thus raise the question of
whether the heterogeneity among pacemaker or circadian
cells is a limitation of the biology, or, instead, a feature
selected for by evolution to promote synchronization and
stabilize vital rhythms in living organisms. On the other
hand, in situations in which synchronization is undesir-
able, such as epilepsy [49], the effect demonstrated here
can potentially explain why these pathological states ap-
pear to be persistent and difficult to suppress despite the
inherent diversity of neuronal populations. This, in turn,
might lead to new ideas for therapeutic interventions.

The effect of disorder is also a recurring theme in con-
densed matter physics [50]. For example, exotic materi-
als such as topological insulators have attracted a vast
amount of attention over the past decade [51, 52]. A
defining property of topological insulators is the existence
of edge states that are protected by time-reversal symme-
try, which makes the states robust to weak disorder. In
the context of oscillator networks, we have been able to
go one step further and identify systems and parameter
regions for which synchronization is not only immune to
disorder, but also enhanced by it.

There are also interesting similarities and differences
between the phenomenon described here and noise-
induced synchronization [53, 54]. It is well established
that spatially correlated (e.g., common) noise can facili-
tate synchronization [55–57], even if the noise is tempo-
rally uncorrelated (i.e., white). In contrast, the disorder
we consider here is spatially uncorrelated and temporally
quenched. Understanding how the spatial and tempo-
ral features of disorder and noise influence a system’s
collective dynamics has been an ongoing research effort
and a source of new insights. For example, it has been
shown that quenched disorder can induce coherence res-
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onance in driven bistable systems [20] and that spatially
uncorrelated noise can outperform common noise in in-
creasing coherence when oscillators are nonidentical [58].
Conversely, it has also been shown that quenched dis-
order can mitigate desynchronization instabilities caused
by noise [59].

Finally, it is instructive to reflect on three salient char-
acteristics of the results established here. First, oscil-
lator heterogeneity can stabilize frequency synchroniza-
tion states that are similar to the otherwise unstable
states observed in the absence of heterogeneity. This is
important because it shows that the stability provided
by heterogeneity does not come at the price of quali-
tatively changing the nature of the dynamics. Second,
this stabilization is achieved with high success rate us-
ing random parameter heterogeneity, making it easy to
implement in real-world systems. Third, the effect can
be observed for a wide range of network structures, in-
cluding networks in which all oscillators are identically
coupled. The latter is significant because it shows that
the stabilizing effect of oscillator heterogeneity is more
fundamental than just counterbalancing instabilities that
could have been caused by heterogeneities in the network
structure. Thus, our results reveal an important avenue
through which system disorder can give rise to emergent
dynamical order. Future studies further exploring the
relation between system disorder and dynamical order
will undoubtedly deepen our understanding of collective
behavior and of new means to stabilize and control the
dynamics of complex systems.

MATERIALS AND METHODS

Numerical Procedure. Delay-coupled Stuart-
Landau oscillators were simulated by employing the
dde23 integrator in MATLAB, with the relative and ab-
solute tolerances both set to 10−4. To initialize an oscil-
lator network, we introduce a random perturbation of the
order of 10−1 to the synchronization state at t = 0. Each
system was then evolved for 104 time units, which is long
enough for the oscillators to settle into either a coherent
state (if synchronization is stable) or an incoherent state
(if synchronization is unstable). Our code for simulating
delay-coupled Stuart-Landau oscillators can be found at
https://github.com/y-z-zhang/disorder_sync.

Experimental Protocols. The experiments were
performed using a standard three-electrode cell with a
platinum counter, a Hg/Hg2SO4/sat.K2SO4 reference,
and a nickel array working electrode. The electrolyte
was 3M H2SO4 at 10 °C. The electrode array consisted
of sixteen 1 mm diameter nickel wires with a spacing
of 3 mm. The wires were embedded in epoxy, so that
only the wire ends were exposed to the electrolyte. Be-
fore the experiments, the electrode array was polished
with a series of sandpapers. A multichannel potentiostat

(Gill-IK64, ACM Instruments), interfaced with a real-
time LabVIEW controller [60], was used to measure the
current Ij(t) and set the potential Vj(t) of the jth wire
according to Eq. 9 at a rate of 200 Hz. Throughout the
experiments we set the circuit potential to V0 = 1.24 V.
Without heterogeneity, the individual resistors were set
to 1.06 kohm. Heterogeneity was introduced by setting
the individual resistors to different nominal values drawn
from a normal distribution while keeping the mean resis-
tance fixed at 1.06 kohm. To avoid accidentally balancing
out the inherent heterogeneity, only random realizations
of nominal heterogeneity that had a negligible correla-
tion with the natural frequencies of the unperturbed os-
cillators were used (we required that the absolute value
of the correlation coefficient be smaller than 0.2). The
coupling delay τ was set to 75% of the mean natural
period of the oscillations, which corresponds to τ in the
range of 1.50 s to 1.75 s throughout the experiments. The
coupling strength K was set to values about 10% larger
in magnitude than the desynchronization threshold (be-
tween −0.48 and −0.40 V/mA in the reported experi-
ments).

Data Analysis Protocols. The peak detection algo-
rithm finds all local maxima by comparing the neigh-
boring values in a time series. The mean of the de-
tected peaks is taken as the oscillation amplitude and the
mean distance between consecutive peaks is the oscilla-
tion period. Our data analysis scripts and experimental
data are available at https://github.com/y-z-zhang/

disorder_sync. By following the Jupyter Notebooks
included in the GitHub repository, one can explore the
data interactively and reproduce the results presented in
Figs. 6, 7 and S7.
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