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The second quantum revolution has been built on a foundation of fundamental research at the intersec-
tion of physics and information science, giving rise to the discipline we now call quantum information
science (QIS). The quest for new knowledge and understanding drove the development of new exper-
imental tools and rigorous theory, which defined the road map for second-wave quantum technologies,
including quantum computers, quantum-enhanced sensors, and communication systems. As technology
has matured, the race to develop and commercialize near-term applications has accelerated. In the cur-
rent regime of Noisy Intermediate Scale Quantum (NISQ) devices [J. Preskill, Quantum 2, 79 (2018)],
the continued necessity of basic research is manifest. Under what conditions can we truly harness quan-
tum complexity and what are its implications for potential useful applications? These questions remain
largely unanswered and as the QIS industry ramps up, a continuous feedback between basic science and
technology is essential. In this Perspective, I review how curiosity-driven research has led to radical new
technologies and why the quest for basic understanding is essential for further progress.
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I. INTRODUCTION

The end of the 20th century saw the convergence of two
of its major intellectual achievements: quantum mechan-
ics and information science. This marriage gave birth to
the field of quantum information science (QIS), which
has ignited a “second quantum revolution” that promises
next-generation information-processing technologies that
can far outperform current systems based on technologies
that arose in the “first quantum revolution,” e.g., semicon-
ductors and lasers. Today, the acceleration of the second
quantum revolution is palpable. In the United States, the
passage of the National Quantum Initiative (NQI) Act of
2018 [1] codifies a call to arms, with the goal of expanding
the number of students, educators, researchers, and practi-
tioners with training in QIS, with a particular eye toward
increasing the quantum workforce. Similar programs have
been established worldwide, including the Unite Kingdom
National Quantum Information Programme, the European
Union Flagship on Quantum Technologies, and the Chi-
nese National Laboratory for Quantum Information Sci-
ences. A phase transition has occurred in the private sector,
with rapid new investments in the development of quantum
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technology at all levels of industry, ranging from tech-
nology giants through defense contractors to startups. The
competition for talent is heating up, with academics and
industry now battling to attract QIS-trained personnel. The
revolutionaries are marching!

Given this rapid acceleration, it is useful to revisit
how we got here and what will be necessary to fulfill
the promises of the revolution. QIS arose from curiosity-
driven research that established the foundation of the field.
Questions at the foundations of quantum mechanics, which
had been put to rest by most physicists in the 1930s, were
revisited starting primarily in the 1960s and put to the test
in the 1970s, 1980s, and 1990s. Is quantum randomness
explained by local hidden variables that encode elements
of reality [2,3]? Why are superposition and interference of
macroscopic states not observed [4]? Do quantum jumps
occur [5—10]? How does a quantum measurement occur in
continuous time [10—12]? While the formalism of quan-
tum mechanics was well established by the 1920s, its full
implications were not understood. This new understanding
grew out of a series of new (and/or re-examined) con-
cepts including entanglement [2,3,13—16], contextuality
[17—-19], negativity of quasiprobabilities [20—22], deco-
herence [4], no-cloning [23], and quantum trajectories
[11,12,24,25].

Putting these concepts to the test in the laboratory was
a new form of fundamental research, different from the
search for new states of condensed matter or new physics
beyond the standard model. The ability to control indi-
vidual quanta of fields and matter [26,27] required new
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ground-breaking experimental tools such as laser cool-
ing and trapping [28], nonclassical light sources such as
squeezed light [29] and entangled photons [30], and cavity
QED [31-33]}-—<ircuit QED [34]. While such experiments
did not cause us to rewrite the rules of quantum mechanics,
they did create a new framework for thinking about them.
What is the power of nonlocality in quantum mechan-
ics [35,36]? In what sense is the quantum state a state
of knowledge and how should we update the state condi-
tioned on the knowledge [37]? How is quantum coherence
lost when going from the microscopic to the macroscopic
[4,38]? Such a new framework is important because it
opens our minds as to what is possible in principle and how
we might achieve it. Additionally, experimental techniques
were now in place to tackle new challenges.

The other pillar of QIS, information science, also stands
on a foundation of fundamental research. Turing intro-
duced Turing machines in the context of research into
the foundations of mathematics in order to prove the
uncomputability of certain functions [39]. Together with
Church [40], they abstracted computers from the machines
themselves, to state that all reasonable models of compu-
tation were essentially equivalent and could be mapped
to a universal Turing machine (the Church-Turing the-
sis). Shannon took this to an even more radical extreme.
In his revolutionary work, he abstracted all of informa-
tion from the machines that process it, with the invention
of the bit and a definition of information in terms of the
observer and their “surprise” from what they learn [41].
Information is subjective! The foundation of information
theory was thus divorced from physics and machines.
But the role of physics in the foundation of informa-
tion science was lurking in the background, starting with
thermodynamics. The mere fact that Boltzmann’s entropy
and Shannon entropy contain the same mathematical for-
mula — ). p;log p; (modulo Boltzmann’s constant) gives
a strong indication of the intimate relationship between
the two. This was made rigorous by Jaynes, who showed
how statistical mechanics should be considered as a the-
ory of Bayesian statistical inference rather than a theory of
physical law [42].

Physics reasserted itself into information theory with
the resolution of the Maxwell demon paradox. The Szi-
lard engine demonstrated that the process through which
the demon extracted information would have thermody-
namic consequences [43]. The complete resolution was
put forward by Bennett [44] through Landauer’s princi-
ple [45]. Unlike Szilard’s engine, entropy need not be
increased through the demon’s method of gaining infor-
mation, which could be done reversibly, but it will be
increased when the information is erased on the demon’s
finite tape. Information processing does indeed depend on
the physics of the device that processes the information. In
this sense, information is physical!

The thermodynamics of computation thus played a cen-
tral role in the foundations of QIS. As shown by Bennett
and others, computation itself could, in principle, be done
reversibly, with no thermodynamic cost. This led to the
first suggestion by Benioff that a closed reversible quan-
tum system could perform a computation [46]. Benioff’s
computer, however, simulated a (reversible) classical Tur-
ing machine. Soon after, Feynman [47] and Deutsch [48]
(no relation) realized that a fully quantum Turing machine
could have power beyond a Turing machine obeying clas-
sical physics. The potential of a quantum computer to solve
problems more efficiently than a Turing machine would
rock the foundation of the extended Church-Turing thesis
[49].

The potential promise of quantum computing repre-
sents one amongst many of the promises of the second
quantum revolution. Quantum mechanics was often char-
acterized as a paler version of classical mechanics, due to
its intrinsic uncertainty and stochasticity, in contrast with
the clockwork precision and determinism of Newtonian
trajectories. Quantum mechanics was viewed as a nagging
parent always telling you what you can’t do. You can’t
know a particle’s position and momentum at the same
time. You can’t measure a system without disturbing its
state. The foundational work of the latter 20th century
showed that this negative characterization could not be
further from the truth. Quantum mechanics is an enabler.
The inability to clone a quantum state [23] can make
encryption unconditionally secure, be it for bank notes
[50] or quantum key distribution for communication chan-
nels [51]. Quantum nonlocality allows for teleportation
of information between distant parties [52]. The quantum
version of Fisher information dictates the ultimate noise
floor for parameter estimation [53] at the heart of preci-
sion sensing and metrology; nonclassical probes allow us
to beat the standard limits imposed by uncorrelated corpus-
cular quanta [54,55]. And quantum interference between
an exponentially large number of outcomes in a quantum
register can enable algorithms that we expect can solve
problems much more efficiently than those believed to be
solvable on a Turing machine, e.g., Shor’s algorithm for
integer factoring [56].

The story of the birth of QIS is one of the greatest suc-
cess stories of interdisciplinary science. The foundation
of physics and information theory are fundamentally con-
nected. Today, we examine whether quantum physics itself
should be understood as essentially a theory of Bayesian
statistical inference [37], in the same way that Jaynes
considered classical statistical physics [42]. At the same
time, information cannot be completely abstracted from
physics. The ability to process information, be it to esti-
mate parameters (sensing or metrology), to communicate
or hide messages, or to compute functions, is intrinsically
tied to the physics of the device that does the job. Quantum
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physics enables a broader class of devices that potentially
have more power than classical information processors.

But how do we harness this power? While we believe
that quantum mechanics governs all of physics, only a sub-
set of devices can access its full potential. Indeed, from
the earliest days, skeptics rightfully questioned whether a
quantum computer could supersede the power of a clas-
sical Turing machine, even in principle, as such a device
was essentially analog and would be exponentially sensi-
tive to a continuum of control errors [57], quantum chaos
in many-body dynamics [58], and, critically, exponentially
fast decoherence due to interaction with the environment
[59,60]. These challenges led Haroche and Raymond to
famously muse whether quantum computing was a dream
for theorists but a nightmare for experimentalists, because
an exponential speed up would certainly be associated with
exponential complexity in implementation [61].

The dream is still alive. The fact that, in principle, quan-
tum coherence could be maintained for an arbitrarily long
time and with only a polynomial resource overhead is one
of the most profound results of QIS, as first shown by
Shor [62]. It was a huge surprise to 20th-century physi-
cists that a system can be engineered to protect the wave
function from “collapsing” in the presence of a noisy envi-
ronment and that quantum interference could be extended
into the macroscopic world. This result took interdisci-
plinarity and a new perspective, which revolutionized our
understanding of quantum mechanics. The rigorous the-
ory of quantum error correction and fault tolerance sets
the goalposts for universal quantum computing [63—66].
The challenges are substantial but in principle possible and
there is great progress being made every day in signif-
icant hardware improvements, advanced quantum codes,
and techniques for fault tolerance such as flag qubits [67],
bosonic encoding [68], and single-shot error correction
[69]. Experiments in the Schoelkopf and Devoret groups
with superconducting qubits coupled to microwave cavi-
ties have made first steps in demonstrations of true error
correction, which reduce the rate of error below the native
error rate [70,71], and the first fault-tolerant operation on
a logical qubit has been demonstrated in the Monroe and
Brown groups with trapped atomic ions [72].

Today, we live in the era of Noisy Intermediate Scale
Quantum (NISQ) information processors [73]. Substan-
tial improvements in experimental techniques and hard-
ware have enabled researchers and developers to scale
up systems with 10—-100 qubits to have relatively high-
fidelity operations. What lies at this “entanglement fron-
tier” [74]? The development of near-term quantum tech-
nologies based on NISQ systems is one of the hottest top-
ics today, with potential applications including quantum
simulators of many-body physics [47,75—83], variational
quantum eigensolvers (VQEs) for quantum chemistry and
electronic structure [84], quantum optimizers [85—87], and
quantum machine learning [88]. However, because of their

intermediate scale, these systems are essentially analog
machines and we cannot employ the full machinery of
fault-tolerance error correction to digitize quantum infor-
mation and protect it from inevitable noise. Thus, to deliver
on these technologies, continued basic research is essen-
tial. How much quantum complexity can we truly generate
with a NISQ device and what are the conditions that must
be reached to harness this complexity for a true quantum
advantage? To answer these questions, a new round of
curiosity-driven research is in order. In this Perspective, I
share further examples about how our drive to understand
the fundamentals led to the foundations of technology
and where some of the mysteries remain that demand our
curiosity.

I1. NISQ COMPUTING: DREAM OR
NIGHTMARE?

A. Classical computing: digital versus analog

The power of computation depends on the physics of
the machine that carries out the computation. This is QIS’s
challenge to the extended Church-Turing thesis [49]. In
thinking about models of computation, we typically divide
them into two classes, analog and digital. The distinction
between these two models is not always clear cut and vari-
ous hybrid models straddle these categories. The situation
becomes even murkier in the context of quantum comput-
ing, as we will see below. For the purpose of discussion
here, I make a strict division according to the following
definition:

Definition: A model of computation is categorized as dig-
ital if the state space of acceptable inputs and outputs is
countable (discrete) and the set of allowed functions on the
input can implemented via a discrete set of steps (transi-
tions functions), where all possible functions are specified
by a discrete set of parameters. Otherwise, it is analog.

This definition requires both the digitization of the state
space and the specification of the dynamical map that per-
forms the computations. It also characterizes all hybrid
models as analog.

Traditional classical analog models of computation
describe machines that find solutions to differential equa-
tions in continuous time. An example is the General Pur-
pose Analog Computer (GPAC) constructed by Shannon to
describe mechanical and electrical differential analyzers as
programmable computers consisting of set of basic com-
ponents: adders, multipliers, integrators, amplifiers, etc.
[89]. Such models were called “analog” in that one physi-
cal system was the analog of the other; the same physical
equations of motion apply in both systems and the solu-
tions to these equations are measured in the analog device,
thus carrying out the computation. By the definition above,
such a model is an analog computation for multiple rea-
sons. The state space is the real numbers, the transition
function from input to output is specified in continuous
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time, and there is a continuum of possible components,
each specified by real-number parameters. Hybrid models,
such as recurrent neural networks [90] and the Blum-Shub-
Smale model [91] (a RAM machine with sequential gates
in which a register can store an arbitrary real number with
infinite precision) are analog machines; they are discrete in
time but involve a continuous state space and a continuous
set of dynamical maps.

The Turing machine is the quintessential digital model
of a classical computer [39], equivalently realizable in
the von Neumann architecture through a universal logic
gate model for implementing Boolean functions over a
state space of n bits [92]. Every digital model is an
abstract model; all physical computers have a funda-
mentally analog nature. The physical input-output map
is implemented in a dynamical process that occurs in
continuous time. Furthermore, in the context of classi-
cal physics, the phase space of possible states of particle
and field degrees of freedom is continuous. Digitiza-
tion is implemented by coarse graining, discretizing the
state space, e.g., thresholding the voltage on a transis-
tor in order to distinguish 0 and 1 as a two states of
bit. Logic gates are obtained by coarse graining the pos-
sible continuous analog evolutions into a discrete finite
set.

While all digital computers that are governed by clas-
sical physics are considered to be equivalent according to
the extended Church-Turing thesis [49], the case of analog
classical computers is less clear cut. Various analog models
can exhibit super-Turing decidability [93,94]. Moreover,
analog models can have different complexity [95,96]. Ver-
gis et al. showed that a model of computation implemented
with mechanical gears could solve 3-SAT, a NP-complete
problem [97]. Similarly, the problem of finding Steiner
trees in graph theory is NP hard but can be extracted from
the minimum energy configuration of soap bubbles in a
certain geometry [98]. Such computational power derives
from unphysical resources built into the analog model,
as we will see below. As Vergis et al. conclude, “if a
strongly NP-complete problem can be solved by an ana-
log computer, and if P # NP, and if the Strong Church’s
Thesis is true, then the analog computer cannot operate
successfully with polynomial resources” [97]. Similarly,
minimization of energy configurations will generally take
exponential time in the size of the system. As Aaronson
suggests, “[P # NP, could] eventually attain the same sta-
tus as (say) the Second Law of Thermodynamics, or the
impossibility of superluminal signaling. In other words,
while experiment will always be the last appeal, the pre-
sumed intractability of NP-complete problems might be
taken as a useful constraint in the search for new phys-
ical theories” [99]. This conjecture implies that models
of analog classical computing that allow efficient solu-
tions to NP-hard problems must have a hidden physical
cost.

An ideal analog computer has intrinsic cost because the
inputs, outputs, and/or dynamical maps are specified in
the continuum. The computational power of such analog
devices is thus inextricably tied to the question of robust-
ness. All aspects of physical operation will be subject to
imperfection: state preparation (input), dynamics (transi-
tion function), and measurement (output). Physical sources
of error include finite temperature, imperfect calibration,
environmental background noise, and finite signal-to-noise
in measurement. All of these imperfections lead to uncer-
tainty and thus finite resolution, to which we can assign an
ideal state and the dynamics of the analog machine. A key
issue, thus, for the reliability of the analog computing is
how uncertainty propagates. This is particularly critical for
solutions to complex problems, where the dynamics can
be nonlinear, potentially chaotic, and thus hypersensitive
to noise. Digitization provides intrinsic robustness through
coarse graining. The state space and dynamical maps are
discretized and thus accommodate finite resolution. Small
noise and errors do not accumulate. When strong noise
occurs, outside the typical range tolerated by the coarse
graining, error-correction techniques can be employed to
recover ideal operation, without the loss of information or
hypersensitive noisy dynamics.

Are experimental imperfections and concomitant uncer-
tainty just a nuisance that can be solely attributed to human
error or does something more fundamental lurk here? As
von Neumann argued in his analysis of the effect of noise
on automata, “error should be treated by thermodynamical
methods, and be the subject of a thermodynamical theory,
as information has been, by the work of L. Szilard and
C. E. Shannon” [100]. I posit that the resources necessary
to achieve a required degree of fine graining (precision)
are an intrinsic resource for reliable computation, simi-
lar to Landauer’s principle [45]. The degree of precision
required will depend on the model of computation (analog
versus digital), with some models robust and others hyper-
sensitive. The hypersensitive models could require expo-
nentially large resources and thus their operation could be
rendered inefficient for some applications.

B. Quantum computing: digital versus analog

Are quantum computers digital or analog according
to the definition above? Landauer, famously skeptical of
quantum computing in the early days, considered a quan-
tum computer to be an analog device. In his 1996 paper
“The Physical Nature of Information,” he writes, “Quan-
tum parallelism: A return to analog computation. In quan-
tum parallelism we do not just use 0 and 1, but all their
possible coherent superpositions. This continuum range,
which gives quantum parallelism its power, also gives it
the problems of analog computation” [57]. In a fundamen-
tal way, quantum systems are both analog and digital—a
modern perspective of wave-particle duality—which is
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what makes them so special. Quantum states, e.g., pure
states of a qubit, live in a continuum on the surface of
the Bloch sphere but the information we seek to extract
is encoded in the countable (quantized) outcomes of a bit.
For a quantum computer consisting of n qubits, I take
the state space (the allowed inputs and outputs) to be n-
bits—classical information in, classical information out.
Intermediately, of course, the quantum state of the machine
can exist in a superposition of classical registers, but no
matter. This is just a recipe for determining the probabil-
ity of finding a given outcome; the quantum computer can
be digital but nondeterministic. Moreover, as discussed in
the classical context, all physical operations are intrinsi-
cally analog; digitization follows after coarse graining. The
dynamics occur in continuous time, governed by the time-
dependent Schrédinger equation, driven by devices that are
parameterized by continuous inputs that are imperfectly
calibrated. Measurements too, even ones that are envi-
sioned as projective onto a discrete computational basis,
actually occur in continuous time with continuous signals.
Quantum digitization thus depends on our ability to coarse-
grain these input and output signals and restrict the allowed
evolutions to a sequence of discrete steps from a finite
alphabet.

We may thus ask, which models of quantum compu-
tation are analog and which are digital according to the
Definition and what are the implications for computational
power? In categorizing these models, we can also distin-
guish between universal programmable quantum comput-
ers and special-purpose devices that can simulate (emulate)
a specific complex quantum system, such as condensed-
matter or field theory. Emulation is often referred to as ana-
log quantum simulation, the quantum generalization of the
classical analog integrator. Indeed, the term “analog” here
derives in part in that the dynamics of one quantum sys-
tem is an analogy to the other. Such a model is clearly also
analog according to the Definition, since it occurs in con-
tinuous time, with a continuum of Hamiltonian parameters.
Other continuous-time and thus formally analog models
include adiabatic quantum computing [85,101], quantum
annealing [102], and Hamiltonian quantum walks [103].

In most models of quantum computation, the input-
output map we seek is the unitary propagator U(T) =

T [exp {—i fOTH (t)}], where the Hamiltonian H(¢) =

Y i Mi(HH;, for some set an classical control waveforms
{Xr;($)} that modulate the set of control Hamiltonians
{H;(1)}. Different unitary models correspond to different
choices of Hamiltonian, e.g., adiabatic evolution or emu-
lation of a target Hamiltonian. For the quantum computer
to be universal, it must be “controllable,” meaning that for
any unitary map ¥ on the Hilbert space, given the control
Hamiltonians, there exist control waveforms {1;()} and
time 7 > T, such that U(T) = V' [104]; the minimum time
T, sets the so-called “quantum speed limit” [105]. For a

finite-dimensional Hilbert space, the set of unitary maps
form a Lie group. In that case, the system is controllable
if H; forms a set of generators of the corresponding Lie
algebra.

Two approaches to programming a universal quan-
tum computer can be characterized as the Hamiltonian-
control approach [106] (Lie algebraic) and the unitary-
control approach (Lie group). Hamiltonian control can be
achieved by through the tools of quantum optimal con-
trol, whereby the control waveforms {X;(¥)} are found
numerically through optimization of a cost function [104].
Such an approach is clearly not scalable, as optimiza-
tion requires numerically propagating the time-dependent
Schrodinger equation. Nonetheless, it allows for universal
programming, as has been demonstrated for moderate sys-
tem sizes [107]. It is, however, clearly an analog model,
with a continuum of possible control waveforms. Optimal
control is also an important tool for designing gates in the
model described below. Good analog control is critical for
implementing reliable digital components.

Unitary control is known as the “gate model,” in anal-
ogy to classical logical gates for Boolean functions. In this
model, the propagator is decomposed into a sequence of
unitary maps, typically acting on one or two subsystems at
a time. A universal gate set is a finite alphabet of unitary
matrices {U,} (gates) such that for any unitary map ¥ on
the Hilbert space and given an € > 0, there exists a finite
sequence of gates such that ||V — ]_[2] Uyl < e.

A gate-based quantum computer is often considered
synonymous with the “digital” quantum computing. Here
too, the categorization is more subtle. A true digital model
requires that the dynamics can be discretized into a finite
alphabet of gates. Only in this case can error syndromes be
diagnosed and corrected in a fault-tolerant manner. How-
ever, gate models are often considered that do not satisfy
this condition. For example, in quantum simulation, one
often employs a Trotter approximation to a desired prop-
agator, e TWHa+Hp) ~ (e*"‘”HAe*i‘”HB)N, where 8t = T/N
[75]. Each term in the Trotter expansion can be considered
to be a “gate.” For variable T and degree of Trotterization
N, however, the set of gates are chosen from a contin-
uum and thus, by definition, such a model is not digital.
Indeed, Siebere et al. showed that continuous Trotteriza-
tion can lead to quantum chaos for certain gate sequences
with too coarse a choice of §¢, which leads to a prolifera-
tion of errors and renders gate-model implementation of a
quantum simulation unreliable [108].

To be truly digital, the gate model must be digi-
tized. More precisely, we can consider the class of quan-
tum computers consisting of n qudits—subsystems in d-
dimensional Hilbert space—corresponding to the Hilbert
space H = C$". The state space of valid outputs is the
finite alphabet of n dits, Z;". Possible dynamical maps
(functions on the qudits) are in the continuous manifold

020101-5



IVAN H. DEUTSCH

PRX QUANTUM 1, 020101 (2020)

describing the Lie group SU(d"). In the digital-gate model,
we choose a finite universal gate set consisting of group
generators on each single qudit, plus any entangling two-
qudit unitary, taken pairwise to create a completly connect
graph between all qudits. According to the Solovay-Kitaev
theorem, any U € SU(d) in the continuum of unitary matri-
ces can be efficiently approximated by a finite sequence
in the discrete gate set of universal single-qudit maps
[109,110]. This digital-gate model thus satisfies the two
necessary conditions required to qualify as a digital model
of computation: a finite discrete state space and a finite dis-
crete set of transition maps that can efficiently approximate
any dynamical map that has an efficient description. As
such, this model admits the possibility of quantum error
correction and fault tolerance. Gate models that employ a
continuum of possible unitary gates are not digital; they
are analog and they cannot be error corrected.

Note that when the dimension of the Hilbert space of
each subsystem is infinite, one often refers to such mod-
els as “analog quantum computing,” as the state can be
envisioned as stored in an outcome that is a continuous
variable (CV), such as the quadrature of a bosonic mode
[68]. In such a case, one can coarse grain by encod-
ing a qudit in an oscillator, regaining the digital structure
[111]. Such encoding shows increasing promise, provid-
ing error resilience that leverages the particular hardware
capabilities [71,112].

Finally, other quantum models employ dissipation
and/or measurement to achieve a desired output. For exam-
ple, analog quantum simulation of equilibrium phases
of strongly correlated condensed matter using ultracold
atomic gases employs cooling (dissipation of entropy) to
reach complex states that encode the order parameter [113—
115]. The digital-gate model based on unitary dynamics
can be simulated in measurement-based quantum com-
putation (MBQC), where the dynamics is driven by a
sequence of single-qubit measurements acting on an ini-
tially entangled “resource state” in a basis chosen from
a finite alphabet [116]. In an appropriate geometry, this
digital MBQC model can be made fault tolerant [117].
Hybrid models that employ entangled-CV resource states,
qubit encoding, and MBQC offer unique approaches to
digitization, with a potential route to fault tolerance [118].

C. Quantum advantage in the NISQ era

A NISQ information processor is defined as a system
that is too noisy to achieve the thresholds and scaling
necessary for fault-tolerant quantum error correction but
that is sufficiently isolated from the environment and con-
trollable that it has the potential to achieve a “quantum
advantage” over a classical information processor. By this,
I mean the same as “quantum supremacy” in the manner
originally defined by Preskill: the demonstration of a par-
ticular computation of any kind that can be done faster with

a NISQ device than any current classical device [74]. This
is not a complexity theoretic definition and, of course, it
is a moving target that is hardware and software depen-
dent. Preskill laid out a number of examples where such an
advantage might be seen, including optimization [85—87],
quantum machine learning [88], and quantum simulation
[47,75-83]. Currently, hybrid quantum-classical models
in which measurements on quantum states are inputs to
a classical processor are seen as a promising arena for
NISQ implementations of algorithms such as the VQE
[84] and the quantum approximate-optimization algorithm
(QAOA) [119]. In addition, many workers have pursued
quantum simulation of many-body physics as a near-term
goal [76-83], both for studies of equilibrium phases of
strongly correlated matter and for studies of nonequilib-
rium dynamics. Progress on NISQ processors has been
steady, with improved hardware, new experimental and
theoretical advances, and error-mitigation strategies [120].

How much complexity can we harness in such NISQ
systems and what are the requirements for achieving a
quantum advantage? Is there an intermediate regime of
imperfect operation, not too noisy to be classical but not
too perfect to be fault tolerant, that allows us to transcend
the power of classical computers without the full power of
quantum error correction [121]? While case-by-case anal-
yses have been carried out, the general principles have not
been laid down. Unlike the threshold theorem for fault tol-
erance, we do not know where the goalposts are and what
we can achieve if we get there.

Importantly, all NISQ processors are fundamentally ana-
log quantum computers, by the Definition in Sec. II,
regardless of whether they employ continuous time evo-
lution or a finite sequence of gates chosen from a contin-
uum. Coherent errors arise due to imperfect specification
of the control Hamiltonian through, e.g., miscalibration,
inhomogenieties, and/or quasistatic background fields, all
specified by a continuum parameters. As Albash et al.
have shown, analog coherent errors can have catastrophic
effects on the performance of NISQ processors, e.g., in
“Ising machines,” in which the solution is encoded in the
ground state of an Ising model for spins connected on a
graph, specified by the couplings J; [122]. Spin glasses
are susceptible to “J-chaos,” in that the ground state is
hypersensitive to imperfections in the Hamiltonian param-
eters [123]. In that case, the probability that adiabatic
quantum annealing will perform the desired calculation
can decay exponentially with the problem size for a fixed
error level [122]. Error-mitigation schemes might reduce
the detrimental effects of J-chaos [124] but one should
be cautious about the implication for a quantum advan-
tage in this case, since the solutions that are amenable to
error suppression may also be easier to solve classically
[73]. Similarly, in a noisy analog device we may loosen
the requirement that the computation yields an exact solu-
tion, but in that case a classical algorithm might efficiently
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return the same-quality solution, since it need only find an
approximate solution to the original problem.

These last observations raise a key question: What is the
relationship between the complexity of the computation to
be performed and the robustness of the NISQ processor
to imperfections? We expect such a relationship to exist,
since a quantum-supreme computation will require access
to highly correlated multipartite entangled states and it is
exactly these states that are the most sensitive to decoher-
ence. In the foundational work by Zurek on the emergence
of the classical world, depending on the nature of the
environment, some states can be characterized as “pointer
states,” which are robust to decoherence [4]. These states
are, by this definition, classical. Are the robust states com-
putationally simple and what are the implications for NISQ
processing?

In the context of quantum simulation, the common lore
of NISQ hardware is expressed in Ref. [125]: “... quan-
tum simulation requires neither explicit quantum gates
nor error correction, and less accuracy is needed.” The
intuition behind this statement can be understood from
a thermodynamic perspective. The solution to a quantum
algorithm, such as Shor’s algorithm, is often specified by
an exact “microstate” of the many-body system, i.e., the
exact configuration of all spin-1/2 particles (qubits) in the
computational basis. Such a microstate is hypersensitive
to perturbation where even one spin-flip is detrimental,
leading to the wrong answer to the computational prob-
lem. In contrast, a phase of matter, as studied in a quantum
simulation, is characterized by an order parameter, typi-
cally specified by a few-body correlation function, e.g.,
a two-point correlation. Such a “macrostate” is consis-
tent with a multitude of microstates and thus can be
robust to small perturbations as codified in the pillars of
condensed-matter physics: scaling, universality, and renor-
malization [126]. As Preskill states, “analog simulators are
best suited for studying features that physicists call univer-
sal, properties which are relatively robust with respect to
introducing small sources of error” [73]. Macrostates are
thus generally “simple,” requiring few parameters for their
description. The challenge for condensed-matter physics is
to understand phenomena where such a simple description
breaks down, e.g., critical phenomena and nonequilib-
rium dynamics. It is in exactly these phenomena in which
strongly correlated physics arises, where the system can
contain highly entangled states, and which are likely to
be the most fragile in the face of noise and decoherence.
This begs the following question: What aspects of quantum
simulation are simultaneously robust and computationally
hard [127]?

One way to put this question to the test is to take an
adversarial approach to a quantum-supreme calculation.
Can one construct a model for the output of the NISQ
processor that can be solved efficiently classically? Indeed,
in the presence of finite temperature, control errors, and

decoherence, we expect the complexity of the quantum
state to be limited and with careful choice of representa-
tion, an efficient classical solution is possible. A variety of
studies have been carried out in this direction. For exam-
ple, calculation of the partition function of an arbitrary
“stoquastic” Ising model is expected to be computation-
ally hard at low temperatures [128]. Using path-integral
Monte Carlo based on classical Markov chains, Crosson
and Slezak have shown that above a threshold temperature,
independent of system size, the complexity is limited and
they have constructed a fully polynomial-time approxima-
tion scheme for the partition function [129]. Similarly, in
the context of optimization, Franca and Garcia-Patron have
shown that in the presence of sufficient decoherence, there
exists a nearby Gibbs thermal state from which one can
efficiently sample and that leads to a good approximation
to minimization of the cost function. They also provide
bounds that determine when this classical algorithm can
beat any quantum optimizer in the presence of this noise
[130].

Another approach to designing efficient classical mod-
els is to employ tensor-network representations that most
efficiently capture the entanglement in the multipartite sys-
tem. The cost of classically simulating a general quantum
circuit by contracting a tensor network is exponential in
the treewidth of the graph induced by the circuit [131].
For restricted classes of circuits, particularly for systems
that are sufficiently unentangled, efficient simulations by
tensor networks are possible. In particular, for quasi-one-
dimensional (quasi-1D) geometries, a matrix product rep-
resentation can be used to efficiently simulate multiqubit
systems with limited entanglement that satisfy an area law
[132]. Zhou et al. have shown that one can efficiently sim-
ulate a class of quasi-1D random circuits by truncating the
bond dimension of a matrix-product-state (MPS) represen-
tation and achieve a global fidelity of F > 0.002 for depth-
20 1D random quantum circuits with 54 qubits [133].
This work demonstrates that for some circuit geometries,
the system only accesses a tiny fraction (approximately
10~®) of the total Hilbert space, when the average gate
infidelity is in the NISQ regime above threshold, € > €4,
~ .01.

In related work, Noh et al. have shown that one can
employ a matrix-product-operator (MPO) representation
to efficiently simulate arbitrary 1D random circuits in the
presence of depolarizing noise [134]. They demonstrated
that the maximum achievable entanglement never grows
larger than a constant value, which depends only on the
gate error rate, not on the number of qubits or the depth of
the circuit. Thus the maximum achievable entanglement is
saturated after a certain circuit depth and, consequently, the
required dimension of the representation does not increase
exponentially with the total system size. Similar work by
Cheng et al. [135] employed a matrix product density
operator (MPDO) representation to demonstrate efficient
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simulation of 1D random circuits for a variety of noise
models.

In the two-dimensional (2D) case, Napp et al. have
shown that for a certain family of constant depth architec-
tures, classical simulation of typical instances is efficient if
one allows for a small error, even though worst-case simu-
lation to arbitrarily small error is intractable [136]. As they
explain, “The intuitive reason for this is that the simula-
tion of 2D shallow random circuits can be reduced to the
simulation of a form of an effective 1D dynamics which
includes random local unitaries and weak measurements.
The measurements then cause the 1D process to generate
much less entanglement than it could in the worst case,
making efficient simulation possible.” In addition, they
speculate that in the presence of noise, their algorithms
may be able to simulate larger depths and qudit dimensions
than in the noiseless case.

These results quantitatively demonstrate what is intu-
itively true. Systems that are more “classical” can have an
efficient representation. This classicality can occur because
the unitary dynamics does not generate substantial multi-
partite entanglement and/or because the system is open and
decoherence reduces the nonclassical features. These effi-
cient representations provide the framework for efficient
simulations. Importantly, it is critical to consider what one
is simulating. One may not be interested in simulating the
exact quantum state. In a quantum simulation, generally
one is simulating an expectation value, typically a one-
or two-point correlation function that represents an order
parameter. In that situation, an efficient simulation must
accurately capture the few-body reduced density operator.
For weakly correlated systems, this sets an even a lower
bar for classical simulation. In such systems, we expect
that we can severely truncate the higher-order correlations
with little effect on the low-order moments. In contrast, for
strongly correlated matter, we expect that such truncation
will not be possible. But these higher correlations will be
the most sensitive to decoherence and thus the output will
be hypersensitive to imperfections. The reliability of NISQ
quantum simulation is thus most in doubt for exactly those
problems that are hardest to simulate classically but are
robust for those cases that have efficient representations.

An open quantum system that is not digitized and error
corrected will never scale; nonclassical features will sat-
urate and become independent of system size. This is
not to say that a NISQ system cannot achieve “quantum
supremacy,” in the manner Preskill originally defined it
[74]. For sufficiently high-fidelity operation, for some tasks
a quantum computer could exceed the power of the cur-
rent most powerful classical computer. Have we reached
this threshold? Building on foundational studies of the
complexity of sampling [137,138], Google has claimed
quantum supremacy in the context of sampling from a
probability distribution as generated from a 2D random
quantum circuit [139]. No current classical computer can

efficiently generate samples from the distribution gener-
ated by the ideal noiseless circuit. If it could, a major
breakdown of the complexity of the polynomial hierar-
chy would occur. Clearly, the noisy Google circuit is not
producing samples from the ideal distribution but from a
nearby distribution. Though the variational distance to the
nearby distribution may be small, this does not imply that
it is impossible to efficiently draw samples from the noisy
distribution with an appropriately constructed algorithm.

How low must the noise be and what are the restric-
tions on the noise model such that efficient sampling
from the output distribution is prohibited? While some
computational-complexity arguments indicate that it is
implausible that a classical computer can spoof Google’s
linear cross-entropy benching test [140], the challenge
remains open. The results of Noh et al. [134] and Cheng
et al. [135] indicate that efficient simulations are possible
for open quantum systems in 1D and those of Napp et al.
[136] show a possible extension to arbitrary 2D random
circuits. If we restrict to a closed quantum system, Zlokapa
et al. [141] have employed the Schrédinger-Feynman
algorithm to show that more efficient classical simula-
tions of 2D random circuits are possible when allowing
for finite fidelity. For current fidelities in the Sycamore
processor, a quantum advantage for cross-entropy bench-
marking is limited to around 300 qubits. An attempt to
challenge Google’s supremacy result with classically effi-
cient models will help us to understand where the frontier
lies.

In the absence of error correction, quantum coherence
will decay with time and the depth of the quantum circuit.
Thus, one of the most pressing questions is to show that
NISQ devices can solve hard problems with low-depth cir-
cuits (a short time compared to the fidelity decay time).
Can we unambiguously challenge the extended Church-
Turing thesis by demonstrating a clear separation between
classical and quantum computation for some problem
with some constraint of resources? The Google quantum
supremacy experiment employs strongly believed argu-
ments based on the complexity hierarchy to study this
in the context of sampling the output of a low-depth 2D
random circuit [139]. Another approach, taken by Bravyi
and coworkers, is to study how one can achieve a quan-
tum advantage with shallow constant-depth circuits when
compared to classical algorithms that have equal depth
[142]. While this approach is not equivalent to “quantum
supremacy” in the sense of demonstrating a calculation
that cannot be done efficiently on current classical com-
puters, it does demonstrate a rigorous separation between
quantum and classical complexity. In particular, they show
that certain nonlocal games can be solved with such
shallow 1D constant-depth circuits, whereas a classical
algorithm would require the depth to grow logarithmically
in the number of qubits. Such multiplayer nonlocal games
achieve a quantum advantage through a combination of
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nonlocality and contextuality, the fact that the measure-
ment outcome of an observable depends on the “context”
of other observables measured at the same time. This
power has been extended by Daniel and Miyake to a more
general class of states with 1D symmetry-protected topo-
logical order (1D SPTO), which shows how contextuality
can lead to unconditional computational separation for
sufficiently large-string order parameters [143].

Another critical issue is to understand how errors prop-
agate. For a NISQ processor that is designed to solve
a complex problem, we do not know how to propagate
errors, because the output probability is too complex to
calculate. So, currently, we do not know if we can trust
the output of NISQ devices and when we can, what the
implications are for the complexity of the solution. One
way to explore this is to consider narrow but deep quan-
tum circuits. Jessen and coworkers have developed a small
highly accurate quantum (SHAQ) simulator based on uni-
versal control of a 16-dimensional Hilbert space (isomor-
phic to four qubits) associated with the spin of individual
cesium atoms, in which they perform approximately 100
arbitrary SU(16) gates, each with fidelity > 0.99 [107].
These experiments demonstrate how certain observables
can be robust to imperfections, while the overall state
fidelity decays. Working with this platform, Poggi et al.
have established rigorous criteria to show how imperfect
devices are able to reproduce the dynamics of macro-
scopic observables accurately, while the relative error in
the expectation value of microscopic observables is much
larger on average [144]. The next challenge is to extend
these ideas to rigorously establish how this macroscopic-
microscopic divide is related to a robustness-complexity
trade-off.

II1. SUMMARY AND OUTLOOK

Quantum information science grew out of decades of
fundamental curiosity-driven research. How is quantum
mechanics different from classical statistical mechanics?
Are there local hidden variables that explain random mea-
surement outcomes? How does the impossibility of super-
luminal communication constrain quantum information?
What is the meaning of negative probability? Are mea-
surement outcomes contextual? How do we understand
the emergence of the classical world from a fundamen-
tally quantum one? Answers to these questions have not
changed the formalism of quantum mechanics but they
have changed how we think about it. Simultaneously, the
development of information science has forced us to con-
sider the implications that physics has on computation and
other information-processing tasks and vice versa. Tur-
ing, Church, and Shannon abstracted information from the
devices that processed it but thermodynamics and quantum
mechanics forced us to understand the role of physics in
information. And the reverse is true. Information science

has taught us to understand statistical physics and quan-
tum mechanics. No physicists would have believed that
we could prevent spontaneous decay by error correction.
Basic research has laid out the foundations upon which the
second quantum revolution rests.

Since the establishment of the foundations, concepts
from QIS have led to new understandings in other fields,
notably in many-body physics and field theory. Entangle-
ment plays an essential role in explaining critical phenom-
ena and phases of matter [145]. The power of the density-
matrix renormalization group (DMRG) [146] derives from
the efficient representation of entanglement encoded in
MPSs [147]. The extension to general tensor networks
represents one of the most powerful tools for describing
complexity in quantum systems [148]. This extends to new
descriptions of space-time itself and the famous anti—de
Sitter space—conformal field theory (AdS-CFT) corre-
spondence in quantum gravity and string theory, which has
the structure of a quantum error-correcting code [149].

As the second quantum revolution transitions from sci-
ence to technology, a strong foundation of curiosity-based
basic research is essential for success. A desire to deliver
near-term NISQ applications should not deter critical anal-
ysis to determine whether this is even possible. Fundamen-
tal questions remain unanswered. How much complexity
can we truly harness from a noisy quantum system? What
is the relationship between the robustness of a NISQ
device and the complexity required to obtain that output?
What is the computational complexity of analog quantum
devices? What role do different quantum resources play in
attaining a quantum advantage: entanglement, negativity,
noncontextuality? A deeper understanding of these ques-
tions will create a richer framework for developing useful
applications.

Explorations of these questions will also impact basic
physics. How much quantum complexity does Nature har-
ness? Natural systems, such as condensed-matter materi-
als, are imperfect, subject to noise an decoherence. Do we
really need a quantum supreme simulator to explain high-
temperature superconductivity or does the existence of this
robust macroscopic order parameter indicate that, in fact,
an efficient (approximate) classical description awaits us.
Perhaps only an engineered fault-tolerant quantum com-
puter can lift the observable effects of highly entangled
complex states to the macroscopic world or perhaps there
are special cases, such as topologically protected states that
are exceptions to the rule [150]. An understanding of how
we can harness quantum complexity for technology will
guide our ability to understand the natural world and vice
versa. If Nature has some tricks up its sleeve, we should
borrow them.

The next stage of basic research will take unexpected
turns, as recent history has already shown. The semi-
nal work of Haroche and collaborators probed how “cat
states” (superpositions of coherent states) decohere [61].
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The Ramsey interferometric technique, which they devel-
oped to observe the “birth and death of photon” in a cavity
[151], is now a method for syndrome extraction on an
error-correcting “cat code” [152], which was the first to
demonstrate “break-even” in correcting native errors [70].
This example demonstrates how curiosity-based research
leads to applications that were never imagined in the ini-
tial study. It also points to a key component for progress in
QIS—interdisciplinarity. A deeper collaboration between
physicists, chemists, computer scientists, electrical engi-
neers, mathematician, theorists, modelers, experimental-
ists, and device engineers is essential for us to bridge the
gap between fundamental science and technology. Har-
nessing the second quantum revolution will require us to
move out of our comfort zone, learn new things, and syn-
thesize the perspectives of others. The second quantum
revolution is accelerating—and with eyes wide open to
the opportunities and real challenges, the revolution will
deliver.
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