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Continuous-variable gate teleportation and bosonic-code error correction
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We examine continuous-variable gate teleportation using entangled states made from pure product states sent
through a beam splitter. We show that such states are Choi states for a (typically) nonunitary gate, and we
derive the associated Kraus operator for teleportation, which can be used to realize non-Gaussian, nonunitary
quantum operations on an input state. With this result, we show how gate teleportation is used to perform error
correction on bosonic qubits encoded using the Gottesman-Kitaev-Preskill (GKP) code. This result is presented
in the context of deterministically produced macronode cluster states, generated by constant-depth linear optical
networks, supplemented with a probabilistic supply of GKP states. The upshot of our technique is that state
injection for both gate teleportation and error correction can be achieved without active squeezing operations—an
experimental bottleneck for quantum optical implementations.
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I. INTRODUCTION

Recent strides in the experimental generation of
continuous-variable (CV) cluster states [1–3] prove that
the use of CV measurement-based quantum computing
(MBQC) is one of the most promising methods of achieving
fault-tolerant universal quantum computing. MBQC utilizes
a highly entangled resource—known as a cluster state—as
its substrate for quantum computing [4] and only requires
adaptive local measurements on the cluster state to implement
quantum gates.

Constructing cluster states using bosonic modes has the ad-
vantage of deterministic entanglement generation using linear
optics and is highly scalable [5]. Unfortunately, computa-
tion with CV cluster states is burdened by intrinsic noise
due to finite energy constraints [6]. Despite this, CV MBQC
on a cluster state generated from squeezed states meeting a
threshold of 15–17 dB of measured squeezing is fault-tolerant
[7]—provided it is supplemented with a source of high-quality
bosonic qubits. Furthermore, this squeezing threshold is not
affected by decoherence that manifests as antisqueezing [8].

CV cluster states are multimode Gaussian states of light
specified by a complex-weighted graph [9]. The states orig-
inally considered in Refs. [10,11] possessed simple graphs
(e.g., a 2D square lattice); however, known methods for their
generation require either inline squeezing (active transfor-
mations on states other than the vacuum) or a linear optics
network that grows with the system size. Related states with
a multilayered graph structure can be generated in a more
experimentally feasible way with circuits consisting of offline
squeezing and local constant depth linear optics [2,3,5,12–
17]. Such states have been generated on a large scale, both
in one [1,18,19] and two dimensions [2,3]. MBQC on these
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multilayered states respects the tensor product structure of
macronodes, with physical lattice sites made up of one mode
from each layer [6,20].

The fundamental primitive of CV MBQC schemes with
multilayered graphs is CV teleportation [21,22]. Gaussian
homodyne detection teleports quantum information from one
node to another with a fidelity depending on the quality of the
shared entanglement between the nodes. Ideally, nodes share
a maximally entangled EPR state, which allows for perfect
teleporation. Up to local phase delays, macronode continuous-
variable cluster states (CVCSs) are indeed just a collection
of approximate EPR states stitched together at macronodes
by nonlocal measurements (more specifically, a sequence of
50:50 beam splitters followed by homodyne detection on all
modes). Gaussian CV MBQC schemes leverage the choice
of rotated homodyne bases as degrees of freedom to realize
Gaussian operations on the teleported state. This was recently
demonstrated in Ref. [23].

In this work, we provide a method to go beyond Gaus-
sian operations by replacing each entangled pair with a
more general state—two arbitrary pure states coupled on a
beam splitter, see Fig. 1. If either (or both) of these states
is non-Gaussian, teleportation can realize a non-Gaussian
gate, extending multimode Gaussian resources to universal re-
sources for quantum computation. Our approach runs parallel
to and extends the standard description of gate teleportation
[24–26], where a unitary gate to be teleported is applied to one
half of a maximally entangled state. Using the entangled-state
method here additionally allows teleportation of nonunitary
operations, such as projections, which are useful for bosonic-
code error correction. This approach is compatible with a
wide variety of non-Gaussian resources [27–30] and does not
require active squeezing operations, making it convenient for
conventional quantum optics setups.

We apply our analysis to a particular example: Gate-
teleported error correction of the Gottesman-Kitaev-Preskill
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FIG. 1. Schematic of a macronode wire, which is a chain of
maximally entangled pairs (modes connected by beam splitters) that
meet at two-mode sites called macronodes. Nonlocal measurements
of each macronode, achievable by an additional beam splitter and
local measurements at each macronode (not indicated), teleport an
input state along the macronode wire (from right to left). In this
work, we replace each entangled pair with a Kraus state consisting
of two arbitrary states, |ψ〉 and |φ〉, coupled on a beam splitter. This
realizes a teleported CV gate, which can be nonunitary, depending
on the Kraus state. A single instance of this CV gate teleportation,
which we call the teleportation gadget, is enclosed in the dashed box.
The macronode-wire circuit diagram for gate teleportation is given in
Fig. 2.

(GKP) code. GKP states allow encoding of digital quantum in-
formation in the continuous Hilbert space of a CV mode [31].
Remarkably, this single non-Gaussian resource extends mul-
timode Gaussian computation to universal and fault-tolerant
quantum computation [32,33]. GKP states have recently been
realized in trapped ion systems [34] and superconducting
qubit architectures [35], and multiple novel approaches have
been proposed for their generation in optics [36–42]. We
show that teleporting through entangled pairs made from a
probabilistic source of GKP grid states implements GKP error
correction.

Thus the entire scheme for universal and fault-tolerant
quantum computing consists only of offline preparation of
GKP and squeezed vacuum states, constant-depth linear op-
tics, and homodyne detection. This is an improvement over
prior proposals that require active transformations to combine
GKP states with CV cluster states [7,16,43]. Finally, we note
that our analysis extends to higher dimensional CV cluster
states that have two- and three-dimensional structure.

II. MACRONODE-BASED CV CLUSTER STATES

A continuous-variable cluster state (CVCS) is a large
Gaussian state across many modes that can serve as a resource
for CV teleportation [10] and measurement-based quantum
computing (MBQC) [7]. Canonical CVCSs are constructed
using eigq̂⊗q̂ interactions to successively entangle momentum
eigenstates, and Gaussian homodyne measurements of the
modes are used to teleport and enact Gaussian operations on
encoded information [10]. An alternative construction em-
ploying constant-depth passive elements (beam splitters and
phase delays) and finitely squeezed states, called a macronode
CVCS, provides a blueprint for experimental generation of a
CVCS [6] that makes better use of the fundamental quantum
resource in such states: squeezing [44,45]. Here, two-mode
squeezed states are generated using beam splitters; these en-
tangled pairs can then be coupled to others using more beam
splitters to create macronode CVCSs with more complicated
structures. In this construction, certain collections of physical

modes are grouped into macronodes, across which logical
encoded information is distributed nonlocally. Processing the
information within a macronode requires homodyne measure-
ment of its constituent physical modes.

The smallest nontrivial macronode CVCS, the macronode
wire (see Fig. 1), has two modes per macronode. Larger and
more complex macronode CVCSs contain more modes per
macronode [2,3,17] but can be viewed quantitatively as tools
to route information along configurable macronode wires
[20]. Macronode wires have been generated experimentally
from both temporal and spectral modes [1,18,19] and recently
adaptive homodyne measurements have been used to imple-
ment Gaussian operations on a temporal-mode macronode
wire [23].

A. Structure of a macronode wire

A macronode-based CV cluster state [13] differs from
a canonical one [10,11] by the fact that multiple modes
occupy one logical site within the overarching graph repre-
senting the entanglement structure of the state. (For further
details, see Ref. [13].) These modes are logically grouped
together and referred to as a macronode to emphasise that it
comprises multiple “micronodes,” each of which is an indi-
vidual mode. All of the experiments demonstrating large-scale
continuous-variable cluster states have generated macronode-
based cluster states [1–3,18,19,23].

We use the following notation to describe the indi-
vidual modes within a macronode-based CV cluster state.
For each local mode a, we define the position and mo-
mentum quadratures, q̂ = 1√

2
(â + â†) and p̂ = −i√

2
(â − â†),

respectively, satisfying [q̂, p̂] = i. This means that the vac-
uum variance in both quadratures of any mode is 〈q̂2〉vac =
〈p̂2〉vac = 1/2, which can be interpreted as equivalent to the
convention that h̄ = 1.

Each quadrature has an associated set of eigenstates, |s〉q
and |t〉p, satisfying q̂|s〉q = s|s〉q and p̂|t〉p = t |t〉p. Informa-
tion in a one-dimensional macronode-based CV cluster state is
encoded in the distributed symmetric (+) and antisymmetric
(−) subspace of the two local modes in a single macronode,
arising from a change in the tensor-product structure due to
the beam splitter transformation coupling the two modes prior
to the final measurements [6]. The balanced beam splitter
convention we use here,

B̂ jk := e−i π
4 (q̂ j⊗ p̂k−p̂ j⊗q̂k ), (1)

generates the distributed quadrature operators at each
macronode:

q̂± := 1√
2
(q̂a ± q̂b), (2)

p̂± := 1√
2
( p̂a ± p̂b). (3)

Specifically, B̂†
ab(q̂a, q̂b, p̂a, p̂b)B̂ab = (q̂−, q̂+, p̂−, p̂+), re-

spectively. Note that the beam splitter we use is not
symmetric; B̂†

jk = B̂k j &= B̂ jk . In circuit diagrams (which we
use extensively below), we represent the beam splitter as an
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arrow pointing from mode j to mode k:

(4)

A macronode wire is a chain of entangled pairs that are
logically linked together at macronodes, a grouping of local
modes. Nonlocal measurements on the macronodes, a beam
splitter interaction followed by local measurements at each
local modes, implements a string of sequential teleportations
(from right to left), see Fig. 1. For more information, see
Refs. [5,6].

B. Measurement-based CV computation
with a macronode CVCS wire

In an ideal setting, measurement-based computing with a
macronode CVCS begins by preparing every local mode in
either a position or a momentum eigenstate, |0〉q or |0〉p. Pairs
of adjacent modes are first coupled with a beam splitter to
generate infinitely squeezed two-mode squeezed states of the
form:

(5)

In physical settings, quadrature eigenstates are replaced by
their finite-energy, squeezed approximations, which will be
discussed in Sec. III A 1.

Homodyne measurements of a macronode’s two con-
stituent local modes (followed by outcome-dependent dis-
placements) teleport a state encoded in the symmetric mode
of that macronode to the symmetric mode of the next macron-
ode. The macronode wire’s utility for quantum information
processing arises from the fact that measuring in rotated bases
over two successive macronodes additionally implements any
single-mode Gaussian unitary gate [6]. The essentials of this
procedure are outlined below.

We define a rotated momentum quadrature,

p̂θ := R̂†(θ ) p̂R̂(θ ) = q̂ sin θ + p̂ cos θ , (6)

where the phase-delay operator

R̂(θ ) := eiθ â†â (7)

generates an anticlockwise rotation by θ in phase space. A
measurement of p̂θ with outcome m, realized via homodyne
detection, corresponds to a projection onto the quadrature
eigenstate,

|m〉pθ
:= R̂†(θ )|m〉p , (8)

where p̂θ |m〉pθ
= m|m〉pθ

.1

Measuring both local modes in a single macronode in ro-
tated momentum quadratures given by measurement angles
θa and θb teleports the state to the next macronode and imple-
ments the operation [1,15,46]

D̂(µ)V̂ (θa, θb) , (9)

1The phase-delayed eigenstates are defined via a Heisenberg-
picture transformation, just as in Refs. [6,10,16].

with measurement-basis-dependent Gaussian unitary

V̂ (θa, θb) := R̂
(
θ+ − π

2

)
Ŝ(tan θ−)R̂(θ+), (10)

and displacement D̂(µ) with outcome-dependent amplitude

µ = −maeiθb + mbeiθa

sin(θa − θb)
, (11)

which can be corrected with active Gaussian shifts.2 The
parameters

θ± := 1
2 (θa ± θb) (12)

are symmetric and antisymmetric combinations of the mea-
surement angles, and we define a (nonstandard) squeezing
operator

Ŝ(ζ ) := R̂(Im ln ζ )e− i
2 (Re ln ζ )(q̂ p̂+p̂q̂). (13)

This is just an ordinary squeezing operator with squeezing
parameter r = ln |ζ | generalized to allow negative values of
ζ , which can arise in Eq. (10). For ζ < 0, Eq. (13) describes
squeezing followed by a π phase delay, which is equivalent
to a double Fourier transform or a parity operation.3 Note
that this operator produces squeezing (and conjugate anti-
squeezing) along the principal position and momentum axes;
squeezing other quadratures is achieved by following this
operator by a phase delay, Eq. (7). Note that two teleportation
steps through the macronode wire (Fig. 1) are sufficient to
perform two different gates of the form of Eq. (9) and thus
an arbitrary Gaussian unitary [6].

C. Connection to maximally entangled EPR states

In the ideal macronode CVCS construction, the Kraus state
is composed of local modes, shared between macronodes,
prepared in 0-momentum and 0-position eigenstates, Eq. (5),
and then coupled on a beam splitter. Here, we show that the
resulting state is a member of a complete set of maximally
entangled two-mode states.

Position and momentum eigenstates each form a resolution
of the identity over a single mode, thus it is straightforward to
construct a tensor-product representation of the identity across
two modes. Consider the following tensor-product basis,

Î1 ⊗ Î2 =
∫∫

ds dt |t〉p1 p1
〈t | ⊗ |s〉q2 q2

〈s| . (14)

Any unitary transformation on this expression also gives a
resolution of the identity and produces a new, typically en-
tangled, basis. Specifically, we consider the unitary e−iq̂⊗ p̂,
which serves as the CV analog to a CNOT gate [47], to define
a complete set of shifted maximally entangled EPR states,

|EPR(s, t )〉 := e−iq̂1⊗ p̂2 |t〉p1
⊗ |s〉q2

(15a)

= 1√
2π

∫
dr eirt |r〉q1

⊗ |s + r〉q2
, (15b)

2Various works have slightly different definitions of these opera-
tions. A derivation of Eq. (9) and further discussion can be found in
Appendix B.

3This squeezing operator is designed such that Ŝ†(ζ )q̂Ŝ(ζ ) = ζ q̂
and Ŝ†(ζ ) p̂Ŝ(ζ ) = ζ−1 p̂ for all ζ ∈ R&=0.
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satisfying 〈EPR(s, t )|EPR(s′, t ′)〉 = δ(s − s′)δ(t − t ′). The
set of shifted EPR states resolves the identity over two modes,

Î1 ⊗ Î2 =
∫∫

ds dt |EPR(s, t )〉〈EPR(s, t )| , (16)

comprising an entangled two-mode basis that complements
the tensor-product basis above, Eq. (14).

The states in Eq. (15) can also be written as a momentum
shift, Ẑ (t ) := eit q̂, and a position shift, X̂ (s) := e−isp̂, across
the two modes as

|EPR(s, t )〉 = Ẑ1(t )X̂2(s) |EPR〉 , (17)

where |EPR〉 := |EPR(0, 0)〉, is a canonical EPR state, with
position-position representation,

|EPR〉 := 1√
2π

∫
dr |r〉q1

⊗ |r〉q2
. (18)

This state, being perfectly correlated in position and perfectly
anticorrelated in momentum, is the continuous-variable ana-
log of the Bell state |'+〉 = 1√

2

∑
j=0,1 | j〉 ⊗ | j〉. The canon-

ical EPR state can be represented as |EPR〉 = ĈX
12(1)|0〉p ⊗

|0〉q, where the entangling gate is a CV controlled-X gate of
weight g,

ĈX
jk (g) := e−igq̂ j⊗ p̂k , (19)

with control mode j and target mode k. This gives the circuit
identity:

(20)

The factor 1√
2π

results from the normalization of the EPR state
in Eq. (18).4 Note that we use the convention that quantum
circuits proceed in time from right-to-left, such that a circuit-
description of a state respects the same ordering as its partner
equation.

1. Bouncing operators on an EPR state

Let Ô be a single-mode operator with position-space rep-
resentation

Ô =
∫∫

ds ds′ O(s, s′)|s〉qq〈s′| , (21)

where O(s, s′) = q〈s|Ô|s′〉q. Applying this operator to one
mode of an EPR state gives

|(O〉 := (Ô ⊗ Î ) |EPR〉 (22a)

= 1√
2π

∫∫
ds ds′ O(s, s′)|s〉q1

⊗ |s′〉q2
. (22b)

4For qudits, the normalization of the maximally entangled states
used for teleportation, 1√

d
, is typically absorbed into the “angle-

bracket” notation for these states in a circuit diagram [24] and also
ignored in the teleported gate. For CV systems considered here, we
make the association d → 2π (for δ-normed states) and explicitly in-
clude this EPR normalization in teleported gates so that the resulting
Kraus operators are properly normalized.

The state |(O〉 is called the Choi state for Ô and is a
representation of Ô through the Choi-Jamiołkowski isomor-
phism [48,49]. It derives from the position-space expansion
of Ô simply by replacing |s〉qq〈s′| → |s〉q1

⊗ |s′〉q2
(up to

normalization). Teleporting through a Choi state applies the
associated operator, which we call the teleported gate [24].
This forms the basis for gate teleportation and the Kraus
operator derived in Sec. III.

An important feature of maximally entangled states is that
a local operator acting on one mode can be moved to the other
(the operator is modified in the process), and the resulting two-
mode state is identical to the original. This operation, which
we call bouncing, is described by the circuit,

(23)

where Ô is an operator on the top mode, and ÔT (the bounced
operator) is the transpose of Ô taken in the basis where
the maximally entangled state is perfectly correlated—the
position-position basis for the EPR state in Eq. (18). Thus the
Choi state above can be represented in different, yet equivalent
ways.

The transposed position and momentum operators, q̂T = q̂
and p̂T = −p̂, can be found by computing their matrix ele-
ments in the position basis,

qT
(t,s) = t δ(t − s) = q(t,s),

pT
(t,s) = i δ′(t − s) = −p(t,s),

(24)

where x(t,s) := q〈t |x̂|s〉q.5 These relations allow a straightfor-
ward bounce of a displacement operator,

D̂(α) := eαâ−α∗â† = ei
√

2(αI q̂−αR p̂) , (25)

with complex phase-space displacement α = αR + iαI ,
through the EPR state in Eq. (18):

D̂1(α) |EPR〉 = D̂2(−α∗) |EPR〉 . (26)

More general single-mode operators generated by powers of q̂
and p̂ can also be bounced using Eqs. (24). Note that Eq. (26)
can straightforwardly be used to bounce position and momen-
tum shifts by decomposing the displacement operator,

D̂(α) = eiαRαI X̂ (
√

2αR)Ẑ (
√

2αI ) . (27)

2. Entangled states on a beam splitter

In a macronode wire, pairs of modes—one each from
neighboring macronodes—are combined on a beam splitter.
When these modes are prepared in position and momentum
eigenstates, respectively, the result is a shifted EPR state,
Eq. (15), whose entanglement lies at the heart of continuous-
variable teleportation protocols.

Consider momentum and position eigenstates, |t〉p and |s〉q,
coupled by a beam splitter. As shown in Appendix A, the

5The relations follow from the symmetry of δ(·) and the asymmetry
of its derivative δ′(·).
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resulting entangled state is

B̂12 |t〉p1
⊗ |s〉q2

=
√

2eist |EPR(
√

2s,
√

2t )〉, (28)

up to a fixed phase (which is irrelevant). The norm scaling by√
2 preserves inner products and ensures that the complete-

ness relation (16), holds,

Î1 ⊗ Î2 =
∫∫

dt ds (B̂12|t〉p1
⊗ |s〉q2

)(p1
〈t | ⊗ q2

〈s|B̂†
12). (29)

We keep track of this factor throughout so that the Kraus op-
erators we derive in Sec. III can be used to faithfully calculate
measurement probabilities.

A final manipulation of the state in Eq. (28) provides a
useful form for the beam splitter entangled state. Pulling out
the shifts [Eq. (17)], bouncing the momentum shift Ẑ1(

√
2t )

to the second mode [Eq. (26)], and combining the two single-
mode shifts into a displacement operator [Eq. (27)] gives

B̂12 |t〉p1
⊗ |s〉q2

=
√

2D̂2(s + it ) |EPR〉 . (30)

This state is represented by the circuit diagram,

(31)

indicating that the beam splitter entangled state is the Choi
state, Eq. (22), for the displacement D̂(s + it ) (up to a factor

1√
π

).
Thus the specific entangled state between adjacent macron-

odes in Eq. (5), B̂12 |0〉p1
⊗ |0〉q2

=
√

2 |EPR〉, is the Choi
state [49] for the identity, which underpins its utility for
teleportation from one macronode to the next in the standard
macronode computing protocol.

III. GATE TELEPORTATION
WITH THE MACRONODE WIRE

The macronode procedure for quantum computation, de-
scribed in Sec. II B, has two fundamental components. The
first is the multimode entangled state itself—the macronode
wire—and the second is the collection of homodyne mea-
surements. Both of these components are Gaussian, which
limits effective operations on an input state to Gaussian op-
erations. Here, we show that modifying one part of this
procedure, the state of the macronode wire itself, allows us
to implement non-Gaussian operations in a gate-teleportation
fashion. The generalized macronode procedure is shown in
Fig. 1. The key difference from the standard procedure is
the replacement of the quadrature eigenstates that comprise
a CVCS macronode wire [see Eq. (5)] with arbitary pure
states. Modes from adjacent macronodes are still measured
in rotated homodyne bases, with the ultimate effect that
the Gaussian operation, Eq. (10), is supplemented with an
additional ancilla-state-dependent operation. This additional
operation can be leveraged for many purposes, including
teleportation-based error correction on a CV-encoded qubit
(using the Gottesman-Kitaev-Preskill code), which we de-
scribe in Sec. IV A.

FIG. 2. Circuit diagram for gate teleportation using the macron-
ode wire in Fig. 1. In our convention, circuits proceed from right to
left. Inside the dashed box is the teleportation gadget, which consists
of three modes. Arbitrary ancillae on the second and third mode, |ψ〉
and |φ〉, are combined on a beam splitter to form the Kraus state. The
first two modes, which comprise a single macronode, are combined
on an additional beam splitter and measured via homodyne detection
in rotated bases. We describe these measurements as projections
onto rotated momentum eigenstates, Eq. (8). This procedure teleports
a state from the first mode to the third mode with a (potentially
nonunitary) gate applied that depends on the measurement bases, the
measurement outcomes, and the Kraus state.

Kraus operator for gate teleportation

We focus on the teleportation gadget within the macronode
wire, indicated in the dashed box in Fig. 2. This gadget de-
scribes the teleportation of a quantum state arriving from the
previous macronode through the given macronode using two
homodyne measurements after a beam splitter—an effective
EPR measurement. This teleportation is accompanied by the
Gaussian operation V̂ (θa, θb) in Eq. (10), determined by the
bases in which the homodyne measurements are performed.
As we show here, a non-Gaussian and nonunitary operation
can also be applied by preparing local modes of adjacent
macronodes in the arbitrary pure, product state |ψ〉 ⊗ |φ〉 and
then mixing them on a beam splitter. The entire operation is
described by the Kraus operator,

K̂ (ma, mb) := p1,θa
〈ma| ⊗ p2,θb

〈mb|B̂12B̂23 |ψ〉2 ⊗ |φ〉3 , (32)

where ma and mb are the outcomes of the homodyne mea-
surements, and subscripts in each beam splitter, B̂ jk , label the
modes it couples. This Kraus operator is described by the
circuit

(33)

Again, we use the convention that time proceeds right-to-left
in circuit diagrams. We refer to the joint state of the last two
modes, B̂23 |ψ〉2 ⊗ |φ〉3, as the Kraus state, which is the Choi
state for a (typically nonunitary) teleported gate whose form
we determine below.

After an input state on the top wire ρ̂in traverses the telepor-
tation gadget as part of a macronode wire, it is teleported to
the third mode and transformed according to the conditional
map,

ρ̂out = K̂ (ma, mb)ρ̂inK̂†(ma, mb)
Pr(ma, mb)

, (34)
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where the joint probability (density) of obtaining the out-
comes {ma, mb} is

Pr(ma, mb) = Tr[K̂†(ma, mb)K̂ (ma, mb)ρ̂in] . (35)

As the modes in the macronode wire are successively mea-
sured, a sequence of such Kraus operators is applied to the
input state, each with a set of measurement outcomes and an
applied operation depending on which quadratures are mea-
sured and the ancillae at the beam splitter, which comprise the
Kraus state. It suffices to consider the single Kraus operator in
Eq. (32), as it contains all the necessary ingredients.

The homodyne measurements on the first two modes re-
alize an entangled Bell-type measurement with the extension
that, by measuring rotated quadratures, the basis-dependent
Gaussian operation V̂ (θa, θb) in Eq. (10) is applied. This is
described by the following circuit identity

(36)

where the effect of the outcomes is a displacement by µ, given
in Eq. (11).

We now focus on the Kraus state on the second and third
modes B̂23 |ψ〉2 ⊗ |φ〉3. First, we write the state |ψ〉 ⊗ |φ〉 in
the tensor-product basis, Eq. (14), using the respective mo-
mentum and position wave functions:

ψ̃ (t ) := p〈t |ψ〉 and φ(s) := q〈s|φ〉 . (37)

Then, we apply the beam splitter using Eq. (30) to arrive at an
expression for the Kraus state in terms of an operation on an
|EPR〉 state,

B̂23 |ψ〉2 ⊗ |φ〉3 = B̂23

∫∫
dtds ψ̃ (t )φ(s) |t〉p2

⊗ |s〉q3
(38)

=
√

2Â3(ψ,φ) |EPR〉 . (39)

The single-mode operator Â(ψ,φ), referred to as the tele-
ported gate, arises in its Cahill-Glauber form [50,51], with
displacements weighted by the respective momentum and po-
sition wave functions of the input states,

Â(ψ,φ) :=
∫∫

d2α ψ̃ (αI )φ(αR)D̂(α), (40)

for complex number α = αR + iαI . The Kraus state can be
reexpressed with the circuit identity,

(41)

where the 1√
π

arises due to the circuit identity for the |EPR〉
state, Eq. (5). In this form, it is clear that the operator Â(ψ,φ)
is indeed a teleported gate in the context of the standard
teleportation gadget [24].

Combining the circuits for the measurements, (36), and
the Kraus state, (41), we express the teleportation gadget in

Eq. (33) as

(42)

Pulling the circuit taut,

(43)

allows us to read off the Kraus operator directly by virtue of
the right-to-left circuit convention,

K̂ (ma, mb) = 1
π

Â(ψ,φ)D̂(µ)V̂ (θa, θb). (44)

While the first two operations, D̂(µ) and V̂ (θa, θb) [Eq. (10)],
are Gaussian, the teleported gate Â(ψ,φ) [Eq. (40)] can real-
ize non-Gaussian operations when the ancilla states, |ψ〉 and
|φ〉, are themselves non-Gaussian. In addition, the operation
realized by the teleported gate can be nonunitary. We apply
this powerful tool below to realize teleportation-based error
correction of a bosonically encoded qubit.

Finally, we note that standard teleportation is achieved
when the Kraus state is the canonical EPR state, and the
measurement angles are chosen to be θa = π

2 and θb = 0 so
that V̂ (θa, θb) = Î .

Damped-ancillae Kraus operator

The Kraus operator, Eq. (44), implements operations de-
termined by the wave functions of the input ancillae that
comprise the Kraus state. In macronode CVCS quantum com-
puting, each ancilla is prepared in a squeezed vacuum state
[10] that approximates a quadrature eigenstate to a degree that
depends on the level of squeezing. In a standard description,
these states are described by unitarily squeezing the vacuum
state, via Ŝ(ζ ) in Eq. (13). This gives the squeezed vacuum
state, which we write in the notation of Ref. [10],

|0; ζ 〉q := 1
(πζ 2)1/4

∫
ds e

−s2

2ζ2 |s〉q = Ŝ(ζ ) |0〉 , (45)

where |0〉 (with no subscript) is the vacuum state, and Ŝ(ζ )
is the squeezing operator in Eq. (13), with squeezing factor
ζ . The measured variance of this state is 〈q̂2〉 = ζ 2/2. ζ = 1
reproduces the vacuum state, and the limit ζ → 0+ gives a
normalized version of |0〉q. We also define

|0; ζ 〉p := 1
(πζ 2)1/4

∫
ds e

−s2

2ζ2 |s〉p = Ŝ(ζ−1) |0〉 , (46)

which analogously has 〈p̂2〉 = ζ 2/2. Note that this implies
that

|0; ζ 〉p = |0; ζ−1〉q . (47)

It will be helpful to list a few important relations for use in
what follows. First, let

ζ = e−r . (48)
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Then, in the Fock basis {|n〉}∞n=0,

|0; ζ 〉q =
√

sechr
∞∑

n=0

(− tanh r)n

√
(2n)!

2nn!
|2n〉 (49a)

=

√
2ζ

1 + ζ 2

∞∑

n=0

(−1)n
(

1 − ζ 2

1 + ζ 2

)n √
(2n)!

2nn!
|2n〉 . (49b)

Also, |0; ζ 〉p is the same but without the (−1)n. Finally,
by recognizing that 〈n|0〉q = ψ∗

n (0), where ψn is the nth
Fock-state wave function, we can write the delta-normalized
q̂-quadrature eigenstate in the Fock basis:

|0〉q = π−1/4
∞∑

n=0

(−1)n

√
(2n)!

2nn!
|2n〉, (50)

and similarly for |0〉p but again without the (−1)n. These sep-
arate expressions are required because the prefactor vanishes
in the normalized case, Eqs. (49), when ζ → 0+ (r → ∞).

We now introduce an equivalent, non-unitary formulation
of squeezed vacuum states that ultimately yields a convenient
form for the associated macronode Kraus operator. Moreover,
this method gives a straightforward way to include finite-
squeezing noise in any state. Particularly useful cases are
unphysical ideal states, such as the GKP states introduced in
Sec. IV A, and, more generally, any state constructed from a
countable superposition of quadrature eigenstates.

The squeezed vacuum state in Eq. (46) can equivalently
be described in terms of the non-unitary damping operator
defined by6

N̂ (β ) := e−βn̂ (51)

acting on an infinitely squeezed quadrature eigenstate. To
derive the precise relation, compare Eq. (49a) with Eq. (50).
The only difference, aside from the normalization, is a factor
of (tanh r)n in the sum. This factor can be restored by writ-
ing (tanh r)n̂/2|0〉q. Referring to Eq. (51), we see that setting
tanh r = e−2β would produce the full relation

|0; ζ 〉q = 1
√

Nζ

N̂ (β )|0〉q , (52)

with

β = 1
2

ln coth r = 1
2

ln
(

1 + ζ 2

1 − ζ 2

)
. (53)

(Recall that ζ = e−r , as above.) The state is normalized by
setting

Nζ = 1
√

π (1 − e−4β )
= cosh r√

π
= 1 + ζ 2

2ζ
√

π
, (54)

which is required since N̂ (β ) is not unitary. Analogously,
|0; ζ 〉p = 1√

Nζ

N̂ (β )|0〉p, with the exact same relations be-

tween ζ , r, and β as shown above.
The damping operator has been used in macronode CVCS

constructions previously, because it allows one to separate

6The damping operator can also be considered a phase delay,
Eq. (7), with imaginary delay angle θ = iβ.

finite-squeezing effects from the ideal quadrature eigenstates
[7,20,52]. The damping operator can then be manipulated
separately from the state on which it acts. This fact plays a
critical role when the ancillae that comprise the Kraus state in
the teleportation circuit in Eq. (33) are described as damping
operators acting on a state,

|ψ〉 → 1
√

Nψ

N̂ (β ) |ψ〉 (55)

with normalization explicitly given by

Nψ := 〈ψ | N̂ (2β )|ψ〉. (56)

For identical damping on both ancillae, the joint damping
operator N̂ (β ) ⊗ N̂ (β ) = e−β(n̂1+n̂2 ) is a function of total pho-
ton number, n̂1 + n̂2, which is conserved by a beam splitter.
The joint damping operator commutes trivially through the
beam splitter in Eq. (57), and single-mode damping operators
can then be bounced trivially to the final mode, since n̂T = n̂
follows from Eq. (24). The resulting circuit identity is

(57)
Using this result in the macronode gadget, Eq. (33), gives the
final Kraus operator

K̂ (ma, mb)

= 1

π
√

NφNψ

N̂ (β )Â(ψ,φ)N̂ (β )D̂(µ)V̂ (θa, θb) , (58)

with outcome-dependent displacement amplitude µ, Eq. (11).
We emphasize here that this Kraus operator is a specific case
of the general one derived above, Eq. (44), useful for situa-
tions when the ancillae states (that comprise the Kraus state)
can be expressed as in Eq. (55).

IV. APPLICATION: GKP ERROR CORRECTION
IN THE MACRONODE WIRE

In its standard implementation, macronode-based quantum
computing is used to perform Gaussian operations on an input
state as it is teleported down the macronode wire [6]. Momen-
tum and position quadrature eigenstates at the ancillae realize
the intended Gaussian operation: D̂(µ)V̂ (θa, θb). Such states
contain infinite energy and are not normalizable; in physical
settings, finitely squeezed approximations to them are used.
Pure squeezed states at the ancillae, described by Eq. (52),
yield the Kraus operator

K̂ (ma, mb) = 1
πNζ

N̂ (2β )D̂(µ)V̂ (θa, θb). (59)

Finite-squeezing noise, originating in the ancillae and gener-
ated by N̂ (2β ), accompanies the Gaussian operation at each
macronode. From a wave-function perspective, this noise de-
scribes an equal blurring in position and momentum [6,7].
Given a sufficient number of teleportation steps, this noise
overwhelms the process entirely, and any trace of the input
state is wiped out. Further, a strict no-go theorem establishes
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that no procedure based on Gaussian operations can be used
to correct this noise [53].

The finite-squeezing noise that builds up through macron-
ode teleportation (as well as other types of noise) can be
dealt with using bosonic codes [54–59], which encode dig-
ital quantum information in the continuous Hilbert space of
a mode. We focus on the Gottesman-Kitaev-Preskill (GKP)
encoding of qubit into a mode [31], whose states and structure
are given below. Important is the direct compatibility of the
GKP code with the macronode wire (as well as with more
sophisticated macronode protocols [20]), due to the fact that
encoded Clifford gates and Pauli measurements are respec-
tively realized by Gaussian unitaries and homodyne detection.
Further, Gaussian operations suffice for universality and fault
tolerance [32,33]. We show here that using GKP states as
ancillae at various locations in a macronode wire performs
GKP error correction, which projects built-up CV errors into
potential logical errors.

A. The GKP encoding

For use in defining the GKP encoding, we first define a
Dirac comb with spacing between spikes (period) of T as

IIIT (s) :=
√

T
∞∑

n=−∞
δ(s − nT ) . (60)

The normalization of a Dirac comb is convenient because its
Fourier transform takes the form

F[IIIT ](t ) =
√

2π

T

∞∑

n=−∞
δ
(
t − n 2π

T

)
= III2π/T (t ), (61)

with the Fourier transform defined as

F[ f ](t ) := 1√
2π

∫ ∞

−∞
ds e−ist f (s). (62)

Scaling the argument of a Dirac comb by a real number a gives
a relation between Dirac combs of different period,

IIIT (as) = 1√
a IIIT/a(s), (63)

which follows using δ(as) = 1
aδ(s).

The ideal square-lattice GKP encoding for a qubit consists
of two computational-basis states given by

| jGKP〉 :=
∫

ds III2
√

π (s − j
√

π )|s〉q (64)

= (2
√

π )1/2
∞∑

n=−∞
|(2n + j)

√
π〉q, (65)

with j ∈ {0, 1}. These states span a two-dimensional sub-
space, allowing a GKP qubit to be encoded as |ψGKP〉 =
c0 |0GKP〉 + c1 |1GKP〉. The position-space wave functions for
the states | jL〉 are

ψ j,GKP(s) = III2
√

π (s − j
√

π ), (66)

using the definition above for IIIT (see Fig. 3). This allows us
to write the momentum-space wave functions for the compu-
tational basis states in Eq. (64) as

ψ̃ j,GKP(t ) = F[ψ j,GKP](t ) = ei j
√

πt III√π (t ), (67)

FIG. 3. Position wave functions for logical-0 (solid red) and
logical-1 (dashed blue) GKP states. (a) Ideal GKP states. (b) Ap-
proximate GKP states with squeezing sGKP = 18.6 dB.

which are Dirac combs with half the period of those in
Eq. (66) and whose teeth have alternating phase for |1L〉.
Therefore we have the momentum expansion

| jGKP〉 =
∫

dt ei j
√

πt III√π (t )|t〉p (68)

= (
√

π )1/2
∞∑

n=−∞
ei jπn|n

√
π〉p (69)

From these expressions, position and momentum wave func-
tions for the dual-basis logical states, |±GKP〉 := 1√

2
( |0GKP〉 ±

|1GKP〉 ), can be constructed. Using the wave functions above,
〈 jGKP|kGKP〉 ∝ δ j,k , where the constant of proportionality is
infinite. This is an artefact of using states with infinite norm.
Physical approximations to these states will not have such
pathologies.

The two-dimensional projector onto the GKP subspace is
an important operator defined as

,̂GKP := |0GKP〉〈0GKP| + |1GKP〉〈1GKP| , (70)

and can likewise be constructed from the dual-basis code-
words |±GKP〉. Since the GKP eigenstates are a set of measure
zero in the infinite-dimensional CV space, Eq. (70) is more
appropriately a projector density satisfying (,̂GKP)2 ∝ ,̂GKP
with an infinite constant of proportionality. Nevertheless, in
keeping with common usage, we still refer to ,̂GKP as a
projector henceforth.7

A key feature of the square-lattice GKP code is that the
Fourier transform operator F̂ = R̂( π

2 ) [a phase delay, Eq. (7),
by π

2 ] executes a logical Hadamard gate within the codespace.
This is a result of the choice of spike period T = 2

√
π for

the position wave functions of the computational-basis states,
Eq. (66). By choosing a different period, T =

√
2π , we define

another useful state,

|∅〉 :=
∫

ds III√2π (s)|s〉q =
∫

dt III√2π (t )|t〉p . (71)

The identical periodic structure in both position and momen-
tum means that |∅〉 is invariant under a Fourier transform,
F̂ |∅〉 = |∅〉. This state was proposed in Duivenvoorden et al.
[60] as a sensor to simultaneously detect small shifts in po-
sition and momentum. We focus on its quantum information
properties and refer to |∅〉 as a qunaught state (in analogy

7In fact, similar behavior is seen for projectors onto position eigen-
states: (|s〉qq〈s|)2 = δ(0)|s〉qq〈s|. These, too, are technically projector
densities.
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FIG. 4. Generation of a GKP Bell pair by mixing two qunaught
states, Eq. (71), on a beam splitter. Shown in both figures is the
two-mode position-position wave function, where each dot is a
two-dimensional δ-function. (a) Product state of two qunaughts,
|∅〉 ⊗ |∅〉. (b) Encoded GKP Bell state, Eq. (74), generated after
the qunaughts are entangled by the beam splitter, which simply
rotates the position-space wave function shown in (a) by π/4 in
the (q1, q2) plane. This GKP Bell state is a sum of two product
states, |0GKP〉 ⊗ |0GKP〉 and |1GKP〉 ⊗ |1GKP〉, indicated in red (solid)
and blue (hollow), respectively.

to and with similar pronunciation as a “qubit”) due to the
fact that it defines a one-dimensional subspace and carries no
quantum information.8 Nevertheless, qunaught states serve as
the resource for error correcting the square-lattice GKP code
in the teleportation gadget, Eq. (33), as we show below.

1. GKP Bell pairs

The GKP-encoded version of the qubit Bell state is

|'+
GKP〉 := 1√

2
(|0GKP〉 ⊗ |0GKP〉 + |1GKP〉 ⊗ |1GKP〉). (72)

This state can be constructed on a beam splitter using two
qunaught states, Eq. (71). First, we recognize that a pure state
can be expressed as

|ψ〉 =
∫

ds ψ (s)|s〉q = ψ (q̂)
∫

ds |s〉q =
√

2πψ (q̂) |0〉p ,

(73)

where ψ (s) is the position wave function and
∫

ds|s〉q =√
2π |0〉p. Using this relation and the beam splitter transforma-

tion on the position operators, q̂± = 1√
2
(q̂1 ± q̂2) in Eq. (2),

allows us to express the state as

B̂12 |∅〉 ⊗ |∅〉
= 2π III√2π (q̂+)III√2π (q̂−)|0〉p ⊗ |0〉p

= 2π√
2

1∑

j=0

III2
√

π (q̂1+ j
√

π )III2
√

π (q̂2 + j
√

π )|0〉p ⊗ |0〉p

= |'+
GKP〉 . (74)

8One can, of course, define a rectangular GKP code for any spike
spacing T in the computational-basis codewords. In this case, exe-
cuting a Hadamard gate typically requires both a Fourier transform
and squeezing. Our focus here is the square-lattice code only.

The generation of this state is shown graphically in Fig. 4. The
beam splitter rotates the two-mode state in the (q1, q2) plane
by π/4, and the result is described by a sum of two separate
lattices, each with Dirac-comb-period 2

√
π . The direct con-

nection to a GKP Bell pair is found using Eq. (74).

2. Approximate GKP states

Ideal GKP states, including the computational basis states
in Eq. (64), are unphysical, unnormalizable states. Physical
approximations to these states replace each spike in the po-
sition wave function [Eq. (66)] with a sharp Gaussian, and
then damp spikes far from the origin with a broad Gaussian
envelope.9 This can be modeled mathematically by applying
the damping operator, Eq. (51), to the ideal states, which has
the added benefit of treating the momentum wave function in
an egalitarian way. The resulting approximate GKP states are

| j̄GKP〉 = 1
√

N j,GKP
N̂ (β ) | jGKP〉 . (75)

The damping spoils the strict orthogonality of the codewords,
〈0̄GKP|1̄GKP〉 &= 0, which is a generic feature of various other
physical bosonic codes, such as cat codes [63]. Applying the
damping operator to the GKP codespace projector, Eq. (70),
gives the (unnormalized) quasi-projector onto the subspace
spanned by the approximate codewords,

,̂GKP := N̂ (β )(|0GKP〉〈0GKP| + |1GKP〉〈1GKP|)N̂ (β )

= N0,GKP |0̄GKP〉〈0̄GKP| + N1,GKP |1̄GKP〉〈1̄GKP| .
(76)

In the limit of β → 0, this becomes the ideal GKP subspace
projector.10

For small damping β - 1, the normalized position-space
wave function for these states is [61,62]

ψ̄ j,GKP(s) ≈
√

2
π1/4

e− κ2s2
2

∞∑

n=−∞
e− (s−(2n+ j)

√
π )2

2.2 , (77)

where the parameters that define the quality of a GKP state,
the spike variance .2 and the envelope variance κ−2 [31], are
related to the damping factor by

.2 = κ2 = β. (78)

Figure 3 shows |0̄GKP〉 (solid) and |1̄GKP〉 (dashed) for β =
13.8 × 10−3 corresponding to GKP squeezing of sGKP =
18.6 dB by the relation: sGKP = −10 log10(.2).11

9There are many other ways to approximate ideal GKP states, see
Refs. [61,62] for more details.

10For β &= 0, the operator ,̂GKP is not a projector because
(,̂GKP)2 &∝ ,̂GKP. This is due to the non-orthogonality of the ap-
proximate GKP codewords and is a separate issue from the infinite
constant noted in the discussion below Eq. (70).

11Note that sGKP < 0 is squeezed and sGKP > 0 is antisqueezed
(with respect to vacuum).
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B. Teleportation-based GKP error correction

The goal of GKP error correction is to eliminate CV-level
noise that has corrupted an encoded state through a proce-
dure that projects the noisy state back into the GKP code
space. Sources of noise include displacements [31], thermal
noise including pure loss [64], dephasing [65], and inherent
finite-squeezing noise that is particularly relevant in CVCS
settings [7]. In Steane-style GKP error correction, the noisy
encoded state is coupled to a GKP ancilla, which is measured
in the q basis (using homodyne detection). The process is
repeated with another GKP ancilla for the p basis. The two
measurement outcomes (referred to together as the syndrome)
are fed into a decoder that provides a recovery map consist-
ing of shifts in position and momentum that, when actively
performed, restore the GKP subspace and attempt to correct
logical errors on the encoded qubit [31,66].

In CVCS settings, Gaussian finite-squeezing noise accu-
mulates as an encoded state teleports from node to node [6]. It
was shown that fault tolerance in canonical CVCS quantum
computing is possible by periodically performing Steane-
style GKP error correction [7]. However, canonical CVCSs
and associated GKP error correction require two-mode en-
tangling operations of the form eigq̂⊗q̂, which are hard to
realize because they require active squeezing. Experimentally
accessible CVCSs are those used in macronode-CVCS QC,
where the coupling requires only passive components—beam
splitters and phase delays.

We show here that an alternate method, known as Knill-
style CV error correction, proceeds by teleporting the input
state through two encoded ancillae—typically an encoded
Bell pair [32]—performing the recovery map automatically.
The syndrome is used purely to determine the likelihood and
type of logical-level error [59]. In fact, pre-measuring the
|0GKP〉 ancillae used for Steane-style error correction in the
canonical CVCS construction of Ref. [7] (and performing
shifts) accordingly embeds them directly inline as a 2-qubit
GKP cluster state. Teleporting through this inline resource
state may then be interpreted as Knill-style error correction.
This enables two different interpretations of the same physical
setup from Ref. [7],

(79)

either Steane-style (left) or Knill-style (right) error correction.
Here, empty circles are modes in squeezed momentum states,
non-empty circles are modes in GKP states, and lines between
modes are eiq̂⊗q̂ gates.

Importantly, we show here that Knill-style teleportation-
based error correction is directly compatible with macronode-
based protocols, which use experimentally accessible CVCSs.
Further, we show that the GKP states for error correction
need not be placed adjacent to one another in the cluster
state, a flexibility that is crucial for experimental settings with
probablistically generated GKP states.

1. GKP error correction on the macronode wire

To demonstrate how the Kraus operator in Eq. (58) can
be used for GKP error correction on the macronode wire, we

first consider the ideal case, β = 0, with qunaught states for
both |ψ〉 and |φ〉. Using the qunaught wave functions in the
expression for the teleported gate, Eq. (40), gives

Â(∅, ∅) =
∫∫

d2α III√2π (αR)III√2π (αI )D̂(α) . (80)

This expression can be brought into a convenient form by
decomposing the displacement operator into position and mo-
mentum shifts with Eq. (27), recognizing that the resulting
phase is trivial for qunaught wave functions, and then rewrit-
ing the two resulting integrals using the Fourier relations,

ψ (q̂) = 1√
2π

∫
ds F[ψ](s)Ẑ (s) (81a)

F[ψ]( p̂) = 1√
2π

∫
ds ψ (s)X̂ (s). (81b)

After these manipulations, the operator in Eq. (80) is re-
vealed to be the square-lattice GKP projector,

Â(∅, ∅) = π
√

2 III√π ( p̂)III√π (q̂) (82a)

= π
√

2 III√π (q̂)III√π ( p̂) (82b)

=
√

π

2
,̂GKP. (82c)

The final line is shown by expanding either of the previous
lines using IIIT (q̂) =

√
T

∑
n δ(q̂ − nT ), where

δ(q̂ − nT ) = |nT 〉qq〈nT | , (83)

and an analogous expansion for IIIT ( p̂). Then, with T =
√

π ,
we see that

III√π (q̂)III√π ( p̂) = 1
2
√

π
,̂GKP , (84)

that is, these operators combine to form the GKP projec-
tor [32] (up to an overall factor). The circuit diagram for
Eq. (82) is

(85)

Inserting Eq. (82) into the general form for the Kraus
operator, Eq. (44), with β = 0 gives the Kraus operator for
macronode-based GKP error correction,12

K̂GKP(ma, mb) = 1√
2π

,̂GKPD̂(µ)V̂ (θa, θb). (86)

This expression shows that after the measurement-basis-
dependent Gaussian unitary V̂ (θa, θb) [Eq. (10)] and outcome-
dependent displacement D̂(µ), the state is projected into the
GKP subspace. The whole gadget can be interpreted as tele-
porting through a square-lattice GKP Bell pair [32], Eq. (72),
with additional damping when the ancillae are imperfect, as
we show below.

12The factor preceding the GKP projector is a consequence of our
chosen normalization for ideal GKP states, Eqs. (65) and (69).
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2. Approximate qunaught ancillae in the Kraus state

In physical settings, the qunaught ancillae contain finite-
squeezing noise, which we model as damped ideal qunaught
states,

|∅̄〉 := 1
√

N∅
N̂ (β ) |∅〉 , (87)

with normalization factor,

N∅ := 〈∅| N̂ (2β ) |∅〉 , (88)

using the damping operator N̂ (β ) in Eq. (51). We then use the
circuit identities above to write the beam splitter entangled
state as joint damping on a GKP Bell pair,

(89)

The macronode Kraus operator for this situation is obtained
by making the replacement,

,̂GKP → 1
N∅

N̂ (β ),̂GKPN̂ (β ) = 1
N∅

,̂GKP , (90)

in the ideal Kraus operator K̂GKP(ma, mb), Eq. (86), and ,̂GKP
is given in Eq. (76).

The GKP error-correction Kraus operator transforms an
arbitrary input pure state |(〉 traversing the teleportation gad-
get via the Kraus map in Eq. (34). For damped qunaught
ancillae—that is, using the Kraus operator when Eq. (90) is
used with Eq. (86)—results in the GKP-encoded state,

|(GKP〉 = c0 |0̄GKP〉 + c1 |1̄GKP〉 (91)

whose qubit coefficients are given by

c j = 1√
Pr(ma, mb)

N j,GKP√
2πN∅

〈 j̄GKP| V̂ (θa, θb)D̂(µ) |(〉 ,

(92)

and the joint probability of obtaining the outcomes,
Pr(ma, mb), is given by Eq. (35). The input state is actively
projected into the GKP subspace, and the syndrome informa-
tion (the two homodyne measurement outcomes) is used by
a GKP decoder to determine the likelihood of a logical error.
Effectively, this is a projection of excess CV noise into GKP-
logical noise. The benefit of a teleportation-based approach to
error correction is that the output state is already in the GKP
subspace, meaning that corrections are purely logical oper-
ations (i.e., shifts by integer multiples of

√
π ). This differs

from Steane-style error correction, in which the corrections
involve small displacements to realign the resulting state with
the GKP grid [31,66]. For the case of no damping, β → 0, the
ratio of normalization factors in Eq. (92) disappears, and the
projection is onto the ideal, orthogonal GKP states | jGKP〉.

3. Partial GKP error correction

From Eqs. (82), we see that using qunaught states for both
ancillae yields a separable operation: a projection in

√
π -

periodic position followed by a projection in
√

π -periodic
momentum that together form the GKP codespace projector.

FIG. 5. Potential qunaught sites for GKP error correction. A
macronode wire is depicted with the possible locations for qunaught
states at either mode a (A) or b (B) within a teleportation gadget.
When qunaught states are placed at both modes, they comprise a
GKP Bell pair shared between adjacent macronodes (AB). The table
shows the momentum and position wave functions to be used in the
Kraus operator, Eq. (44), for each case.

Interpreted logically, each of these projections corresponds to
measurement and recovery of one of the two GKP stabilizers.
Here, we show that each of these projections can take place
separately, such that half of GKP error correction can occur at
one macronode and the other half at another macronode—i.e.,
the periodic q projection and then, later, the periodic p projec-
tion. This is particularly useful for practical implementations
of GKP error correction using probabilistic sources of GKP
states.

We consider two new cases, indicated graphically in Fig. 5:
(A) only mode a is prepared in a qunaught state, and (B)
only mode b is prepared in a qunaught state. The non-
qunaught mode is either a momentum-squeezed (A) or a
position-squeezed (B) state following the standard macron-
ode procedure. The case (AB) where both ancillae modes
are qunaught states is considered above in Sec. IV B 1. The
respective wave functions for the ancillae, ψ̃ (αI ) and φ(αR),
to be used in Eq. (40) for each case are given in the table in
Fig. 5.

Case (A) gives

ÂGKP,A(ψ,φ) = 2
1
4
√

π III√π ( p̂) . (93)

Using Eq. (41), we get the following circuit identity:

(94)

Using Eq. (44), this yields a Kraus operator that performs
partial GKP error correction in the p quadrature,

K̂GKP,A(ma, mb) = 2
1
4

√
π

III√π ( p̂)D̂(µ)V̂ (θa, θb) . (95)

Case (B) is almost the same (with q̂ ↔ p̂). Plugging the
wave functions for case (B) into Eq. (40) gives

ÂGKP,B(ψ,φ) = 2
1
4
√

π III√π (q̂) , (96)
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whose circuit is

(97)

This yields a Kraus operator that performs partial GKP error
correction in the q quadrature,

K̂GKP,B(ma, mb) = 2
1
4

√
π

III√π (q̂)D̂(µ)V̂ (θa, θb) . (98)

Each Kraus operator acts as a “filter” on the input state in
either

√
π -periodic momentum or position, respectively. For

measurement bases chosen such that V̂ (θa, θb) = Î and dis-
placements D̂(µ) at each macronode accounted for by active
corrective shifts, the two partial GKP error corrections can oc-
cur at separated macronodes. For ideal quadrature eigenstates
and qunaught states, i.e., neither contains finite-squeezing
noise, the result is ideal GKP error correction.

We model physical states at the ancillae with damped
qunaught states, Eq. (87), and squeezed states described by
Eq. (52) as approximate quadrature eigenstates. For both types
of state, we assume that the damping is equal so the damping
operators can be extracted and the remaining qunaught and
quadrature eigenstates treated as ideal.

The circuit identity for case (A) is

(99)

and the Kraus operator performs partial GKP error correction
in the p quadrature,

III√π ( p̂) → 1
√

N∅Nζ

N̂ (β )III√π ( p̂)N̂ (β ) . (100)

Similarly, for case (B), the circuit identity is

(101)

and the associated Kraus operator performs partial GKP error
correction in the q quadrature,

III√π (q̂) → 1
√

N∅Nζ

N̂ (β )III√π (q̂)N̂ (β ) . (102)

The benefit of performing full GKP error correction utilising
a GKP Bell pair is simply that there is no buildup of finite-
squeezing noise (and potential external noise) between the
two partial GKP error corrections.

V. APPLICATION: GKP ERROR CORRECTION
IN MACRONODE LATTICES

Above we analyzed the teleportation-gadget Kraus op-
erator when one or more modes are prepared in the GKP
qunaught state |∅〉. By combining this operator with the usual
measurement-based evolution with Gaussian resource states,

we can describe a hybrid resource state made up of both Gaus-
sian and non-Gaussian parts. These results can be generalized
to other CV cluster states made from two-mode CV cluster
states and 50:50 beam splitters.

All multidimensional macronode CV cluster states pro-
posed in Refs. [2,3,5,14,15,17] can be constructed by
arranging two-mode cluster states in a higher dimensional
geometry and then producing a fully connected resource by
applying a local constant-depth circuit of 50:50 beam splitters.
In all of these cases, the resulting lattices contain embedded
macronode wires that are used to implement single-mode
gates. Said another way, each such cluster state is equivalent
to a collection of macronode wires coupled via additional
50:50 beam splitters. By choosing homodyne measurements
appropriately, some of these beam splitters can be “cancelled
out,” producing local regions in the lattice that are literally
equivalent to a macronode wire. Details can be found in the
references above. The upshot is that teleportation-based GKP
error correction, described in Sec. IV B, has applications in
all of the higher dimensional macronode-based architectures
known to date. This combines the single-mode Gaussian gates
and GKP error correction of a single macronode wire with
the ability to implement multimode Gaussian unitary gates,
resulting in a universal set of resources [32] via passive linear
optics and offline preparation of squeezed vacuum and GKP
|∅〉 states.

VI. CONCLUSION

We have presented the Kraus operator for CV gate tele-
portation based on teleporting through a class of entangled
states that are prepared on a beam splitter. The teleported
gate depends on the ancilla states at the beam splitter, which
themselves can be non-Gaussian, enabling implementation of
teleported non-Gaussian operations. Our analysis focuses on
the macronode wire, but it is directly mappable onto higher-
dimensional macronode CV cluster states because all known
macronode cluster states are equivalent to a collection of
macronode wires coupled via additional 50:50 beam splitters.

We use the derived formalism to propose a teleportation-
based scheme for GKP error-correction requiring only
constant-depth linear optics to implement, removing the re-
quirement of previous work on active squeezing operations.
Further, our GKP error-correction scheme is compatible with
nondeterministic state preparation [67]. This simplifies the
implementation of practical GKP error correction—the final
ingredient needed by CV cluster state architectures for uni-
versal and fault-tolerant computation—bringing it in line with
the experimentally available resources.
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APPENDIX A: ENTANGLING QUADRATURE
EIGENSTATES ON A BEAM SPLITTER

We start with the LDU and UDL decompositions of a
rotation matrix R(θ ) valid for θ &= nπ/2 for odd n,

R(θ ) =
(

cos θ − sin θ
sin θ cos θ

)

=
(

1 0
tan θ 1

)(
cos θ 0

0 sec θ

)(
1 − tan θ
0 1

)
(A1a)

=
(

1 − tan θ
0 1

)(
sec θ 0

0 cos θ

)(
1 0

tan θ 1

)
. (A1b)

Each decomposes R(θ ) into a product of symplectic matrices
describing a shear, squeezing, and another shear.

Decomposing the symplectic representation of the Heisen-
berg action of the beam splitter B̂ jk that acts on the vector of
quadratures (q̂1, q̂2, p̂1, p̂2)T [20], namely,

(
R( π

4 ) 0
0 R( π

4 )

)
=





1 0 0 0
1 1 0 0
0 0 1 −1
0 0 0 1





×





1√
2

0 0 0

0
√

2 0 0
0 0

√
2 0

0 0 0 1√
2





×





1 −1 0 0
0 1 0 0
0 0 1 0
0 0 1 1



, (A2)

yields, up to an overall phase, a unitary decomposition of the
beam splitter:

B̂12 = e−iq̂1⊗ p̂2 [Ŝ†
1 (

√
2) ⊗ Ŝ2(

√
2)]eip̂1⊗q̂2 . (A3)

We can write this as a circuit identity (again, up to an overall
phase),

(A4)

where the two-mode gates are each a CV controlled-X gate,
Eq. (19), of weight g = ±1, with the open circle indicating
weight −1.13

Consider momentum and position eigenstates, |t〉p and |s〉q,
coupled by a beam splitter. Using the above decomposition,
the resulting entangled state is

B̂12 |t〉p1
⊗ |s〉q2

= eist e−iq̂1⊗ p̂2 Ŝ†
1 (

√
2) |t〉p1

⊗ Ŝ2(
√

2) |s〉q2

=
√

2eist e−iq̂1⊗ p̂2 |
√

2t〉p1
⊗ |

√
2s〉q2

=
√

2eist |EPR(
√

2s,
√

2t )〉 , (A5)

13Again, notice that the right-to-left circuit convention makes such
conversions straightforward: Eqs. (A2), (A3), and (A4) are all or-
dered the same way.

again up to a fixed phase. The norm scaling by
√

2 arises
from the action of the squeezing operator on a quadrature
eigenstate:

Ŝ(ζ )|s〉q = |ζ |1/2|ζ s〉q , (A6a)

Ŝ(ζ )|t〉p = |ζ |−1/2|ζ−1t〉p , (A6b)

where Ŝ(ζ ) is defined in Eq. (13). The prefactor ensures that
inner products are preserved and that projectors onto squeezed
quadrature eigenstates resolve the single-mode identity when
integrated over s (or t).

APPENDIX B: DERIVATION OF THE GATES
FOR ROTATED HOMODYNE MEASUREMENTS

The results of the previous Appendix can be generalized
to the case where eigenstates of rotated quadratures, such as
those in Eq. (8), are coupled on a beam splitter. The resulting
state is equivalent to a set of single-mode Gaussian operations
and a displacement acting on an EPR state. Important for
our purposes is the fact that the Hermitian conjugate of this
state gives a description of the two-mode entangled homodyne
measurement in the macronode teleportation gadget, Eq. (33).
The operations on the EPR state are indeed those that al-
low universal Gaussian quantum computation with standard
(Gaussian) macronode cluster states: the operator V̂ (θa, θb) in
Eq. (10), as well as a displacement D̂(µ). Here, we give a
derivation of these operations with specific attention to how
they arise in this measurement. In this context, note that they
arise solely from the choice of homodyne measurement angles
and outcomes and are distinct from the gate teleported by
the Kraus state (although we use the same formalism in its
derivation).

Rotated momentum and position quadratures,

p̂θ := R̂†(θ ) p̂R̂(θ ) = sin θ q̂ + cos θ p̂ , (B1)

q̂θ := R̂†(θ )q̂R̂(θ ) = cos θ q̂ − sin θ p̂ , (B2)

have respective eigenstates p̂θ |t〉pθ
= t |t〉pθ

and q̂θ |s〉qθ
=

s|s〉qθ
. We express these states in a convenient way using the

decompositions of the rotation operator in Eqs. (A1),

|t〉pθ
:= R̂†(θ )Ẑ (t )|0〉p (B3)

= D̂†
(

− is√
2

e−iθ
)

R̂†(θ )|0〉p (B4)

=
√

| sec θ |D̂†
(

− it√
2

e−iθ
)

P̂(− tan θ )|0〉p , (B5)

|s〉qθ
:= R̂†(θ )X̂ (s)|0〉q (B6)

= D̂†
(

− s√
2

e−iθ
)

R̂†(θ )|0〉q (B7)

=
√

| sec θ |D̂†
(

− s√
2

e−iθ
)

P̂p(tan θ )|0〉q. (B8)

In the final line of each expression are unitary shear operators,
defined respectively as

P̂(σ ) := e
iσ
2 q̂2

(B9)

P̂p(σ ) := e− iσ
2 p̂2

. (B10)
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Note that each shear does nothing to a particular 0-eigenstate,
P̂(σ )|0〉q = |0〉q and P̂p(σ )|0〉p = |0〉p, which allowed for the
simplifcations in Eqs. (B5) and (B8). The factor in front of
each expression arises from the action of squeezing operators
on quadrature eigenstates, Eq. (A6).

We now focus on the rotated measurements in the macro-
node teleportation gadget, Eq. (33), that are written as a
projection onto a two-mode entangled state,

(B11)

As the ultimate goal is to write this expression in terms of an
EPR state of the form in Eq. (30), we include in the rotation
angle on the top mode an additional π/2, so that it describes
a rotation from the q axis of that mode,

θ ′
a := θa − π/2 . (B12)

For convenience, we take the Hermitian conjugate of the ex-
pression (which reverses the direction of the beam splitter),
to get

(B13)

We split each phase delay operator into symmetric and anti-
symmetric parts, R̂(θ ) = R̂(θ+)R̂(θ−), with

θ ′
± := θ ′

a ± θb

2
, (B14)

since the common delays (rotations) commute with any beam
splitter,

(B15)

Finally, we extract the displacements from each state in
Eq. (B13), commute them past the beam splitter, and use
Eqs. (B5) and (B8) to express the remaining rotated quadra-
ture eigenstates as sheared eigenstates,

(B16)

where the displacement amplitudes are

β± := 1
2 (mae−iθ ′

− ± imbeiθ ′
− ) . (B17)

We now recognize that the right-hand side of the circuit
is a Kraus state of the form in Eq. (41) with the ancillae

given by

|ψ〉 =
√

| sec θ ′
−|P̂(tan θ ′

−)|0〉p , (B18)

|φ〉 =
√

| sec θ ′
−|P̂p(tan θ ′

−)|0〉q . (B19)

We can now directly evaluate the teleported gate that they
enact using Eq. (40). This requires obtaining wave functions
for |ψ〉 and |φ〉. The following are easy to evaluate directly
using the forms above:

ψ (s) := q〈s|ψ〉 = 1
√

2π | cos θ ′
−|

e
i
2 (tan θ ′

− )s2
, (B20)

φ̃(t ) := p〈t |φ〉 = 1
√

2π | cos θ ′
−|

e− i
2 (tan θ ′

− )t2
. (B21)

Taking the appropriate Fourier transforms, Eq. (62), we obtain
the other two, which we need for Eq. (40):

ψ̃ (t ) = F[ψ](t ) = 1
√

2π | cos θ ′
−|

e
i
2 (cot θ ′

− )t2
, (B22)

φ(s) = F−1[φ̃
]
(s) = 1

√
2π | cos θ ′

−|
e− i

2 (cot θ ′
− )s2

. (B23)

Substituting these wave functions into the teleported gate,
Eq. (40) (t = αI , s = αR), gives the Weyl representation of
some operator Ô,

Ô = 1
2π | cos θ ′

−|

∫
d2α e− i

2 (cot θ ′
− )(α2

R−α2
I )D̂(α) (B24)

with characteristic function [68],

Tr[ÔD̂†(α)] = 1
2| cos θ ′

−|
e− i

2 (cot θ ′
− )(α2

R−α2
I ) . (B25)

We now show that the rotated squeezing operator Ô =
R̂†( π

4 )Ŝ(ζ )R̂( π
4 ), yields the same characteristic function, and

we find the squeezing ζ as a function of θ ′
−. Evaluation of this

characteristic function,

Tr
[

R̂†
(

π

4

)
Ŝ(ζ )R̂

(
π

4

)
D̂†(α)

]
= Tr

[
Ŝ(ζ )D̂†(αei π

4 )
]
,

(B26)
with the trace taken in the position basis gives

∫
dt q〈t |Ŝ(ζ )D̂†(αei π

4
)
|t〉q =

√
|ζ |

|1 − ζ |
e− i

2
1+ζ
1−ζ

(α2
R−α2

I ) . (B27)

Since the functional form of this expression is the same as that
in Eq. (B25), we can read off the relations between parame-
ters,

cot θ ′
− = 1 + ζ

1 − ζ
−→ ζ = − tan

(
θ ′
− − π

4

)
. (B28)

Thus, we have shown that, for the Kraus state on the right-
hand side of the circuit in Eq. (B16), the teleported gate is a
π
4 -rotated squeezing operation.

Putting this all together, Eq. (B16) becomes

(B29)
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Note that the teleported gate is on the top wire here due to the
beam splitter orientation in the state, Eq. (B13). Bouncing all
the operators to the top wire using rules described in Eqs. (24)
and (26), and then combining the two displacements reduces
this to

(B30)
where the final displacement amplitude µ can be
derived by bouncing all operators to the top mode
and commuting both displacements to the end, giving
µ = −eiθ ′

+ [β+ cosh (− ln ζ ) − iβ∗
+ sinh (− ln ζ ) + β∗

−]. The
phase eiθ ′

+ at the front arises from bouncing and then
commuting the final R̂†(θ ′

+) through all displacements, the
β∗

− results from bouncing the D̂†(β−) to the top wire, and the
remaining terms result from commuting D̂†(−β+) through
the rotated squeezing operator. In the end, µ evaluates to

µ = −maeiθb + mbeiθa

sin(θa − θb)
. (B31)

Writing Eq. (B30) in terms of (combinations of) the origi-
nal measurement angles using Eqs. (B12) and (B14) gives the
equivalent circuit,

(B32)

where we define the operator [Eq. (10)]

V̂ (θa, θb) := R̂
(
θ+ − π

2

)
Ŝ(tan θ−)R̂(θ+) , (B33)

with θ± = 1
2 (θa ± θb) [Eq. (12)]. Note that we have ignored an

overall phase in this derivation, which results from combining
the two displacements into µ.

Taking the Hermitian conjugate of the circuit in Eq. (B32)
gives a description of the two-mode entangled measurement
in Eq. (B11),

. (B34)

This circuit contains the operators used in the main text and
those in Refs. [1,23,46,69]. Note that when the Kraus state in
the full teleportation gadget is nontrivial, then the outcome-
dependent displacement D̂(µ) should be commuted past the
teleported gate Â(ψ,φ) in order to determine the necessary
correction at the end of the gadget.

We present several variations of the circuit in Eq. (B34) by
commuting the outcome-dependent displacement to different
places among the other operators. For the case where the
displacement acts first, we find

(B35)

with amplitude

µ′ = −mae−iθb + mbe−iθa

sin(θa − θb)
. (B36)

We now discuss a different final form in order to com-
plete the connection to the literature [6,16]. Pulling out a
Fourier transform F † = R̂(−π

2 ) in Eq. (B33), V̂ (θa, θb) =
F̂ †V̂ ′′(θa, θb), we now consider the case where the displace-
ment lies between the two other gates,

(B37)

and has amplitude

µ′′ = −imaeiθb − imbeiθa

sin(θa − θb)
. (B38)

This form is suitable for comparison with Refs. [6,16], as
V̂ ′′(θa, θb) and D̂(µ′′) agree with those works up to one dif-
ference: their circuit does not contain the Fourier transform
F̂ †.14 This is because teleportation gadget in those works uses
a two-mode canonical CV cluster state as its Kraus state,
|CVCS〉 := eiq̂⊗q̂|0〉p ⊗ |0〉p, which is related to the canonical
EPR state by R̂( π

4 ) on each mode (or, equivalently, F̂ on either
mode). Since q̂ = −F̂ p̂F̂ †, this state can be represented with
the following circuit identity:

(B39)

Acting with the Fourier transform gives F̂ †|0〉p = |0〉q, and
using Eq. (20), the resulting circuit is

(B40)

recovering the well-known fact that teleportation with canon-
ical CV cluster states is accompanied by a Fourier transform
[12]. Thus, when using this Kraus state in conjunction with the
measurement as described by Eq. (B37), the two Fourier trans-
form operators cancel in the final Kraus operator, F̂ F̂ † = Î .

14Note that Ref. [6] has an error in the denominator of the displace-
ment operator: it appears in that reference as sin θ−, while the correct
quantity is sin(θa − θb).
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APPENDIX C: GLOSSARY OF CIRCUIT IDENTITIES

Here, we provide a succinct summary of the circuit identities in the main text. Note that all circuits are to be read right (input)
to left (output).
(1) Canonical maximally entangled EPR state, Eq. (20):

(C1)

(2) Canonical two-mode CV cluster state, Eq. (B40):

(C2)

(3) Square-lattice GKP Bell state, Eq. (85):

(C3)

with qunaught state |∅〉, Eq. (71), and GKP projector ,̂GKP, Eq. (70).
(4) Kraus state for a partial GKP projector (p quadrature), Eq. (94):

(C4)

(5) Kraus state for a partial GKP projector (q quadrature), Eq. (97):

(C5)

(6) Decomposition of the beam splitter, B̂ jk in Eq. (1), in terms of Gaussian gates, Eq. (A4), using notation introduced in Eq. (4):

(C6)

(7) Bouncing operations from one mode to another through an EPR state, Eq. (23):

(C7)

with the transpose taken in the position basis.
(8) State produced by mixing a t-momentum and s-position eigenstate on a beam splitter, Eq. (31):

(C8)

(9) Entangled two-mode measurement of rotated quadratures with outcomes ma and mb, Eq. (36):

(C9)

with Gaussian unitary V̂ (θa, θb), Eq. (10), and outcome-dependent displacement with amplitude µ, Eq. (11).
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(10) Beam splitter-entangled Kraus state for identical local damping on the ancillae, Eq. (57):

(C10)

for damping operator N̂ (β ) in Eq. (51). This state can be normalized with factor (NφNψ )−1/2.
(11) Gate-teleportation gadget with damped ancillae comprising the Kraus state, Eq. (58):

(C11)

(12) Case (AB)—state produced by mixing two damped qunaught states, Eq. (87), on a beam splitter, Eqs. (85) and (89):

(C12)

The final form uses Eq. (C3) and (C7) above.
(13) Case (A)—state produced by mixing a momentum-squeezed state, Eq. (52), and a damped qunaught state on a beam splitter,
Eqs. (95) and (99):

(C13)

The final form uses Eqs. (C4) and (C7) above.
(14) Case (B)—state produced by mixing a damped qunaught state and a position-squeezed state, Eq. (52), on a beam splitter,
Eqs. (98) and (101):

(C14)

The final form uses Eqs. (C5) and (C7) above.
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