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As GaN technology proliferates in modern power electronics, reliability of GaN-
based circuits has become the biggest hurdle for commercialization. Sustaining
largest voltage and current stresses in power circuits, power devices on average
account for over 31% of failures [1]. With new problems such as current collapse
and thermal aging, GaN power circuits deem to face more reliability challenges
compared to their silicon counterparts [2]. In such a situation, health condition
monitoring is of paramount importance. As shown in Fig. 18.1.1, due to hot
electron injection and charge trapping effects, current collapse weakens 2-
dimensional electron gas (2DEG) layer in a GaN switch over time, elevating its
dynamic on-resistance rDS_ON gradually. The clear link between rDS_ON and aging
(Fig.  18.1.1) makes rDS_ON a widely accepted precursor for GaN condition
monitoring [3-5]. However, measuring rDS_ON is not a simple task. Traditionally,
rDS_ON can be measured offline by shutting down the affiliated circuit. However,
the approach can be highly inaccurate due to significant discrepancy between
offline and online operation conditions. To mitigate this issue, in-situ condition
monitoring can be employed [3, 4]. However, it still requires designated test
periods, causing interruptions of operation and increased test cost. A recent study
applies machine learning (ML) to achieve online aging prognosis [5]. However,
the ML algorithm is generic and is built on a standard digital basis. It requires
sophisticated data processing and communication modules, causing substantial
power and cost overheads. More importantly, the off-board look-up-table-based
training process has to be performed offline, leading to similar drawbacks
encountered in other approaches. Overall, all approaches reviewed here demand
significant resources and time for either trimming, calibration or training in order
to compensate for variations and errors induced by the fabrication process, work
condition, user influence, etc. It would be much more desirable and efficient if a
“plug-and-play” online aging prognosis method can be developed, which, as an
essential part of a power circuit, requires no trimming and calibration.

To achieve the above goal, this paper presents a self-health-learning smart power
converter in Fig. 18.1.2 and demonstrates two key design efforts. First, we present
an on-die logarithm-based supervised learning engine for power device health
prognosis. By taking advantage of sense/control signals available in the controller
of the power converter, the engine autonomously trains the converter to establish
and update its own rDS_ON aging model without interrupting normal operation. As
an integral part of the converter, the engine is designed using low-power, low-
cost analog trans-linear circuits with no analog-to-digital data conversion.
Compared to the off-chip FPGA-based ML approach proposed in [5], it computes
much faster and more efficiently with minimized cost and power overhead.
Second, we present a junction temperature (TJ) independent precursor
measurement scheme for online condition monitoring. As rDS_ON is highly TJ-
dependent, the accuracy of aging prognosis heavily relies on effective removal of
temperature impact from the rDS_ON obtained in the 1st effort. Unlike conventional
TJ sensing approaches, the proposed scheme eliminates the needs of direct
parameter sensing on a GaN device, achieving a truly non-intrusive operation. To
achieve it, the scheme computes instant power losses and sense ambient
temperature TA to determine the instant TJ. 

Figure 18.1.3 details the proposed logarithm-based analog stochastic gradient
descent (SGD) supervised learning algorithm. By collecting online sense/control
signals (VO, IO, VIN) as well as TA and rDS_ON, the converter starts the 1st step of
training phase for data collection and power loss (PLOSS) extraction. 
PLOSS is extracted by evaluating conduction loss (PON), switching loss (PSW) 
and output capacitance loss (PCOSS). TJ is then determined by
TJ=W0+W1×TA+W2×PCOSS+W3×PSW+W4×PON. Here, W0-4 are the weights which are
continuously updated in training process. Note that, due to the parasitics in the
actual implementation, PLOSS in practice is usually different from that of its
theoretical calculation. Thus, to improve the model accuracy, a constant term W0

is added to minimize the errors. In the 2nd step, rDS_ON is predicted based on an
exponential functionality inspired by the device physics indicating that
rDS_ON=exp(a×TJ+b). Here, a and b are technology related coefficients. Computing
exponentials is usually resource-demanding in terms of circuit implementation.
To mitigate this, a natural logarithm operation is applied to the above equation,
transforming the equation to a linear function Ln(rDS_ON)=a×TJ+b. With this

transformation, the computation in SGD algorithm is fully linearized, significantly
simplifying the complexity of data processing. In the circuit implementation, a
BJT transconductance-based logarithmic converter is employed to efficiently
complete the natural logarithmic operator. Using this relation, the on-resistance
is predicted as rDS_ON’, which is then compared to the sensed rDS_ON. The resulting
difference is squared to generate the loss function L in the 3rd step. The weight’s
gradient is computed using the partial derivative of L with respect to each weight
during the 4th step. Thanks to the linearization through the logarithm operation,
the gradient computing is down-graded to first order partial differential,
simplifying the circuits design. The gradients are then multiplied by a learning
rate α. The results are subtracted from the previous W0-4, generating the new
weights in the 5th step. At last, the new weights are updated into local memory
unit. Such iteration repeats every 64 clocks to minimize the L. Eventually, rDS_ON’
converges to rDS_ON. In prediction phase, the predicted rDS_ON’ is used as an
adaptive aging reference for TJ-independent online aging prognosis.

Figure 18.1.4 shows the circuit implementation of the TJ-independent online
condition monitoring. To obtain rDS_ON, the drain-source voltage VDS_ON and current
IDS_ON of the high-side GaN switch MT are measured. Then they are fed into an
analog divider based on translinear principle. The translinear loop, consisting of
QN1-QN4, achieves IOUT=ILSB×( IIN1⁄IIN2). Here, ILSB is a unit current of the computation.
As mentioned earlier, rDS_ON varies with TJ fluctuations, degrading the condition
monitoring accuracy. To remove TJ influence on rDS_ON, TJ sensing is necessary.
To achieve non-intrusive operation, an online TJ sensing scheme is proposed by
evaluating TA and PLOSS. As detailed in Fig. 18.1.4, in addition to VIN and VO, IDS_ON

is fed to an averaging block. Controlled by the on-time of the converter, IDS_ON is
averaged to obtain IO. To detect TA, a proportional-to-absolute-temperature (PTAT)
based voltage reference is designed. The circuit generates a PTAT voltage VPTAT

with a temperature coefficient of 1.793mV/°C. To avoid self-heating effect, the TA

sensor is placed away from the gate driver in the chip floorplan. The designed
VPTAT versus IO data shows a near-constant VPTAT when IO varies from 0 to 1.8A,
demonstrating high immunity to self-heating.

A prototype of this work is fabricated in a 0.18μm HV BCD process. Two
enhancement-mode GaN FETs are used as power switches MT and MB. The
converter supports the operation of VIN from 5 to 40V, delivering 9W of power at
switching frequency of 3.3MHz. To validate the training engine, 120 groups of
raw data, including the power and ambient temperature parameters, are collected.
As shown in Fig. 18.1.5, the proposed training engine delivers a model as
Ln(rDS_ON)=0.0043×TJ+4.9. Compared to the model provided by the manufacturer,
which is Ln(rDS_ON)=0.0036×TJ+5.01, the errors of temperature coefficient and
constant term are 19.4% and -0.8%, respectively. Within the temperature range
from 0°C to 120°C, the two errors compensate each other, ensuring the prediction
accuracy. To verify the prediction accuracy, the trained model is applied to a group
of measured data, showing the maximum prediction error of 2.77%. This
resolution well suffices for condition monitoring. The inset of Fig. 18.1.5 shows
the measured results on multiplication, demonstrating a linear increase of output
O when input A varies from 0 to 0.9. The multiplier has a constant offset of 0.718,
which is independent of the inputs. Thus, it can be easily removed from the output
O through software algorithm. Figure 18.1.6 shows the measured VPTAT increasing
with TA at a rate of 1.798mV/°C, matching the simulated value precisely. The
measured rDS_ON-TJ data verifies the exponential functionality. VDS_ON increases
from 160mV to 220mV when TJ rises from 25°C to 110°C. Fig. 18.1.7 shows the
chip micrograph. The chip has an active area of 2.9mm2.
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Figure 18.1.1: Challenges of condition monitoring for GaN power devices.

Figure 18.1.2: Illustration of a GaN power converter integrated with proposed
logarithm-based analog SGD learning engine and online TJ-independent
precursor measurement.

Figure 18.1.3: Online supervised learning using logarithm-based analog
stochastic gradient descent (SGD) training algorithm for GaN device self-health-
learning.

Figure 18.1.5: Measured results of the on-die supervised learning for rDS_ON-
temperature model training.

Figure 18.1.6: Measured results of the PTAT-based TA sensing and temperature
performance of the rDS_ON.

Figure 18.1.4: Circuit implementation of TJ-independent online condition
monitoring with on-chip sensing blocks.
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Figure 18.1.7: Chip micrograph.
Figure 18.1.S1: Illustration of forward and back propagation schemes in online
supervised learning.

Figure 18.1.S2: Circuit implementations of analog natural logarithm, multiplier
and weights update unit. Figure 18.1.S3: Photo of the test board.
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