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Generating nonlinearities from conditional linear operations, squeezing, and measurement
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Large bosonic or continuous variable nonlinearities can have numerous applications, ranging from the genera-
tion of cat states for quantum computation, through to quantum sensing where the sensitivity exceeds Heisenberg
scaling in the resources. However, the generation of ultra-large nonlinearities has proved immensely challenging
experimentally. We describe a novel protocol where one can effectively generate large Kerr-type nonlinearities
via the conditional application of a linear operation on an optical mode by an ancilla mode, followed by a
measurement of the ancilla and corrective operation on the probe mode. Our protocol can generate high-quality
Schrödinger cat states useful for quantum computing and can be used to perform sensing of an unknown rotation
or displacement in phase space, with super-Heisenberg scaling in the resources. We finally describe a potential
experimental implementation using atomic ensembles interacting with optical modes via the Faraday effect.
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I. INTRODUCTION

Optical nonlinearities, and particularly the Kerr nonlinear
oscillator, have been the focus of much research within quan-
tum optics since the investigations by Milburn and Holmes
[1] and Yurke and Stoler [2]. Nonlinear quantum oscillators
and the highly nonclassical cat states they can produce have
found numerous applications including studying the funda-
mentals of decoherence [3], improved schemes for metrology
[4–28], as well as for quantum computation [29–31]. Re-
searchers have shown that nonlinear quantum systems can
provide a metrological precision that scales better than the
so-called Heisenberg scaling in the estimation of a parameter
φ. Standard quantum limit (SQL) and Heisenberg quantum
limit (HL) metrology schemes result in an imprecision δφ that
scales with the resource n̄ as δφ ∼ 1/

√
n̄ or 1/n̄, respectively.

Although nonlinear Kerr-type oscillators have been in-
tensively studied theoretically, experimentally implementing
them has proved extremely challenging. The degree of non-
linearity that can be engineered in most atomic or optical
systems is too small or is associated with too much loss to
be useful. Recently, superconducting quantum devices have
proved capable of generating Kerr-type quantum states in the
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microwave domain [32], but their generation in the optical
domain remains problematic.

In this paper, we show that, curiously, one can imprint
a nonlinear Hamiltonian (in our case a Kerr) on an optical
mode (which we will denote as the probe mode) using only
a conditional linear operation from an ancilla mode which is
then measured. This measurement implements a Kraus oper-
ation on the primary mode which comprises both unitary and
nonunitary components, and in a suitable limit, we find that
the Kraus operation is almost of a pure Kerr type. We show
how tailoring this Kraus operation

(1) can be used to perform super-Heisenberg sensing of an
unknown rotation in phase space with an imprecision which
scales as δθ ∼ 1/n̄3/2, where n̄ is the mean Fock number of
the probe mode;

(2) can be used to perform super-Heisenberg sensing of an
unknown displacement in phase space with δx ∼ 1/n̄3/2;

(3) can be used to engineer near perfect nonclassical Kerr
cats for use in optical quantum computation and metrology;
and

(4) can be implemented using optical modes interacting
with atomic ensembles via the Faraday effect.

In this paper, we consider the coupling of an optical probe
mode to an ancillary pseudobosonic degree of freedom that
arises from a collection of spins as a system that couples to
optical mode. We assume access to a fixed but large degree
of spin squeezing in this system. In Sec. II, we describe the
fundamental idea behind the scheme, which is graphically
depicted in Fig. 1. In Sec. III, we introduce the reader to some
principles of quantum metrology, and in Sec. III A, we give
a quick introduction to quantum Fisher information (QFI).
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FIG. 1. Basic protocol: Both the top and bottom lines of the
circuit represent bosonic modes, which we label as the ancilla (top)
and probe (bottom) modes. In Stage I, we initialize the ancilla mode
in a squeezed vacuum state, where S(r) is the squeezing operator.
In Stage II, we implement a rotation of the ancilla mode by R(θ ).
In Stage III, we implement “Kerr teleportation” onto the input state
|ψ〉 (which we assume is a coherent state), via the cross-rotation gate
CR (which rotates the probe mode by an amount dependent on the
momentum of the ancilla mode, e.g., generated by ĤR = g̃ p̂A ⊗ n̂P),
and a position quadrature measurement of the first mode. This has the
upshot of implementing both linear ∼n̂P and quadratic ∼χ n̂2

P oper-
ations on the probe mode, where the Kerr strength χ is a function of
r, θ , and g. We allow for a measurement outcome dependent unitary
Uc at the conclusion of this teleportation procedure to undo the linear
rotations, leaving only Kerr-like evolution with some decay. Finally,
the probe mode can be measured in Stage IV. Quantum states referred
to in the text at various points in the circuit are labeled by dotted
vertical lines.

In Sec. III B, we extend the QFI to postmeasurement ensem-
bles, and in Secs. III C and III D, we describe how to perform
super-Heisenberg metrology. In Sec. IV, we describe how to
use our protocol to generate Schrödinger cat and compass
states with high fidelity, and finally, in Sec. V, we describe a
potential experimental implementation of our protocol which
uses collective modes of an atomic ensemble in the Holstein-
Primakoff approximation as an effective harmonic oscillator
mode.

II. OUTLINE OF OUR PROTOCOL TO GENERATE
NONLINEAR DYNAMICS

The protocols we develop in this paper are primarily based
on the innocuous Gaussian integral

∫ +∞

−∞
dy exp(−ay2 + by) =

√
π

a
exp

(
b2

4a

)
, (1)

which converges provided Re(a) > 0. This integration has
the interesting property that the parameter b, which appears
linearly in the exponential of the integrand on the left, ends
up appearing quadratically in the exponential on the right.
Unitary operators can be written as the exponential of an
Hermitian generator. We will make use of the curious property
of Eq. (1) to essentially square the generator. We will show
how it is possible to bootstrap the typical harmonic oscillator
generator Ĥho ∼ â†â ∼ n̂ to become that of the nonlinear Kerr
oscillator Ĥko ∼ n̂2. We will see that this bootstrapping can
only be achieved approximately with realistic resources, but
interestingly, it can be achieved deterministically even though
a measurement is involved.

We introduce this protocol via Fig. 1, which is the basic
description of the bootstrap protocol. We begin with two

bosonic modes, as shown in Fig. 1, with the top (bottom)
mode denoted as the ancilla (probe) modes. We introduce the
following single- and two-mode operators:

Ŝ(r) = exp

[
−r

(
â2

A − â†2
A

)

2

]

, (2)

R̂(θ ) = exp (i θ n̂A), (3)

Ŝh(β ) = exp
(
−i β p̂2

A

)
, (4)

ĈR = exp (−i g p̂A ⊗ n̂P ), (5)

where the A (P) subscript indicates operators acting on the
ancilla (probe) modes. These operators we name as the S(r):
squeezing, R(θ ): rotation, Sh(β ): shear, and CR: cross-rotation
operators. Referring to Fig. 1, we begin by considering Stages
I and II involving the ancilla mode where, for simplicity,
initially, we will apply Ŝh(β ) at Stage II rather than R̂(θ ).
We will generalize to the case including rotation later. We can
write the state of the ancilla mode after Stage II as

|ψII〉A ≡ Ŝh(β ) Ŝ(r) |0〉A (6)

= exp
(
−iβ p̂2

A

)
Ŝ(r)|0〉A (7)

= NII

∫
d p exp

(
− p2

2σ 2

)
exp

(
−iβp2) |p〉A (8)

where |p〉A is the eigenstate of p̂A, the momentum operator
of the ancilla mode, σ 2 = e2r , and NII is a normalization
constant. We next bring in the initial state of the probe mode
|ψ〉P ≡ |α〉P, taking it to be in a coherent state of magnitude
α, and apply the cross-rotation gate to obtain

∣∣*R
III

〉
≡ exp (−igp̂A ⊗ n̂P )|ψII〉A ⊗ |α〉P (9)

= NII

∫
d p exp

[
−p2

(
1

2σ 2
+ iβ

)]

× exp (−i g p n̂P )|p〉A ⊗ |α〉P. (10)

Next, in Stage III, we apply a position measurement on the
ancilla mode, and if the result of that measurement is m, and
given 〈m|p〉A = eimp/

√
2π , we obtain the postmeasured state

of the probe to be

∣∣*M
III

〉
= NIIIM

∫
d p exp

[
−p2

(
1

2σ 2
+ iβ

)]

× exp [ip(m − gn̂P )] |α〉P, (11)

where NIIIM = 1/(π1/4
√

2πσ ). We can now proceed to in-
tegrate over the integration variable p. For this, we use the
known integral

∫ +∞

−∞
d p exp(−ap2 + bp) =

√
π

a
exp

(
b2

4a

)
, (12)

which holds only if Re(a) > 0. Identifying a = 1/2σ 2 + iβ
and b = i(m − g n̂P ), we obtain for the postmeasurement state
of the probe mode

∣∣*M
III

〉
= N ′

IIIM exp
[
− (gn̂ − m)2

4
( 1

2σ 2 + iβ
)
]
|α〉 (13)

= NÛ (β )Ûc(β, m)K̂ (β )K̂c(β, m)|α〉, (14)
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where N is a normalization factor, and we have now dropped
the subscript P referring to the probe mode. In the final expres-
sion Eq. (14), we have decomposed the propagator into a prod-
uct of four commuting operators which describe the complete
action of the channel on the initial state of the probe. These
include two unitary operations Û and Ûc and two nonunitary
operations K̂ and K̂c. Their explicit form is given by

Û (β ) = exp
(

i
βg2

µ
n̂2

)
, (15)

K̂ (β ) = exp
(

− g2

2σ 2µ
n̂2

)
, (16)

Ûc(β, m) = exp
(

i
2βmg

µ
n̂
)

, (17)

K̂c(β, m) = exp
(

− 2 mg
2σ 2µ

n̂
)

, (18)

where µ = 4[β2 + 1/(4σ 4)]. We notice that the evolution of
the probe state involves deterministic operations Û (β ) and
K̂ (β ), which do not depend on the measurement result m, as
well as conditioned operations Ûc(β, m) and K̂c(β, m), which
do depend on m.

We now reach our first important observation: the unitary
Û (β ) is a deterministic pure Kerr evolution, where the Kerr
strength χ ≡ βg2/µ now depends on β and σ , the shear and
squeezing parameters of the operations on the ancilla mode.
We also see that all the operations in Eqs. (15)–(18) commute
irrespective of the parameter values. In the limit of infinite
squeezing σ → ∞, we have µ → 4β2, and the two nonuni-
tary operators collapse to the identity, while χ → g2/4β, and
Ûc is an m-dependent rotation with phase φ = mg/2β. In this
limit, we are left with pure unitary evolution that consists
of a deterministic nonlinear rotation and a measurement-
dependent linear rotation. In the final rightmost section of III
in Fig. 1, we assume we can apply a correction unitary on the
probe mode which depends on the value of the measurement
outcome m.

In the above simplified initial description of the protocol,
we applied the shearing operator Ŝh(β ), rather than a rota-
tion operator R̂(θ ). Use of the shearing operation permits a
relatively straightforward illustration of the main principles
of how the protocol operates, and the resulting analytic ex-
pressions are compact. However, it is more physically relevant
to use the rotation operator R̂. We note that the combination
of squeeze and shear operations can be decomposed into
separate squeeze and rotation operations and this alternative
parametrization is shown in Fig. 1. We will make use of this
latter description in the remainder of the paper below. To find
this alternative parametrization, we use the Siegel upper half
space representation of Gaussian pure states, where the state
is represented by a complex number z = v + iu, where u > 0
[33]. We note that the symplectic matrices corresponding to
squeezing and rotation can be written as
(

0 −1
1 0

)(
cos θ − sin θ
sin θ cos θ

)(
e−r 0
0 er

)
=

(
a b
c d

)
, (19)

where the leftmost matrix implements an extra π/2 rotation
which is responsible for interchanging the roles of the position

and momentum bases, and the state gets squeezed in position
for r > 0. Then

c + id
a + ib

= z = v + iu, (20)

where u=1/+, v=− sin 2θ sinh 2r/+, and +=e−2r sin2 θ +
e2r cos2 θ .

One can express the state output from Stage II as

|ψII〉A = R̂(θ )Ŝ(r)|0〉 (21)

=
( u
π

)1/4
∫

d p exp
[
−1

2
p2(u − iv)

]
|p〉A, (22)

and repeating the steps from Eqs. (8)–(14), we can show

1
2σ 2

= u, (23)

β = −v, (24)

and using Eqs. (23) and (24), one can re-express the pa-
rameters (σ,β ) → (r, θ ). We will primarily use the (r, θ )
parametrization in the remainder of the paper below.

In the remainder of the paper, we will explore two main
variations of this circuit:

Enhanced quantum metrology: If we assume we have im-
perfect knowledge of one parameter in the circuit, e.g., of the
angle θ , and wish to estimate the value of θ , we first describe
how, using the circuit in Fig. 1, we can perform this estimate
with a precision that scales as ,θ ∼ 1/n̄3/2

P , where n̄P is the
mean Fock number of the input probe coherent state. This
scaling in precision is faster than the typical Heisenberg scal-
ing for estimating θ , which normally scales as ,θ ∼ 1/n̄P.
The ancilla mode can have high levels of squeezing, but in
the protocol, we consider the resources of the ancilla mode
to be fixed, while we vary the Fock number n̄P of the probe
mode. We describe how the circuit shown in Fig. 1 can be used
to estimate θ , the parameter of a phase rotation of a mode,
and alternatively, how to estimate κ , which parameterizes
displacements of a mode, each with a precision that scales as
∼1/n̄3/2

P . We note that, in this latter example, which is often
used for force sensing, the standard HL scales as ,κ ∼ 1/

√
n̄.

Thus, our improvement in displacement metrology over the
normal HL is substantial [34]. We discuss this scaling further
in Sec. III D.

Non-Gaussian state preparation: Next, we will assume
we have full information of all the parameters in the cir-
cuit. With full knowledge of these parameters, we can apply
complete nonlinear correction so that, in the high-squeezing
limit, we are left with a deterministic pure Kerr evolution
Û (θ ) = exp[i (g2/4) cot(θ ) n̂2], which, curiously, has a Kerr
strength which is a highly nonlinear function of θ . We can
use this to produce nonclassical states of the probe mode and,
with infinite squeezing and pure-Kerr evolution, we can target
the generation of a Yurke-Stoler cat state [2]. A more real-
istic scenario, using finite squeezing, will result in imperfect
preparation of such non-Gaussian quantum states. In Sec. IV,
we study the preparation fidelities that can be achieved using
this scheme.
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III. PERFORMING ENHANCED METROLOGY

We now develop the quantum circuit outlined in Fig. 1
to perform parameter estimation as outlined at the end of
Sec. II. We assume that we have complete knowledge of the
parameters (r, g, m,αP ) denoting the ancilla mode squeezing,
strength of the cross-rotation gate CR, measurement outcome
m, and the parameter αP describing the coherent-state input to
the probe mode, respectively. We assume that the parameter
θ is set to a particular known base value (which we denote as
θ ), and we are interested in estimating changes in θ → θ + δθ
about this base value with precision. We also assume we can
apply a correction rotation unitary at the end of Stage III of
the circuit shown in Fig. 1, or Ûc[ f (r, g, θ ), m] in Eq. (17),
where f is a deterministic function of these known param-
eters. This correction unitary aims to reduce the stochastic
effects of the measurement on the probe. To gain some in-
tuition regarding the necessity of this correction unitary, we
refer the reader to its use in the quantum teleportation of
qubits. In teleportation, Alice performs a joint measurement
on a qubit in an unknown state and also on one half of an
entangled pair of qubits, while the other qubit of this entangled
pair is sent to Bob. If Alice sends her measurement result to
Bob, the teleportation protocol can only be successful once
Bob applies a correction unitary to his qubit given Alice’s
result. If Alice chooses not to tell Bob her result, then Bob’s
qubit is left in a complete mixture. We uncover a very similar
situation below. If we choose not to apply a correction unitary,
the unconditioned (averaged over measurements) state of the
probe mode is left in an extremely mixed state and retains
little information useful for metrology. Once the appropriate
unitary correction is applied, the unconditioned probe mode
is much purer and retains significant amounts of information
regarding the unknown parameter which can be extracted via a
final measurement on the probe mode. This final measurement
on the probe mode is made to estimate the unknown parameter
change δθ . As a measure of the resources required to achieve
a particular precision in estimation, we will make use of the
QFI. The QFI is typically defined for unitary channels, where
the effect on the final state by a change in the parameter is
unitary. However, in the circuit shown in Fig. 1, information
about δθ is found not only in the final conditioned state of
the probe mode ρ̂m

P , but also in the classical measurement
results m. We have to then expand the normal unitary QFI
to encompass the ensemble of joint classical-quantum output
states {m, ρ̂m

P }.

A. Quick review of QFI

In quantum metrology, one aims to statistically estimate
the value of a parameter in the system using an unbiased
estimator. From the quantum Cramér-Rao theorem, the QFI
provides a lower limit on the variance of such an estimator
[35–39]. A larger value of the QFI implies higher precision
parameter estimation, and one can study the dependence of
the QFI on various quantum resources, e.g., the average Fock
number of the input probe mode. We now give the reader a
quick overview of the properties of the QFI illustrated with a
number of examples before addressing the QFI of a channel of
pure states conditioned on classical measurement outcomes.

As mentioned above, the precision of a statistical estima-
tion of a parameter θ can be studied in terms of the (classical)
Fisher information (FI) F (θ ), which determines the Cramér-
Rao bound for the variance of an unbiased estimator

,θ ! ,θCR = 1√
νF (θ )

, (25)

where ν quantifies the total number of repetitions of the
estimation.

The FI can be upper bounded by the QFI FQ. The QFI is a
function of a family of parameterized quantum states {ρ̂(θ )}

FQ[ρ̂(θ )] = Tr[ρ̂(θ )L̂2],

where
∂ρ̂(θ )

∂θ
≡ 1

2 [ρ̂(θ )L̂ + L̂ρ̂(θ )], (26)

and where L̂ is a θ -dependent Hermitian operator called the
symmetric logarithmic derivative (SLD). When ρ̂(θ ) is pure,
the SLD and the QFI are easy to calculate (see Refs. [40,41]).
Because ρθ = ρ2

θ , we have

∂ρ̂(θ )
∂θ

= ∂

∂θ
[ρ̂2(θ )] = ∂ρ̂(θ )

∂θ
ρ̂(θ ) + ρ̂(θ )

∂ρ̂(θ )
∂θ

, (27)

which immediately gives, from Eq. (26),

L̂ = 2
∂ρ̂(θ )

∂θ
= |∂θψθ 〉〈ψθ | + |ψθ 〉〈∂θψθ |, (28)

where we have expressed ρ̂(θ ) = |ψθ 〉〈ψθ | and denoted
∂
∂θ

→ ∂θ . We can thus write the QFI for pure states

FQ[ρ̂(θ )] = 〈ψθ |L̂2|ψθ 〉 = 4(〈∂θψθ |∂θψθ 〉 − |〈ψθ |∂θψθ 〉|2).

(29)

If the parameterized pure states {|ψθ 〉} are generated by a
θ -dependent unitary transformation acting on a fiducial state
|ψ0〉, i.e., if |ψθ 〉 = exp(−iĜ θ ) |ψ0〉, then the expression
above reduces to

FQ[ρθ ] = FQ[|ψ0〉, Ĝ] = 4(〈ψ0| Ĝ2|ψ0〉 − 〈ψ0| Ĝ|ψ0〉2),

(30)

which is four times the variance of the generator Ĝ in that
fiducial state |ψ0〉, which we will denote as (,Ĝ)|2ψ0

.
For illustrative purposes, we now consider some applica-

tions of these QFI relations with respect to metrology. We first
consider estimating an unknown phase imprinted on the state
of a single quantum bosonic mode prepared in the fiducial
coherent state |α〉, which is subject to an unknown linear
phase shift via the operation R(θ ) = e−iθ n̂, where n̂ = â†â.
From Eq. (30), we find the pure state QFI as FQ[|α〉, n̂] =
4(,n̂)|2α = 4|α|2 = 4n̄, using the notation for the variance
introduced above. Here, we have also introduced n̄ as the
mean number occupation of the fiducial state. We will be
particularly focused on analyzing the scaling of the QFI with
n̄ for different types of metrology protocols, treating n̄ as a
quantification of the quantum resource. In this case, the scal-
ing FQ[|α〉, n̂] ∼ n̄, represents the SQL for phase estimation.
The SQL for phase estimation can be beaten by imprinting
linear phase shifts on squeezed states, as shown, for example,
in Ref. [42]. An input fiducial state which is a squeezed
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vacuum state |φr〉 = Ŝ(r)|0〉, with mean Fock number n̄,
yields a QFI FQ[|φr〉, n̂] = 4(,n̂)|2φr

= 8 sinh(r)2 cosh(r)2 =
8(n̄2 + n̄), and thus leads to a better scaling of the QFI with
n̄, or the so-called Heisenberg scaling of the estimation of the
phase, where ,θ ∼ 1/n̄.

Finally, we look at the case of generating a nonlinear phase
shift on a coherent state, that is, applying a transformation like
e−iθ n̂2

to |α〉. Following Ref. [13], it is not hard to show that

FQ[|α〉, n̂2] = 4(,n̂2)|2α = 4(4n̄3 + 6n̄2 + n̄), (31)

and we observe a n̄3 scaling of the QFI. This results in
super-Heisenberg scaling for the phase estimations, where
,θ ∼ 1/n̄3/2, where n̄ is the mean occupation of the probe
mode. Experimentally, super-Heisenberg precision has only
been demonstrated using a nonlinear atomic interferometer
[43] and using many-body couplings in nuclear magnetic
resonance [26]. Before describing how to achieve super-
Heisenberg scaling for phase estimation of an unknown phase
θ , using the protocol shown in Fig. 1, we first outline how the
QFI generalizes to the outputs of the circuit shown in Fig. 1.

B. QFI of a postmeasurement ensemble

In the above, we considered the QFI associated with a
parameter θ , which modulates a unitary evolution of the initial
fiducial state. In the scheme described in Fig. 1, however,
the final state of a single run of the quantum circuit returns
[m(θ ), ρ̂P(m, θ )], where m is the classical measurement re-
sult, and ρ̂P(m, θ ) is the corresponding conditional state of
the probe mode associated with that measurement result. As
the measurement results m are random from run to run, the
resulting average quantum evolution that the probe suffers is
nonunitary, and we have to generalize the Cramer-Rao bound
and QFI to this ensemble case. The appropriate formalism has
been consider previously; see, for example, Refs. [44–46]. In
what follows, we take the approach of Ma et al. [46], which
we now briefly summarize.

We consider an extended system consisting of the sys-
tem of interest (our probe mode) and an environment to
which the system couples unitarily (our ancilla mode) and
define the full density matrix of the extended system as
ρ̂ext(θ ) = Ûext(θ )(|E0〉〈E0| ⊗ ρ̂0)Û †

ext(θ ), where |E0〉 is the θ -
independent initial state of the environment, and ρ̂0 is the
initial state of the system. The environment is then traced out
in a θ -independent basis {|El〉}, and the reduced density matrix
for the system alone can be written as

ρ̂sys(θ ) = TrE ρ̂ext(θ ) =
∑

l

1̂l (θ ) ρ̂0 1̂†
l (θ ) =

∑

l

ˆ̃ρl (θ ),

(32)
where 1l (θ ) = 〈El |Uext(θ )|E0〉 are Kraus operators operating
on the system. Essentially, the ˆ̃ρl (θ ) are a set of quantum
trajectories that occur with probability Pl (θ ) = Tr[ ˆ̃ρl (θ )], and
in our case, they will be pure states. In this picture, an optimal
measurement of the quantum system to estimate θ yields the
generalized QFI

F = F [{Pl}] +
∑

l

Pl FQ[ ˆ̄ρl ], (33)

where F is the classical FI of the distribution of measurement
results given by F [{Pl}] =

∑
l (∂θPl )2/Pl , ˆ̄ρl = ˆ̃ρl/Pl is the

normalized reduced density matrix of the system conditioned
on the measurement result l , and FQ is the single instance
QFI given above in Eq. (26). Using this form of the QFI, the
Cramer-Rao bound is given by

,θ
2 =

∑

l

Pl (,θ )2 ! 1
ν F

. (34)

In our protocol, the conditioned state of the system ˆ̄ρl cor-
responds to the normalized final density matrix of the probe
mode ρ̂P(m) exiting from Stage III of the protocol in Fig. 1.
We obtain this by scaling the conditioned state by P(m),
the probability of our measurement returning a value m, i.e.,
ˆ̄ρ(m) = ˆ̃ρ(m)/P(m), where ˆ̃ρ(m) is the final unnormalized
postmeasurement probe state at the completion of Stage III
in Fig. 1. We can now work out the generalized QFI to be

F =
∫ ∞

−∞

[∂θP(m)]2

P(m)
dm +

∫ ∞

−∞
P(m) FQ[ ˆ̄ρ(m)] dm, (35)

where the first term is the standard generalized classical FI
FC , and the second term is the generalized QFI FQ. To cal-
culate FQ[ ˆ̄ρ(m)], we make use of the fact that, if we consider
the normalized postmeasurement probe state, it is in a pure
state [see Eq. (14)], allowing us to use Eq. (29). In the anal-
ysis below, we find that the classical portion of F [which
only depends on P(m)] is negligible when compared with
the second term, the ensemble averaged QFI, and we will
typically focus on the latter. Finally, we mention that the last
unitary in Stage III in Fig. 1 is a correction unitary depending
on the measurement result. This unitary introduces an addi-
tional ÛC

l in Eq. (32), and we get ρ̂sys(θ ) = TrE ρ̂ext(θ ) =∑
l ÛC

l 1̂l (θ ) ρ̂0 1̂†
l (θ )ÛC †

l =
∑

l
ˆ̃ρl (θ ). This does not alter

P(m), and except for the change ˆ̄ρl → ˆ̄ρC
l ≡ ÛC

l
ˆ̄ρlÛ

C †
l , the

above derivation of the generalized QFI proceeds unchanged.
We can thus evaluate the generalized QFI of the corrected
ensemble using Eq. (35), using ˆ̄ρC

l . In what follows, we drop
the ˆ̃ρ and ˆ̄ρ notations for postmeasurement unnormalized or
normalized states, referring instead to state vectors |*〉, which
possess nonunit or unit norms.

C. Super-Heisenberg metrology

In Sec. II, we observed that the conditioned postmea-
surement quantum state |ψM

III〉 is like Kerr-type evolution
of the initial probe state, i.e., |ψ〉kerr ∼ exp(iχ n̂2)|α〉. It is
well known that quantum estimation of the strength of the
deterministic Kerr can be performed with so-called super-
Heisenberg scaling in the precision, i.e., ,χ ∼ 1/n̄3/2 [6],
and we now explore how this can be used to perform super-
Heisenberg metrology of the rotation angle θ , appearing in
Stage II of the protocol shown in Fig. 1. We wish to estimate
the value of an unknown small deviation δθ of this angle
from a preknown bias value, e.g., θ = θ0 + δθ . The protocol
involves a position measurement which returns a classical
result m, with an associated probability distribution P(m), and
we will be interested in exploring how the generalized QFI
in Eq. (35) scales with the resource n̄, the expected Fock
number of the input probe state. We recall from Sec. III A that
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shot-noise scaling of θ corresponds to F ∼ n̄, Heisenberg
scaling corresponds to F ∼ n̄2, while super-Heisenberg cor-
responds to F ∼ n̄ν with ν > 2. Below, we will find that the
use of the correction unitary Uc, shown at the end of Stage III
in Fig. 1, plays a crucial role in achieving super-Heisenberg
scaling. Without this correction, our protocol achieves a pre-
cision worse than shot noise.

To begin, we note that the normalized state |*M
III〉 of the

probe after measurement is pure, which enables us to calculate
the FI using Eq. (29). Before doing that, we first study the
form of the postmeasurement state.

Taking the initial probe state to be |*0〉P, which from
Eq. (13) and using the homomorphic transformation between
the (β, σ ) ↔ (θ , r) parametrizations yields

∣∣*M
III

〉
= N ′

IIIM exp
[
− σ 2(gn̂ − m)2

2(1 + 2iβσ 2)

]
|*0〉P

= N ′
IIIM exp

[
− f (m, θ )

(
1 − g

m
n̂
)2]

|*0〉P, (36)

where

f (m, θ ) = m2

4
1 − i e2r cot(θ )
e2r − i cot(θ )

. (37)

If we now consider the large squeezing limit r - 1, we find
f (m, θ ) ∼ −im2 cot(θ )/4, and we curiously discover that the
effect on the probe mode by the circuit is completely unitary,

∣∣*M
III

〉
= exp

[ i
4

cot(θ ) (m − gn̂)2
]
|*0〉P, (38)

and thus, in this large squeezing limit, the decoherence chan-
nel presented to the probe mode postmeasurement is unital,
mapping the identity to itself. In this limit, we observe that
the random measurement result m causes a random phase
rotation, which more generally depends on (r, θ , g, m). It is
this random phase factor that will prevent us from obtaining
optimal scaling of the generalized QFI, as essentially, this is
information we are throwing away after each measurement. In
the large squeezing limit, if we can apply a unitary correction
operation Uc = exp[igm cot(θ ) n̂/2] to the probe state to can-
cel this phase term, the unknown random measurement effect
will be removed. There is an additional global phase which
is proportional to m2, but this global phase cannot influence
the generalized QFI, as it is not a physical observable in
experiments on the postmeasurement state. If we assume we
can apply the unitary correction Uc, the normalized postcor-
rected pure state in the general case of finite squeezing can be
written as

∣∣*C
III

〉
= N (m, r, θ ) exp [ f (θ , n̂)]|*0〉P, (39)

where

f (θ , n̂) = i
2

gm n̂ cot(θ )

− m2

4

[
1 − i e2r cot(θ )
e2r − i cot(θ )

](
1 − g

m
n̂
)2

, (40)

and where the normalization N (m, r, θ ) is taken to be real.
To apply this phase compensation, we note that, as part of

our protocol, we already have assumed that we have access to
an oracle in Stage II that applies a number-dependent phase

shift R(ϕ) ≡ exp[iϕn̂] to the ancilla mode. As mentioned
above, we are primarily interested in the estimation of a small
unknown δθ about a bias value θ0, i.e., ϕ = θ0 + δθ . Since

cot(θ0 + δθ ) = cot θ0 − (1 + cot2 θ0)δθ + · · · , (41)

by reusing this oracle, but now operating on the probe mode,
we observe that, although we cannot generate the exact cot(θ )
unitary correction, the oracle, when used with known values
of ϕ and the unknown value θ = θ0 + δθ , is capable of apply-
ing a compensation to the first order in δθ . In this case, the
exponent function f is given by

f (δθ , n̂) = i
2

gmn̂[cot θ0 − (1 + cot2 θ0)δθ ]

− m2

4
1 − ie2r cot(θ0 + δθ )
e2r − i cot(θ0 + δθ )

(
1 − g

m
n̂
)2

, (42)

where the unknown small parameter to be estimated is now
δθ . To compute the generalized QFI F , we need to evaluate

〈
d*C

III

∣∣d*C
III

〉
=

∣∣∣∣
dN
N

∣∣∣∣
2

+
(

dN
N

)∗
〈df 〉 +

(
dN
N

)
〈df 〉∗

+ 〈df †df 〉, (43)

∣∣〈*C
III

∣∣d*C
III

〉∣∣2 =
∣∣∣∣
dN
N

∣∣∣∣
2

+
(

dN
N

)∗
〈df 〉 +

(
dN
N

)
〈df 〉∗

+ |〈df 〉|2, (44)

where d ≡ d/d (δθ ), and f is given as in Eq. (42). From this,
the pure state QFI is given by

FQ
(∣∣*C

III

〉)
= 4

(〈
d*C

III

∣∣d*C
III

〉
−

∣∣〈*C
III |d*C

III

〉∣∣2)
(45)

= 4
(
〈df †df 〉 − |〈df 〉|2

)
(46)

= FQ
[∣∣*C

III

〉
, f

]
, (47)

where the expectation values are taken with respect to the
normalized state |*C

III〉, with δθ = 0. This expression can be
calculated analytically using Eq. (42), but while straightfor-
ward, the resulting expression is lengthy, and for that reason,
we do not explicitly include it here. This pure state FQ is a
function of (r, θ0, g, m), and to obtain the right-hand term of
the generalized QFI in Eq. (35), the generalized QFI, we must
find a weighted average of FQ over all possible measurement
outcomes m, yielding

FQ(r, θ0, g) =
∫ ∞

−∞
P(m) FQ(r, θ0, g, m) dm, (48)

where P(m) ≡ 〈*M
III |*M

III〉. Assuming, as we did in Sec. II,
that the input probe state is a coherent state |*0〉P = |α〉,
with expected Fock number n̄P, we find that, although the
expressions in Eq. (48) and P(m) can be found analytically
in terms of infinite summations, they cannot be evaluated
analytically except in the simplest cases, and we thus evaluate
them numerically. We note that this can be difficult, as one
must check convergence of these numerical expressions both
with the Fock number truncation and also with the precision in
numerical accuracy, as the integrand in Eq. (48) can oscillate
rapidly in cases and is often vanishing outside a compact
domain in m.
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FIG. 2. Plot of the generalized Fisher information (FI) for phase estimation F (left) and the exponent scaling η of F ∼ n̄η
P (right) as a

function of the probe mode mean Fock number n̄P of our scheme and for standard metrology using a squeezed input probe state with an
identical n̄P. We consider various cross-rotation coupling strengths g, ancilla mode squeezing strengths r, and bias phase shifts θ0. The curves
shown in the right panels are the slopes of the curves shown in the left panels. We take the horizontal axis to be the natural logarithm of
n̄P, the mean Fock number of the input probe coherent state, and in the case of standard squeezing, it is the mean Fock number of the input
squeezed state. The curves colored blue, orange, green correspond to g = (0.3, 0.8, 1.4), respectively, while the red curves correspond to
standard squeezing. Note that, in the bottom right plot, the blue, orange, and green curves lie on top of each other. Super-Heisenberg scaling
corresponds to η > 2, and from the right panels, we observe many situations which achieve this for our protocol. In these numerics, we set the
Fock truncation to be Ntrunc = 260 and truncate the numerical integration along the m-axis to be within the domain m ∈ [−900, 900].

We are now in a position to examine the scaling of the
generalized FI F in Eq. (35) to estimate δθ using our protocol.
We assume a coherent probe state input |*0〉P = |α〉, with
expected Fock number n̄P, and assume that, while we cannot
carry out a full cot(θ ) phase compensation as in Eq. (40), we
can cancel the phase to first order, as in Eq. (42).

We begin by examining how the QFI F (r, θ0, g) scales
with respect to the average Fock number n̄P of the probe.
Figure 2 shows the behavior of F for various values of θ0,
coupling strength g, and squeezing r. We also graph the expo-
nent η, given by F ∼ n̄η

P, by defining η = d (ln F )/d (ln n̄P ).
Recall that the SQL, Heisenberg, and super-Heisenberg scal-
ings correspond to η = 1.0, 2.0, >2.0, respectively. During
the numerical evaluations, we discover that FC 0 FQ, and so
F ∼ FQ from Eq. (35). From Fig. 2, two things are clear:
First, F is much higher than if we performed the estimation of
δθ using the ancilla mode alone when prepared in a standard
squeezed state with the same value of n̄P. Second, the actual
scaling with n̄P is better than that found using a squeezed state
resource, and so the scaling in the FI is super-Heisenberg.
Using a squeezed state resource asymptotically approaches
F ∼ n̄2

P for large n̄P, whereas our scheme approaches F ∼ n̄3
P.

We also note the role of the bias angle θ0, as one may wish to
choose values of the angle θ0 which maximize the FI. Results
for θ0 = (0.01, 0.1, 1.0) rad, are shown in Fig. 2. From this,
we observe that, as θ0 → 0, we obtain a much higher absolute
value of the generalized FI F , but the scaling of F with n̄P
weakens and does not hold over the same large range of n̄P.
We also study how the generalized QFI depends on the ancilla
mode squeezing r. This is shown in Fig. 3. As the squeezing
r is increased, we obtain both higher absolute FI as well as
better scaling, although the gains do saturate. One obvious
question is how well the linear correction scheme works; that
is, how well does the generalized QFI resulting from Eq. (42)
compare with the case when we just throw that information
away and do not apply the correction unitary Uc at all, i.e.,
taking the final state of the protocol to be Eq. (36)? This is
plotted in Fig. 4. As before, a smaller θ0 results in a higher
absolute F but worse scaling. We also see that, without any
correction, in no case does the protocol scale better than the
shot noise limit. However, with correction, we achieve super-
Heisenberg scaling and reach a total FI greater than what can
be obtained from using a standard squeezed state with the
same n̄P.
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FIG. 3. Plot of the generalized quantum Fisher information (QFI) for the linearly corrected scheme for various values of ancilla mode
squeezing r compared with the case of Heisenberg scaling using a standard squeezed state with the same n̄P. Curves colored blue, orange,
green correspond to r = (2, 4, 6), respectively, with θ0 = 0.1, g = 1.0. The red curve corresponds to standard squeezing.

In summary, we have numerically evaluated the general-
ized FI for the linear corrected metrology protocol and find
that, for a range of coupling strengths g and bias angles θ0, the
protocol exhibits F ∼ n̄η

P, where η > 2, or super-Heisenberg
scaling. The central idea behind how this is achieved is
essentially via the integral in Eq. (12), which effectively
squares b in the exponential. By applying the cross-rotation
operator exp(−ig p̂A ⊗ n̂P ) in Stage III, we end up with a
Kerr-type evolution on the probe mode ∼ exp[ig2/4 cot(θ ) n̂2]
in the limit of large ancilla mode squeezing. Following
this logic, if instead we applied the cross-mode operation
exp(−ig p̂ ⊗ ÂP ), then we would end up applying the oper-
ation exp[ig2/4 cot(θ )Â2] on the probe mode for r - 1. We
now briefly describe how this observation can be used to adapt
the circuit shown in Fig. 1 to bootstrap up other metrology
protocols to improve the scaling of their FI, effectively sur-
passing their normal Heisenberg metrology limits.

D. Bootstrap protocol

As mentioned above, the protocol described in Fig. 1 can
essentially generate a Kraus operator on a target mode which
is generated by the square of the target operator in the two-

FIG. 4. Comparison of how well the linear correction scheme
does when compared to the non-corrected scheme. Shown is the
generalised Fisher information F (left column) and the scaling ex-
ponent η (right column). The (orange, green, blue) curves indicate
(no correction, standard squeezing, linear correction), with g = 1.0.

mode gate CR. In quantum metrology, one effectively wishes
to estimate a parameter θ , which naturally appears in some
unitary U (θ ) = exp(iθ Ĝ), via the action of this unitary on
a state |ψθ 〉 = U (θ )|ψ0〉. The scaling of the QFI effectively
is given by the uncertainty of Ĝ with respect to |ψ0〉 [see
Eq. (30)]. The protocol in Fig. 1 effectively can “boot up”
the power of Ĝ appearing in the unitary U , e.g., exp(iθ Ĝ) →
exp[ih(θ ) Ĝ2], where the function h may be determined. The
scaling of the QFI to estimate θ after this boot up will now be
determined by the uncertainty of Ĝ2, which will scale with a
larger power of the resource than Ĝ. In the above, we have
used the probe occupation number as the basis for our re-
source counting, as the probe mode is often the experimentally
adjustable component, while the elements in the ancilla are
held fixed. Using this insight, we now show how to adapt
the protocol described in Sec. III C to estimate the parameter-
generating displacements in phase space with an imprecision
which scales better than the standard HL. Such displacement
estimation is a crucial ingredient for many force sensing
schemes. In this case, |ψκ〉 ≡ exp(iκ p̂)|ψ0〉, where the base
state |ψ0〉 has mean Fock number n̄. The HL for displacement
measurements is achieved when |ψ0〉 is a squeezed state or
compass state [34], and in that case, the QFI achieves a scaling
of the form FQ(κ ) ∼ n̄. By using the bootstrapped scheme we
outline below, we argue we can achieve FQ(κ ) ∼ n̄3 for the
QFI in displacement sensing. This would yield an imprecision
which scales as ,κ ∼ 1/

√
n̄3, rather than ,κ ∼ 1/

√
n̄, pro-

viding a vast improvement of the accuracy for displacement
or force sensing.

We focus on estimating the parameter κ in the single-mode
displacement operator D(κ )A1 = exp(iκ p̂A1). This operator
displaces the mode A1 along the q̂A1 quadrature. We now
assume we can access the two-mode gate exp(i κ p̂A1 ⊗ p̂A2).
Having access to this gate, we can consider the bootstrap
circuit depicted in Fig. 5. The lower section of this circuit is
Stages III and IV of the original circuit of Fig. 1. The top
circuit in Fig. 5 is a replication of the original protocol but
with some changes. Following the derivations in Sec. II, we
see that, in the large squeezing limit for mode A1, i.e., when
r′ - 1, and when θ ′ = π/4, we have

|*out〉A2 = exp
( i

4
κ2 p̂2

2

)
S(r) |0〉A2. (49)

We now return to Eq. (11) and note that, when |*out〉A2 is
input into Stages III and IV of the original circuit, it remains
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FIG. 5. Schematic of the bootstrap scheme to estimate the pa-
rameter κ , generating displacements in phase space.

unchanged except for β → −κ . As the original protocol op-
erating with linear correction can provide a generalized QFI
for θ (or β) which scales as n̄ν , with ν ∈ (2 − 3), we expect
to find a similar scaling for the estimate of κ . In the example,
as depicted in Fig. 5, we described how to teleport the dis-
placement parameter κ into the strength of the Kerr dynamics,
whose metrology can achieve super-Heisenberg scaling with
respect to the probe occupation when we can correct for the
random unitary rotations caused by the probabilistic measure-
ment. If we replace the upper quantum circuit of Fig. 5 with
Stages I, II, and III from Fig. 1, we could aim to effectively
generate an action on the probe which is the square of the Kerr,
i.e., ∼(â†â)2, and if we could generate this, we may achieve
metrology which scales as δθ ∼ n̄5/2. However, to achieve
this type of scaling would require the correction unitary Uc
to correct for random Kerr rotations on the probe, which
would involve further iterations of circuits like Fig. 1, bringing
further loss in fidelity and greatly increased complexity to the
resulting overall quantum circuit. Thus, although in principle
this booting up beyond Kerr could be possible, it seems highly
infeasible in practice.

IV. APPLICATION TO MAKE CAT STATES
AND COMPASS STATES

We now return to the basic protocol outlined in Fig. 1 but
now assume we have full knowledge of all the parameters in
the circuit, particularly the rotation angle θ in Stage II. In this
situation, we study how well this circuit can be used to gener-
ate highly nonclassical quantum states of the probe mode. Cat
states and compass states [34] have been proposed for quan-
tum computation and for precision sensing of displacement
[47]. Such states exhibit fine detail in their Wigner functions,
and small displacements of such states become rapidly orthog-
onal. Here, we show how our protocol allows deterministic
preparation of high-fidelity cat and compass states.

To see this, we go back to the output state of the general
protocol in Eqs. (14)–(18),

|*out〉 = N U (β ) Uc(β, m) K (β ) Kc(β, m)|*0〉, (50)

where, again, we have decomposed the action of the chan-
nel into four distinct operations. Recall that the form of the

conditioned unitary Uc is

Uc = exp
(

i
mg
2

v

u2 + v2
n̂
)

≡ exp [iφc(m)n̂], (51)

where we have made use of the holomorphic parametrization
in Eq. (20). As mentioned before, we will assume that (θ , r, g)
are all controllable known parameters, and thus, although the
precise values of the measurement result m and the phase
φc(m) are random in each execution of the protocol, they
both are known precisely. As a consequence, the operation
Uc can be undone exactly independent of the initial state and
the degree of squeezing in the ancilla mode. Furthermore, in
the high-squeezing limit, where r → ∞, we have K, Kc ∼ I,
and so the evolution ends up being dictated solely by the
unconditioned unitary U (θ ):

U (θ ) = exp
[
−iγ (θ )n̂2], with γ (θ ) = g2v

4(u2 + v2)
.

(52)

Taking the initial probe state to be a coherent state, we have
that |*out〉P 1 U (θ )|α〉P, and thus, a judicious choice of γ (θ )
will yield states such as

γ (θ ) = π

2
⇒ exp

(
−i

π

2
n̂2

)
|α〉

=
exp

(
−i π

4

)
√

2
(|α〉 + i|−α〉) ≡ |cat〉, (53)

γ (θ ) = π

4
⇒ exp

(
−i

π

4
n̂2

)
|α〉

= 1
2

[
exp

(
i
π

4

)
(|α〉 − |−α〉) + (|iα〉 + |−iα〉)

]

≡ |compass〉, (54)

where we have dropped the probe P subscript. In the follow-
ing, we will study how well we can achieve these ideal target
states in the case of large but finite squeezing in the ancilla
mode.

A. Choice of parameter θ and minimum squeezing requirements

For finite squeezing, the nonunitary part of the evolution
in Eq. (50) will impact how well we can prepare the desired
target states. Before we analyze such an impact, we must
determine under which circumstances it is a priori possible
to set the parameters of the evolution as in Eqs. (53) and (54).
For this, we can refer back to Eqs. (20) and (52) to find

γ (θ ) = g2

4
(1 − e4r ) cot(θ )
e4r + cot2(θ )

, (55)

and for r - 1, we obtain γ = −g2 cot(θ )/4. For finite r, we
notice that γ (θ ) is an odd function about the value θ = π/2
and obeys γ (0) = γ (π/2) = 0, and thus, it reaches a maxi-
mum absolute value γmax = γ (θc) in the interval θ ∈ [0,π/2].
For fixed coupling strength g, the magnitude of γmax increases
with the amount of squeezing r in the ancillary mode, as
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FIG. 6. Plots of functions γ (θ ) and ζ (θ ) defined in Eqs. (52) and (60) as a function of parameter θ and for different values of the squeezing
parameter r (here g = 1). The parameter ζ (r, θ ) describes the nonunitary part of the process. We observe that γ = π/2 (π/4) can be achieved
only if r ! 1.27 (0.93).

depicted in Fig. 6. This means that, to set the protocol param-
eters as required by Eqs. (53) and (54), a certain minimum
squeezing value is required. One can derive an expression
for γmax, which leads to the following squeezing thresholds
(obtained numerically):

|compass〉 : γmax
g2 ! π

4 ⇔ r > 0.93, (56)

|cat〉 : γmax
g2 ! π

2 ⇔ r > 1.27. (57)

In the remainder of this section, we take g = 1 without loss
of generality and consider values of r equal or greater than
these threshold values, which allows us to set θ = θ∗ such that
γ (θ∗) = π

4 or π
2 , depending on the target state.

B. Effects of nonunitary backaction and conditioned state
preparation fidelity

We now turn to analyzing how well our protocol can
prepare to the target states of interest. We first define the
(conditioned) state fidelity Fm as

Fm = |〈target|*out〉|2, (58)

where |target〉 = exp[−iγ (θ∗)n̂2]|α〉 refers to the target states
in Eqs. (53) and (54) and recall that θ∗ is chosen to give
γ (θ∗) = π

2 or π
4 (depending on the particular target). Using

Eq. (50), the fidelity can be cast directly in terms of the
operators of interest:

Fm = |N |2|〈α|U (θ∗)†U (θ∗)K (θ∗)Kc(m, θ∗)|α〉|2

= |〈α|K (θ∗)Kc(m, θ∗)|α〉|2
〈α|K (θ∗)2Kc(m, θ∗)2|α〉 , (59)

where we have used 〈*out|*out〉 = 1. To analyze the effects of
finite squeezing, we recast the nonunitary part of Eq. (50) in
the following form:

K (θ )Kc(m, θ ) = exp[−ζ (θ )N̂m],

with N̂m ≡ n̂2 − 2m
g

n̂ and ζ (θ ) = g2u
4(u2 + v2)

,

(60)

where the function ζ (θ ), complementary to γ (θ ), monotoni-
cally decays from ζ (0) = g2e2r/4 to ζ ( π

2 ) = g2e−2r/4 and is
shown in Fig. 6 for various values of r. For a given level of
squeezing, setting θ∗, as described above, fixes the value of
ζ (θ∗), which for large r we expect to behave like ζ (θ∗) ≡
ζ ∼ e−2r 0 1. We can then expand the operator in Eq. (60)
in powers of ζ , exp(−ζ N̂m) 1 1 − ζ N̂m + ζ 2N̂2

m/2. Replacing
this in Eq. (59), we obtain

Fm 1
(
1 − ζ 〈N̂m〉 + ζ 2

2

〈
N̂2

m

〉)2

1 − 2ζ 〈N̂m〉 + 2ζ 2
〈
N̂2

m

〉 , (61)

where the expectation values are taken over the initial co-
herent state |α〉. Keeping the leading order contribution, we
finally get

Fm 1 1 − ζ 2(〈N̂2
m

〉
− 〈N̂m〉2) = 1 − ζ 2(,N̂m)

∣∣2
α
. (62)

C. Average fidelity and numerical results

The fidelity in Eq. (62) still depends on the random mea-
surement outcome m, which in turn is a function of the
parameters of the protocol, including the squeezing r in
the ancilla mode. To obtain a clearer picture about the target
state preparation fidelity in our protocol, we consider the
average (unconditioned) fidelity

Favg =
∫

dm P(m) Fm, (63)

where P(m) is the probability distribution associated with the
random measurement outcome m, i.e.,

P(m) = A〈α|K0(θ∗)2Kc(m, θ∗)2|α〉

=

√
2ζ

πg2
e−|α|2

∑

n

|α|2n

n!
exp

[
−2ζ

(
n − m

g

)2]
.

(64)

Since the conditioned fidelity is quadratic in m, to compute
the average fidelity, we need to compute the first two moments
of this distribution m and m2. These can be computed easily
thanks to the Gaussian form of each term in Eq. (64). For the
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FIG. 7. Cat and compass state generation with the proposed protocol. (a) and (b) The average state infidelity 1 − Favg computed
numerically as a function of the squeezing magnitude r of the ancillary mode. Each value is obtained by averaging over 50 runs of the
protocol. Results are shown for different values of initial coherent state amplitude α and for the cases where the target state is (a) |cat〉 and
(b) |compass〉. Dashed lines indicate the leading-order analytical estimate of Eq. (68). (c) and (d) Wigner function of the ideal target states (left
plots) and of the states generated by the protocol when r = 2.5 (center) and r = 4.5 (right). Results for Wigner functions are obtained from
averages over 10 realizations of the protocol in each case, and the value of the coherent state amplitude is set to α = 4.

mean value, we have

m =
∫

m P(m) dm =

√
2ζ

πg2
e−|α|2

∑

n

|α|2n

n!

×
∫

m exp
[
−2ζ

(
n − m

g

)2]
dm (65)

= ge−|α|2
∑

n

n
|α|2n

n!
= ge−|α|2

∑

m

|α|2m

m!
|α|2 = g|α|2. (66)

Using similar techniques, we can calculate the second mo-
ment, for which we obtain

m2 = g2
[

1
4ζ

+ |α|2(1 + |α|2)
]
. (67)

With these results, we can combine Eq. (59) with Eq. (63)
to obtain

Favg = 1 − ζ |α|2 + O(ζ 2). (68)

Notice that, due to the ζ−1 dependence of m2, the leading-
order contribution of the average fidelity is O(ζ ). The
asymptotic expression in Eq. (68), valid for large squeezing r,
is the main result of this section. It shows that, in this regime,
we expect the fidelity of cat and compass state preparation
to increase exponentially with the ancilla squeezing r since
ζ ∼ e−2r . For fixed squeezing, however, the average fidelity
drops linearly with the mean Fock number of the original
probe coherent state n = |α|2.

To test these results, we performed numerical simulations
of the cat and compass state preparation protocol. Results are
shown in Fig. 7. In (a) and (b), we show the average infidelity
1 − Favg computed over 50 runs of the protocol for different
values of initial coherent state amplitude. The results clearly

show that the infidelity drops exponentially with the squeezing
magnitude r, in excellent agreement with the analytical result
of Eq. (68), even for moderate values of r. We observe that,
for small r (large ζ ), fidelities are higher than those predicted
by the leading-order calculation, indicating that the protocol
behaves better than expected in this regime. The actual states
achieved by the protocol are depicted in Figs. 7(c) and 7(d),
where we plot the Wigner functions of the resulting states for
the ideal (r → ∞) and the finite squeezing cases.

V. PHYSICAL IMPLEMENTATION OF OUR SCHEME

In the above, we have described how to effectively generate
nonlinear dynamics via the protocol described in Fig. 1. We
showed how it can be used to perform precision measurement
and to synthesise nonclassical quantum states. One of the cen-
tral ingredients to our scheme is the two mode cross-rotation
gate shown in Fig. 1. Such conditional dynamics may be
possible in optomechanical systems where the single-photon
interaction is Ĥint = −gx̂ ⊗ â†â, but this would require large
single-photon optomechanical coupling strengths. A continu-
ous variable universal gate set in superconducting microwave
quantum optics has recently been developed [48], and this
should be capable of implementing our protocol. However, we
focus here on outlining a potential physical implementation
of our protocol using atomic ensembles interacting with light
through the Faraday effect. We describe the single atomic
ensemble as a bosonic mode via the Holstein-Primakoff ap-
proximation [49], making the assumption that the ensemble is
made up of very many (N - 1) atomic spins and that the state
stored in the ensemble has a close to maximal R†JZ R expec-
tation value for some R ∈ SU(2) and where JK =

∑N
α=1 σ (α)

K
is the component of the collective angular momentum in the
direction K (K = X,Y, Z). Spin basis states are mapped to
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FIG. 8. Gadget for measuring the spin-Z direction of the ensem-
ble in state |ψ〉. This is coupled to a pair of light modes (one for
each polarization) by the Faraday interaction HF = χJZ SY . Then we
use photodetectors to measure how much the polarization of the light
has shifted, thereby approximating the Y component of the angular
momentum of |φ〉.

bosonic Fock states via

R†| j, j − m〉Z 4→ 1√
m!

(â†)m|0〉, (69)

and spin observables to bosonic observables via

R†J+R =
√

2 j

√

1 − â†â
2 j

â ≈
√

2 jâ, (70)

R†J−R =
√

2 jâ†

√

1 − â†â
2 j

≈
√

2 jâ†, (71)

R†JZ R = j − â†â, (72)

where the approximation sign holds for large j = N/2. Our
protocol requires two fundamental operations. The first in-
volves implementing an SU(2) rotation using a magnetic field
via a Zeeman interaction [50], i.e., 6B · 6J . The second uses the
Faraday interaction HF = χJZ SY to couple the JZ component
of the angular momentum of the ensemble to polarization
degree of freedom of light, which is described in terms of
the Stokes vector operators: Sj = 1

2 aHσ ja [here, we use a =
(âH , âV )T and aH = (â†

H , â†
V )].

We can prepare the ensemble in a momentum-
squeezed state [in the Holstein-Primakoff approximation
centered at the positive X axis, achieved by setting
R = exp(−iπJY /4) exp(−iπJX /4)], by implementing HF
and subsequently measuring the change in the plane of
polarization of the light, as shown in the circuit of Fig. 8. This
produces a sequence of weak measurements of JZ , which are
represented by the following Kraus operator applied to the
state [51,52]:

Km = 1
(2πσ 2)1/4

exp
[
− 1

4σ 2
(JZ − m)2

]
, (73)

where σ is the measurement resolution, which is related to
the interaction strength χ and the measurement time ,t .
In the Holstein-Primakoff picture, this will correspond to
a displaced momentum-squeezed state. We transform this
into a position-squeezed vacuum state by correcting the
measurement-dependent displacement using exp(it JY

2
√

j ) 4→
exp(−it p̂), followed by a 90◦ rotation about the X axis, which
implements a Fourier transform in the Holstein-Primakoff
mode picture. We can squeeze the input substantially if

FIG. 9. We teleport the information from the ensemble onto the
optical state in the H mode. We can put this mode in any input state
|ϕ〉 (which might be in a coherent state), and we do a CR operation
by sandwiching the Faraday interaction between a pair of beam
splitters and rotations. Finally, we measure the ensemble along the
Z direction, which gives us information about the q̂ quadrature in the
Holstein-Primakoff approximation. Note that this measurement may
itself require coupling to additional light modes. We also allow for a
postmeasurement unitary conditioned on the outcomes.

e−2r ≈ σ 2/ j 0 1. After the preparation of a squeezed state,
the ensemble interacts with the signal present in the magnetic
field via the Zeeman interaction:

BJX = BR†JZ R 4→ B( j − â†â). (74)

In the Holstein-Primakoff picture of the ensemble as a bosonic
mode, this acts as a single-mode phase gate with θ = B. We
next use the Faraday interaction HF = χJZ SY to implement
the CR gate (which is given in Fig. 1, by CR = exp(i gp̂A ⊗ n̂P).
We do this as shown in Fig. 9.

We use a polarizing beam splitter PB = exp[iπ (â†
H aV +

â†
V aH )/2] to rotate the Stokes bases such that PBSY P†

B = SZ =
â†

H âH − â†
V âV . Then we ensure mode V is in the vacuum state,

so that we can ignore â†
V âV . The final step in the atomic pro-

tocol is to perform the measurement of q̂, which is achieved
by JY .

VI. CONCLUSION

It is well known that generating large bosonic nonlinear-
ities is exceedingly difficult and so far has primarily been
achieved using superconducting quantum optical circuits at
microwave frequencies. Finding methods to generate nonlin-
earities at optical frequencies opens up a wide range of paths
for research and applications. In this paper, we presented
a protocol that can generate a nonlinearity via a condi-
tional linear operation and measurement with feedback. Using
this nonlinearity, we show how to deterministically generate
highly nonlinear quantum states of the probe mode which can
be very pure. We also show how to engineer the degree of the
nonlinearity to depend on unknown parameters, e.g., rotation
angle θ . Estimations of this parameter via this nonlinearity
can be made with an imprecision which can scale as ∼1/n̄3/2,
beating the HL. Perhaps even more useful is the so-called
bootstrap method, where we show how to engineer this op-
tical nonlinearity to depend on a wider variety of parameters,
e.g., the parameter associated with an unknown displacement,
whose estimation is a central task in force metrology. We
finally describe a physical setup, using the Faraday interaction
of light with atomic ensembles, to implement our protocol. In
this case, the unknown rotation angle could be generated by
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a physical magnetic field, thus allowing magnetometry with
super-Heisenberg scaling in the sensitivity. At the heart of our
protocol is the novel engineering of near-unitary Kraus oper-
ations whose random components can almost be completely
compensated for. This opens up the ability to perform near-
deterministic Schrödinger evolution driven by measurements
alone to achieve highly nonlinear and sophisticated quantum
dynamics.
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