


search for multiple models instead of one simultaneously

to form a robust, accurate and efficient ensemble model.

However, the combination of NAS and ensemble faces two

challenges: (1) efficient search and supernet optimization

over a large search space (2) reducing the extra complexity

brought by model ensemble. Addressing these challenges,

in this paper, we propose a one-shot neural ensemble archi-

tecture search (NEAS) approach searching for lightweight

ensemble models.

To solve the first challenge caused by the enlarged space

of ensemble models compared with single models, we pro-

pose a novel metric called diversity score to progressively

drop inferior candidates during the supernet training pro-

cess, thus reduce the difficulty of finding promising ensem-

ble models. This metric explicitly quantifies the diversity

between the operators, which is commonly believed to be a

key factor in building models with better feature expression

capability.

To solve the second challenge, we introduce the layer

sharing mechanism to reduce the model complexity. We

allow the ensemble components share some shallow layers

and search for the best architectures of the shared layers

together with the architectures of the rest layers. We fur-

ther introduce a new search dimension called split point to

automatically find optimal layers for sharing under a given

FLOPs constraint.

Comprehensive experiments verify the effectiveness of

the proposed diversity score and layer sharing strategy.

They improve the ranking ability of trained supernet and

lead to better searched architectures under same complexity

constraint. The searched architectures generate new state-

of-the-art performance on ImageNet [8]. For instance, as

shown in Fig. 1, our search algorithm finds a 314M FLOPs

model that achieves 77.9% top-1 accuracy on ImageNet,

which is 19% smaller and 1.6% better than EfficientNet-B0

[37]. The architecture discovered by NEAS transfers well

to downstream object detection task, suggesting the gener-

alization ability of the searched models. We obtain an AP

of 33.0 on COCO validation set, which is superior to the

state-of-the-art backbone, MobileNetV3 [12].

In summary, we make the following contributions:

• We propose a pipeline, NEAS, searching for diverse

models under certain resource constraints. Our ap-

proach could search for both homogeneous and het-

erogeneous ensemble models.

• We design a new metric, diversity score, to guide the

shrinking process of search space. We evaluate its su-

periority on supernet training and the performance of

searched models by enormous experiments.

• We propose a layer-sharing strategy to reduce the com-

plexity of ensemble models and enlarge the search

space to search for an optimal split point.

• We compare the searched architectures to state-of-the-

art NAS methods on the image classification task and

achieve state-of-the-art results. Furthermore, we eval-

uate our searched model on the downstream object de-

tection task, showing their generalization ability.

2. Related works

Neural Architecture Search. Early NAS approaches

search the architectures using either reinforcement learn-

ing [48, 49, 45] or evolution algorithms [31, 35]. These

methods have demonstrated that NAS can find architec-

tures that surpass hand-crafted ones on a variety of tasks.

However, these approaches require training thousands of

architecture candidates from scratch, leading to unafford-

able computation overhead. Most recent works resort to

the weight sharing strategy to amortize the searching cost.

Those approaches train a single over-parameterized super-

net and then share the weights across subnets. They could

be further categorized as two types: path-based [10, 6, 5]

and gradient-based methods [24, 3, 42]. Path-based meth-

ods sample paths in each iteration to optimize the weights of

supernets. Once the training process is finished, the subnets

can be ranked by the shared weights. On the other hand,

gradient-based methods relax the discrete search space to

be continuous, and optimize the search process by the effi-

cient gradient descent.

Ensemble Learning. Ensemble methods are widely used

to boost the performance of neural networks [46, 34, 40, 14,

47, 33]. Strategies for building ensembles could be mainly

divided into two categories. The first ones train differ-

ent models independently and then apply ensemble meth-

ods to form a more robust model, such as boosting, bag-

ging, and stacking [47]. The other methods train only one

model with specific strategies to achieve implicit ensemble

[46, 34, 40, 14]. Different from the above methods, we per-

form explicit ensemble without separate training and search

for diverse model architectures to build ensemble models

with great feature expression ability.

Search Space Shrinking. Recent works have shown search

space shrinking is effective in boosting the ranking abil-

ity of NAS methods, especially when the search space is

huge. [13, 20, 28, 27]. These methods could be classified

into different types according to their evaluation metrics.

There are three basic types: accuracy-based, magnitude-

based, and angle-based metrics. For example, PCNAS [20]

drop unpromising operators layer by layer using accuracy

and shows that it improves candidate networks’ quality. An-

gleNAS [13] uses the angles between weights of models to

guide the search process. However, existing shrinking tech-

niques only consider operators independently. Therefore,

they can’t directly adapt to search for ensemble models. We

design a new metric considering both the performance of

single operators and the diversity across them.
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Figure 2. NEAS contains mainly two steps: K-path Supernet Training with Diversity-Guided Shrinking, and K-path Evolution Searching.

It takes the search space as the input and outputs an ensemble model with shared shallow layers. We set the number of paths in the searched

models to 2 and choice operators to 4 for explanation. The overlapping upper lines in the right graph indicate that the two paths share the

first two layers. They then branch to two different paths. ER means the expansion ratio for the mobile inverted residual block.

3. Approach

In Section 3.1, we give the formulation of NEAS. In Sec-

tion 3.2, we present the definition of the diversity score and

the space shrinking pipeline. In Section 3.3, we introduce

the layer sharing mechanism and the new search dimension

Split Point. In Section 3.4, we give the detailed pipeline

of NEAS which allows to search under different resource

constrains. The overall framework is visualized in Fig. 2.

3.1. NEAS Formulation

Given the search space Ω of single deep neural networks,

denote A = {φk ∈ Ω : k = 1, . . . ,K} as a set of K

architectures with corresponding parameters W = {ωk :
k = 1, . . . ,K}, Φ(·;A,W) as the ensemble model, and

S = ΩK as the search space of ensemble models. The goal

of NEAS is to find an optimal architectures set A∗ that max-

imizes the overall validation accuracy. To reduce the search

cost, we constrain Ω to a certain architecture family, specifi-

cally, the subnetworks induced by a predefined supernet. In

our work, we specify Φ(·;A,W) as:

Φ(·;A,W) =
K
∑

i=1

φi(·;wi)

K
. (1)

We then formulate NEAS as a two-stage optimization

problem like other one-shot methods (e.g., [10]). The first-

stage is to optimize the weight of the supernet by:

WS = argmin
W

Ltrain(Φ(·;A,W (A))), (2)

where Ltrain is the loss function on the training set, W (A)
means architectures in A inherit weights from W .

This step is done by uniformly sampling an ensemble ar-

chitecture Φ from S and performing backpropagation to up-

date the weight of the corresponding blocks in the supernet

for each iteration. Please refer to Section 3.4 for details.

The second step is to search for an optimal architecture

set A∗ via ranking the performance based on learned weight

WS of supernet, which is formulated as

A∗ = argmax
A

ACCval(Φ(·;A,WS(A))),

s.t.
K
∑

i

gi(φi) < C,
(3)

where g and C are the resource computation functions

and the resource constraints. Typical constraints include

FLOPs, parameters size, and run-time latency.

Since it is difficult to enumerate all ensemble architec-

tures for evaluation, we resort to a specific K-path evolu-

tion algorithms to find the most promising one. The details

are presented in Appendix B and Section 3.4.
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3.2. Diversity-Guided Search Space Shrinking

Since we search directly for the ensemble models, the

search space for each layer increases exponentially from

N to AK
N = N !

(N−K)! compared with single path methods,

where N is number of the alternative operators for each

layer. The large search space causes inefficiency search and

supernet optimization problem. Search space shrinking is a

feasible solution to alleviate the problem by discarding in-

ferior operators progressively with a specific metric. Since

diversity plays a key role in building a robust ensemble

model, we design a new metric to explicitly quantify the di-

versity across operators inspired by fixed-size determinantal

point processing (K-DPP) [17], a popular sampling model

with great ability to measure the global diversity and qual-

ity within a set. In the following section, we first define the

diversity score of an operator combination and then present

the diversity-guided search space shrinking pipeline.

Definition of Diversity Score. Assume we have

an ensemble model Φ(.;A,W (A)), wherer A =
{φ1, φ2, · · · , φK} consisting of K different paths. Since

we fix the depth of the search space, we can slice A into

operator combinations by layer. Then, A can be reshaped

as {hm|hm = (o1,m, o2,m, · · · , oK,m),m = 1, 2, · · · , d},

where m and d are the index of the layer and number of

total layers, oi,m denotes the operator on layer m of the

path i. Now our goal changes to find the optimal operator

combination for each layer.

Given that layer m has N alternative operators O =
O1,m, O2,m, · · · , ON,m, we construct a DPP kernel L ∈
R

N×N for layer m as:

Lm = diag(rm) · Sm · diag(rm), (4)

where the kernel is formed by two components: a similarity

matrix Sm ∈ R
N×N and a quality matrix rm ∈ R

N .

Let v1, · · · , vK denote the feature maps output from

the K different paths φ1, · · · , φK of the ensemble model

Φ(.;A,W (A)). We define the similarity Sm
i,j of two op-

erators Oi,m and Oj,m as expected the similarity between

paths that contains the two operators, respectively:

Sm
i,j = EA⊆S

(

∑

p,q

I(i, j, p, q) exp(−β‖vp − vq‖2)
)

, (5)

where 1 ≤ p, q ≤ K, β is a scaling factor, and the indicator

function is defined as:

I(i, j, p, q) =

{

1, Oi,m ∈ φp,

0, Oj,m ∈ φq.
(6)

The quality of operator Oi,m is computed by taking ex-

pected accuracy of paths containing it. The formal defini-

tion is:

rmi = γ EA⊆S

(
∑

φq|Oi,m∈φq
ACCtrain′(φq)

#{φp|Oi,m ∈ φp}

)

, (7)

Algorithm 1 Diversity-Guided Search Space Shrinking

Input: A search space S , threshold of search space size

T , number of operators dropped out each shrinking k,

supernet G, number of ensembles sampled each shrink

Z, training epochs between each shrink E.

Output: A shrunk search space S̃ .

1: Let S̃ = S
2: while |S̃| > T do

3: Training the supernet G for E epochs following Sec-

tion 3.4;

4: Sample Z ensemble models Φ1,Φ2, · · · ,ΦZ ran-

domly;

5: Compute diversity score of each operator combina-

tion from S̃ using Eq. 5,7,8;

6: Removing k operator combination from S̃ with the

lowest k scores

7: end while

where φq, φp ∈ A, ACCtrain′ is the accuracy evaluated on

a small part of training dataset.

In practice, we do not calculate the exact expectation

of similarity matrix and quality matrix. Instead, we ran-

domly sample a finite number of ensemble models and use

the mean as an approximate of the expectation.

The diversity score of a certain operator combination hm

of layer m is defined as following:

Score(hm) = det(Ly
m), (8)

where Ly
m is the submatrix of Lm that contains all operators

of hm. The trade-off between similarities and accuracy is

controlled by the hyperparameter γ.

According to the the definition of diversity score, we

have the following property:

For hm and h′
m that are different by only the ith operator, if

Sm
i,j < Sm

i′,j for j = 1, 2, · · · ,K and rmi > rmi′ , then

Score(hm) > Score(h
′

m). (9)

This property suggests that the metric will drop similar and

unpromising operator combinations while keep diverse and

accurate operator combinations. We refer to Appendix A for

a proof.

Diversity-Guided Search Space Shrinking. Based on the

diversity score, we present Algorithm 1 to describe the

diversity-guided search space shrinking pipeline shown in

middle of Fig. 2. Note that during the shrinking process,

at least one operator combination is preserved, since our

method does not change the connectivity of the supernet.

3.3. Layer Sharing Among Ensemble Components

The challenge of potential massive complexity of

searched ensemble models is handled by the layer sharing
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mechanism. This mechanism is inspired by several recent

studies [16, 26, 30]. These works find that both the same

neural architectures with different initialization and differ-

ent architectures learn similar features in their lower layers.

Therefore, we consider to share the shallow layers of dif-

ferent ensemble components. We propose to search for di-

verse ensemble components with shared shallow layers and

different deep layers to reduce the computation cost. To au-

tomatically find which layers should be shared, we design

a new search dimension called split point. The split point

defines where the ensemble model will have heterogeneous

architectures. It also handles the trade-off between diversity

and computation constrain. A comparison between the ar-

chitectures searched by NEAS and other NAS methods such

as [10, 12] is presented in Fig. 3.

3.4. Neural Ensemble Architecture Search

As state in Section 3.1 and in Fig. 2, NEAS includes two

sequential phases: K-path supernet training with diversity-

guide search space shrinking, and K-path evolution search.

Phase 1: K-Path Supernet Training with Diversity-

Guide Search Space Shrinking. For each training it-

eration, an ensemble model Φ(.;A,W (A)) is randomly

sampled. In specific, we randomly sample the split

point s, the architecture of sharing layers Asharing =
{o1, o2, · · · , os}, and the operator combinations Asplit =
{hs+1, hs+2, · · · , hd} for the rest of layers from the shrunk

search space. The loss Li of each path φi is computed inde-

pendently while the backpropagation is performed using the

combined loss L =
∑K

i Li to update the weights of corre-

sponding blocks in the supernet. Following this updating

process, the whole network is still trained in an end-to-end

style. After training the supernet for several epochs, we fol-

low the steps in Algorithm 1 to shrink the search space. The

shrinking and training are conducted alternatively.

During inference, these selected paths make predictions

independently, and our ensemble network’s output is the av-

erage of predictions from all paths.

Phase 2: K-Path Evolution Search. After obtaining the

trained supernet, we perform evolution search on it to obtain

an optimal ensemble model. These models are evaluated

and picked according to the manager of the evolution algo-

rithm. It is worth noting that, before evaluating an ensemble

model, we first need to recalculate the batch normalization

(BN) statistics for each block. This is because, during the

supernet training, the BN statistics of different blocks are

optimized simultaneously. These statistics are usually not

applicable to the subnets. We randomly extract a part of the

ImageNet training set to recalculate the BN statistics.

At the beginning of the evolution search, we pick Nseed

random architecture as seeds. The top k architectures

are picked as parents to generate the next generation by

crossover and mutation. In one crossover, two randomly se-
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Figure 3. (a) The architecture searched by classical NAS methods

(e.g., [10, 6]). (b) The architecture searched by NEAS. Different

color means different expansion ratio while the length of the block

represents the kernel size.

lected candidates are picked and crossed to produce a new

one during each generation. We drop the architecture got

by crossover if the corresponding architecture is not in the

shrunk search space or exceeds the FLOPs constraint. In

one mutation, a candidate mutates its split point with a prob-

ability Ps. If the split point increases, the number of sharing

layers increases with the same number. We randomly pick

one path and move its corresponding architectures to the

sharing architecture. Otherwise, if the split point decreases,

we cut the sharing architecture and add it to each path’s ar-

chitecture. At last, the candidate mutates its layers with a

probability of Pm to produce a new candidate. It is worth

noting that the operation combinations are only picked from

the shrunk search space. We perform crossover and muta-

tion several times to generate new candidates. We generate

some random architectures after crossover and mutation to

meet the given population demanding. We provide the de-

tailed algorithm in the Appendix B.

4. Experiment

In this section, we first give details of our search space

and implementation. We then present ablation studies dis-

secting our method, followed by a comparison with previ-

ous state-of-the-art NAS methods. At last, we evaluate the

generalization ability and robustness of the searched archi-

tecture on COCO object detection benchmark.

4.1. Implementation Details

Search Space. Consistent with previous NAS methods

[10, 6, 37], our search space includes a stack of mobile in-

verted bottleneck residual blocks (MBConv). We also add

squeeze-excitation modules to each block following Effi-

cientNet [37] and MobileNetV3 [12]. For details, there are

7 basic operators for each layer, including MBConv with

kernel sizes of 3,5,7, expansion rates of 4,6 and skip con-
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Table 1. Comparison of state-of-the-art NAS methods on ImageNet. †: TPU days, ⋆: reported by [10], ‡: searched on CIFAR-10, ”-”

means not reported. ♦: Tested on NVIDIA GTX 1080Ti.

Methods
Top-1 Top-5 FLOPs

Memory cost
Superne train Search cost

Retrain epochs
(%) (%) (M) (GPU days) (GPU days)

2
0
0

–
3
5
0
M

MobileNetV3Large1.0 [12] 75.2 - 219 single path 288
† - 150

OFA [1] 76.9 - 230 two paths 53 2 -

MobileNetV2 [32] 72.0 91.0 300 - - - -

MnasNet-A1 [36] 75.2 92.5 312 single path 288
† - 350

FairNAS-C [6] 74.7 92.1 321 single path 10 2 -

FBNetV2-L1 [39] 77.2 - 325 - - - 400

SPOS [10] 74.7 - 328 single path 12♦
< 1 240

NEAS-S (Ours) 77.9 93.9 314 K paths 12 < 1 350

3
5
0

–
5
0
0
M

GreedyNAS-A [43] 77.1 93.3 366 single path 7 < 1 300

EfficientNet-B0 [37] 76.3 93.2 390 - - - 350

FBNetV2-L2 [39] 78.2 - 422 - - - 400

ProxylessNAS[2] 75.1 - 465 two paths 15
� - 300

Cream-M [29] 79.2 94.2 481 two paths 12 0.02 500

NEAS-M (Ours) 79.5 94.6 472 K paths 12 < 1 350

DARTS [24] 73.3 91.3 574 whole supernet 4
‡ - 250

5
0
0

–
6
0
0
M BigNASModel-L [44] 79.5 - 586 two paths 96

† - -

OFALarge [1] 80.0 - 595 two paths 53 2 -

DNA-d [19] 78.4 94.0 611 single path 24 0.6 500

EfficientNet-B1 [37] 79.2 94.5 734 - - - 350

NEAS-L (Ours) 80.0 94.8 574 K paths 12 < 1 350

nect for elastic depth. The split point space is set to range

(9, 20) to handle different complexity constrains. In total we

have 720K × 12 ≥ 7 × 1033 (K ≥ 2) architectures, which

is much larger than most NAS methods. A more detailed

description of search space could be found in Appendix A.

Supernet Training. We train the supernet for 120 epochs

using the settings similar to SPOS [10]: SGD optimizer

with momentum 0.9 and weight decay 4e-5, initial learn-

ing rate 0.5 with a linear annealing. The shrinking process

is conducted every 20 epochs. The number of operators

dropped each time is empirically set to 20. β in the com-

puting the similarity matrix is set to 1e-3 according to ex-

perimental results.

Evolution Search. We set the population Nseed of evo-

lution search to 50 with the size of top candidates pool k

equals to 10. The number of generations is 20. Ps and Pm

are both 0.1. The number of candidates performs mutation

and crossover are set to 25 in each generation. We recalcu-

late the BN statistics on a subset of ImageNet.

Retrain. We retrain the discovered architectures for 350

epochs on ImageNet using similar settings as Efficient-

Net [37]: RMSProp optimizer with momentum 0.9 and de-

cay 0.9, weight decay 1e-5, dropout ratio 0.2, initial learn-

ing rate 0.064 with a warmup in the first 10 epochs and a

cosine annealing. AutoAugment [7] and exponential mov-

ing average are also used for training. We retrain the models

with a batch size of 2,048 on 16 Nvidia Tesla V100 GPUs.

Table 2. Comparison of different shrink metrics. Baseline means

no search space shrinking during the supernet training. †: average

accuracy use weight inherits from supernet. The accuracies are

evaluated on ImageNet.

Metric Kendall Tall Top-1 (%) Top-5 (%) Top-1† (%)

Baseline 0.45 77.3 93.3 67.8

Accuracy 0.42 77.2 93.2 67.2

Diversity 0.65 77.9 93.9 68.3

4.2. Ablation Study

Effectiveness of Diversity Score. We set the baseline as

NEAS without diversity-guided shrinking. In addition, we

compare the diversity score with the accuracy metric to fur-

ther verify its efficacy. Since the accuracy-based methods

only consider the accuracy of single operators in each layer.

We adapt the definition of accuracy to the accuracy of oper-

ator combinations. Other methods like Angle-based metric

can not easily adapt to search for ensembles.

We first perform correlation analysis to evaluate whether

the training process with diversity shrinking can improve

the ranking ability of supernet. We randomly sample

30 subnets and calculate the rank correlation between the

weight sharing performance and the true performance of

training from scratch. Training many such subnets on Im-

ageNet is very computationally expensive. We follow the

setting of Cream [29], which constructs a subImageNet

dataset consisting of 100 classes randomly sampled from
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Table 3. Comparison of architectures with homogeneous (homo)

and heterogeneous (hetero) paths. Both architectures have two

paths. The numbers in the columns 2,3,4 are the top-1 accuracies.

Path 1 (%) Path 2 (%) Ens.(%) FLOPs(M)

homo (first) 79.0 79.1 79.4 566

homo (second) 79.2 79.3 79.6 586

hetero (baseline) 78.9 79.0 80.0 574

Table 4. Comparison of split point in different searched models.

Baseline: ensemble model (2 models) with no shared layers. Top-

1 and Top-5 represents the top-1 and top-5 accuracy on ImageNet.

Model Split point Top-1 (%) Top-5 (%) FLOPs (M)

NEAS-L 16 80.0 94.8 574

NEAS-M 16 79.5 94.6 472

NEAS-S 20 77.9 93.9 314

baseline - 78.5 94.2 605

ImageNet. Each class has 250 training images and 50 val-

idation images. We use Kendall Tau to show the ranking

capacity of supernet. The second column of Table 2 sug-

gests that our diversity score effectively helps supernet to

rank the ensemble architectures in the supernet.

We also retrain the searched architectures by the three

methods under the same FLOPs constraint. The top-1 and

top-5 accuracy results on the ImageNet dataset are shown

in the third and fourth columns in Table 2. We could see

that the diversity-guided shrinking is 0.6% better than the

baseline and 0.7% better than the accuracy-based method.

We further compare the average accuracies of the architec-

tures in the last generation of evolution search, displaying in

the fourth columns. Our diversity-guided shrinking surpass

the baseline and accuracy-based method by 0.5% and 1.1%

top-1 accuracy on ImageNet in the supernet. The results

suggest that the diversity score helps remove unpromising

candidates and enhance the convergence of supernet.

Impact of Heterogeneous Path Architectures. Ensem-

bling models of homogeneous (homo) architectures are

known to be an effective way of building powerful mod-

els [18]. We here compare the ensemble models of homo-

geneous and heterogeneous architectures to show the im-

portance of heterogeneous ensemble. We use our searched

two-path ensemble model as the baseline. Then we mirror

one path of the searched architecture to form two homoge-

neous ensemble models for comparison. Fig. 4 gives the

visualization of the final hidden features of baseline and the

homogeneous network fine-tuned on CIFAR-10. We can

see that the homo paths have a similar feature distribution.

However, the hetero paths have varied feature distribution

and a clearer margin between the clusters.

In table 3, we compare the performance of these three

models on ImageNet. This table shows an interesting fact

that even the stand-alone performance of homo paths are

better than hetero. However, the performance of the homo
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Figure 4. t-SNE visualization on the final hidden features of two

different ensemble model. The first row denotes the model with

two homogeneous path, while the second has two heterogeneous

paths. The inputs are the test set of CIFAR-10.

Table 5. Impact of number of paths predefined for NEAS. Top-1

and Top-5 represents the top-1 and top-5 accuracy on ImageNet.

#paths Top-1 (%) Top-5 (%) FLOPs (M)

2 80.0 94.8 574

3 79.5 94.6 564

5 78.5 94.1 570

ensemble is worse than the heterogeneous one, indicating

that the two paths of the searched model are complementary.

Impact of Layer Sharing. Layer sharing plays a sig-

nificant role in reducing the complexity of an ensemble

model. Here, we explore the effectiveness of layer shar-

ing. The baseline is the ensemble model with no shared

layers searched by our method. In Table 4, we could see that

layer sharing will help to reduce the complexity of ensem-

ble models largely while keeping outstanding performance.

Besides, we observed that in our searched models, the larger

model attempts to share fewer layers. One reason could

be that the feature expression ability of stand-alone paths

in larger models is already strong since it is more compli-

cated. Therefore, they prefer to share fewer layers and get

more diverse paths.

Impact of Number of Paths for Ensemble. The number of

paths K used to form the ensemble model is a hyperparam-

eter we define at first. We compare the performance of the

searched model under the mobile setting (�600M FLOPs)

using different K. From Table 5, we can see that when the

number of paths is equal to 2, we achieve the best results.

One likely reason could be that if a network has too many

paths, each path’s stand-alone feature expression ability de-

creases a lot due to complexity constraints.

Impact of Search Algorithm. Random search is known

to be a competitive baseline in NAS methods. We com-
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Table 6. Object detection results of various drop-in backbones on COCO val2017. Top-1 accuracies are on ImageNet. †: reported by [6].

Backbones FLOPs (M) AP (%) AP50 AP75 APS APM APL Top-1 (%)

MobileNetV3† [12] 219 29.9 49.3 30.8 14.9 33.3 41.1 75.2

MobileNetV2† [32] 300 28.3 46.7 29.3 14.8 30.7 38.1 72.0

FairNAS-C [6] 325 31.2 50.8 32.7 16.3 34.4 42.3 76.7

MnasNet-A2† [36] 340 30.5 50.2 32.0 16.6 34.1 41.1 75.6

MixNet-M† [38] 360 31.3 51.7 32.4 17.0 35.0 41.9 77.0

SPOS† [10] 365 30.7 49.8 32.2 15.4 33.9 41.6 75.0

NEAS-S 314 33.0 53.3 34.4 17.9 36.2 43.8 78.0

Figure 5. Random search versus evolution algorithm.

pare random search with evolution search to evaluate the

effectiveness of evolution search. We demonstrate the per-

formance of architectures using the weights inherited from

supernet on the validation dataset during the search. Top 50

candidates until the current iteration are depicted at each it-

eration. Fig. 5 illustrates that evolution search is better for

searching on supernet.

4.3. Comparisons with State-of-the-Art Methods

Table 1 presents the comparison of our method with

state-of-the-arts under mobile settings on ImageNet. It

shows that when considering models with FLOPs smaller

than 600M, our method consistently outperforms the recent

MobileNetV3 [12] and EfficientNet-B0/B1 [37]. In par-

ticular, NEAS-L achieves 80.0% top-1 accuracy with only

574M FLOPs, which is 160M FLOPs smaller and 0.8% bet-

ter than EfficientNet-B1. NEAS-M obtains 79.5% top-1 ac-

curacy with 472M FLOPs. NEAS-S achieves 77.9% ac-

curacy using only 314M FLOPs, which is 1.6% better and

19% smaller than EfficientNet-B0. We also provide results

of other state-of-the-art NAS methods in Table 1. It is worth

noting that some NAS methods like OFA [1], BigNAS [44],

DNA [19] use knowledge distillation to boost the training

process and also improve the accuracy of searched models.

However, even compared with these methods, our searched

ensemble architectures, which do not use knowledge distil-

lation, still achieve superior performance.

4.4. Generalization Ability and Robustness

To further evaluate the generalization ability of the archi-

tectures found by NEAS, we transfer the architectures to the

downstream COCO [22] object detection task. We use the

NEAS-S (pre-trained 500 epochs on ImageNet) as a drop-

in replacement for the backbone feature extractor in Reti-

naNet [21] and compare it with other backbone networks.

We perform training on the train2017 set (around 118k im-

ages) and evaluation on the val2017 set (5k images) with

32 batch sizes using 8 V100 GPUs. Following the settings

in [6], we train the detection model with 12 epochs, an ini-

tial learning rate of 0.04, and multiply the learning rate by

0.1 at epochs 8 and 11. The optimizer is SGD with 0.9

momentum and 1e-4 weight decay. As shown in Table 6,

our method surpasses MobileNetV2 by 4.7% using simi-

lar FLOPs. Compared with MnasNet [36], our method uti-

lizes 7% fewer FLOPs while achieving 2.5% higher perfor-

mance, suggesting the architecture has good generalization

ability when transferred to other vision tasks.

5. Conclusion

In this work, we propose a novel approach to search for

lightweight ensemble models based on one-shot NAS. We

design a new metric, called diversity score, to guide search

space shrinking. We further use the layer-sharing mecha-

nism to reduce the complexity of ensemble models and in-

troduce a new search dimension, called split point, to handle

the trade-off between diversity and complexity constraint.

Extensive experiments demonstrate that the proposed new

metric is effective and improves the weight sharing super-

net’s ranking ability. Our searched architectures do achieve

not only state-of-the-art performance on ImageNet but also

have great generalization ability and robustness.
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