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Abstract

Despite remarkable progress achieved, most neural ar-
chitecture search (NAS) methods focus on searching for one
single accurate and robust architecture. To further build
models with better generalization capability and perfor-
mance, model ensemble is usually adopted and performs
better than stand-alone models. Inspired by the merits of
model ensemble, we propose to search for multiple diverse
models simultaneously as an alternative way to find pow-
erful models. Searching for ensembles is non-trivial and
has two key challenges: enlarged search space and poten-
tially more complexity for the searched model. In this paper,
we propose a one-shot neural ensemble architecture search
(NEAS) solution that addresses the two challenges. For the
first challenge, we introduce a novel diversity-based met-
ric to guide search space shrinking, considering both the
potentiality and diversity of candidate operators. For the
second challenge, we enable a new search dimension to
learn layer sharing among different models for efficiency
purposes. The experiments on ImageNet clearly demon-
strate that our solution can improve the supernet’s capacity
of ranking ensemble architectures, and further lead to better
search results. The discovered architectures achieve supe-
rior performance compared with state-of-the-arts such as
MobileNetV3 and EfficientNet families under aligned set-
tings. Moreover, we evaluate the generalization ability and
robustness of our searched architecture on the COCO de-
tection benchmark and achieve a 3.1% improvement on AP
compared with MobileNetV3. Codes and models are avail-
able here.

1. Introduction

The emergence of deep neural networks greatly re-
lieves the need for feature engineering. Previous studies
have shown that the design of neural network architecture
[11, 25,32, 41] is essential to the performance for varied
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Figure 1. Comparison of our method with state-of-the-art ap-
proaches on ImageNet under mobile settings.

tasks in computer vision. However, the number of possi-
ble architectures is enormous, making the manual design
very difficult. Neural Architecture Search (NAS) [48] aims
to automate the design process. Recently, NAS methods
have achieved state-of-the-arts on varied tasks such as im-
age classification [48], semantic segmentation [23], object
detection [4], efc. Despite great progress achieved, most of
the NAS methods focus on searching for optimal architec-
tures of single models. However, the generalization ability
and performance of single models are usually affected by
different initialization, noisy data, and training recipe mod-
ification.

Model ensemble has been proved to be a universally ef-
fective method to build more robust and accurate models
compared with single models. Implicit ensemble meth-
ods like Dropout [34], Dropconnect [40], StochDepth [15],
Shake-Shake [9] are already widely used in neural archi-
tecture design. On the contrary, although explicit ensem-
ble methods like averaging, bagging, boosting, and stack-
ing have been commonly adopted in large competitions and
real-world scenarios. The use of explicit ensemble methods
in designing efficient models is not fully explored due to the
extra computation they brought.

Inspired by the effectiveness of ensemble, we propose to
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search for multiple models instead of one simultaneously
to form a robust, accurate and efficient ensemble model.
However, the combination of NAS and ensemble faces two
challenges: (1) efficient search and supernet optimization
over a large search space (2) reducing the extra complexity
brought by model ensemble. Addressing these challenges,
in this paper, we propose a one-shot neural ensemble archi-
tecture search (NEAS) approach searching for lightweight
ensemble models.

To solve the first challenge caused by the enlarged space
of ensemble models compared with single models, we pro-
pose a novel metric called diversity score to progressively
drop inferior candidates during the supernet training pro-
cess, thus reduce the difficulty of finding promising ensem-
ble models. This metric explicitly quantifies the diversity
between the operators, which is commonly believed to be a
key factor in building models with better feature expression
capability.

To solve the second challenge, we introduce the layer
sharing mechanism to reduce the model complexity. We
allow the ensemble components share some shallow layers
and search for the best architectures of the shared layers
together with the architectures of the rest layers. We fur-
ther introduce a new search dimension called split point to
automatically find optimal layers for sharing under a given
FLOPs constraint.

Comprehensive experiments verify the effectiveness of
the proposed diversity score and layer sharing strategy.
They improve the ranking ability of trained supernet and
lead to better searched architectures under same complexity
constraint. The searched architectures generate new state-
of-the-art performance on ImageNet [8]. For instance, as
shown in Fig. 1, our search algorithm finds a 314M FLOPs
model that achieves 77.9% top-1 accuracy on ImageNet,
which is 19% smaller and 1.6% better than EfficientNet-BO
[37]. The architecture discovered by NEAS transfers well
to downstream object detection task, suggesting the gener-
alization ability of the searched models. We obtain an AP
of 33.0 on COCO validation set, which is superior to the
state-of-the-art backbone, MobileNetV3 [12].

In summary, we make the following contributions:

* We propose a pipeline, NEAS, searching for diverse
models under certain resource constraints. Our ap-
proach could search for both homogeneous and het-
erogeneous ensemble models.

e We design a new metric, diversity score, to guide the
shrinking process of search space. We evaluate its su-
periority on supernet training and the performance of
searched models by enormous experiments.

* We propose a layer-sharing strategy to reduce the com-
plexity of ensemble models and enlarge the search
space to search for an optimal split point.

e We compare the searched architectures to state-of-the-
art NAS methods on the image classification task and
achieve state-of-the-art results. Furthermore, we eval-
uate our searched model on the downstream object de-
tection task, showing their generalization ability.

2. Related works

Neural Architecture Search. Early NAS approaches
search the architectures using either reinforcement learn-
ing [48, 49, 45] or evolution algorithms [31, 35]. These
methods have demonstrated that NAS can find architec-
tures that surpass hand-crafted ones on a variety of tasks.
However, these approaches require training thousands of
architecture candidates from scratch, leading to unafford-
able computation overhead. Most recent works resort to
the weight sharing strategy to amortize the searching cost.
Those approaches train a single over-parameterized super-
net and then share the weights across subnets. They could
be further categorized as two types: path-based [10, 6, 5]
and gradient-based methods [24, 3, 42]. Path-based meth-
ods sample paths in each iteration to optimize the weights of
supernets. Once the training process is finished, the subnets
can be ranked by the shared weights. On the other hand,
gradient-based methods relax the discrete search space to
be continuous, and optimize the search process by the effi-
cient gradient descent.

Ensemble Learning. Ensemble methods are widely used
to boost the performance of neural networks [46, 34, 40, 14,
47, 33]. Strategies for building ensembles could be mainly
divided into two categories. The first ones train differ-
ent models independently and then apply ensemble meth-
ods to form a more robust model, such as boosting, bag-
ging, and stacking [47]. The other methods train only one
model with specific strategies to achieve implicit ensemble
[46, 34, 40, 14]. Different from the above methods, we per-
form explicit ensemble without separate training and search
for diverse model architectures to build ensemble models
with great feature expression ability.

Search Space Shrinking. Recent works have shown search
space shrinking is effective in boosting the ranking abil-
ity of NAS methods, especially when the search space is
huge. [13, 20, 28, 27]. These methods could be classified
into different types according to their evaluation metrics.
There are three basic types: accuracy-based, magnitude-
based, and angle-based metrics. For example, PCNAS [20]
drop unpromising operators layer by layer using accuracy
and shows that it improves candidate networks’ quality. An-
gleNAS [13] uses the angles between weights of models to
guide the search process. However, existing shrinking tech-
niques only consider operators independently. Therefore,
they can’t directly adapt to search for ensemble models. We
design a new metric considering both the performance of
single operators and the diversity across them.
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Figure 2. NEAS contains mainly two steps: K-path Supernet Training with Diversity-Guided Shrinking, and K-path Evolution Searching.
It takes the search space as the input and outputs an ensemble model with shared shallow layers. We set the number of paths in the searched
models to 2 and choice operators to 4 for explanation. The overlapping upper lines in the right graph indicate that the two paths share the

3. Approach

In Section 3.1, we give the formulation of NEAS. In Sec-
tion 3.2, we present the definition of the diversity score and
the space shrinking pipeline. In Section 3.3, we introduce
the layer sharing mechanism and the new search dimension
Split Point. In Section 3.4, we give the detailed pipeline
of NEAS which allows to search under different resource
constrains. The overall framework is visualized in Fig. 2.

3.1. NEAS Formulation

Given the search space €2 of single deep neural networks,
denote A = {¢, € Q : k = 1,...,K} as a set of K
architectures with corresponding parameters W = {wy, :
k=1,...,K}, ®(;A W) as the ensemble model, and
S = QF as the search space of ensemble models. The goal
of NEAS is to find an optimal architectures set .A* that max-
imizes the overall validation accuracy. To reduce the search
cost, we constrain € to a certain architecture family, specifi-
cally, the subnetworks induced by a predefined supernet. In
our work, we specify ®(+;.4,V) as:

K o
a(zaw) =3 A, (M
i=1

We then formulate NEAS as a two-stage optimization

first two layers. They then branch to two different paths. ER means the expansion ratio for the mobile inverted residual block.

problem like other one-shot methods (e.g., [10]). The first-
stage is to optimize the weight of the supernet by:

Ws = argmin Liyain (P(+; A, W(A))), 2)
w

where Liyain 18 the loss function on the training set, W (.A)

means architectures in 4 inherit weights from W.

This step is done by uniformly sampling an ensemble ar-
chitecture ® from S and performing backpropagation to up-
date the weight of the corresponding blocks in the supernet
for each iteration. Please refer to Section 3.4 for details.

The second step is to search for an optimal architecture
set A* via ranking the performance based on learned weight
W of supernet, which is formulated as

A" = argmax ACCyu(®(+; A, Ws(A))),
A

K 3)
s.t. Zgi(¢i) <C,

where ¢ and C are the resource computation functions
and the resource constraints. Typical constraints include
FLOPs, parameters size, and run-time latency.

Since it is difficult to enumerate all ensemble architec-
tures for evaluation, we resort to a specific K-path evolu-
tion algorithms to find the most promising one. The details
are presented in Appendix B and Section 3.4.
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3.2. Diversity-Guided Search Space Shrinking

Since we search directly for the ensemble models, the
search space for each layer increases exponentially from
N to AX = (N%'K), compared with single path methods,
where N is number of the alternative operators for each
layer. The large search space causes inefficiency search and
supernet optimization problem. Search space shrinking is a
feasible solution to alleviate the problem by discarding in-
ferior operators progressively with a specific metric. Since
diversity plays a key role in building a robust ensemble
model, we design a new metric to explicitly quantify the di-
versity across operators inspired by fixed-size determinantal
point processing (K-DPP) [17], a popular sampling model
with great ability to measure the global diversity and qual-
ity within a set. In the following section, we first define the
diversity score of an operator combination and then present
the diversity-guided search space shrinking pipeline.
Definition of Diversity Score. Assume we have
an ensemble model @(.; A, W(A)), wherer A =
{¢1,¢2, -, pr } consisting of K different paths. Since
we fix the depth of the search space, we can slice A into
operator combinations by layer. Then, A can be reshaped
as {hm|hm = (01,m,02.ms "+ 0K m),m = 1,2,--+ . d},
where m and d are the index of the layer and number of
total layers, o0; ., denotes the operator on layer m of the
path i. Now our goal changes to find the optimal operator
combination for each layer.

Given that layer m has NN alternative operators O =

O1,m;02 m, - ,OnN,m, we construct a DPP kernel L €
RN*N for layer m as:
L,, = diag(r™) - ™ - diag(r™), 4)

where the kernel is formed by two components: a similarity
matrix S™ € RV*Y and a quality matrix ™ € RV,

Let vy,--- ,vx denote the feature maps output from
the K different paths ¢1,--- , ¢k of the ensemble model
(A, W(A)). We define the similarity S} of two op-
erators O; ., and Oj ., as expected the similarity between
paths that contains the two operators, respectively:

S15 = Eacs (D 10i,5. 2, @) exp(=Blluy = vq2) ), )
p.g
where 1 < p,q < K, 3 is a scaling factor, and the indicator
function is defined as:

17 Oz m € ¢p7
I(,7,p,q) = ’ 6
(i, 4,0, ) {0, Oy € 64, (©)
The quality of operator O; ,,, is computed by taking ex-
pected accuracy of paths containing it. The formal defini-
tion is:

Z¢ |Oi.meED ACCtrain’(¢q)
’(YL — ]:E q z, M q , 7
TR ( #{0p/Orm € 07} @

Algorithm 1 Diversity-Guided Search Space Shrinking
Input: A search space S, threshold of search space size
T, number of operators dropped out each shrinking %,
supernet G, number of ensembles sampled each shrink
Z, training epochs between each shrink E.
Output: A shrunk search space S.
I: LetS =8
2: while |S| > 7 do
3:  Training the supernet G for E epochs following Sec-
tion 3.4;
4:  Sample Z ensemble models ®1,Ps, -+, P, ran-
domly;
5:  Compute diversity score of each operator combina-
tion from S using Eq. 5,7,8;
6:  Removing k operator combination from S with the
lowest k scores
7: end while

where ¢q, ¢p € A, ACCyrain’ is the accuracy evaluated on
a small part of training dataset.

In practice, we do not calculate the exact expectation
of similarity matrix and quality matrix. Instead, we ran-
domly sample a finite number of ensemble models and use
the mean as an approximate of the expectation.

The diversity score of a certain operator combination A,
of layer m is defined as following:

Score(hy,) = det(LY), (8)

where LY is the submatrix of L,,, that contains all operators
of h,,. The trade-off between similarities and accuracy is
controlled by the hyperparameter ~.

According to the the definition of diversity score, we
have the following property:
For h,, and h}, that are different by only the i, operator, if
S o< Sptforj=1,2,---, Kandrj™ > r, then

Score(hm) > Score(h,,). 9)

This property suggests that the metric will drop similar and
unpromising operator combinations while keep diverse and
accurate operator combinations. We refer to Appendix A for
a proof.

Diversity-Guided Search Space Shrinking. Based on the
diversity score, we present Algorithm 1 to describe the
diversity-guided search space shrinking pipeline shown in
middle of Fig. 2. Note that during the shrinking process,
at least one operator combination is preserved, since our
method does not change the connectivity of the supernet.

3.3. Layer Sharing Among Ensemble Components

The challenge of potential massive complexity of
searched ensemble models is handled by the layer sharing
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mechanism. This mechanism is inspired by several recent
studies [16, 26, 30]. These works find that both the same
neural architectures with different initialization and differ-
ent architectures learn similar features in their lower layers.
Therefore, we consider to share the shallow layers of dif-
ferent ensemble components. We propose to search for di-
verse ensemble components with shared shallow layers and
different deep layers to reduce the computation cost. To au-
tomatically find which layers should be shared, we design
a new search dimension called split point. The split point
defines where the ensemble model will have heterogeneous
architectures. It also handles the trade-off between diversity
and computation constrain. A comparison between the ar-
chitectures searched by NEAS and other NAS methods such
as [10, 12] is presented in Fig. 3.

3.4. Neural Ensemble Architecture Search

As state in Section 3.1 and in Fig. 2, NEAS includes two
sequential phases: K-path supernet training with diversity-
guide search space shrinking, and K-path evolution search.
Phase 1: K-Path Supernet Training with Diversity-
Guide Search Space Shrinking. For each training it-
eration, an ensemble model ®(.; .4, W(A)) is randomly
sampled. In specific, we randomly sample the split
point s, the architecture of sharing layers Agpgring =
{01,092, , 05}, and the operator combinations A,z =
{hs+1,hst2, -, hq} for the rest of layers from the shrunk
search space. The loss £; of each path ¢; is computed inde-
pendently while the backpropagation is performed using the
combined loss £ = ZlK L; to update the weights of corre-
sponding blocks in the supernet. Following this updating
process, the whole network is still trained in an end-to-end
style. After training the supernet for several epochs, we fol-
low the steps in Algorithm 1 to shrink the search space. The
shrinking and training are conducted alternatively.

During inference, these selected paths make predictions

independently, and our ensemble network’s output is the av-
erage of predictions from all paths.
Phase 2: K-Path Evolution Search. After obtaining the
trained supernet, we perform evolution search on it to obtain
an optimal ensemble model. These models are evaluated
and picked according to the manager of the evolution algo-
rithm. It is worth noting that, before evaluating an ensemble
model, we first need to recalculate the batch normalization
(BN) statistics for each block. This is because, during the
supernet training, the BN statistics of different blocks are
optimized simultaneously. These statistics are usually not
applicable to the subnets. We randomly extract a part of the
ImageNet training set to recalculate the BN statistics.

At the beginning of the evolution search, we pick Ngeed
random architecture as seeds. The top k architectures
are picked as parents to generate the next generation by
crossover and mutation. In one crossover, two randomly se-
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Figure 3. (a) The architecture searched by classical NAS methods
(e.g., [10, 6]). (b) The architecture searched by NEAS. Different
color means different expansion ratio while the length of the block
represents the kernel size.

lected candidates are picked and crossed to produce a new
one during each generation. We drop the architecture got
by crossover if the corresponding architecture is not in the
shrunk search space or exceeds the FLOPs constraint. In
one mutation, a candidate mutates its split point with a prob-
ability P;. If the split point increases, the number of sharing
layers increases with the same number. We randomly pick
one path and move its corresponding architectures to the
sharing architecture. Otherwise, if the split point decreases,
we cut the sharing architecture and add it to each path’s ar-
chitecture. At last, the candidate mutates its layers with a
probability of P, to produce a new candidate. It is worth
noting that the operation combinations are only picked from
the shrunk search space. We perform crossover and muta-
tion several times to generate new candidates. We generate
some random architectures after crossover and mutation to
meet the given population demanding. We provide the de-
tailed algorithm in the Appendix B.

4. Experiment

In this section, we first give details of our search space
and implementation. We then present ablation studies dis-
secting our method, followed by a comparison with previ-
ous state-of-the-art NAS methods. At last, we evaluate the
generalization ability and robustness of the searched archi-
tecture on COCO object detection benchmark.

4.1. Implementation Details

Search Space. Consistent with previous NAS methods
[10, 6, 37], our search space includes a stack of mobile in-
verted bottleneck residual blocks (MBConv). We also add
squeeze-excitation modules to each block following Effi-
cientNet [37] and MobileNetV3 [12]. For details, there are
7 basic operators for each layer, including MBConv with
kernel sizes of 3,5,7, expansion rates of 4,6 and skip con-
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Table 1. Comparison of state-of-the-art NAS methods on ImageNet. {: TPU days, x: reported by [10], I: searched on CIFAR-10, ”-”

means not reported. <»: Tested on NVIDIA GTX 1080T:.

Methods T(O(;: )1 T(O(;; )5 F]Eh(/)lfs Memory cost S(lg);gl Z;;T)n (Sg;rl(;hdc;(})]zt) Retrain epochs
MobileNetV3arget.0 [12] 75.2 - 219 single path 288t - 150
OFA [1] 76.9 - 230 two paths 53 2 -
= MobileNetV2 [32] 720 910 300 - - - -
a MnasNet-Al [36] 75.2 92.5 312 single path 288" - 350
ol FairNAS-C [6] 74.7 92.1 321 single path 10 2 -
< FBNetV2-L1 [39] 77.2 - 325 - - - 400
SPOS [10] 74.7 - 328 single path 12¢ <1 240
NEAS-S (Ours) 77.9 93.9 314 K paths 12 <1 350
GreedyNAS-A [43] 77.1 93.3 366 single path 7 <1 300
g EfficientNet-BO [37] 76.3 93.2 390 - - - 350
3 FBNetV2-1.2 [39] 78.2 - 422 - - - 400
2 ProxylessNAS[2] 75.1 - 465 two paths 15* - 300
pA] Cream-M [29] 79.2 94.2 481 two paths 12 0.02 500
NEAS-M (Ours) 79.5 94.6 472 K paths 12 <1 350
DARTS [24] 73.3 91.3 574 whole supernet 4t - 250
= BigNASModel-L [44] 79.5 - 586 two paths 967 - -
3 OFA Large [1] 80.0 - 595 two paths 53 2 -
c|> DNA-d [19] 78.4 94.0 611 single path 24 0.6 500
2 EfficientNet-B1 [37] 79.2 94.5 734 - - - 350
NEAS-L (Ours) 80.0 94.8 574 K paths 12 <1 350

nect for elastic depth. The split point space is set to range
(9, 20) to handle different complexity constrains. In total we
have 720K x 12 > 7 x 1033 (K > 2) architectures, which
is much larger than most NAS methods. A more detailed
description of search space could be found in Appendix A.

Supernet Training. We train the supernet for 120 epochs
using the settings similar to SPOS [10]: SGD optimizer
with momentum 0.9 and weight decay 4e-5, initial learn-
ing rate 0.5 with a linear annealing. The shrinking process
is conducted every 20 epochs. The number of operators
dropped each time is empirically set to 20. S in the com-
puting the similarity matrix is set to le-3 according to ex-
perimental results.

Evolution Search. We set the population Ngeq of evo-
lution search to 50 with the size of top candidates pool k
equals to 10. The number of generations is 20. P, and P,,
are both 0.1. The number of candidates performs mutation
and crossover are set to 25 in each generation. We recalcu-
late the BN statistics on a subset of ImageNet.

Retrain. We retrain the discovered architectures for 350
epochs on ImageNet using similar settings as Efficient-
Net [37]: RMSProp optimizer with momentum 0.9 and de-
cay 0.9, weight decay le-5, dropout ratio 0.2, initial learn-
ing rate 0.064 with a warmup in the first 10 epochs and a
cosine annealing. AutoAugment [7] and exponential mov-
ing average are also used for training. We retrain the models
with a batch size of 2,048 on 16 Nvidia Tesla V100 GPUs.

Table 2. Comparison of different shrink metrics. Baseline means
no search space shrinking during the supernet training. {: average
accuracy use weight inherits from supernet. The accuracies are
evaluated on ImageNet.

Metric | Kendall Tall ~ Top-1(%) Top-5(%) Top-17 (%)
Baseline 0.45 773 93.3 67.8
Accuracy 0.42 772 93.2 67.2
Diversity 0.65 71.9 93.9 68.3

4.2. Ablation Study

Effectiveness of Diversity Score. We set the baseline as
NEAS without diversity-guided shrinking. In addition, we
compare the diversity score with the accuracy metric to fur-
ther verify its efficacy. Since the accuracy-based methods
only consider the accuracy of single operators in each layer.
We adapt the definition of accuracy to the accuracy of oper-
ator combinations. Other methods like Angle-based metric
can not easily adapt to search for ensembles.

We first perform correlation analysis to evaluate whether
the training process with diversity shrinking can improve
the ranking ability of supernet. We randomly sample
30 subnets and calculate the rank correlation between the
weight sharing performance and the true performance of
training from scratch. Training many such subnets on Im-
ageNet is very computationally expensive. We follow the
setting of Cream [29], which constructs a subImageNet
dataset consisting of 100 classes randomly sampled from
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Table 3. Comparison of architectures with homogeneous (homo)
and heterogeneous (hetero) paths. Both architectures have two
paths. The numbers in the columns 2,3,4 are the top-1 accuracies.

| Path 1 (%) Path2(%) Ens.(%) FLOPs(M)

homo (first) 79.0 79.1 79.4 566
homo (second) 79.2 79.3 79.6 586
hetero (baseline) 78.9 79.0 80.0 574

Table 4. Comparison of split point in different searched models.
Baseline: ensemble model (2 models) with no shared layers. Top-
1 and Top-5 represents the top-1 and top-5 accuracy on ImageNet.

Model ‘Split point  Top-1 (%) Top-5(%) FLOPs (M)

NEAS-L 16 80.0 94.8 574
NEAS-M 16 79.5 94.6 472
NEAS-S 20 77.9 93.9 314
baseline - 78.5 94.2 605

ImageNet. Each class has 250 training images and 50 val-
idation images. We use Kendall Tau to show the ranking
capacity of supernet. The second column of Table 2 sug-
gests that our diversity score effectively helps supernet to
rank the ensemble architectures in the supernet.

We also retrain the searched architectures by the three
methods under the same FLOPs constraint. The top-1 and
top-5 accuracy results on the ImageNet dataset are shown
in the third and fourth columns in Table 2. We could see
that the diversity-guided shrinking is 0.6% better than the
baseline and 0.7% better than the accuracy-based method.
We further compare the average accuracies of the architec-
tures in the last generation of evolution search, displaying in
the fourth columns. Our diversity-guided shrinking surpass
the baseline and accuracy-based method by 0.5% and 1.1%
top-1 accuracy on ImageNet in the supernet. The results
suggest that the diversity score helps remove unpromising
candidates and enhance the convergence of supernet.
Impact of Heterogeneous Path Architectures. Ensem-
bling models of homogeneous (homo) architectures are
known to be an effective way of building powerful mod-
els [18]. We here compare the ensemble models of homo-
geneous and heterogeneous architectures to show the im-
portance of heterogeneous ensemble. We use our searched
two-path ensemble model as the baseline. Then we mirror
one path of the searched architecture to form two homoge-
neous ensemble models for comparison. Fig. 4 gives the
visualization of the final hidden features of baseline and the
homogeneous network fine-tuned on CIFAR-10. We can
see that the homo paths have a similar feature distribution.
However, the hetero paths have varied feature distribution
and a clearer margin between the clusters.

In table 3, we compare the performance of these three
models on ImageNet. This table shows an interesting fact
that even the stand-alone performance of homo paths are
better than hetero. However, the performance of the homo

Path 1 Path 2
5 9
9 7 g
6 7 2
Homo 8 10
10 2 5 6 1
3 4 1 i
5 5
6 7 6 -5 2
10 .
: g W 1F: 3P :
Hetero L ‘ 8 2
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Figure 4. t-SNE visualization on the final hidden features of two
different ensemble model. The first row denotes the model with
two homogeneous path, while the second has two heterogeneous
paths. The inputs are the test set of CIFAR-10.

Table 5. Impact of number of paths predefined for NEAS. Top-1
and Top-5 represents the top-1 and top-5 accuracy on ImageNet.

#paths  Top-1 (%) Top-5(%) FLOPs (M)
2 80.0 94.8 574
3 79.5 94.6 564
5 78.5 94.1 570

ensemble is worse than the heterogeneous one, indicating
that the two paths of the searched model are complementary.
Impact of Layer Sharing. Layer sharing plays a sig-
nificant role in reducing the complexity of an ensemble
model. Here, we explore the effectiveness of layer shar-
ing. The baseline is the ensemble model with no shared
layers searched by our method. In Table 4, we could see that
layer sharing will help to reduce the complexity of ensem-
ble models largely while keeping outstanding performance.
Besides, we observed that in our searched models, the larger
model attempts to share fewer layers. One reason could
be that the feature expression ability of stand-alone paths
in larger models is already strong since it is more compli-
cated. Therefore, they prefer to share fewer layers and get
more diverse paths.

Impact of Number of Paths for Ensemble. The number of
paths K used to form the ensemble model is a hyperparam-
eter we define at first. We compare the performance of the
searched model under the mobile setting (<600M FLOPs)
using different K. From Table 5, we can see that when the
number of paths is equal to 2, we achieve the best results.
One likely reason could be that if a network has too many
paths, each path’s stand-alone feature expression ability de-
creases a lot due to complexity constraints.

Impact of Search Algorithm. Random search is known
to be a competitive baseline in NAS methods. We com-
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Table 6. Object detection results of various drop-in backbones on COCO val12017. Top-1 accuracies are on ImageNet. {: reported by [6].

Backbones FLOPs M) AP (%) APso AP7s APs APy APp  Top-1 (%)
MobileNetV3T [12] 219 29.9 493 30.8 149 333 41.1 75.2
MobileNetV2' [32] 300 28.3 46.7 29.3 148  30.7 38.1 72.0
FairNAS-C [6] 325 31.2 50.8 327 163 344 423 76.7
MnasNet-A2" [36] 340 30.5 50.2 320 166 341  41.1 75.6
MixNet-M' [38] 360 31.3 51.7 324  17.0 350 419 77.0
SPOS' [10] 365 30.7 49.8 322 154 339 416 75.0
NEAS-S 314 33.0 533 344 179 362 438 78.0
69.00 ] downstream COCO [22] object detection task. We use the
R ears 24 4 o o NEAS-S (pre-trained 500 epochs on ImageNet) as a drop-
Zessof 2| I ii ii ii ii ERRRRERRR R in replacement for the backbone feature extractor in Reti-
See2s| ¢ i !l ¢ naNet [21] and compare it with other backbone networks.
f 68.00 We perform training on the train2017 set (around 118k im-
§67 AR Random ages) and evaluation on the val2017 set (5k images) with
67501 " Evolution 32 batch sizes using 8 V100 GPUs. Following the settings

12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Search Interation

Figure 5. Random search versus evolution algorithm.

pare random search with evolution search to evaluate the
effectiveness of evolution search. We demonstrate the per-
formance of architectures using the weights inherited from
supernet on the validation dataset during the search. Top 50
candidates until the current iteration are depicted at each it-
eration. Fig. 5 illustrates that evolution search is better for
searching on supernet.

4.3. Comparisons with State-of-the-Art Methods

Table | presents the comparison of our method with
state-of-the-arts under mobile settings on ImageNet. It
shows that when considering models with FLOPs smaller
than 600M, our method consistently outperforms the recent
MobileNetV3 [12] and EfficientNet-BO/B1 [37]. In par-
ticular, NEAS-L achieves 80.0% top-1 accuracy with only
574M FLOPs, which is 160M FLOPs smaller and 0.8% bet-
ter than EfficientNet-B1. NEAS-M obtains 79.5% top-1 ac-
curacy with 472M FLOPs. NEAS-S achieves 77.9% ac-
curacy using only 314M FLOPs, which is 1.6% better and
19% smaller than EfficientNet-B0O. We also provide results
of other state-of-the-art NAS methods in Table 1. It is worth
noting that some NAS methods like OFA [1], BigNAS [44],
DNA [19] use knowledge distillation to boost the training
process and also improve the accuracy of searched models.
However, even compared with these methods, our searched
ensemble architectures, which do not use knowledge distil-
lation, still achieve superior performance.

4.4. Generalization Ability and Robustness

To further evaluate the generalization ability of the archi-
tectures found by NEAS, we transfer the architectures to the
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in [6], we train the detection model with 12 epochs, an ini-
tial learning rate of 0.04, and multiply the learning rate by
0.1 at epochs 8 and 11. The optimizer is SGD with 0.9
momentum and le-4 weight decay. As shown in Table 6,
our method surpasses MobileNetV2 by 4.7% using simi-
lar FLOPs. Compared with MnasNet [36], our method uti-
lizes 7% fewer FLOPs while achieving 2.5% higher perfor-
mance, suggesting the architecture has good generalization
ability when transferred to other vision tasks.

5. Conclusion

In this work, we propose a novel approach to search for
lightweight ensemble models based on one-shot NAS. We
design a new metric, called diversity score, to guide search
space shrinking. We further use the layer-sharing mecha-
nism to reduce the complexity of ensemble models and in-
troduce a new search dimension, called split point, to handle
the trade-off between diversity and complexity constraint.
Extensive experiments demonstrate that the proposed new
metric is effective and improves the weight sharing super-
net’s ranking ability. Our searched architectures do achieve
not only state-of-the-art performance on ImageNet but also
have great generalization ability and robustness.
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