THRIFTY: Training with Hyperdimensional Computing across
Flash Hierarchy

Saransh Gupta
sgupta@ucsd.edu
University of California, San Diego

Ranganathan Ramkumar
rramkuma@ucsd.edu
University of California, San Diego

Baris Aksanli
baksanli@sdsu.edu
San Diego State University

ABSTRACT

Hyperdimensional computing (HDC) is a brain-inspired computing
paradigm that works with high-dimensional vectors, hypervectors,
instead of numbers. HDC replaces several complex learning compu-
tations with bitwise and simpler arithmetic operations, resulting in
a faster and more energy-efficient learning algorithm. However, it
comes at the cost of an increased amount of data to process due to
mapping the data into high-dimensional space. While some datasets
may nearlyfi t in the memory, the resulting hypervectors more often
than not can’t be stored in memory, resulting in long data transfers
from storage. In this paper, we propose THRIFTY, an in-storage
computing (ISC) solution that performs HDC encoding and training
across thefl ash hierarchy. To hide the latency of training and enable
efficient computation, we introduce the concept of batching in HDC.
It allows us to split HDC training into sub-components and process
them independently. We also present, for thefi rst time, on-chip
acceleration for HDC which uses simple low-power digital circuits
to implement HDC encoding in Flash planes. This enables us to
explore high internal parallelism provided by thefl ash hierarchy
and encode multiple data points in parallel with negligible latency
overhead. THRIFTY also implements a single top-level FPGA accel-
erator, which further processes the data obtained from the chips.
We exploit the state-of-the-art INSIDER ISC infrastructure to im-
plement the top-level accelerator and provide software support to
THRIFTY. THRIFTY runs HDC training completely in storage while
almost entirely hiding the latency of computation. Our evaluation
overfi ve popular classification datasets shows that THRIFTY is
on average 1612X faster than a CPU-server and 14.4x faster than
the state-of-the-art ISC solution, INSIDER for HDC encoding and
training.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on thefi rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ICCAD °20, November 2-5, 2020, Virtual Event, USA

© 2020 Copyright held by the owner/author(s).

ACM ISBN 978-1-6654-2324-3/20/11...$15.00
https://doi.org/10.1145/3400302.3415723

Justin Morris
justinmorris@ucsd.edu
University of California, San Diego
and San Diego State University

Jeffrey Yu
jey070@ucsd.edu
University of California, San Diego

Mohsen Imani
m.imani@uci.edu
University of California, San Diego
and University of California, Irvine

Aniket Tiwari
artiwari@ucsd.edu
University of California, San Diego

TajanaSimuni ¢Rosing
tajana@ucsd.edu
University of California, San Diego

CCS CONCEPTS

« Information systems — Flash memory; - Hardware — Biology-

related information processing; Emerging architectures.

KEYWORDS

hyperdimensional computing, in-storage computing, classification

ACM Reference Format:

Saransh Gupta, Justin Morris, Mohsen Imani, Ranganathan Ramkumar, Jef-
frey Yu, Aniket Tiwari, Baris Aksanli, and TajanaSimuni ¢ Rosing. 2020.
THRIFTY: Training with Hyperdimensional Computing across Flash Hi-
erarchy. In IEEE/ACM International Conference on Computer-Aided Design
(ICCAD °20), November 2-5, 2020, Virtual Event, USA. ACM, New York, NY,
USA, 9 pages. https://doi.org/10.1145/3400302.3415723

1 INTRODUCTION

Brain-inspired Hyperdimensional Computing (HDC) is a computa-
tion paradigm which represents data in terms of extremely large
vectors, called hypervectors. These hypervectors may have 10s of
thousands of dimensions and present data in the form of a pattern of
signals instead of numbers. By representing data in high-dimension
space, HDC reduces the complexity of operations required to pro-
cess data. HDC builds upon a well-defined set of operations with
random HDC vectors, making HDC extremely robust in the pres-
ence of failures, and offers a complete computational paradigm that
is easily applied to learning problems [1]. Prior work has shown the
suitability of HDC for various applications like activity recognition,
face detection, language recognition, image classification, etc [2-4].

While HDC provides improvements in performance and energy
consumption over conventional machine learning algorithms, it
still involves fetching each and every data from memory/disk and
processing it on CPUs/GPUs. Today extremely large datasets are
stored on disks. In addition, the humongous amount of data gen-
erated while running HDC cannot always befi t into the memory,
eventually killing the process. Recent work has introduced com-
puting capabilities to solid-state disks (SSDs) to process data in
storage [5-8]. This not only reduces the computation load from
the processing cores but also processes raw data where it is stored.
However, the state-of-the-art in-storage computing (ISC) solutions

either utilize a single big accelerator for a SSD or limit the gains
by using complex power-hungry accelerators down the storage
hierarchy [9]. Such architectures are not able to fully leverage its
hierarchical design.

In this paper, we propose an HDC system that spans multiple
levels of the storage hierarchy. We exploit the internal bandwidth
and hierarchical structure of SSDs to perform HDC operations over
multiple data samples in parallel. Our main contributions are as
follows:

e We present a novel ISC architecture for HDC which performs
HDC encoding and training completely in storage. It enables
computing at multiple levels of SSD hierarchy, allowing for
highly-parallel ISC. Our hierarchical design provides paral-
lelism and hides a significant part of the performance cost
of ISC in the storage read/write operations.

e We introduce the concept of batching in HDC and utilize
it to make our ISC implementation more efficient. During
training, we batch together multiple data samples encoded
in the HDC domain in storage. This allows us to partially
process data without accessing all encoded hypervectors.
Batching enables us to have a minimal aggregation hardware
requirement. Batching also reduces the amount of data sent
out of storage.

o THRIFTY utilizes die-level accelerators to convert raw data
into hypervectors locally in all the flash planes in parallel.
Unlike previous work, our accelerator is simpler and hides
its computation latency by the long read times of raw data
from flash arrays.

e We present a top-level SSD accelerator, which aggregates
the data from different flash dies. This accelerator is imple-
mented on an FPGA-based device controller. We present
primitives to enable the FPGA to seamlessly work with the
die-level accelerators.

We evaluate THRIFTY over five popular classification datasets
for HDC encoding and training. Our experimental results show
that THRIFTY is on average 1612X faster than a CPU-server and
14.4x faster than the state-of-the-art ISC solution, INSIDER.

2 RELATED WORK

Hyperdimensional Computing: Prior work applied the idea of
hyperdimensional computing to a wide range of learning applica-
tions, including language recognition [10], speech recognition [11],
gesture detection [12], human-brain interaction [13], and sensor
fusion prediction [2]. Prior work also tried to design different hard-
ware accelerators for HD computing. This include accelerating HD
computing on existing FPGA, ASIC, and processing in-memory
platforms [14-16]. However, these solutions do not scale well with
the number of classes and dimensions, primarily due to the data
movement issue. In contrast, our proposed THRIFTY accelerates
the entire encoding and training phases of HD computing by fun-
damentally addressing data movement and memory requirement
issues. In addition, THRIFTY scales with the size of data and the
complexity of learning task.

In-Storage Computing: The major bottlenecks in the current
storage systems include the slow flash array read latency and the
SSD to host I/O latency [17]. To alleviate these issues prior work

introduced ISC architectures [7, 18]. These work exploit the embed-
ded cores present in the SSD controller to implement ISC. Another
set of work in [5, 6, 9] used ASIC accelerators in SSD for specific
workloads. The work in [8] proposed a full-stack storage system
to reduce the host-side I/O stack latency. However, all these works
propose single-level computing in storage. THRIFTY on the other
hand, is the first work to push the computing all the way down to
the flash die to extract maximum parallel. It also uses a top level ac-
celerator to provide addition layer of computing. The combination
provide a faster implementation while consuming minimal power.

3 HYPERDIMENSIONAL COMPUTING

Brain-inspired Hyperdimensional (HDC) computing has been pro-
posed as the alternative computing method that processes the cogni-
tive tasks in a more light-weight way [1, 10]. HDC offers an efficient
learning strategy without overcomplex computation steps such as
back propagation in neural networks. HDC works by representing
data in terms of extremely large vectors, called hypervectors, on
the order of 10,000 dimensions. HDC performs the learning task
after mapping all training data into the high-dimensional space.
The mapping procedure is often referred to as encoding. Ideally,
the encoded data should preserve the distance of data points in
the high-dimensional space. For example, if a data point is com-
pletely different from another one, the corresponding hypervectors
should be orthogonal in the HDC space. There are multiple en-
coding methods proposed in literature [3, 4]. These methods have
shown excellent classification accuracy for different data types. In
the following, we explain the details of HDC classification steps.

3.1 Encoding

Let us consider an encoding function that maps a feature vector
F={fi, fo...., fu}, with n features (f; € N) to a hypervector H =
{h1, hy, ..., hp} with D dimensions (h; € {0, 1}). We first generate
a projection matrix PM with D rows and each row is a vector
with n dimensions randomly sampled from {-1, 1}. This matrix is
generated once offline and is then be used to encode all of the data
samples. We generate the resulting hypervector by calculating the
matrix vector multiplication product of the projection matrix with
the feature vector:

H =PMxF (1)

After this step, each element h; of a hypervector H” has a non-
binary value. In HDC, binary (bipolar) hypervectors are often used
for the computation efficiency. We thus obtain the final encoded
hypervector by binarizing it with a sign function (H = sign(H"))
where the sign function assigns all positive hypervector dimensions
to ‘1’ and zero/negative dimensions to -1’. The encoded hypervector
stores the information of each original data point with D bits.

3.2 Training

In the training step, we combine all the encoded hypervectors of
each class using element-wise addition. For example, in an activity
recognition application, the training procedure adds all hypervec-
tors which have the “walking” and “sitting” tags into two different
hypervectors. Where H]’ = (hp,--,h) is encoded for the ji"

sample in i’ h class, each class hypervector is trained as follows:

Cl= Hi=(ch, - ,ci))
J

3.3 Inference

The main computation of inference is the encoding and associa-
tive search. We perform the same encoding procedure to convert
a test data point into a hypervector, called a query hypervector,
Q € {~1,1}P. Then, HDC computes the similarity of the query
hypervector with all k class hypervectors, {C1,Cy,---,Cr}. We
measure the similarity between a query and a i*" class hypervector
using: 6(Q, C;), where § denotes the similarity metric. The similar-
ity metric most commonly used is Cosine Similarity as it provides
the highest accuracy. However, other similarities metrics like dot
product and hamming distance for binary class hypervectors are
also used. After computing all similarities, each query is assigned
to a class with the highest similarity.

3.4 Challenges

HDC is light-weight enough to run at acceptable speed on a CPU [19].

Utilizing a parallel architecture can significantly speed up the exe-
cution time of HDC [16]. However, with the constantly increasing
data sizes along with the explosion in data that occurs due to HDC
encoding, running this algorithm on current systems is highly in-
efficient. All of these platforms need to fetch the extremely large
hypervectors from memory/disk in order to process them. They also
require huge memory space to store HDC hypervectors and train
on them. With the available parallelism across thousands of dimen-
sions and simple operations needed, in-storage computing (ISC) is
a promising solution to accelerate HDC encoding and training.

General-purpose ISC solutions partially address the data transfer
bottleneck but still are not able to fully exploit the huge internal
SSD bandwidth [8]. The state-of-the-art application specific ISC [9]
try to exploit the internal SSD bandwidth but provide only one-level
of computing, which fails to accelerate applications which either (i)
have a computing logic that is too complex to implement using the
small accelerator or (ii) require post-processing computation steps.
THRIFTY aims to overcome these issues by breaking complex HDC
training algorithms into simpler, both data-size and computation-
wise, parallelizable tasks. Then, THRIFTY utilizes two levels of
computation within the SSD, one at the chip-level and other at the
SSD level, to efficiently implement those tasks.

4 THRIFTY DESIGN

THRIFTY is an ISC design that performs HDC encoding and training
completely in storage. Figure 1 shows an overview of THRIFTY
SSD architecture. A flash die consists of multiple flash planes, each
of which generates a page during a read cycle. THRIFTY inserts a
simple low-power accelerator, die-level accelerator (green on the
right in Figure 1), in each plane to encode every read page into
a hypervector. These hypervectors are then sent to a SSD-level
FPGA, which accumulates these hypervectors in batches in the
top-level accelerator (green on bottom left in Figure 1). THRIFTY
uses a scratchpad (green on top left in Figure 1) in the controller
to store the projection matrix, which it receives as an application
parameter from the host. Batching ensures that data generated by
each SSD-wide read operation is used in training as soon as it is

CONTROLLER
SCRATCHPAD

FIRMWARE

CTRL. Die -
Frasn] [Foasa] [Feasn] [0
Curp | | Cue | | Caip [1]
\
FLASH| [FLAsH| |FLASH| |FLASH|
: [|] S
.
TOP ACCEL. jututed ©) eee 3
Ry BLOCK | &} BLOCK
z

|| i S
[FLAsH| [FLASH| |FLAsH| [FLASH| AGE AGE
DMA STORAGE | Cuip | | Cure | | Chip | | CHip
UNIT

Figure 1: THRIFTY SSD Overview. The components added by
THRIFTY are shown in green.

available, without waiting for the remaining data. The top-level
accelerator is a FPGA which uses INSIDER acceleration cluster [8]
to implement HDC accumulation and other operations. We utilize
the INSIDER’s software stack to connect THRIFTY to the rest of
the system. We modify the SSD drivers and INSIDER virtual files
mechanism to enable computing in flash chips and make it visible
to the FPGA.

4.1 Batched HDC Training in THRIFTY

The size of raw data (number of data points) combined with the
size of each hypervector (size of each encoded data point) makes it
unrealistic to store all the encoded hypervectors and then perform
HDC training over them. Hence, we employ batching to perform
partial training with the hypervectors available at any given mo-
ment. As mentioned in Section 3, the initial HDC training algorithm
to create a class hypervector (2) is to add up all of the encoded sam-
ples belonging to a given class. This summation can be spit up into
batches of partial sums and maintain the same result. For example,
say there are s samples for each class, the total sum can be split up
into k partial sums or batches and the batch size defined as b = s/k,
as shown in Equation 3.

b 2b
Cl = ZHJ’ + Z ok Z Hjl 3)
= j=b+1 j=((s—1)b)+1

Batching allows THRIFTY to process a subset of encoded hy-
pervectors together. THRIFTY chip-level accelerators encode raw
data into hypervectors and send them to the top-level SSD FPGA
accelerator for further processing. All flash chips operate in parallel
to encode some of their data, send the hypervectors to FPGA, and
operate on the next set. Each of these hypervectors belongs to a
specific class. For an application with C classes, we allocate enough
memory in the top-level accelerator to store C model hypervectors,
each assigned to a class. We batch all incoming hypervectors from
flash that belong to the same class together and bundle the result
with the corresponding model hypervector. This is continued until
all required data has been encoded and used to train model hyper-
vectors. In the end, the top-level model hypervectors represent a
fully trained model of the data. Batching provides us with two ben-
efits. First, it minimizes the memory requirement during training.
Second, it reduces its effective latency by combining hypervectors
as soon as they are generated. This hides a major part of training
latency with the time taken to read data from flash.

What if the size of model hypervectors is too large to store
at the top-level FPGA accelerator? Some application may need
too many dimensions or have too many classes to store all model

hypervectors at the FPGA, which at best may have few MBs of
blocked RAMs (BRAMs). In such a case, even with balanced data,
it will not be possible to train the model completely in storage.
However, THRIFTY can still perform training in batches and reduce
the amount of data sent to the host for processing. Now, instead
of allocating FPGA BRAMs for all model hypervectors, it is dy-
namically allocated according to the encoded input hypervectors
available at a time. If an input hypervector does not belong to one
of the present models, a model hypervector is sent out to the CPU
host and an empty model hypervector corresponding to the class
associated with incoming hypervector is allocated instead. The im-
plementation details are presented in Section 4.3. The host is then
responsible for combining various batched training hypervectors
together.

In this operating mode, THRIFTY still reduces the amount of
data movement compared to sending the raw low dimensional data.
Here, we define n as the number of features or dimensionality of the
original data, D as the dimensionality of the encoded hypervectors,
and b as the batch size. When nb > D, the total data movement
of the resulting batched hypervectors is less than the amount of
original data sent in low-dimensional space when the batched hy-
pervector uses the same bitwidth as the original data. However,
we can utilize lower bitwidth representations as we encode the
data into a hypervector whose elements are {—1, 1} and then bun-
dle the hypervectors with element-wise addition. Therefore, the
range of data in any given dimension can be defined by the nor-
mal distribution with a mean of 0 and standard deviation of Vb.
We can represent each dimension of the batched hypervector with
(log, 4Vb) + 1 bits while maintaining an accurate representation.
We multiply by 4 to capture 4 standard deviations away and add one
to account for the sign bit. In this case, assuming the original data
is represented with 32 bits, THRIFTY sends less data than the data
movement required to send the original data in low-dimensional
space when 32nb > D((log, 4Vb) +1)/32

4.2 Encoding Near Data via Flash Hierarchy

The modern SSD architecture is hierarchical in nature. An SSD
has multiple channels. Each channel is shared by 4-8 flash chips as
shown in Figure 1. The flash chip may consist of several flash dies
which are further divided into flash planes, each plane consisting of
a group of blocks, each of which store multiple pages. Each plane
has a page buffer to write the data to. Operations in SSD happen
in page granularity where the size of pages usually ranges from
2KB-16KB [20]. To fully utilize the flash hierarchy, we introduce
accelerators for each flash plane as shown in Figure 1. The aim of
this added computing primitive is to process the data where it has
no conflict or competition for resources.

4.2.1 Chip-level Accelerator Design. THRIFTY plane-accelerator
encodes an entire page with raw data to generate a D dimensional
hypervector. Let us assume the SSD page size to be 4KB (ps) with
each data point being 4 bytes (ds). This translates to 1K data points
(ps/ds). Let the feature vector contain 1K features. Assuming that
the feature vectors are page-aligned, each page stores one feature
vector. HDC encoding multiplies n-size feature vector with a pro-
jection matrix containing D X n 1-bit elements. Our accelerator
calculates the dot product between two page-long vectors, one read

PLANE p————————— — — — 7 BUFFER

CSA |
N N2 [l J—»I
| XNOR Array reduce [ord |

Figure 2: THRIFTY die accelerator

from the flash array and another being a row-vector of the projec-
tion matrix. This involves element-wise multiplication of the two
vectors and adding together all the elements in the product. Since
the weights in the projection matrix € {1, -1}, we reduce the bits
required to store the weights by mapping them such that 1 — 1 and
(—=1) — 0. We use 2’s complement to break the multiplication into
an inversion using XNOR gates and then adding the total number of
inverted inputs to the accumulated sum of XNOR outputs. The ac-
celerator is shown in Figure 2. It consists of an array of 32K XNOR
gates followed by a 1K input tree adder (labeled CSA in Figure
2). The tree adder is a pruned version of the Wallace carry-save
tree, where the operand size throughout the tree is fixed to 4B. It
reduces 1024 inputs to 2, which is followed by a carry look ahead
addition (labeled CLA in Figure 2). This gives us the dot product
of the two vectors. It is the value of one dimension of the encoded
hypervector. The accelerator is iteratively run D times to generate
D dimensions. Depending upon the power budget, THRIFTY may
employ multiple parallel instances of this accelerator to reduce the
total number of iterations. Since D is generally large, the generated
D-dimensional vector is multi-page output. THRIFTY writes the
output of the accelerator to the page buffer of the plane, which
serves as the response to the original SSD read request.

4.2.2 Storing Input Data. The accelerator above assumed the size of
the feature vectors to be exactly the same as that of a page. However,
this is rarely the case. State-of-the-art ISC designs use page-aligned
feature vectors, which may lead to poor storage utilization if the
feature vector size is too small or just larger than the page size. For
example, in a page-aligned feature vector setting, a 4KB page may
fit only one 512B feature instead of eight. Also, a 5KB feature vector
may occupy two complete pages. To alleviate the issue, we propose
a cross-plane storing scheme, which considers all the planes in a
chip when storing data, with the goal of increasing the traditional
ISC storage utilization while being accelerator-friendly. We first
describe the case when the size of the feature vector is smaller than
the page size. The scheme, shown in Figure 3 on the left, divides an
n-sized feature vector into n, equal segments such that the most
efficient storage is given when:

argmax(c X n+d.n/np < ps)
c

where c is the number of complete n-sized feature vectors in a ps-
sized page, np is the number of planes per chip, and d € {0, 1, ...np}.
Hence, a page would contain ¢ X np + d segments in total. Having
ny, equal segments instead of any variable segmentation allows the
accelerator to have a simple segment-wise weight allocation. Each
row-vector in the projection matrix of a plane is divided into the
same sized segments as the feature vector as shown in Figure 3 on

Data 0 Data 1 Data 2 Data 3 Data 4
PLANE 0 PLANE 1 PLANE 2 PLANE 3

[———————
00 1000

L1111

Pagep! Pagep| Pagep Pagep

T
E TT i (ST
[T S (gt = b W - L [- ol | W< 0) o
| E— I

——| | l— |

Figure 3: Data storage scheme in THRIFTY and the corre-
sponding segmentation of the projection matrix. Data rep-
resents a feature vector.

the right. This allows THRIFTY to increase storage efficiency while
minimizing the control overhead of the accelerator.

If the size of the feature vector is less than the page size, THRIFTY
uses the same segmentation size. However, the number of segments
in a page are given by:

argmax(d.n/np < ps)
d

A drawback of this scheme is that individual reads for small
feature vectors may require reading two pages instead of one. How-
ever, our main purpose is to obtain trained vectors and not raw
feature vector values. Moreover, since a feature split across two
planes shares the same block and page number, they are both read
at the same time.

4.2.3 Accelerator with New Data Storing Scheme. While the new
data storing scheme improves the page utilization, it does not suit
well the chip-level accelerator. As proposed before, our accelerator
is a dot product engine. It processes an entire page from the flash
array to generate values of different dimensions of the correspond-
ing hypervector. In the new data storage scheme, this would result
in an encoded hypervector consisting of multiple and also partial
feature vectors. An easy fix would be to just process one feature
vector at a time by setting the remaining inputs of the accelerator to
0. However, this would increase the total latency of the accelerator.
The situation is worse if the size of feature vectors is very small.
We address this problem by extending the concept of batching in
THRIFTY.

As detailed in Section 4.1, a set of encoded hypervectors can
be added dimension-wise without interfering with HDC training
process as long as they belong to the same final trained hypervector,
for example the same class model. An encoded dimension (d;) of a
feature vector (FV) is obtained by a dot product between the feature
values (FV;) and the corresponding row of the projection matrix
(PM), i.e.,

dl‘ =FVy X PM,',() + FV; X PMi,l +...FV,_1 X PMi,(n—l)

Now, to add multiple FVs together, we just need to make sure that
an element in a FV is being multiplied with the corresponding
weight of the PM. In that case, we would achieve the same effect
as batching, only at a lower level of abstraction. This also works
when we have partial features. In this case, the encoded hypervector
for the current page would just have partial information and may
not correctly represent the data. Some part of this information is
contained in the encoded hypervector of another page. However, all

these hypervectors will be added together during training. Hence,
the final hypervector will contain all the information.

To support this strategy in THRIFTY accelerator, the flash con-
troller segments the projection matrix in the same way as the fea-
ture vectors in the planes and sends the corresponding segments to
the accelerator in each plane. It is important to note that only the
features belonging to the same class are added together in batches.
So, a chip-level accelerator performs a bitwise comparison between
the labels of feature vectors in a page and only processes those
belonging to the same final model together.

4.3 Training at top-level

The encoded hypervectors from flash chips are used for training in
the top-level accelerator, which is implemented on an FPGA present
in the SSD. We use FPGA because it is flexible with the application
parameters and can be configured using the primitives provided
by INSIDER [8]. The encoded hypervectors come with class labels.
During training, they are accumulated into the corresponding class
(or model) hypervectors. At the end of training we obtain an output
hypervector for each class that in turn represents all the input
samples belonging to that class.

In the FPGA, we first allocate memory for the final class hy-
pervectors. For each class, the FPGA has an input queue, where
the input hypervectors belonging to that class are indexed, and an
accumulator, which serially accumulates the vectors in the input
queue to generate the final class hypervector. The class label of
an incoming hypervector is used to index it to the corresponding
class input queue. The size of the queue is determined based on
the frequency of the inputs, the number of classes, and dimen-
sionality D. The introduction of class-wise input queues removes
the input data dependency of the accumulator by pre-processing
class labels. An accumulator simply needs to read the input index
from its queue and operate on the corresponding data. It makes the
computation for different classes independent and parallelizable.
The accumulators for each class then operate in parallel to add
an input hypervector from the queue to the corresponding class
hypervector. While the computation can also be fully parallelized
over all dimension, the large size of hypervectors and the limited
read ports of the memory make it impractical. Hence, we divide the
hypervectors into partitions to allow partial parallelism. The final
class hypervectors are sent to the host.

If an application has too many classes or requires extremely large
number of dimensions, then the FPGA may not have enough space
to store all the class hypervectors. In such a case, we allocate the
memory for the maximum number of class hypervectors, Cpax. We
assign labels to these classes with respect to the incoming hyper-
vectors. Hence, the first set of incoming hypervectors belonging
to Crmax different classes are processed as before. We introduce
an addition queue that indexes, along with their labels, the incom-
ing hypervectors not associated with any of the active Cpqx class.
Whenever the queue is full, one of the Cp,4x class hypervectors is
sent to the CPU host. The corresponding memory is allocated for
the class to which the first hypervector in the queue belongs. The
class hypervector sent to the host is the one that has accumulated
the most incoming hypervectors.

4.4 Software Support

THRIFTY derives its base system-architecture from INSIDER [8].
The INSIDER framework is an API which, while being compatible
with POSIX, allows us to implement an ISC accelerator cluster. The
INSIDER API takes a C++ or RTL code as an input and programs the
acceleration cluster (running on drive FPGA) accordingly. The drive
program interface has three FIFOs. The data input (output) FIFO
takes in the input (output) data that is needed (generated) by the
accelerator. The parameter FIFO contains the runtime parameters
for the FPGA which are sent by the host. INSIDER keeps control
and data planes of ISC separated. The drive control and standard
operations are handled by the SSD firmware while all compute data
from flash chips are intercepted by the top level FPGA accelerator
for computing. The FPGA doesn’t care about the source and/or
destination of the data.

4.4.1 THRIFTY Host-Side Support. INSIDER API uses POSIX-like
I/O functionaly to communicate with the driver. INSIDER has a
standard block device driver with changes made to the virtual read
and write functionalities to accommodate for the programmable
accelerator clusters in the drive. However, the current abstraction
allow us to pass directive/parameters only to the ISC FPGA and not
the drive. We define a new API, send_mode, which defines the mode
for read and write operations, further discussed in Section 4.4.2. It
passes a single integer, mode, to the drive firmware while opening
a virtual file. For a non-ISC read/write from the drive, mode is set to
’0. During an ISC read, mode represents the expansionfactor(EF).
EF defines the increase in the size of raw data after encoding. For
example, EF = 5 means that each page of raw data generates five
pages of encoded data (due to large D). In this case, mode is set to 5.
This parameter is necessary to enable the drive to read the required
number of pages from the flash chips. Since EF is dependent on the
number of features of the data and dimensionality requirement of
the application, it remains constant for an entire run. Similarly, a
non-zero mode signifies ISC write. In this case, the data being sent
to the drive contains the elements of the HDC projection matrix
and is written to the controller scratchpad. No data is written to
the flash chips. During write we only care about whether mode is
Z€ro or Non-zero.

4.4.2 THRIFTY Drive-Side Architecture. THRIFTY implements its
top-level accelerator described in Section 4.3 as an INSIDER ac-
celeration cluster, which enables the final training step. However,
INSIDER system doesn’t support THRIFTY's die-level acceleration
because the standard read/write drive operations can’t readily ac-
commodate on-the-fly change in data size while reading encoded
pages and writing projection matrix elements to the on-die acceler-
ator.

THRIFTY introduces the processing capability between flash
planes and page buffers but sometimes only raw data may be re-
quired. Hence, THRIFTY employs two read modes, normal and com-
pute. It uses the die-level accelerator in multiplexed mode where a
read page is sent to the accelerator for processing only in compute
mode, shown in Figure 4. In normal mode, the plane directly writes
the original page to the page buffer. Moreover, response type in the
two modes also differs. A normal read results in just one page while
a compute read responds with multiple but fixed number of pages.

Plane Plane
' —~—\1

Buffer
Compute Read

Buffer Buffer

Normal Write

Buffer

Normal Read Compute Write
Figure 4: Different read and write modes in THRIFTY. The
components in red are active during the operation.

THRIFTY uses application specifications such as feature vector size
and dimensionality requirement to generate an expansion factor,
which is supplied to the SSD firmware by the host, as explained in
Section 4.4.1. The firmware uses this factor to calculate the response
size for page read commands in compute mode.

THRIFTY also employs two write modes, normal and compute.
The compute mode is used to supply projection matrix data to the
on-die accelerators. In normal mode, data is written in the data
buffer and then programmed in the flash array. In compute mode,
the data in data buffer is sent to the accelerators as shown in Figure
4. The writes in compute mode are fast since the data is just latched
in CMOS registers instead of flash arrays. Unlike a compute mode
read, where the same command can be issued to all the chips, com-
pute mode write requires individual commands for each plane to
configure their respective on-die accelerators. This follows from
Figure 3. Each plane gets the same segments but their positions may
differ for different planes. A write configuration command is sepa-
rately issued for each plane. For each plane, it configures the size of
segment (segs), number of input segments (seg;,), actual number
of segments in the plane (segg¢;), and the ID of the first segment
(segone). The format of the command is [segs, segin, s€gact, S€Jone]-
For example, the command for plane 0 and plane 2 in Figure 3 would
be [200,4,5,0] and [200, 4, 5, 2] respectively. While sequential, this
step has negligible latency overhead because it can be performed
in parallel for all the flash chips.

As discussed briefly in Section 4.2, the flash controller sends
the projection matrix elements to the respective accelerators. SSD
receives the projection matrix from host. We introduce a dedicated
scratchpad in the flash controller to store the matrix. The controller
sends the elements in page-sized frames to the die accelerators.
The frames consist of multiple segments and are used by the die-
accelerators according to the configuration command, as shown in
Figure 3.

5 RESULTS

5.1 Experimental Setup

We develope a simulator for THRIFTY which supports parallel read
and write accesses to the flash chips. We utilize Verilog and Syn-
opsys Design Compiler to implement and synthesize our die-level
accelerator at 45nm and scale it down to 22nm. The top-level FPGA
accelerator has been synthesized and simulated in Xilinx Vivado.
For THRIFTY drive simulation, we assume the characteristics sim-
ilar to 1TB Intel DC P4500 PClIe-3.1 SSD connected to an Intel(R)

Table 1: THRIFTY Parameters

Capacity 1TB Channels 32
Page Size 16KB Chips/Channel 4
External BW 3.2GBps Planes/Chip 8
BW/Channel 800MBps Blocks/Plane 512
Flash Latency 53us Pages/Block 128
FPGA XCKUO025 || Scratchpad Size | 4MB
Avg Power/DA 8mwW DA Latency 1.02ns

*DA: Die-accelerator

Xeon(R) CPU E5-2640 v3 host. The parameters for THRIFTY are
shown in Table 1.

We compare THRIFTY with 7th Gen 2.4GHz Kaby Lake Intel Core
i5 CPU with 8MB RAM and 256 GB SSD. We also compare it with a
3.5GHz Intel(R) Xeon(R) CPU E5-2640 v3 CPU server with 256GB
RAM and 2TB local disk. We also compare THRIFTY with INSIDER
[8] and DeepStore [9], the state-of-the art ISC solutions. INSIDER
is a full-stack storage system and uses a top-level FPGA accelerator
in the drive for ISC. DeepStore is an ISC implementation for query-
based workloads which employs specialized accelerators in SSD.
For all our experiments, including those for other ISC solutions, the
data is assumed to be channel-striped and stored using THRIFTY’s
proposed scheme.

5.2 Workloads

We evaluate the efficiency of THRIFTY on five popular classification
applications, as listed below:

Speech Recognition (ISOLET): The goal is to recognize voice au-
dio of the 26 letters of the English alphabet [21].

Face Recognition (FACE): We exploit Caltech dataset of 10,000
web faces [22]. Negative training images, i.e., non-face images, are
selected from CIFAR-100 and Pascal VOS 2012 datasets [23].
Activity Recognition (UCIHAR): The dataset includes signals col-
lected from motion sensors for 8 subjects performing 19 different
activities [24].

Medical Diagnosis (CARDIO): This dataset provides medical di-
agnosis based on cardiotocography information about each pa-
tient [25].

Gesture Recognition (EMG): This dataset contains EMG readings
for five different hand gestures [26].

5.3 Comparison with CPU and CPU Server

We first compare THRIFTY with CPU and CPU-based server run-
ning state-of-the-art implementations of HDC encoding and train-
ing over the five datasets with D = 10k. In addition, we generate
a synthetic dataset with 10 classes and each data sample having
512 features. We vary the size DS (number of data points) of the
synthetic dataset from 103 to 107. The runtime for different plat-
forms is shown in Figure 5. We observe that THRIFTY is on average
3405x and 1612x faster than CPU and CPU-server, respectively.
Our evaluations show that the performance of THRIFTY increases
linearly with an increase in the dataset size. This happens because
more data samples result in more huge hypervectors to generate

|- CPU CPU Server [THRIFTY B Data Size

=
(=]
S

=
(=)
>

f |
| | i il 1 I8 I Il

CARDIO EMG FACE ISOLET UCIHAR DS =10° DS =10* DS =10° DS =10° DS =10’

Dataset

Execution Time (s)
2
Normalized Data Size

|
l
|
\
|
|
|
|

Figure 5: Runtime comparison of HDC encoding and train-
ing in THRIFTY with other platforms. The bars in red shows
the size of raw data normalized to the total size of corre-
sponding class hypervectors in THRIFTY.

ﬁ Encoding B SSDChannel [Training] o
1.0
>
2
€08
2
[
= 06
T
Q
Noa
]
E
502
z
0.
CARDIO EMG FACE ISOLET UCIHAR
Dataset

Figure 6: Breakdown of latency of different stages of HDC
normalized to the total latency.

and process. In conventional systems, this translates to a huge
amount of data transfers between the core and memory. It should
be noted that the CPU system runs out of memory while encoding
for 10° samples and kills the process. The CPU server faces a similar
situation for 107 samples. In contrast, since THRIFTY generates
hypervectors (encoding) while reading data out of the slow flash
arrays and processes (training) them on the disk itself, there is
minimal data movement involved.

Figure 5 also shows the size of raw input data in each case nor-
malized to the size of the corresponding trained class hypervectors.
While THRIFTY only sends class hypervectors from drive to the
host, CPU-based systems fetch all data samples from the disk. We
observe that the ratio increases linearly with an increase in the data
size. In fact, the size of class hypervectors does not change with an
increase in data size as long as the number of classes and required
dimensions remain the same.

5.4 THRIFTY Efficiency

Figure 6 shows the breakdown of THRIFTY latency normalized
to the total latency. Here I/O shows the time spent in sending the
generated class hypervectors to the host. For small datasets, CARDIO
and EMG, the latency is dominated by the encoding. However, as the
data size increases, the internal SSD channel bandwidth becomes
a bottleneck. This indicates that THRIFTY is able to completely
utilize and saturate the huge internal SSD bandwidth. In addition,
a significant amount of time spent in training and some part of
the encoding is hidden by the SSD channel latency. As a result,
the combined latency is less than sum of the latency for individual
stages. For example of FACE dataset, even though the training takes

|- Latency [Data Size [. Latency [Data Size

I o . N
7 10 10 ®
e T~
Z 107 100§ B g0 10 8
5, o a o
< $ 107 10° g
< 107 10" N 2 N
3 g Jqo 10" 8
£ £
’ S " -]
A — oo et e 10" = 10 102 2
10 10 10
2SS 10 O 5 10 50 100 5001000
(a) Dimensions (b) Number of Classes

Figure 7: Change in HDC runtime and raw data size to hyper-
vector ratio with (a) dimensions and (b) number of classes.

more than half of the total latency, a negligible portion of it actually
contributes to the overall latency. It shows that THRIFTY stages
are able to hide some of their latency.

To demonstrate the scalability provided by THRIFTY, we eval-
uate it over a synthetic dataset with 10* samples each with 512
features. We vary the dimensions D from 10% to 10°. Figure 7a
shows that the latency of THRIFTY increases linearly with an in-
crease in the number of dimensions, showing that THRIFTY is able
to scale with D. Additionally, an increase in D results in longer
class hypervectors for the same input data. Hence, the ratio of raw
data to hypervector size decreases with an increase in dimensions,
falling from from 512 for D = 1k to 2.5 for D = 10°.

We also scale the dataset with the number of class, while keeping
its size fixed to 10* samples and D as 103. Figure 7b shows that the
THRIFTY latency has minor changes with the number of classes
when we have less than 50 classes. This is because our FPGA has
enough resources to train up to 54 classes with D = 10k dimensions.
The latency almost doubles for 100 classes. However, when number
of classes increases further, the size of model hypervectors is too
large to store in the FPGA. Hence, partially trained hypervectors
are then sent to the host for further processing. This can be seen
by a jump in the latency for 500 classes in Figure 7b. In addition to
the time spent in training, transferring the class hypervectors to
host creates a major bottleneck. This is also evident from the data
size ratio which declines for large number of classes. A ratio of less
than 1 signifies that the size of generated hypervectors is larger
than the raw data.

5.5 Comparison with Existing Solutions

We compare the performance and data transfer efficiency of THRIFTY
with INSIDER [8] and DeepStore [9]. In our experiments, INSIDER
performs both encoding and training using the FPGA accelerator in
SSD and sends the class hypervectors to the host. Since DeepStore
was intended for a completely different application, we replace
its accelerator with THRIFTY die-level accelerator. During ISC,
Deepstore encodes the raw data into hypervectors and sends those
hypervectors to the host for training. Figure 8 shows the change in
latency and data transfer size for the three ISC solutions. We ob-
serve that THRIFTY is on an average 14.4X and 446.8x faster than
INSIDER and DeepStore, respectively. While encoding in DeepStore
takes the same time as THRIFTY, transferring hypervector from
SSD to host and further training on them on CPU increases the
execution time of DeepStore significantly. On the other hand, the
SSD channel bottleneck faced by THRIFTY is relaxed in case of

B THRIFTY Latency [INSIDER Latency DeepStore Latency
B THRIFTY DataSize [INSIDER Data Size 77} DeepStore Data Size

Normalized Latency
Normalized Data Size

Dataset

Figure 8: Runtime and data transfer size comparison of
THRIFTY with INSIDER [8] and DeepStore [9]

INSIDER since it only transfers raw data. However, the FPGA-based
HDC encoding+training are on an average 21X slower as compared
to FPGA-based training. Also, since INSIDER performs training in
SSD, it transfers the same amount of data to the host as THRIFTY.
However, by transferring untrained hypervectors, DeepStore in-
creases the amount of data transferred on an average by 397X as
compared to THRIFTY.

6 CONCLUSION

In this paper, we proposed an in-storage HDC system that spans
multiple levels of the storage hierarchy. We exploited the inter-
nal bandwidth and hierarchical structure of SSDs to perform HDC
encoding and training in-storage over multiple data samples in
parallel. We proposed batched HDC training to enable partial pro-
cessing of HDC hypervectors. We further proposed die-level and
top-level accelerators for HDC e