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Abstract

Accurate stereo depth estimation plays a critical role in

various 3D tasks in both indoor and outdoor environments.

Recently, learning-based multi-view stereo methods have

demonstrated competitive performance with limited number

of views. However, in challenging scenarios, especially

when building cross-view correspondences is hard, these

methods still cannot produce satisfying results. In this

paper, we study how to leverage a normal estimation model

and the predicted normal maps to improve the depth quality.

We couple the learning of a multi-view normal estimation

module and a multi-view depth estimation module. In

addition, we propose a novel consistency loss to train an

independent consistency module that refines the depths from

depth/normal pairs. We find that the joint learning can

improve both the prediction of normal and depth, and

the accuracy & smoothness can be further improved by

enforcing the consistency. Experiments on MVS, SUN3D,

RGBD and Scenes11 demonstrate the effectiveness of our

method and state-of-the-art performance.

1. Introduction

Multi-view stereo (MVS) is one of the most fundamental

problems in computer vision and has been studied over

decades. Recently, learning-based MVS methods have

witnessed significant improvement against their traditional

counterparts [45, 23, 47, 7]. In general, these methods

formulate the task as an optimization problem, where

the target is to minimize the overall summation of pixel-

wise depth discrepancy. However, the lack of geometric

constraints leads to bumpy depth prediction especially in

areas with low texture or that are textureless as shown in

Fig. 1. Compared with depth that is a property of the

global geometry, surface normal represents a more local

geometric property and can be inferred more easily from

visual appearance. For instance, it is much easier for
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Figure 1. Illustration of results of separate learning and joint

learning of depth and normal. While the normal prediction

is smooth and accurate, existing state-of-the-art stereo depth

prediction result is noisy. Our method improves the prediction

quality significantly by joint learning of depth and normal and

enforcing consistency. Color format. Best viewed on screen.

humans to estimate whether a wall is flat or not than the

absolute depth. Fig. 1 shows an example where learning-

based MVS methods perform poorly on depth estimation

but significantly better on normal prediction.

Attempts have been made to incorporate the normal

based geometric constraints into the optimization to

improve the monocular depth prediction [49, 59]. One

simple form of enforcing a consistency constraint between

depth and normal is to enforce orthogonality between the

predicted normal and the tangent directions computed from

the predicted depths at every point. However, for usage

as regularizing loss function during training, we find that

a naive consistency method in the world coordinate space

is a very soft constraint as there are many sub-optimal

depth solutions that are consistent with a given normal.

Optimizing depths to be consistent with the normal as a

post processing[59] ensures local consistency; however, not

only this is an expensive step during inference time, but

also the post-processed result may lose grounding from

the input images. Therefore, we strive to propose a new

formulation of depth-normal consistency that can improve
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the training process. Our consistency is defined in the pixel

coordinate space and we show that our formulation is better

than the simple consistency along with better performance

than previous methods to make the geometry consistent in

Section 4.4. This constraint is independent of the multi-

view formulation and can be used to enforce consistency on

any pair of depth and normal even in the single view setting.

To this end, our contributions are mainly in the following

aspects:

First, we propose a novel cost-volume-based multi-

view surface normal prediction network (NNet). By

constructing a 3D cost volume by plane sweeping and

accumulating the multi-view image information to different

planes through projection, our NNet can learn to infer

the normal accurately using the image information at

the correct depth. The construction of a cost volume

with image features from multiple views contains the

information of available features in addition to enforcing

additional constraints on the correspondences and thus the

depths of each point. We show that the cost volume

is a better structural representation that facilitates better

learning on the image features for estimating the underlying

surface normal. While in single image setting, the network

tends to overfit the texture and color and demonstrates

worse generalizability, we show that our method of normal

estimation generalizes better due to learning on a better

abstraction than single view images.

Further, we demonstrate that learning a normal

estimation model on the cost volume jointly with the

depth estimation pipeline facilitates both tasks. Both

traditional and learning-based stereo methods suffer from

the noisy nature of the cost volume. The problem is

significant in textureless surfaces when the image feature

based matching doesn’t offer enough cues. We show that

enforce the network to predict accurate normal maps from

the cost volume results in regularizing the cost volume

representation, and thereby assists in producing better

depth estimation. Experiments on MVS, SUN3D, RGBD,

Scenes11, and Scene Flow datasets demonstrate that our

method achieves state-of-the-art performance.

2. Related Work

In this section we review the literature relevant to

our work concerned with stereo depth estimation, normal

estimation and multi-task learning for multi-view geometry.

Classical Stereo Matching. A stereo algorithm

typically consists of the following steps: matching

cost calculation, matching cost aggregation and disparity

calculation. As the pixel representation plays a critical role

in the process, previous literature have exploited a variety of

representations, from the simplest RGB colors to hand-craft

feature descriptors [50, 44, 39, 31, 2]. Together with post-

processing techniques like Markov random fields [38] and

semi-global matching [20], these methods can work well on

relative simple scenarios.

Learning-based Stereo. To deal with more complex

real world scenes, recently researchers leverage CNNs to

extract pixel-wise features and match correspondences [25,

51, 27, 6, 30, 29, 19]. The learned representation

shows more robustness to low-texture regions and various

lightings [22, 45, 47, 7, 32]. Rather than directly

estimating depth from image pairs as done in many

previous deep learning methods, some approaches also

tried to incorporate semantic cues and context information

in the cost aggregation process [43, 8, 24] and achieved

positive results. While other geometry information such

as normal and boundary [56, 16, 26] are widely utilized in

traditional methods for further improving the reconstruction

accuracy, it is non-trivial to explicitly enforce the geometry

constraints in learning-based approaches [15]. To the best

of our knowledge, this is the first work that tries to solve

depth and normal estimation in multi-view scenario in a

joint learning fashion.

Surface Normal Estimation. Surface normal is

an important geometry information for 3D scene

understanding. Recently, several data-driven methods

have achieved promising results [12, 1, 14, 41, 3, 52].

While these methods learn the image level features and

textures to address normal prediction in a single image

setting, we propose a multi-view method that generalizes

better and reduces the learning complexity of the task.

Joint Learning of Normal and Depth. With deep

learning, numerous methods have been proposed for joint

learning of normal and depth [34, 18, 54, 11, 48, 57,

12]. Even though these methods achieved some progress,

all these methods focus on single image scenario, while

there are still few works exploring joint estimation of

normal and depth in multi-view setting. Gallup et al. [17]

estimated candidate plane directions for warping during

plane sweep stereo and further enforce an integrability

penalty between the predicted depths and the candidate

plane for better performance on slanted surfaces, however,

the geometry constraints are only applied in a post

processing or optimization step (e.g., energy model or graph

cut). The lack of end-to-end learning mechanism make

their methods easier to stuck in sub-optimal solutions. In

this work, our experiments demonstrate that with careful

design, the joint learning of normal and depth is favorable

for both sides, as the geometry information is easier

to be captured. Benefited from the learned powerful

representations, our approach achieves competitive results

compared with previous methods.

3. Approach

We propose an end-to-end pipeline for multi-view depth

and normal estimation as shown in Fig. 2. The entire
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Figure 2. Illustration of the pipeline of our method. We first extract deep image features from viewed images and build a feature cost

volume by using feature wrapping. The depth and normal are jointly learned in a supervision fashion. Further we use our proposed

consistency module to refine the depth and apply a consistency loss.

pipeline can be viewed as two modules. The first module

consists of joint estimation of depth and normal maps from

the cost volume built from multi-view image features. The

subsequent module refines the predicted depth by enforcing

consistency between the predicted depth and normal maps

using the proposed consistency loss. In the first module,

joint prediction of normal from the cost volume implicitly

improves the learned model for depth estimation. The

second module is explicitly trained to refine the estimates

by enforcing consistency.

3.1. Learning based Plane Sweep Stereo

First, we describe our depth prediction module. In terms

of the type of target, current learning-based stereo methods

can be categorized into : single object reconstruction [46,

7] and scene reconstruction [23, 22]. Compared with

single object reconstruction, scene reconstruction, where

multiple objects are included, requires larger receptive field

for the network to better infer the context information.

Because our work also aims at scene reconstruction, we

take DPSNet [23], a state-of-the-art scene reconstruction

method, as our depth prediction module.

The inputs to the network are a reference image I1 and a

neighboring view image I2 of the same scene along with the

intrinsic camera parameters and the extrinsic transformation

between the two views. We first extract deep image features

using a spatial pyramid pooling module. Then a cost

volume is built by plane sweeping and 3D CNNs are applied

on it. Multiple cost volumes can be built and averaged

when multiple views are present. Further context-aware

cost aggregation [23] is used to regularize the noisy cost

volume. The final depth is regressed using soft argmin [28]

from the final cost volume.
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Figure 3. Network architecture of cost volume based surface

normal estimation, NNet

3.2. Cost Volume based Surface Normal Estimation

In this section, we describe the network architecture of

cost volume based surface normal estimation (Fig. 3). The

cost volume contains all the spatial information in the scene

as well as image features in it. The probability volume

models a depth distribution across candidate planes for each

pixel. In the limiting case of infinite candidate planes,

an accurately estimated probability volume turns out to

be the implicit function representation of the underlying

surface i.e. takes value 1 where a point on the surface exists

and 0 everywhere else. This motivates us to use the cost

volume C1 which also contains the image-level features to

estimate the surface normal map �n of the underlying scene.

Given the cost volume C1 we concatenate the world

coordinates of every voxel to its feature. Then, we use three

layers of 2-strided convolution along the depth dimension

to reduce the size of this input to ((f + 3)×H×W×D/8)
and call this Cn. Consider a fronto-parallel slice Si of size

((f + 3)×H×W) in Cn. We pass each slice through a

normal-estimation network (NNet). NNet contains 7 layers

of 2D convolutions of 3× 3 with increasing receptive field

as the layers go deep using dilated convolutions (1, 2, 4, 6,

8, 1, 1). We add the output of all slices and normalize the
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sum to obtain the estimate of the normal map.

�n =

∑D/8
i=1 NNet(Si)∣∣∣∣∑D/8
i=1 NNet(Si)

∣∣∣∣
2

(1)

We explain the intuition behind this choice as follows.

Each slice contains information corresponding to the

patch match similarity of each pixel in all the views

conditioned on the hallucinated depths in the receptive

field of the current slice. In addition, due to the strided

3D convolutions, the slice features accumulate information

about features of a group of neighboring planes. The

positional information of each pixel in each plane is

explicitly encoded into the feature when we concatenated

the world coordinates. So NNet(Si) is an estimate of

the normal at each pixel conditional to the depths in the

receptive field of the current slice. For a particular pixel,

slices close to the ground truth depth predict good normal

estimates, where as slices far from the ground truth predict

zero estimates. One way to see this is, if the normal estimate

from each slice for a pixel is �ni, the magnitude of �ni can be

seen as the correspondence probability at that slice for that

pixel. The direction of �ni can be seen as the vector aligning

with the strong correspondences in the local patch around

the pixel in that slice. 1

We train the first module with ground truth depth (Zgt)

supervision on Z1 & Z2 along with the ground truth normal

( �ngt) supervision on (�n). The loss function (L) is defined

as follows.

Lz = |Z2 − Zgt|H + λz|Z1 − Zgt|H

Ln = |�n− �ngt|H

L = Lz + λnLn

(2)

where |.|H denotes the Huber norm2.

3.3. Depth Normal Consistency

In addition to estimating depth and normal jointly from

the cost volume, we use a novel consistency loss to enforce

consistency between the estimated depth and normal maps.

We utilize the camera model to estimate the spatial gradient

of the depth map in the pixel coordinate space using the

depth map and normal map. We compute two estimates for(
∂Z
∂u , ∂Z

∂v

)
and enforce them to be consistent.

A pinhole model of the camera is adopted as shown in

Figure 4).

⎡
⎣uv
1

⎤
⎦ =

1

Z

⎡
⎣fx 0 uc

0 fy vc
0 0 1

⎤
⎦
⎡
⎣XY
Z

⎤
⎦ (3)

where (u, v) is the corresponding image pixel coordinate

1Refer to the suppl. material for Visualisation of the NNet slices
2Also referred to as Smooth L1Loss.

Figure 4. Camera Model

of 3D point (X,Y, Z), (uc, vc) is the pixel coordinate of

camera optical center, and fx, fy are the focal lengths for

X-axis and Y-axis, respectively.

From the camera model, we can yield:

X =
Z(u− uc)

fx
=⇒

∂X

∂u
=

u− uc

fx

∂Z

∂u
+

Z

fx

Y =
Z(v − vc)

fy
=⇒

∂Y

∂u
=

v − vc
fy

∂Z

∂x

(4)

Estimate 1:

The spatial gradient of the depth map can first be

computed from the depth map by using a Sobel filter:

(
∂Z

∂u
,
∂Z

∂v

)
1

=

(
ΔZ

Δu
,
ΔZ

Δv

)
(5)

Estimate 2:

We assume the underlying scene to be of a smooth

surface which can be expressed as an implicit function

F (X,Y, Z) = 0. The normal map �n is an estimate of the

gradient of this surface.

�n = (nx, ny, nz) =

(
∂F

∂X
,
∂F

∂Y
,
∂F

∂Z

)

=⇒
∂Z

∂X
=

−nx

nz
,
∂Z

∂Y
=

−ny

nz

(6)

Therefore, we can derive the second estimate of the

depth spatial gradient by:

(
∂Z

∂u

)
2

=
∂Z

∂X

∂X

∂u
+

∂Z

∂Y

∂Y

∂u

=

(
−nxZ
nzfx

)
1 +

[nx(u−uc)
nzfx

]
+
[ny(v−vc)

nzfy

]
(7)
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Similarly,

(
∂Z

∂v

)
2

=

(
−nyZ
nzfy

)
1 +

[nx(u−uc)
nzfx

]
+
[ny(v−vc)

nzfy

] (8)

The consistency loss Lc is given as the Huber norm of

the deviation between the two estimates
(
∂Z
∂u , ∂Z

∂v

)
1

and(
∂Z
∂u , ∂Z

∂v

)
2

:

Lc =

∣∣∣∣
(
∂Z

∂u
,
∂Z

∂v

)
1

−

(
∂Z

∂u
,
∂Z

∂v

)
2

∣∣∣∣
H

(9)

The second estimate of the depth spatial gradient

depends only the absolute depth of the pixel in question

and not the depths of the neighboring pixels. We obtain the

local surface information from the normal map, which we

deem more accurate and easier to estimate. Our consistency

formulation not only enforces constraints between the

relative depths in a pixel’s neighborhood but also the

absolute depth. Previous approaches like [34], [58]

enforce consistency between depth and normal maps by

constraining the local surface tangent obtained from the

depth map to be orthogonal to the estimated normal. These

approaches typically enforce constraints on the spatial

depth gradient in the world coordinate space, where as we

enforce them in the pixel coordinate space. We convert

the previous approach into a depth gradient consistency

formulation and provide a detailed comparison along with

experiments on SUN3D dataset in the appendix.

In our pipeline, we implement this loss in an independent

module. We use a UNet [35] with the raw depth and

normal estimates as inputs to predict the refined depth

and normal estimates. We train the entire pipeline in a

modular fashion. We initially train the first module with

loss L and then add the second module to train with

the consistency loss Lc in conjunction with the previous

losses. Moreover, our loss function can also be used for any

depth refinement/completion method including single-view

estimation given an estimate of the normal map.

4. Experiments

4.1. Datasets

We use SUN3D [42], RGBD [37] and Scenes11 [4]

datasets for training our end-to-end pipeline from scratch.

The train set contain 166,285 image pairs from 50420

scenes (SUN3D: 29294, RGBD: 3373, Scenes11: 17753).

Scenes11 is a synthetic dataset whereas SUN3D and RGBD

consist of real word indoor environments. We test on the

same split as previous methods and report the common

quantitative measures of depth quality: absolute relative

error (Abs Rel), absolute relative inverse error (Abs R-Inv),

absolute difference error (Abs diff), square relative error (Sq

Figure 5. Visualizing the depths in 3D for SUN3D. Two views

for the point cloud from depth prediction.

Rel), root mean square error and its log scale (RMSE and

RMSE log) and inlier ratios (δ < 1.25i where i ∈ {1, 2, 3}).

We also evaluate our method on a different class of

datasets used by other state-of-the-art methods. We train

and test on the Scene Flow datasets [33] which consist

of 35454 training and 4370 test stereo pairs in 960×540

resolution with both synthetic and natural scenes. The

metrics we use on this dataset are the popularly used

average End Point Error (EPE) and the 1-pixel threshold

error rate.

Further, we evaluate our task on ScanNet [10]. The

dataset consists of 94212 image pairs from 1201 scenes.

We use the same test split as in [53]. We follow [45]

for neighboring view selection, and generate ground-truth

normal map following [13]. We use ScanNet to evaluate

the performance of the surface normal estimation task too.

We use the mean angle error (mean) and median angle error

(median) per pixel. In addition, we also report the fraction

of pixels with absolute angle difference with ground truth

less than t where t ∈ {11.25◦, 22.5◦, 30◦}. For all the tables,

we represent if a lower value of a metric is better with (↓)

and if an upper value of a metric is better with (↑).

For all the experiments, to be consistent with other

works, we use only two views to train and evaluate. Please

refer the supplementary material for View Selection and

ground truth normal generation

4.2. Comparison with state-of-the-art

For comparisons on the DeMoN datasets (SUN3D,

RGBD, Scenes11 and MVS), we choose state-of-the-art

approaches of a diverse kind. We also evaluate on another

dataset MVS [36] containing outdoor scenes of buildings

which is not used for training to evaluate generalizability.

The complete comparison on all the metrics is presented in

Table 1, and some qualitative results are shown in Fig. 5.

Our method outperforms existing methods in terms of all

the metrics. Also, our method generates more accurate

and smooth point cloud with fine details even in textureless

regions (eg. bed, wall).
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Dataset Method Abs

Rel(↓)

Abs

diff(↓)

Sq

Rel(↓)

RMSE

(↓)

RMSE

log(↓)

δ <1.25

(↑)

δ <1.252

(↑)

δ <1.253

(↑)

MVS COLMAP [36] 0.3841 0.8430 1.257 1.4795 0.5001 0.4819 0.6633 0.8401

(Outdoor) DeMoN [40] 0.3105 1.3291 19.970 2.6065 0.2469 0.6411 0.9017 0.9667

DeepMVS [21] 0.2305 0.6628 0.6151 1.1488 0.3019 0.6737 0.8867 0.9414

DPSNet-U [23] 0.0813 0.2006 0.0971 0.4419 0.1595 0.8853 0.9454 0.9735

Ours 0.0679 0.1677 0.0555 0.3752 0.1419 0.9054 0.9644 0.9879

SUN3D COLMAP [36] 0.6232 1.3267 3.2359 2.3162 0.6612 0.3266 0.5541 0.7180

(Indoor) DeMoN [40] 0.2137 2.1477 1.1202 2.4212 0.2060 0.7332 0.9219 0.9626

DeepMVS [21] 0.2816 0.6040 0.4350 0.9436 0.3633 0.5622 0.7388 0.8951

DPSNet-U [23] 0.1469 0.3355 0.1165 0.4489 0.1956 0.7812 0.9260 0.9728

Ours 0.1271 0.2879 0.0852 0.3775 0.1703 0.8295 0.9437 0.9776

RGBD COLMAP [36] 0.5389 0.9398 1.7608 1.5051 0.7151 0.2749 0.5001 0.7241

(Indoor) DeMoN [40] 0.1569 1.3525 0.5238 1.7798 0.2018 0.8011 0.9056 0.9621

DeepMVS [21] 0.2938 0.6207 0.4297 0.8684 0.3506 0.5493 0.8052 0.9217

DPSNet-U [23] 0.1508 0.5312 0.2514 0.6952 0.2421 0.8041 0.8948 0.9268

Ours 0.1314 0.4737 0.2126 0.6190 0.2091 0.8565 0.9289 0.9450

Scenes11 COLMAP [36] 0.6249 2.2409 3.7148 3.6575 0.8680 0.3897 0.5674 0.6716

(Synthetic) DeMoN [40] 0.5560 1.9877 3.4020 2.6034 0.3909 0.4963 0.7258 0.8263

DeepMVS [21] 0.2100 0.5967 0.3727 0.8909 0.2699 0.6881 0.8940 0.9687

DPSNet-U [23] 0.0500 0.1515 0.1108 0.4661 0.1164 0.9614 0.9824 0.9880

Ours 0.0380 0.1130 0.0666 0.3710 0.0946 0.9754 0.9900 0.9947

Table 1. Comparative evaluation of our model on SUN3D, RGBD, Scenes11 and MVS datasets. For all the metrics except the inlier ratios,

lower the better. We use the perfomance of COLMAP, DeMoN, and DeepMVS reported in [23].

Method EPE(↓) 1-pixel error rate(↓)

GCNet 1.80 15.6

PSMNet 1.09 12.1

DPSNet 0.80 8.4

GANet-15 0.84 9.9

GANet-deep 0.78 8.7

GANet-NNet 0.77 8.0

Ours 0.69 7.0

Table 2. Comparative evaluation of our model on Scene Flow

datasets. For all the metrics, lower the better.

We compare our performance against similar cost-

volume based approaches GCNet [28], PSMNet [5])

and GANet [55] which have different choices of cost

aggregation. Since we use the same testing protocol,

we use the performance of GCNet, PSMNet and GANet-

15 as reported in [55]. We obtain the performance of

GANet-deep which uses a deeper network with more 3D

convolutions from the authors’ website. Further, we append

our NNet branch to the existing GANet architecture by

passing the cost volume of GANet through our NNet

and train this branch simultaneously with the full GANet

architecture. We call this GANet-NNet. Finally, we also

train DPSNet on scene flow datasets to confirm that the

better performance is due to normal supervision rather than

better cost aggregation or a better architecture.

Dataset Method Abs

Rel(↓)

Abs

diff(↓)

Sq

Rel(↓)

RMSE

(↓)

ScanNet DPSNet 0.1258 0.2145 0.0663 0.3145

Ours 0.1150 0.2068 0.0577 0.3009

Ours-Lc 0.1070 0.1946 0.0508 0.2807

SUN3D DPSNet 0.1470 0.3234 0.1071 0.4269

Ours 0.1332 0.3038 0.0910 0.3994

Ours-Lc 0.1247 0.2848 0.0791 0.3671

Table 3. Comparative evaluation of our consistency loss.

We also evaluate the performance of our consistency

loss on SUN3D and ScanNet datasets. We train DPSNet

only on SUN3D as well as ScanNet independently along

with our method and present the results and present

them in Table 3. We observe that our pipeline achieves

significantly better performance on all the metrics on the

MVS, SUN3D, RGBD, Scenes11 & SceneFlow datasets.

We find that joint multi-view normal and depth estimation

helps improve performance on indoor, outdoor, real and

synthetic datasets. We further show that our consistency

module significantly improves the performance on top of

our existing pipeline. We further evaluate the performance

on planar and textureless surfaces and visualise the changes

in the cost volume due to the addition of NNet.
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4.3. Surface Normal Estimation

Table 4 compares our cost volume based surface normal

estimation with existing RGB-based, depth-based and

RGB-D methods. We perform significantly better than the

depth completion based method and perform similar to the

RGB based method. The RGB-D based method performs

the best, because of using the ground truth depth data.

Method Mean

(↓)

Median

(↓)

11.25◦

(↑)

22.5◦

(↑)

30◦

(↑)

RGB-D [53] 14.6 7.5 65.6 81.2 86.2

DC [59] 30.6 20.7 39.2 55.3 60.0

RGB [59] 31.1 17.2 37.7 58.3 67.1

Ours 23.1 18.0 31.1 61.8 73.6

Table 4. Comparison of normal estimation on ScanNet with

single view normal estimation. Note that the RGB-D and depth

completion (DC) based methods use ground truth depth. The

performances of DC & RGB-D are from [53] and RGB from [59].

We evaluate the surface normal estimation performance

in the wild by comparing our method against RGB based

methods [59]. We use models trained on ScanNet and test

them on images from the SUN3D dataset. We present the

results in Table 5 and visualize a few cases in Fig. 6. We

notice that our method generalizes much better in the wild

when compared to the single-view RGB based methods.

NNet estimates normals accurately not only in regions

of low texture but also in regions with high variance in

texture (the bed’s surface). We attribute this performance to

using two views instead of one which reduces the learning

complexity of the task and thus generalizes better.

We also observe that irrespective of the dataset, the

normal estimation loss as well as the validation accuracies

saturate within 3 epochs, showing that the task of normal

estimation from cost volume is much easier than depth

estimation.

Figure 6. Surface Normal Estimation. Test on SUN3D after

training on ScanNet. The RGB-based method is from [59]

Method Mean

(↓)

Median

(↓)

11.25◦

(↑)

22.5◦

(↑)

30◦

(↑)

RGB - SUN3D 31.6 25.7 17.9 45.6 57.6

Ours - SUN3D 22.9 17.0 34.5 63.2 73.6

RGB - MVS 33.3 27.8 11.8 42.4 55.1

Ours - MVS 27.7 22.4 23.1 52.0 63.9

Table 5. Generalization performance. Both the models were

trained on ScanNet (indoor) and tested on SUN3D (indoor) and

MVS (outdoor) datasets

Method Abs

Rel(↓)

Abs

diff(↓)

Sq

Rel(↓)

RMSE

(↓)

Raw 0.1332 0.3038 0.0910 0.3994

UNet 0.1307 0.2863 0.0878 0.3720

UNet-Lt 0.1288 0.2980 0.0842 0.3820

UNet-Lc 0.1247 0.2848 0.0791 0.3671

Table 6. Ablation Study of Consistency Loss on SUN3D

4.4. Consistency Loss

We perform a few experiments to analyse the

performance gains due to our novel consistency loss. We

freeze the stereo pipeline and train the UNet that takes

the raw estimates of depth and normal maps and refines

the depth estimate. We train three configurations of it:

(1) Pure network based refinement with just ground truth

supervision, (2) Naive consistency loss, Lt as regularizer 3,

(3) Our consistency loss Lc as regularizer. We analyse the

performance of the configurations on the SUN3D dataset

which consists of indoor environments with a lot of scope

for planar, textureless surfaces. Results in Table 6 suggest

experimentally that using our consistency loss as regularizer

improves the depth estimation accuracy superior to the other

approaches.

4.5. Visualizing the Cost Volume

Regularization Existing stereo methods, both

traditional and learning-based ones perform explicit

cost aggregation on the cost volume. This is because each

pixel has good correspondences only with a few pixels in

its neighborhood in the other view. But the cost volume

contains many more candidates, to be specific, the number

of slices per pixel. Further, in textureless regions, there are

no distinctive features and thus all candidates have similar

features. This induces a lot of noise in the cost volume also

is responsible for to false-positives. We show that normal

supervision during training regularizes the cost volume.

Fig. 7 visualises the probability volume slices and compares

it against those of DPSNet. We consider the un-aggregated

probability volume P1 in both the cases. We visualise

3Refer to the supplementary material for elaborate description
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Figure 7. Cost slice visualization: The first column contains

the reference image and the ground truth depth map. The

first row contains the cost volume slices from DPSNet. The

second row contains the same from our network. The third row

contains the estimates of ground truth cost slices. This can be

seen as a N (0, 0.01) distribution around the ground truth depth

corresponding to each slice.

Figure 8. Post-softmax probability distributions on disparity

Green lines illustrate the ground truth disparities while the red

lines illustrate the predicted disparities.

the slices at disparities 14, 15, 16 & 17 (corresponding to

depths 2.28, 2.13, 2.0, 1.88) which encompass the wall of

the building. The slices of dpsnet are very noisy and do not

actually produce good outputs in textureless regions like

the walls & sky and reflective regions like the windows.

Planar and Textureless Regions We also visualise the

softmax distribution at a few regions in Fig. 8. Challenging

regions that are planar or textureless or both are chosen. (a)

The chair image consists of very less distinctive textures

and the local patches on the chair look the same as those

on the floor. But given two views, estimation of normal in

the regions with curvature is much easier than estimating

depth. This fact allows our model to perform better in

the these regions(red & yellow boxes). Cost volume based

methods that estimate a probability for each of the candidate

depths struggle in textureless regions and usually have

long tails in the output distribution. Normal supervision

provides additional local constraints on the cost volume and

suppresses the tails. This further justifies our understanding

(from Section 3.2) that the correspondence probability is

related to the slice’s contribution to the normal map.

We quantify these observations by evaluating the

performance of depths D1 obtained from P1 against the

performance of DPSNet without cost aggregation in Table

7. It shows that normal supervision helps to regularize the

cost volume by constraining the cost volume better both

qualitatively in challenging cases and quantitatively across

the entire test data.

Method Abs

Rel(↓)

Abs

diff(↓)

Sq

Rel(↓)

RMSE

(↓)

DPSNet 0.1274 0.3388 0.1957 0.6230

Ours 0.1114 0.3276 0.1466 0.5631

Table 7. Test performance without cost aggregation on the DeMoN

datasets.

Further, we quantify the performance of our methods on

planar and textureless surfaces by evaluating on semantic

classes on ScanNet test images. Specifically we use the

eigen13 classes [9] and report the depth estimation metrics

of our methods against DPSNet on the top-2 occuring

classes in Table 8. The performance on the remaining

classes can be found in the supplementary material. We

show that our methods perform well on all semantic

categories and quantitatively show the improvement on

planar and textureless surfaces which are usually found on

walls and floors.

Label Method Abs

Rel(↓)

Abs

diff(↓)

Sq

Rel(↓)

RMSE

(↓)

Wall DPSNet 0.1340 0.2968 0.0871 0.3599

Ours 0.1255 0.2835 0.0799 0.3436

Ours-Lc 0.1173 0.2690 0.0721 0.3215

Floor DPSNet 0.1116 0.2472 0.0777 0.2973

Ours 0.1092 0.2242 0.0509 0.2642

Ours-Lc 0.1037 0.2061 0.0474 0.2561

Table 8. Semantic class specific evaluation on ScanNet

5. Conclusion

In this paper, we proposed to leverage multi-view normal

estimation and apply geometry constraints between surface

normal and depth at training time to improve stereo depth

estimation. We jointly learn to predict the depth and the

normal based on the multi-view cost volume. Moreover,

we proposed to refine the depths from depth, normal pairs

with an independent consistency module which is trained

independently using a novel consistency loss. Experimental

results showed that joint learning can improve both the

prediction of normal and depth, and the accuracy &

smoothness can be further improved by enforcing the

consistency. We achieved state-of-the-art performance on

MVS, SUN3D, RGBD, Scenes11 and Scene Flow datasets.
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